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Abstract. We study the geometry of complexified moduli spaces of special La-
grangian submanifolds in the complement of an anticanonical divisor in a compact
Kähler manifold. In particular, we explore the connections between T-duality and
mirror symmetry in concrete examples, and show how quantum corrections arise in
this context.

1. Introduction

The Strominger-Yau-Zaslow conjecture [26] asserts that the mirror of a Calabi-Yau
manifold can be constructed by dualizing a fibration by special Lagrangian tori. This
conjecture has been studied extensively, and the works of Fukaya, Kontsevich and
Soibelman, Gross and Siebert, and many others paint a very rich and subtle picture
of mirror symmetry as a T-duality modified by “quantum corrections” [14, 18, 19].

On the other hand, mirror symmetry has been extended to the non Calabi-Yau set-
ting, and in particular to Fano manifolds, by considering Landau-Ginzburg models,
i.e. noncompact manifolds equipped with a complex-valued function called superpo-
tential [16]. Our goal is to understand the connection between mirror symmetry and
T-duality in this setting.

For a toric Fano manifold, the moment map provides a fibration by Lagrangian
tori, and in this context the mirror construction can be understood as a T-duality,
as evidenced e.g. by Abouzaid’s work [1, 2]. Evidence in the non-toric case is much
scarcer, in spite of Hori and Vafa’s derivation of the mirror for Fano complete inter-
sections in toric varieties [16]. The best understood case so far is that of Del Pezzo
surfaces [4]; however, in that example the construction of the mirror is motivated by
entirely ad hoc considerations. As an attempt to understand the geometry of mirror
symmetry beyond the Calabi-Yau setting, we start by formulating the following naive
conjecture:

Conjecture 1.1. Let (X,ω, J) be a compact Kähler manifold, let D be an anticanon-
ical divisor in X, and let Ω be a holomorphic volume form defined over X \D. Then
a mirror manifold M can be constructed as a moduli space of special Lagrangian
tori in X \ D equipped with flat U(1) connections over them, with a superpotential
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W : M → C given by Fukaya-Oh-Ohta-Ono’s m0 obstruction to Floer homology.
Moreover, the fiber of this Landau-Ginzburg model is mirror to D.

The main goal of this paper is to investigate the picture suggested by this conjec-
ture. Conjecture 1.1 cannot hold as stated, for several reasons. One is that in general
the special Lagrangian torus fibration on X \ D is expected to have singular fibers,
which requires suitable corrections to the geometry of M . Moreover, the superpo-
tential constructed in this manner is not well-defined, since wall-crossing phenomena
make m0 multivalued. In particular it is not clear how to define the fiber of W . These
various issues are related to quantum corrections arising from holomorphic discs of
Maslov index 0; while we do not attempt a rigorous systematic treatment, general
considerations (see §3.2–3.3) and calculations on a specific example (see Section 5)
suggest that the story will be very similar to the Calabi-Yau case [14, 19]. Another
issue is the incompleteness of M ; according to Hori and Vafa [16], this is an indi-
cation that the mirror symmetry construction needs to be formulated in a certain
renormalization limit (see §4.2). The modifications of Conjecture 1.1 suggested by
these observations are summarized in Conjectures 3.10 and 4.4 respectively.

The rest of this paper is organized as follows. In Section 2 we study the moduli
space of special Lagrangians and its geometry. In Section 3 we discuss the m0 ob-
struction in Floer theory and the superpotential. Then Section 4 is devoted to the
toric case (in which the superpotential was already investigated by Cho and Oh [9]),
and Section 5 discusses in detail the example of CP

2 with a non-toric holomorphic
volume form. Finally, Section 6 explores the relation between the critical values of W
and the quantum cohomology of X, and Section 7 discusses the connection to mirror
symmetry for the Calabi-Yau hypersurface D ⊂ X.

Finally, a word of warning is in order: in the interest of readability and conciseness,
many of the statements made in this paper are not entirely rigorous; in particular,
weighted counts of holomorphic discs are always assumed to be convergent, and issues
related to the lack of regularity of multiply covered Maslov index 0 discs are mostly
ignored. Since the main goal of this paper is simply to evidence specific phenomena
and illustrate them by examples, we feel that this approach is not unreasonable, and
ask the detail-oriented reader for forgiveness.
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genesis of this paper. I would also like to thank Leonid Polterovich and Felix Schlenk
for their explanations concerning the Chekanov torus, as well as Anton Kapustin,
Dima Orlov and Ivan Smith for helpful discussions. This work was partially supported
by an NSF grant (DMS-0600148) and an A.P. Sloan research fellowship.



MIRROR SYMMETRY AND T-DUALITY 3

2. The complexified moduli space of special Lagrangians

2.1. Special Lagrangians. Let (X,ω, J) be a smooth compact Kähler manifold of
complex dimension n, and let σ ∈ H0(X,K−1

X ) be a nontrivial holomorphic section
of the anticanonical bundle, vanishing on a divisor D. Then the complement X \D
carries a nonvanishing holomorphic n-form Ω = σ−1. By analogy with the Calabi-Yau
situation, for a given φ ∈ R we make the following definition:

Definition 2.1. A Lagrangian submanifold L ⊂ X \ D is special Lagrangian with
phase φ if Im (e−iφΩ)|L = 0.

Multiplying Ω by e−iφ if necessary, in the rest of this section we will consider the case
φ = 0. In the Calabi-Yau case, McLean has shown that infinitesimal deformations
of special Lagrangian submanifolds correspond to harmonic 1-forms, and that these
deformations are unobstructed [20].

In our case, the restriction to L of Re (Ω) is a non-degenerate volume form (which we
assume to be compatible with the orientation of L), but it differs from the volume form
volg induced by the Kähler metric g. Namely, there exists a function ψ ∈ C∞(L,R+)
such that Re (Ω)|L = ψ volg.

Definition 2.2. A one-form α ∈ Ω1(L,R) is ψ-harmonic if dα = 0 and d∗(ψα) = 0.
We denote by H1

ψ(L) the space of ψ-harmonic one-forms.

Lemma 2.3. Each cohomology class contains a unique ψ-harmonic representative.

Proof. If α = df is exact and ψ-harmonic, then ψ−1d∗(ψ df) = ∆f −ψ−1〈dψ, df〉 = 0.
Since the maximum principle holds for solutions of this equation, f must be constant.
So every cohomology class contains at most one ψ-harmonic representative.

To prove existence, we consider the elliptic operator D : Ωodd(L,R) → Ωeven(L,R)
defined by D(α1, α3, . . . ) = (ψ−1d∗(ψα1), dα1 + d∗α3, . . . ). Clearly the kernel of D is
spanned by ψ-harmonic 1-forms and by harmonic forms of odd degree ≥ 3, while its
cokernel contains all harmonic forms of even degree ≥ 2 and the function ψ. However
D differs from d + d∗ by an order 0 operator, so its index is ind(D) = ind(d + d∗) =
−χ(L). It follows that dimH1

ψ(L) = dimH1(L,R). �

Remark 2.4. Rescaling the metric by a factor of λ2 modifies the Hodge ∗ operator
on 1-forms by a factor of λn−2. Therefore, if n 6= 2, then a 1-form is ψ-harmonic if
and only if it is harmonic for the rescaled metric g̃ = ψ2/(n−2)g.

Proposition 2.5. Infinitesimal special Lagrangian deformations of L are in one to
one correspondence with ψ-harmonic 1-forms on L. More precisely, a section of the
normal bundle v ∈ C∞(NL) determines a 1-form α = −ιvω ∈ Ω1(L,R) and an
(n− 1)-form β = ιvIm Ω ∈ Ωn−1(L,R). These satisfy β = ψ ∗g α, and the defor-
mation is special Lagrangian if and only if α and β are both closed. Moreover, the
deformations are unobstructed.
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Proof. For special Lagrangian L, we have linear isomorphisms NL ≃ T ∗L ≃ ∧n−1T ∗L
given by the maps v 7→ −ιvω and v 7→ ιvIm Ω. More precisely, given a point p ∈ L,
by complexifying a g-orthonormal basis of TpL we obtain a local frame (∂xj

, ∂yj
) in

which ω, J, g are standard at p, and TpL = span(∂x1
, . . . , ∂xn

). In terms of the dual
basis dzj = dxj + idyj, at the point p we have Ω = ψ dz1 ∧ · · · ∧ dzn. Hence, given
v =

∑
cj∂yj

∈ NpL, we have −ιvω =
∑
cj dxj and

ιvIm Ω = ψ
∑
j

cj(−1)j−1dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn = ψ ∗g (−ιvω).

Consider a section of the normal bundle v ∈ C∞(NL), and use an arbitrary metric
to construct a family of submanifolds Lt = jt(L), where jt(p) = expp(tv(p)). Since ω
and Im Ω are closed, we have

d

dt |t=0
(j∗t ω) = Lvω = d(ιvω) and

d

dt |t=0
(j∗t Im Ω) = LvIm Ω = d(ιvIm Ω).

Therefore, the infinitesimal deformation v preserves the special Lagrangian condition
ω|L = Im Ω|L = 0 if and only if the forms α = −ιvω and β = ιvIm Ω are closed. Since
β = ψ ∗g α, this is equivalent to the requirement that α is ψ-harmonic.

Finally, unobstructedness is proved exactly as in the Calabi-Yau case, by observing
that the linear map v 7→ (Lvω, LvIm Ω) from normal vector fields to exact 2-forms
and exact n-forms is surjective and invoking the implicit function theorem [20]. �

This proposition allows us to consider (at least locally) the moduli space of special
Lagrangian deformations of L. This moduli space is a smooth manifold, and carries
two natural integer affine structures, obtained by identifying the tangent space to
the moduli space with either H1(L,R) or Hn−1(L,R) and considering the integer
cohomology lattices.

2.2. The geometry of the complexified moduli space. We now consider pairs
(L,∇) consisting of a special Lagrangian submanifold L ⊂ X \D and a flat unitary
connection ∇ on the trivial complex line bundle over L, up to gauge equivalence. (In
the presence of a B-field we would instead require ∇ to have curvature −iB; here
we do not consider B-fields). Allowing L to vary in a given b1(L)-dimensional family
B of special Lagrangian submanifolds (a domain in the moduli space), we denote by
M the space of equivalence classes of pairs (L,∇). Our first observation is that M
carries a natural integrable complex structure.

Indeed, recall that the gauge equivalence class of the connection ∇ is determined
by its holonomy hol∇ ∈ Hom(H1(L), U(1)) ≃ H1(L,R)/H1(L,Z). We will choose a
representative of the form ∇ = d+ iA, where A is a ψ-harmonic 1-form on L.

Then the tangent space to M at a point (L,∇) is the set of all pairs (v, α) ∈
C∞(NL) ⊕ Ω1(L,R) such that v is an infinitesimal special Lagrangian deformation,
and α is a ψ-harmonic 1-form, viewed as an infinitesimal deformation of the flat
connection. The map (v, α) 7→ −ιvω+iα identifies T(L,∇)M with the space H1

ψ(L)⊗C
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of complex-valued ψ-harmonic 1-forms on L, which makes M a complex manifold.
More explicitly, the complex structure on M is as follows:

Definition 2.6. Given (v, α) ∈ T(L,∇)M ⊂ C∞(NL)⊕Ω1(L,R), we define J∨(v, α) =
(a,−ιvω), where a is the normal vector field such that ιaω = α.

The following observation will be useful in Section 3:

Lemma 2.7. Let A ∈ H2(M,L; Z) be a relative homology class with boundary ∂A 6=
0 ∈ H1(L,Z). Then the function

(2.1) zA = exp(−
∫
A
ω) hol∇(∂A) : M → C

∗

is holomorphic.

Proof. The differential d log zA is simply (v, α) 7→
∫
∂A

−ιvω+iα, which is C-linear. �

More precisely, the function zA is well-defined locally (as long as we can keep track
of the relative homology class A under deformations of L), but might be multivalued
if the family of special Lagrangian deformations of L has non-trivial monodromy.

If the map j∗ : H1(L) → H1(X) induced by inclusion is trivial, then this yields a
set of (local) holomorphic coordinates zi = zAi

on M , by considering a collection of
relative homology classes Ai such that ∂Ai form a basis of H1(L). Otherwise, given
a class c ∈ H1(L) we can fix a representative γ0

c of the class j∗(c) ∈ H1(X), and use
the symplectic area of a 2-chain in X with boundary on γ0

c ∪ L, together with the
holonomy of ∇ along the part of the boundary contained in L, as a substitute for the
above construction.

Next, we equip M with a symplectic form:

Definition 2.8. Given (v1, α1), (v2, α2) ∈ T(L,∇)M , we define

ω∨((v1, α1), (v2, α2)) =

∫

L

α2 ∧ ιv1Im Ω − α1 ∧ ιv2Im Ω.

Proposition 2.9. ω∨ is a Kähler form on M , compatible with J∨.

Proof. First we prove that ω∨ is closed and non-degenerate by exhibiting local coor-
dinates on M in which it is standard. Let γ1, . . . , γr be a basis of Hn−1(L,Z) (modulo
torsion), and let e1, . . . , er be the Poincaré dual basis of H1(L,Z). Let γ1, . . . , γr

and e1, . . . , er be the dual bases of Hn−1(L,Z) and H1(L,Z) (modulo torsion): then
〈ei ∪ γj, [L]〉 = 〈γj, γi〉 = δij. In particular, for all a ∈ H1(L,R) and b ∈ Hn−1(L,R)
we have

(2.2) 〈a ∪ b, [L]〉 =
∑
i,j

〈a, ei〉〈b, γj〉〈ei ∪ γj, [L]〉 =
∑
i

〈a, ei〉〈b, γi〉.

Fix representatives Γi and Ei of the homology classes γi and ei, and consider a point
(L′,∇′) of M near (L,∇). L′ is the image of a small deformation j′ of the inclusion
map j : L→ X. Consider an n-chain Ci in X \D such that ∂Ci = j′(Γi)− j(Γi), and
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let pi =
∫
Ci

Im Ω. Also, let θi be the integral over Ei of the connection 1-form of ∇′ in a

fixed trivialization. Then p1, . . . , pr, θ1, . . . , θr are local coordinates on M near (L,∇),
and their differentials are given by dpi(v, α) = 〈[ιvIm Ω], γi〉 and dθi(v, α) = 〈[α], ei〉.
Using (2.2) we deduce that ω∨ =

∑r
i=1 dpi ∧ dθi.

Next we observe that, by Proposition 2.5, ω∨((v1, α1), (v2, α2)) can be rewritten as
∫

L

α1 ∧ (ψ ∗ιv2ω) − α2 ∧ (ψ ∗ιv1ω) =

∫

L

ψ
(
〈α1, ιv2ω〉g − 〈ιv1ω, α2〉g

)
volg.

So the compatibility of ω∨ with J∨ follows directly from the observation that

ω∨((v1, α1), J
∨(v2, α2)) =

∫

L

ψ
(
〈α1, α2〉g + 〈ιv1ω, ιv2ω〉g

)
volg

is clearly a Riemannian metric on M . �

Remark 2.10. Consider the projection π : M → B which forgets the connection, i.e.
the map (L,∇) 7→ L. Then the fibers of π are Lagrangian with respect to ω∨.

If L is a torus, then dimM = dimX = n and we can also equip M with a
holomorphic volume form defined as follows:

Definition 2.11. Given n vectors (v1, α1), . . . , (vn, αn) ∈ T(L,∇)M ⊂ C∞(NL) ⊕
Ω1(L,R), we define

Ω∨((v1, α1), . . . , (vn, αn)) =

∫

L

(−ιv1ω + iα1) ∧ · · · ∧ (−ιvn
ω + iαn).

In terms of the local holomorphic coordinates z1, . . . , zn on M constructed from
a basis of H1(L,Z) using the discussion after Lemma 2.7, this holomorphic volume
form is simply d log z1 ∧ · · · ∧ d log zn.

In this situation, the fibers of π : M → B are special Lagrangian (with phase
nπ/2) with respect to ω∨ and Ω∨. If in addition we assume that ψ-harmonic 1-forms
on L have no zeroes (this is automatic in dimensions n ≤ 2 using the maximum
principle), then we recover the familiar picture: in a neighborhood of L, (X, J, ω,Ω)
and (M,J∨, ω∨,Ω∨) carry dual fibrations by special Lagrangian tori.

3. Towards the superpotential

3.1. Counting discs. Thanks to the monumental work of Fukaya, Oh, Ohta and Ono
[13], it is now well understood that the Floer complex of a Lagrangian submanifold
carries the structure of a curved or obstructed A∞-algebra. The key ingredient is
the moduli space of J-holomorphic discs with boundary in the given Lagrangian
submanifold, together with evaluation maps at boundary marked points. In our case
we will be mainly interested in (weighted) counts of holomorphic discs of Maslov index
2 whose boundary passes through a given point of the Lagrangian; in the Fukaya-Oh-
Ohta-Ono formalism, this corresponds to the degree 0 part of the obstruction term
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m0. In the toric case it is known that this quantity agrees with the superpotential
of the mirror Landau-Ginzburg model; see in particular the work of Cho and Oh [9],
and §4 below. In fact, the material in this section overlaps signiicantly with [9], and
with §12.7 of [13].

As in §2, we consider a smooth compact Kähler manifold (X,ω, J) of complex
dimension n, equipped with a holomorphic n-form Ω defined over the complement of
an anticanonical divisor D.

Recall that, given a Lagrangian submanifold L and a nonzero relative homotopy
class β ∈ π2(X,L), the moduli space M(L, β) of J-holomorphic discs with boundary
on L representing the class β has virtual dimension n − 3 + µ(β), where µ(β) is the
Maslov index.

Lemma 3.1. If L ⊂ X \ D is special Lagrangian, then µ(β) is equal to twice the
algebraic intersection number β · [D].

Proof. Because the tangent space to L is totally real, the choice of a volume element
on L determines a nonvanishing section det(TL) of K−1

X = Λn(TX, J) over L. Its
square det(TL)⊗2 defines a section of the circle bundle S(K−2

X ) associated to K−2
X over

L, independent of the chosen volume element. The Maslov number µ(β) measures
the obstruction of this section to extend over a disc ∆ representing the class β (see
Example 2.9 in [22]).

Recall that D is the divisor associated to σ = Ω−1 ∈ H0(X,K−1
X ). Then σ⊗2 defines

a section of S(K−2
X ) over L ⊂ X \D, and since L is special Lagrangian, the sections

σ⊗2 and det(TL)⊗2 coincide over L (up to a constant phase factor e−2iφ). Therefore,
µ(β) measures precisely the obstruction for σ⊗2 to extend over ∆, which is twice the
intersection number of ∆ with D. �

In fact, as pointed out by M. Abouzaid, the same result holds if we replace the
special Lagrangian condition by the weaker requirement that the Maslov class of L
vanishes in X \D (i.e., the phase function arg(Ω|L) lifts to a real-valued function).

Using positivity of intersections, Lemma 3.1 implies that all holomorphic discs with
boundary in L have non-negative Maslov index.

We will now make various assumptions on L in order to ensure that the count of
holomorphic discs that we want to consider is well-defined:

Assumption 3.2.

(1) there are no non-constant holomorphic discs of Maslov index 0 in (X,L);
(2) holomorphic discs of Maslov index 2 in (X,L) are regular;
(3) there are no non-constant holomorphic spheres in X with c1(TX) · [S2] ≤ 0.

Then, for every relative homotopy class β ∈ π2(X,L) such that µ(β) = 2, the
moduli space M(L, β) of holomorphic discs with boundary in L representing the class
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β is a smooth compact manifold of real dimension n − 1: no bubbling or multiple
covering phenomena can occur since 2 is the minimal Maslov index.

We also assume that L is spin (recall that we are chiefly interested in tori), and
choose a spin structure. The choice is not important, as the difference between two
spin structures is an element of H1(L,Z/2) and can be compensated by twisting the
connection ∇ accordingly. Then M(L, β) is oriented, and the evaluation map at
a boundary marked point gives us an n-cycle in L, which is of the form nβ(L) [L]
for some integer nβ(L) ∈ Z. In simpler terms, nβ(L) is the (algebraic) number of
holomorphic discs in the class β whose boundary passes through a generic point
p ∈ L.

Then, ignoring convergence issues, we can tentatively make the following definition
(see also [9], §12.7 in [13], and Section 5b in [24]):

Definition 3.3. m0(L,∇) =
∑

β, µ(β)=2

nβ(L) exp(−
∫
β
ω) hol∇(∂β).

If Assumption 3.2 holds for all special Lagrangians in the considered family B,
and if the sum converges, then we obtain in this way a complex-valued function
on M , which we call superpotential and also denote by W for consistency with the
literature. In this ideal situation, the integers nβ(L) are locally constant, and Lemma
2.7 immediately implies:

Corollary 3.4. W = m0 : M → C is a holomorphic function.

An important example is the case of toric fibers in a toric manifold, discussed in
Cho and Oh’s work [9] and in §4 below: in this case, the superpotential W agrees
with Hori and Vafa’s physical derivation [16].

Remark 3.5. The way in which we approach the superpotential here is a bit different
from that in [13]. Fukaya, Oh, Ohta and Ono consider a single Lagrangian subman-
ifold L, and the function which to a 1-cocycle a associates the degree zero part of
m0 +m1(a)+m2(a, a)+ . . . . However, each of these terms counts holomorphic discs of
Maslov index 2 whose boundary passes through a generic point of L, just with differ-
ent weights. It is not hard to convince oneself that the contribution to mk(a, a, . . . )
of a disc in a given class β is weighted by a factor 1

k!
〈a, ∂β〉k (the coefficient 1

k!
comes

from the requirement that the k input marked points must lie in the correct order on
the boundary of the disc). Thus, the series m0 +m1(a) +m2(a, a) + . . . counts Maslov
index 2 discs with weights exp(

∫
∂β
a) (in addition to the weighting by symplectic

area). In this sense a can be thought of as a non-unitary holonomy (normally with
values in the positive part of the Novikov ring for convergence reasons; here we as-
sume convergence and work with complex numbers). Next, we observe that, since the
weighting by symplectic area and holonomy is encoded by the complex parameter zβ
defined in (2.1), varying the holonomy in a non-unitary manner is equivalent to mov-
ing the Lagrangian in such a way that the flux of the symplectic form equals the real
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part of the connection form. More precisely, this equivalence between a non-unitary
connection on a fixed L and a unitary connection on a non-Hamiltonian deformation
of L only holds as long as the disc counts nβ remain constant; so in general the su-
perpotential in [13] is the analytic continuation of the germ of our superpotential at
the considered point.

Remark 3.6. Condition (3) in Assumption 3.2 can be somewhat relaxed. For ex-
ample, one can allow the existence of nonconstant J-holomorphic spheres of Chern
number 0, as long as all simple (non multiply covered) such spheres are regular,
and the associated evaluation maps are transverse to the evaluation maps at interior
marked points of J-holomorphic discs of Maslov index 2 in (X,L). Then the union
of all holomorphic spheres with Chern number zero is a subset C of real codimension
4 in X, and the holomorphic discs which intersect C form a codimension 2 family. In
particular, if we choose the point p ∈ L in the complement of a codimension 2 subset
of L then none of the Maslov index 2 discs whose boundary passes through p hits C.
This allows us to define nβ(L).

Similarly, in the presence of J-holomorphic spheres of negative Chern number,
there might exist stable maps in the class β consisting of a disc component of Maslov
index > 2 whose boundary passes through the point p together with multiply covered
spheres of negative Chern number. The moduli space of such maps typically has excess
dimension. However, suitable assumptions on spheres of negative Chern number
ensure that these stable maps cannot occur as limits of sequences of honest discs of
Maslov index 2 as long as p stays away from a codimension 2 subset in L, which
allows us to ignore the issue.

Remark 3.7. In the above discussion we have avoided the use of virtual perturbation
techniques. However, at the cost of additional technical complexity we can remove
(2) and (3) from Assumption 3.2. Indeed, even if holomorphic discs of Maslov index
2 fail to be regular, as long as there are no holomorphic discs of Maslov index ≤ 0
we can still define nβ(L) as a virtual count. Namely, the minimality of the Maslov
index prevents bubbling of discs, so that when µ(β) = 2 the virtual fundamental
chain [M(L, β)]vir is actually a cycle, and nβ(L) can be defined as the degree of the
evaluation map. Moreover, nβ(L) is locally constant under Lagrangian isotopies as
long are discs of Maslov index ≤ 0 do not occur: indeed, the Lagrangian isotopy
induces a cobordism between the virtual fundamental cycles of the moduli spaces.

3.2. Maslov index zero discs and wall-crossing I. In actual examples, condition
(1) in Assumption 3.2 almost never holds (with the notable exception of the toric
case). Generically, in dimension n ≥ 3, the best we can hope for is:

Assumption 3.8. All simple (non multiply covered) nonconstant holomorphic discs
of Maslov index 0 in (X,L) are regular, and the associated evaluation maps at bound-
ary marked points are transverse to each other and to the evaluation maps at boundary
marked points of holomorphic discs of Maslov index 2.
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Figure 1. Wall-crossing for discs

Then simple nonconstant holomorphic discs of Maslov index 0 occur in (n − 3)-
dimensional families, and the set Z of points of L which lie on the boundary of a
nonconstant Maslov index 0 disc has codimension 2 in L. For a generic point p ∈ L,
in each relative homotopy class of Maslov index 2 there are finitely many holomorphic
discs whose boundary passes through p, and none of them hits Z. We can therefore
define an integer nβ(L, p) which counts these discs with appropriate signs, and by
summing over β as in Definition 3.3 we obtain a complex number m0(L,∇, p).

However, the points p which lie on the boundary of a configuration consisting of
two holomorphic discs (of Maslov indices 2 and 0) attached to each other at their
boundary form a codimension 1 subset W ⊂ L. The typical behavior as p approaches
such a “wall” is that a Maslov index 2 disc representing a certain class β breaks into a
union of two discs representing classes β′ and α with β = β′ +α, and then disappears
altogether (see Figure 1). Thus the walls separate L into various chambers, each of
which gives rise to a different value of m0(L,∇, p).

More conceptually, denote by Mk(L, β) the moduli space of holomorphic discs in
(X,L) with k marked points on the boundary representing the class β, and denote
by evi the evaluation map at the i-th marked point. Then nβ(L, p) is the degree at
p of the n-chain (ev1)∗[M1(L, β)], whose boundary (an n− 1-chain supported on W)
is essentially (ignoring all subtleties arising from multiple covers)

∑

β=β′+α
µ(α)=0

0<ω(α)<ω(β)

(ev1)∗[M2(L, β
′) ×
ev2

M1(L, α)],

and m0(L,∇, p) is the degree at p of the chain (with complex coefficients)

m0 =
∑

β

exp(−
∫
β
ω) hol∇(∂β) (ev1)∗[M1(L, β)].

In this language it is clear that these quantities depend on the position of p relatively
to the boundary of the chain.

Various strategies can be employed to cancel the boundary and obtain an evaluation
cycle, thus leading to a well-defined count nβ(L) independently of the point p ∈ L
[10, 13]. For instance, in the cluster approach [10], given a suitably chosen Morse
function f on L, one enlarges the moduli space M1(L, β) by considering configura-
tions consisting of several holomorphic discs connected to each other by gradient flow
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trajectories of f , with one marked point on the boundary of the component which
lies at the root of the tree (which has Maslov index 2, while the other components
have Maslov index 0); see Figure 1 (right) for the simplest case.

However, even if one makes the disc count independent of the choice of p ∈ L by
completing the evaluation chain to a cycle, the final answer still depends on the choice
of auxiliary data. For example, in the cluster construction, depending on the direction
of ∇f relative to the wall, two scenarios are possible: either an honest disc in the class
β turns into a configuration of two discs connected by a gradient flow line as p crosses
W ; or both configurations coexist on the same side of the wall (their contributions
to nβ(L, p) cancel each other) and disappear as p moves across W . Hence, in the
absence of a canonical choice there still isn’t a uniquely defined superpotential.

3.3. Maslov index zero discs and wall-crossing II: the surface case. The wall-
crossing phenomenon is somewhat different in the surface case (n = 2). In dimension
2 a generic Lagrangian submanifold does not bound any holomorphic discs of Maslov
index 0, so Assumption 3.2 can be expected to hold for most L, giving rise to a well-
defined complex number m0(L,∇). However, in a family of Lagrangians, isolated
holomorphic discs of Maslov index 0 occur in codimension 1, leading to wall-crossing
discontinuities. The general algebraic and analytic framework which can be used to
describe these phenomena is discussed in §19.1 in [13] (see also Section 5c in [24]).
Here we discuss things in a more informal manner, in order to provide some additional
context for the calculations in Section 5.

Consider a continuous family of (special) Lagrangian submanifolds Lt (t ∈ [−ǫ, ǫ]),
such that Lt satisfies Assumption 3.2 for t 6= 0 and L0 bounds a unique nontrivial
simple holomorphic disc uα representing a class α of Maslov index 0 (so M(L0, α) =
{uα}). Given a holomorphic disc u0 representing a class β0 ∈ π2(X,L0) of Maslov
index 2, we obtain stable maps representing the class β = β0+mα by attaching copies
of uα (or branched covers of uα) to u0 at points where the boundary of u0 intersects
that of uα. These configurations typically deform to honest holomorphic discs either
for t > 0 or for t < 0, but not both.

Using the isotopy to identify π2(X,Lt) with π2(X,L0), we can consider the moduli
space of holomorphic discs with boundary in one of the Lt, representing a given class
β, and with k marked points on the boundary, M̃k(β) =

∐
t∈[−ǫ,ǫ] Mk(Lt, β), and

the evaluation maps evi : M̃k(β) → ∐
t{t} × Lt. In principle, given a class β with

µ(β) = 2, the boundary of the corresponding evaluation chain is given by

(3.1) ∂
(

(ev1)∗[M̃k(β)]
)

=
∑

m≥1

(ev1)∗

[
M̃2(β −mα) ×

ev2
M̃1(mα)

]
.

However, interpreting the right-hand side of this equation is tricky, because of the
systematic failure of transversality, even if we ignore the issue of multiply covered
discs (m ≥ 2). Partial relief can be obtained by perturbing J to a domain-dependent
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almost-complex structure. Then, as one moves through the one-parameter family of
Lagrangians, bubbling of Maslov index 0 discs occurs at different values of t depending
on the position at which it takes place along the boundary of the Maslov index 2
component. So, as t varies between −ǫ and +ǫ one successively hits several boundary
strata, corresponding to bubbling at various points of the boundary; the algebraic
number of such elementary wall-crossings is the intersection number [∂β] · [∂α].

As the perturbation of J tends to zero, the various values of t at which wall-
crossing occurs all tend to zero, and the representatives of the classes β −mα which
appear in the right-hand side of (3.1) might themselves undergo further bubbling
as t → 0. Thus, we actually end up considering stable maps with boundary in L0,
consisting of several Maslov index 0 components (representing classes miα) attached
simultaneously at r different points of the boundary of a main component of Maslov
index 2. In a very informal sense, we can write

“ ∂
(

(ev1)∗[M̃k(β)]
)

=
∑

m1,...,mr≥1

β=β′+(
P

mi)α

{0}×(ev1)∗

[
Mr+1(L0, β

′) ×
ev2,...,evr+1

r∏

i=1

M1(L0,miα)

]
.”

However this formula is even more problematic than (3.1), so we will continue to use
a domain-dependent almost-complex structure in order to analyze wall-crossing.

On the other hand, one still has to deal with the failure of transversality when
the total contribution of the bubbles attached at a given point of the boundary is
a nontrivial multiple of α. Thus, in equation (3.1) the moduli spaces associated to
multiple classes have to be unerstood in a virtual sense. Namely, for m ≥ 2 we treat
M̃(mα) as a 0-chain (supported at t = 0) which corresponds to the family count
ñmα of discs in the class mα (e.g. after suitably perturbing the holomorphic curve
equation). Typically, for m = 1 we have ñα = ±1, while multiple cover contributions
are a priori harder to assess; in the example in §5 they turn out to be zero, so
since they should be determined by a purely local calculation it seems reasonable to
conjecture that they are always zero. However at this point we do not care about the
actual coefficients, all that matters is that they only depend on the holomorphic disc
of Maslov index 0 (uα) and not on the class β.

Equation (3.1) determines the manner in which the disc counts nβ(Lt) vary as t
crosses 0. It is easier to state the formula in terms of a generating series which encodes
the disc counts in classes of the form β0 +mα, namely

Ft(q) =
∑

m∈Z

nβ0+mα(Lt) q
m.

Then each individual wall-crossing (at a given point on the boundary of the Maslov
index 2 disc) affects Ft(q) by a same factor hα(q) = 1 + ñαq + 2ñ2αq

2 + . . . , so that
in the end F−ǫ(q) and F+ǫ(q) differ by a multiplicative factor of hα(q)[∂β0]·[∂α].
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Next, we observe that the contributions of the discs in the classes β0 + mα to
m0(Lt,∇t) are given by plugging q = zα (as defined in (2.1)) into Ft(q) and multiply-
ing by zβ0

. The values of this expression on either side of t = 0 differ from each other
by a change of variables, replacing zβ0

by z∗β0
= zβ0

hα(zα)[∂β0]·[∂α]. These changes
of variables can be performed consistently for all classes, in the sense that the new
variables still satisfy z∗β+γ = z∗βz

∗
γ . To summarize the discussion, we have:

Proposition 3.9. Upon crossing a wall in which L bounds a unique simple Maslov
index 0 disc representing a relative class α, the expression of m0(L,∇) as a Laurent
series in the variables of Lemma 2.7 is modified by a holomorphic change of variables

zβ 7→ zβ h(zα)[∂β]·[∂α] ∀β ∈ π2(X,L),

where h(zα) is a power series of the form 1 +O(zα) (independent of β).

In view of Remark 3.5, these properties also follow formally from Fukaya-Oh-Ohta-
Ono’s construction of A∞-homomorphisms associated to wall-crossing (Sections 19.1
and 30.9 of [13]), as discussed by Seidel in Section 5c of [24].

An interesting consequence (especially in the light of the discussion in §6) is that,
while the critical points of the superpotential are affected by the wall-crossing, its
critical values are not. Note however that, since the change of variables can map a
critical point to infinity (see e.g. Section 5.4 for a family of special Lagrangian tori
on CP

1 × CP
1 in which this occurs), some critical values may still be lost in the

coordinate change.

Finally, we observe that the changes of variables which arise in Proposition 3.9
are formally very similar by the quantum corrections to the complex structure of the
mirror proposed by Kontsevich-Soibelman and Gross-Siebert in the Calabi-Yau case
[14, 19]. This suggests the following:

Conjecture 3.10. The mirror to a Kähler surface X (together with an anticanonical
divisor D) should differ from the complexified moduli space M of special Lagrangian
tori in X \D by “quantum corrections” which, away from the singular fibers, amount
to gluing the various regions of M delimited by Maslov index 0 discs according to the
changes of variables introduced in Proposition 3.9.

One difficulty raised by this conjecture is that, whereas the quantum corrections
are compatible with the complex structure J∨, they do not preserve the symplectic
form ω∨ introduced in Definition 2.8. We do not know how to address this issue, but
presumably this means that ω∨ should also be modified by quantum corrections.

4. The toric case

In this section, we consider the case where X is a smooth toric variety, and D is
the divisor consisting of all degenerate toric orbits. The calculation of the superpo-
tential (Proposition 4.3) is very similar to that in [9], but we provide a self-contained
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description for completeness. We first recall very briefly some classical facts about
toric varieties.

As a Kähler manifold, a toric variety X is determined by its moment polytope
∆ ⊂ R

n, a convex polytope in which every facet admits an integer normal vector, n
facets meet at every vertex, and their primitive integer normal vectors form a basis
of Z

n. The moment map φ : X → R
n identifies the orbit space of the T n-action on

X with ∆. From the point of view of complex geometry, the preimage of the interior
of ∆ is an open dense subset U of X, biholomorphic to (C∗)n, on which T n = (S1)n

acts in the standard manner. Moreover X admits an open cover by affine subsets
biholomorphic to C

n, which are the preimages of the open stars of the vertices of ∆
(i.e., the union of all the strata whose closure contains the given vertex).

For each facet F of ∆, the preimage φ−1(F ) = DF is a hypersurface in X; the
union of these hypersurfaces defines the toric anticanonical divisor D =

∑
F DF . The

standard holomorphic volume form on (C∗)n ≃ U = X \D, defined in coordinates by
Ω = d log x1 ∧ · · · ∧ d log xn, determines a section of KX with poles along D.

4.1. Toric orbits and the superpotential. Our starting point is the observation
that the moment map defines a special Lagrangian torus fibration on U = X \D:

Lemma 4.1. The T n-orbits in X \D are special Lagrangian (with phase nπ/2).

Proof. It is a classical fact that the T n-orbits are Lagrangian; since the T n-action
on X \ D ≃ (C∗)n is the standard one, in coordinates the orbits are products of
circles S1(r1) × · · · × S1(rn) = {(x1, . . . , xn), |xi| = ri}, on which the restriction of
Ω = d log x1 ∧ · · · ∧ d log xn has constant phase nπ/2. �

As above we consider the complexified moduli space M , i.e. the set of pairs (L,∇)
where L is a T n-orbit and ∇ is a flat U(1) connection on the trivial bundle over L.
Recall that L is a product of circles L = S1(r1) × · · · × S1(rn) ⊂ (C∗)n ≃ X \ D,
and denote the holonomy of ∇ around the j-th factor S1(rj) by exp(iθj). Then the
symplectic form introduced in Definition 2.8 becomes ω∨ = (2π)n

∑
d log rj ∧dθj, i.e.

up to a constant factor it coincides with the standard Kähler form on (C∗)n ≃ M .
However, as a complex manifold M is not biholomorphic to (C∗)n:

Proposition 4.2. M is biholomorphic to  Log−1(int ∆) ⊂ (C∗)n, where  Log : (C∗)n →
R
n is the map defined by  Log(z1, . . . , zn) = (− 1

2π
log |z1|, . . . ,− 1

2π
log |zn|).

Proof. Given a T n-orbit L and a flat U(1)-connection ∇, let

(4.1) zj(L,∇) = exp(−2πφj(L)) hol∇(γj),

where φj is the j-th component of the moment map, i.e. the Hamiltonian for the
action of the j-th factor of T n, and γj = [S1(rj)] ∈ H1(L) is the homology class
corresponding to the j-th factor in L = S1(r1) × · · · × S1(rn).
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Let Aj be a relative homology class in H2(X,L) such that ∂Aj = γj ∈ H1(L) (it
is clear that such a class can be chosen consistently for all T n-orbits), and consider
the holomorphic function zAj

defined by (2.1): then zj and zAj
differ by a constant

multiplicative factor. Indeed, comparing the two definitions the holonomy factors
coincide, and given an infinitesimal special Lagrangian deformation v ∈ C∞(NL),

d log |zAj
|(v) =

∫
γj
−ιvω =

∫
S1(rj)

ω(Xj, v) dt =
∫
S1(rj)

−dφj(v) dt = d log |zj|(v),

where Xj is the vector field which generates the action of the j-th factor of T n (i.e.
the Hamiltonian vector field associated to φj).

Thus z1, . . . , zn are holomorphic coordinates on M , and the (C∗)n-valued map
(L,∇) 7→ (z1(L,∇), . . . , zn(L,∇)) identifies M with its image, which is exactly the
preimage by  Log of the interior of ∆. �

Next we study holomorphic discs in X with boundary on a given T n-orbit L. For
each facet F of ∆, denote by ν(F ) ∈ Z

n the primitive integer normal vector to F
pointing into ∆, and let α(F ) ∈ R be the constant such that the equation of F is
〈ν(F ), φ〉 + α(F ) = 0. Moreover, given a = (a1, . . . , an) ∈ Z

n we denote by za the
Laurent monomial za1

1 . . . zan
n , where z1, . . . , zn are the coordinates on M defined by

(4.1). Then we have:

Proposition 4.3 (Cho-Oh [9]). There are no holomorphic discs of Maslov index 0 in
(X,L), and the discs of Maslov index 2 are all regular. Moreover, the superpotential
is given by the Laurent polynomial

(4.2) W = m0(L,∇) =
∑

F facet

e−2πα(F ) zν(F ).

Proof. By Lemma 3.1 and positivity of intersection, Maslov index 0 discs do not
intersect D, and hence are contained in X \ D ≃ (C∗)n. However, since L is a
product of circles S1(ri) = {|xi| = ri} inside (C∗)n, it follows immediately from the
maximum principle applied to log xi that (C∗)n does not contain any non-constant
holomorphic disc with boundary in L.

Next, we observe that a Maslov index 2 disc intersects D at a single point, and in
particular it intersects only one of the components, say DF for some facet F of ∆. We
claim that for each facet F there is a unique such disc whose boundary passes through
a given point p = (x0

1, . . . , x
0
n) ∈ L ⊂ (C∗)n ≃ X \ D; in terms of the components

(ν1, . . . , νn) of the normal vector ν(F ), this disc can be parametrized by the map

(4.3) w 7→ (wν1x0
1, . . . , w

νnx0
n)

(for w ∈ D2 \ {0}; the point w = 0 corresponds to the intersection with DF ).

To prove this claim, we work in an affine chart centered at a vertex v of ∆ adjacent
to the facet F . Denote by η1, . . . , ηn the basis of Z

n which consists of the primitive
integer vectors along the edges of ∆ passing through v, oriented away from v, and
labelled in such a way that η2, . . . , ηn are tangent to F . Associate to each edge
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vector ηi = (ηi1, . . . , ηin) ∈ Z
n a Laurent monomial x̃i = xηi = xηi1

1 . . . xηin
n . Then,

after the change of coordinates (x1, . . . , xn) 7→ (x̃1, . . . , x̃n), the affine coordinate chart
associated to the vertex v can be thought of as the standard compactification of (C∗)n

to C
n. In this coordinate chart, L is again a product torus S1(r̃1)×· · ·×S1(r̃n), where

r̃i = rηi1
1 . . . rηin

n , and DF is the coordinate hyperplane x̃1 = 0.

Since the complex structure is the standard one, a holomorphic map u : D2 → C
n

with boundary in L is given by n holomorphic functions w 7→ (u1(w), . . . , un(w))
such that |ui| = r̃i on the unit circle. Since by assumption the disc hits only DF , the
functions u2, . . . , un have no zeroes, so by the maximum principle they are constant.
Moreover the intersection number with DF is assumed to be 1, so the image of the
map u1 is the disc of radius r̃1, with multiplicity 1; so, up to reparametrization,
u1(w) = r̃1w. Thus, if we require the boundary of the disc to pass through a given
point p = (x̃0

1, . . . , x̃
0
n) of L, then the only possible map (up to reparametrization) is

(4.4) u : w 7→ (w x̃0
1, x̃

0
2, . . . , x̃

0
n),

which in the original coordinates is exactly (4.3).

Moreover, it is easy to check (working component by component) that the map
(4.4) is regular. In particular, its contribution to the count of holomorphic discs is
±1, and if we equip L with the trivial spin structure, then the sign depends only on
the dimension n, and not on the choice of the facet F or of the T n-orbit L. Careful
inspection of the sign conventions (see e.g. [9, 13, 25]) shows that the sign is +1.

The only remaining step in the proof of Proposition 4.3 is to estimate the symplectic
area of the holomorphic disc (4.4). For this purpose, we first relabel the toric action
so that it becomes standard in the affine chart associated to the vertex v. Namely,
observe that the normal vectors ν(F1) = ν(F ), . . . , ν(Fn) to the facets which pass
through v form a basis of Z

n dual to that given by the edge vectors η1, . . . , ηn. If
we precompose the T n-action with the linear automorphism of T n induced by the
transformation σ ∈ GLn(Z) which maps the i-th vector of the standard basis to
ν(Fi), then the relabelled action becomes standard in the coordinates (x̃1, . . . , x̃n).

After this relabelling, the moment map becomes φ̃ = σT ◦φ, and in a neighborhood
of the vertex ṽ = σT (v) the moment polytope ∆̃ = σT (∆) is a translate of the

standard octant. In particular, denoting by φ̃1 the first component of φ̃, the equation
of the facet F̃ = σT (F ) is simply φ̃1 = −α(F ). Since u is equivariant with respect
to the action of the first S1 factor, integrating over the unit disc in polar coordinates
w = ρeiθ we have
∫

D2

u∗ω =

∫∫

D2

ω(∂ρu, ∂θu) dρ dθ =

∫ 2π

0

∫ 1

0

dφ̃1(∂ρu) dρ dθ = 2π(φ̃1(L) − φ̃1(u(0))).

Since u(0) ∈ DF , we conclude that
∫

D2

u∗ω = 2π(φ̃1(L) + α(F )) = 2π〈ν(F ), φ(L)〉 + 2πα(F ).
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Incorporating the appropriate holonomy factor, we conclude that the contribution of
u to the superpotential is precisely e−2πα(F )zν(F ). �

4.2. Comparison with the Hori-Vafa mirror and renormalization. The for-
mula (4.2) is identical to the well-known formula for the superpotential of the mirror
to a toric manifold (see Section 5.3 of [16]). However, our mirror is “smaller” than the
usual one, because the variables (z1, . . . , zn) are constrained to lie in a bounded subset
of (C∗)n. In particular, since the norm of each term in the sum (4.2) is bounded by
1 (as the symplectic area of a holomorphic disc is always positive), in our situation
W is always bounded by the number of facets of the moment polytope ∆. While the
“usual” mirror could be recovered by analytic continuation from M to all of (C∗)n

(or equivalently, by allowing the holonomy of the flat connection to take values in C
∗

instead of U(1)), there are various reasons for not proceeding in this manner, one of
them being that the symplectic form ω∨ on M blows up near the boundary.

In fact, our description of M resembles very closely one of the intermediate steps in
Hori and Vafa’s construction (see Section 3.1 of [16]). The dictionary between the two
constructions is the following. Given a facet F of ∆, let yF = 2πα(F ) − log(zν(F )),
so that the real part of yF is the symplectic area of one of the Maslov index 2 discs
bounded by L and its imaginary part is (minus) the integral of the connection 1-form
along its boundary. Then M is precisely the subset of (C∗)n in which Re (yF ) > 0
for all facets, and the Kähler form ω∨ introduced in Definition 2.8 blows up for
Re (yF ) → 0. This is exactly the same behavior as in equation (3.22) of [16] (which
deals with the case of a single variable y).

Hori and Vafa introduce a renormalization procedure which enlarges the mirror and
flattens its Kähler metric. While the mathematical justification for this procedure is
somewhat unclear, it is interesting to analyze it from the perspective of our construc-
tion. Hori and Vafa’s renormalization process replaces the inequality Re (yF ) > 0 by
Re (yF ) > −k for some constant k (see equations (3.24) and (3.25) in [16]), without
changing the formula for the superpotential. This amounts to enlarging the moment
polytope by 1

2π
k in all directions.

Assuming that X is Fano (or more generally that −KX is nef), another way to
enlarge M in the same manner is to equip X with a “renormalized” Kähler form ωk
(compatible with the toric action) chosen so that [ωk] = [ω] + k c1(X). Compared to
Hori and Vafa’s renormalization, this operation has the effect of not only extending
the domain of definition of the superpotential, but also rescaling it by a factor of e−k;
however, if we simultaneously rescale the Kähler form on X and the superpotential,
then we obtain a result consistent with Hori and Vafa’s. This suggests:

Conjecture 4.4. The construction of the mirror to a Fano manifold X should be
carried out not by using the fixed Kähler form ω, but instead by considering a family
of Kähler forms in the classes [ωk] = [ω] + k c1(X), equipping the corresponding
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complexified moduli spaces of special Lagrangian tori with the rescaled superpotentials
ekW(ωk), and taking the limit as k → +∞.

Of course, outside of the toric setting it is not clear what it means to “take the limit
as k → +∞”. A reasonable guess is that one should perform symplectic inflation along
D, i.e. modify the Kähler form by (1,1)-forms supported in a small neighborhood V
of D, constructed e.g. as suitable smooth approximations of the (1,1)-current dual
to D. Special Lagrangians which lie in the complement of V are not affected by
this process: given L ⊂ X \ V , the only effect of the inflation procedure is that the
symplectic areas of the Maslov index 2 discs bounded by L are increased by k; this
is precisely compensated by the rescaling of the superpotential by a multiplicative
factor of ek. On the other hand, near D the change of Kähler form should “enlarge”
the moduli space of special Lagrangians.

In the non-Fano case (more specifically when −KX is not nef), it is not clear how
renormalization should be performed, or even whether it should be performed at all.
For example, consider the Hirzebruch surface Fm = P(OP1 ⊕ OP1(m)) for m > 2, as
studied in §5.2 of [3]. The superpotential is given by

W = z1 + z2 +
e−A

z1zm2
+
e−B

z2

,

where A and B are the symplectic areas of the zero section (of square +m) and
the fiber respectively, satisfying A > mB. An easy calculation shows that W has
m+2 critical points in (C∗)2; the corresponding vanishing cycles generate the Fukaya
category of this Landau-Ginzburg model. As explained in [3], this is incorrect from the
point of view of homological mirror symmetry, since the derived category of coherent
sheaves of Fm is equivalent to a subcategory generated by only four of these m + 2
vanishing cycles. An easy calculation shows that the z2 coordinates of the critical
points are the roots of the equation

zm−2
2 (z2

2 − e−B)2 −m2e−A = 0.

Provided that A > mB+O(logm), one easily shows that only four of the roots lie in
the range e−B < |z2| < 1 (and these satisfy |z1| < 1 and |e−A/z1z

m
2 | < 1 as needed).

This suggests that one should only consider M =  Log−1(int ∆) ⊂ (C∗)2 rather than
all of (C∗)2. (Note however that the behavior is not quite the expected one when A
is too close to mB, for reasons that are not entirely clear).

Perhaps a better argument against renormalization (or analytic continuation) in
the non-Fano case can be found in Abouzaid’s work [1, 2]. Abouzaid’s approach to
homological mirror symmetry for toric varieties is to consider admissible Lagrangians
which occur as sections of the  Log map with boundary in a suitable tropical defor-
mation of the fiber of the Landau-Ginzburg model. More specifically, the deformed
fiber lies near  Log−1(Π), where Π is the tropical hypersurface in R

n associated to a
rescaling of the Laurent polynomial W ; the interior of ∆ is a connected component of
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R
n \ Π, and Abouzaid only considers admissible Lagrangian sections of the  Log map

over this connected component. Then the results in [1, 2] establish a correspondence
between these sections and holomorphic line bundles over X.

When −KX is not nef (for example, for the Hirzebruch surface Fm with m > 2),
R
n \Π has more than one bounded connected component, and the other components

also give rise to some admissible Lagrangians; however Abouzaid’s work shows that
those are not relevant to mirror symmetry for X, and that one should instead focus
exclusively on those Lagrangians which lie in the bounded domain M ⊂ (C∗)n.

5. A non-toric example

The goal of this section is to work out a specific example in the non-toric setting,
in order to illustrate some general features which are not present in the toric case,
such as wall-crossing phenomena and quantum corrections. Let X = CP

2, equipped
with the standard Fubini-Study Kähler form (or a multiple of it), and consider the
anticanonical divisor D = {(x : y : z), (xy − ǫz2)z = 0} (the union of the conic
xy = ǫz2 and the line z = 0), for some ǫ 6= 0. We equip CP

2 \D with the holomorphic
(2,0)-form which in the affine coordinate chart {(x : y : 1), (x, y) ∈ C

2} is given by

Ω =
dx ∧ dy
xy − ǫ

.

5.1. A family of special Lagrangian tori. The starting point of our construction
is the pencil of conics defined by the rational map f : (x : y : z) 7→ (xy : z2). We will
mostly work in affine coordinates, and think of f as the map from C

2 to C defined
by f(x, y) = xy, suitably extended to the compactification. The fiber of f above any
non-zero complex number is a smooth conic, while the fiber over 0 is the union of two
lines (the x and y coordinate axes), and the fiber over ∞ is a double line.

The group S1 acts on each fiber of f by (x, y) 7→ (eiθx, e−iθy). We will consider
Lagrangian tori which are contained in f−1(γ) for some simple closed curve γ ⊂
C, and consist of a single S1-orbit inside each fiber a point of γ. Recall that the
symplectic fibration f carries a natural horizontal distribution, given at every point
by the symplectic orthogonal to the fiber. Parallel transport with respect to this
horizontal distribution yields symplectomorphisms between smooth fibers, and L ⊂
f−1(γ) is Lagrangian if and only if it is invariant by parallel transport along γ.

Each fiber of f is foliated by S1-orbits, and contains a distinguished orbit that
we call the equator, namely the set of points where |x| = |y|. We denote by δ(x, y)
the signed symplectic area of the region between the S1-orbit through (x, y) and the
equator in the fiber f−1(xy), with the convention that δ(x, y) is positive if |x| > |y|
and negative if |x| < |y|. Since S1 acts by symplectomorphisms, parallel transport
is S1-equivariant. Moreover, the symplectic involution (x, y) 7→ (y, x) also preserves
the fibers of f , and so parallel transport commutes with it. This implies that parallel
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Figure 2. The special Lagrangian torus Tγ(r),λ

transport maps equators to equators, and maps other S1-orbits to S1-orbits in a
δ-preserving manner.

Definition 5.1. Given a simple closed curve γ ⊂ C and a real number λ ∈ (−Λ,Λ)
(where Λ =

∫
CP

1 ω is the area of a line), we define

Tγ,λ = {(x, y) ∈ f−1(γ), δ(x, y) = λ}.
By construction Tγ,λ is an embedded Lagrangian torus in CP

2, except when 0 ∈ γ and
λ = 0 (in which case it has a nodal singularity at the origin).

Moreover, when 0 6∈ γ, we say that Tγ,λ is of Clifford type if γ encloses the origin,
and of Chekanov type otherwise.

This terminology is motivated by the observation that the product tori S1(r1) ×
S1(r2) ⊂ C

2 (among which the Clifford tori) are of the form Tγ,λ where γ is the circle
of radius r1r2 centered at the origin, whereas one way to define the so-called Chekanov
torus [5, 11] is as Tγ,0 for γ a loop that does not enclose the origin (see [11]).

Recall that the anticanonical divisor D is the union of the fiber f−1(ǫ) and the line
at infinity. The following proposition motivates our interest in the tori Tγ,λ in the
specific case where γ = γ(r) is a circle of radius r centered at ǫ.

Proposition 5.2. The tori Tγ(r),λ = {(x, y), |xy − ǫ| = r, δ(x, y) = λ} are special
Lagrangian with respect to Ω = (xy − ǫ)−1 dx ∧ dy.
Proof. Let H(x, y) = |xy − ǫ|2, and let XH be the corresponding Hamiltonian vector
field, i.e. the vector field such that ιXH

ω = dH. We claim that XH is everywhere
tangent to Tγ(r),λ. In fact, H is constant over each fiber of f , so XH is symplectically
orthogonal to the fibers, i.e. it lies in the horizontal distribution. Moreover, XH is
tangent to the level sets of H; so, up to a scalar factor, XH is in fact the horizontal
lift of the tangent vector to γ(r), and thus it is tangent to Tγ(r),λ.

The tangent space to Tγ(r),λ is therefore spanned by XH and by the vector field
generating the S1-action, ξ = (ix,−iy). However, we observe that

ιξΩ =
ix dy + iy dx

xy − ǫ
= i d log(xy − ǫ).
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It follows that Im Ω(ξ,XH) = d log |xy− ǫ| (XH), which vanishes since XH is tangent
to the level sets of H. Hence Tγ(r),λ is special Lagrangian. �

Thus CP
2 \ D admits a fibration by special Lagrangian tori Tγ(r),λ, with a single

nodal fiber Tγ(|ǫ|),0. For r < |ǫ| the tori Tγ(r),λ are of Chekanov type, while for r > |ǫ|
they are of Clifford type. We shall now see that wall-crossing occurs for r = |ǫ|, thus
separating the moduli space into two chambers r < |ǫ| and r > |ǫ|. We state the next
two lemmas in a slightly more general context.

Lemma 5.3. If γ ⊂ C is a simple closed loop and w ∈ C lies in the interior of γ, then
for any class β ∈ π2(CP

2, Tγ,λ), the Maslov index is µ(β) = 2(β · [f−1(w)]+β · [CP
1
∞]),

where CP
1
∞ is the line at infinity in CP

2.

Proof. If γ is a circle centered at w, then Proposition 5.2 implies that Tγ,λ is special
Lagrangian for Ω = (xy − w)−1dx ∧ dy, and the result is then a direct consequence
of Lemma 3.1. The general case follows by continuously deforming γ to such a circle,
without crossing w nor the origin, and keeping track of relative homotopy classes
through this Lagrangian deformation, which affects neither the Maslov index nor the
intersection numbers with f−1(w) and CP

1
∞. �

Using positivity of intersection, this lemma precludes the existence of holomorphic
discs with negative Maslov index. Moreover:

Lemma 5.4. The Lagrangian torus Tγ,λ bounds a nontrivial holomorphic disc of
Maslov index 0 if and only if 0 ∈ γ.

Proof. Assume there is a non-trivial holomorphic map u : (D2, ∂D2) → (CP
2, Tγ,λ)

representing a class of Maslov index 0, and choose a point w ∈ C inside the region
delimited by γ. By positivity of intersection and Lemma 5.3, the image of u must be
disjoint from f−1(w) and from the line at infinity. The projection f ◦ u is therefore a
well-defined holomorphic map from (D2, ∂D2) to (C, γ), whose image avoids w.

It follows that f ◦u is constant, i.e. the image of u is contained in the affine part of
a fiber of f , say f−1(c) for some c ∈ γ. However, for c 6= 0 the affine conic xy = c is
topologically a cylinder S1 × R, intersected by Tγ,λ in an essential circle, which does
not bound any nontrivial holomorphic disc. Therefore c = 0, and 0 ∈ γ.

Conversely, if 0 ∈ γ, we observe that f−1(0) is the union of two complex lines (the
x and y coordinate axes), and its intersection with Tγ,λ is a circle in one of them
(depending on the sign of λ). Excluding the degenerate case λ = 0, it follows that
Tγ,λ bounds a holomorphic disc of area |λ|, contained in one of the coordinate axes;
by Lemma 5.3 its Maslov index is 0. �

5.2. The superpotential. We now consider the complexified moduli space M asso-
ciated to the family of special Lagrangian tori constructed in Proposition 5.2. The
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goal of this section is to compute the superpotential; by Lemma 5.4, the cases r < |ǫ|
and r > |ǫ| should be treated separately.

We start with the Clifford case (r > |ǫ|). By deforming continuously γ(r) into
a circle centered at the origin without crossing the origin, we obtain a Lagrangian
isotopy from Tγ(r),λ to a product torus S1(r1) × S1(r2) ⊂ C

2, with the property that
the minimal Maslov index of a holomorphic disc remains at least 2 throughout the
deformation. Therefore, by Remark 3.7, for each class β of Maslov index 2, the
disc count nβ(L) remains constant throughout the deformation. The product torus
corresponds to the toric case considered in Section 4, so we can use Proposition 4.3.

Denote by z1 and z2 respectively the holomorphic coordinates associated to the
relative homotopy classes β1 and β2 of discs parallel to the x and y coordinate axes
in (C2, S1(r1) × S1(r2)) via the formula (2.1). Then Proposition 4.3 implies:

Proposition 5.5. For r > |ǫ|, the superpotential is given by

(5.1) W = z1 + z2 +
e−Λ

z1z2

.

The first two terms in this expression correspond to sections of f over the disc ∆ of
radius r centered at ǫ (the first one intersecting f−1(0) at a point of the y-axis, while
the second one hits the x-axis), whereas the last term corresponds to a disc whose
image under f is a double cover of CP

1 \ ∆ branched at infinity.

Next we consider the case r < |ǫ|, where γ = γ(r) does not enclose the origin.
We start with the special case λ = 0, which is the one considered by Chekanov and
Eliashberg-Polterovich [5, 11].

The fibration f is trivial over the disc ∆ bounded by γ, and over ∆ it admits an
obvious holomorphic section with boundary in Tγ,0, given by the portion of the line

y = x for which x ∈
√

∆ (one of the two preimages of ∆ under z 7→ z2). More

generally, by considering the portion of the line y = e2iθx where x ∈ e−iθ
√

∆, and
letting eiθ vary in S1, we obtain a family of holomorphic discs of Maslov index 2
with boundary in Tγ,0. One easily checks that these discs are regular, and that they
boundaries sweep out Tγ,0 precisely once; we denote their class by β.

Other families of Maslov index 2 discs are harder to come by; the construction of
one such family is outlined in an unfinished manuscript of Blechman and Polterovich,
but the complete classification has only been carried out recently by Chekanov and
Schlenk [6]. In order to state Chekanov and Schlenk’s results, we need one more piece
of notation. Given a line segment which joins the origin to a point c = ρeiθ ∈ γ,
consider the Lefschetz thimble associated to the critical point of f at the origin, i.e.
the Lagrangian disc with boundary in Tγ,0 formed by the collection of equators in the
fibers of f above the segment [0, c]; this is just a disc of radius

√
ρ in the line y = eiθx̄.

We denote by α ∈ π2(CP
2, Tγ,0) the class of this disc; one easily checks that α, β, and

H = [CP
1] form a basis of π2(CP

2, Tγ,0).
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Lemma 5.6 (Chekanov-Schlenk [6]). The only classes in π2(CP
2, Tγ,0) which may

contain holomorphic discs of Maslov index 2 are β and H−2β+kα for k ∈ {−1, 0, 1}.
Proof. We compute the intersection numbers of α, β and H with the x-axis, the
y-axis, and the fiber f−1(ǫ), as well as their Maslov indices (using Lemma 5.3):

class x-axis y-axis f−1(ǫ) µ

α −1 1 0 0

β 0 0 1 2

H 1 1 2 6

A class of Maslov index 2 is of the form β+m(H−3β)+kα form, k ∈ Z; the constraints
on m and k come from positivity of intersections. Considering the intersection number
with f−1(ǫ), we must have m ≤ 1; and considering the intersection numbers with the
x-axis and the y-axis, we must have m ≥ |k|. It follows that the only possibilities are
m = k = 0 and m = 1, |k| ≤ 1. �

Proposition 5.7 (Chekanov-Schlenk [6]). The torus Tγ,0 bounds a unique S1-family
of holomorphic discs in each of the classes β and H − 2β+ kα, k ∈ {−1, 0, 1}. These
discs are regular, and the corresponding evaluation maps have degree 2 for H − 2β
and 1 for the other classes.

Sketch of proof. We only outline the construction of the holomorphic discs in the
classes H − 2β + kα, following Blechman-Polterovich and Chekanov-Schlenk. The
reader is referred to [6] for details and for proofs of uniqueness and regularity.

Let ϕ be a biholomorphism from the unit disc D2 to the complement CP
1 \ ∆

of the disc bounded by γ, parametrized so that ϕ(0) = ∞ and ϕ(a2) = 0 for some
a ∈ (0, 1), and consider the double branched cover ψ(z) = ϕ(z2), which has a pole of
order 2 at the origin and simple roots at ±a. We will construct holomorphic maps
u : (D2, ∂D2) → (CP

2, Tγ,0) such that f ◦ u = ψ. Let

τa(z) =
z − a

1 − az
, τ−a(z) =

z + a

1 + az
, and g(z) =

z2 ψ(z)

τa(z) τ−a(z)
.

Since τ±a are biholomorphisms of the unit disc mapping ±a to 0, the map g is a
nonvanishing holomorphic function over the unit disc, and hence we can choose a
square root

√
g. Then for any eiθ ∈ S1 we can consider the holomorphic maps

z 7→
(
eiθ τa(z) τ−a(z)

√
g(z) : e−iθ

√
g(z) : z

)
,(5.2)

z 7→
(
eiθ τa(z)

√
g(z) : e−iθ τ−a(z)

√
g(z) : z

)
,(5.3)

z 7→
(
eiθ

√
g(z) : e−iθ τa(z) τ−a(z)

√
g(z) : z

)
.(5.4)
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Letting u be any of these maps, it is easy to check that f ◦ u = ψ, and that the first
two components of u have equal norms when |z| = 1 (using the fact that |τa(z)| =
|τ−a(z)| = 1 for |z| = 1). So in all cases ∂D2 is mapped to Tγ,0. One easily checks (e.g.
using intersection numbers with the coordinate axes) that the classes represented by
these maps are H − 2β + kα with k = 1, 0,−1 respectively for (5.2)–(5.4).

Chekanov and Schlenk show that these maps are regular, and that this list is
exhaustive [6]. (In fact, since they enumerate discs whose boundary passes through
a given point of Tγ,0, they also introduce a fourth map which differs from (5.3) by
swapping τa and τ−a; however this is equivalent to reparametrizing by z 7→ −z).

Finally, the degrees of the evaluation maps are easily determined by counting the
number of values of eiθ for which the boundary of u passes through a given point of
Tγ,0; however it is important to note here that, for the maps (5.2) and (5.4), replacing
θ by θ + π yields the same disc up to a reparametrization (z 7→ −z). �

By Lemma 5.4 and Remark 3.7, the disc counts remain the same in the general
case (no longer assuming λ = 0), since deforming λ to 0 yields a Lagrangian isotopy
from Tγ,λ to Tγ,0 in the complement of f−1(0). Therefore, denoting by u and w the
holomorphic coordinates on M associated to the classes β and α respectively, we have:

Proposition 5.8. For r < |ǫ|, the superpotential is given by

(5.5) W = u+
e−Λ

u2w
+ 2

e−Λ

u2
+
e−Λw

u2
= u+

e−Λ(1 + w)2

u2w
.

5.3. Wall-crossing, quantum corrections and monodromy. In this section,
we compare the two formulas obtained for the superpotential in the Clifford and
Chekanov cases (Propositions 5.5 and 5.8), in terms of wall-crossing at r = |ǫ|. We
start with a simple observation:

Lemma 5.9. The expressions (5.1) and (5.5) are related by the change of variables
u = z1 + z2, w = z1/z2.

To see how this fits with the general discussion of wall-crossing in §3.3 and Propo-
sition 3.9, we consider separately the two cases λ > 0 and λ < 0. We use the same
notations as in the previous section concerning relative homotopy classes (β1, β2 on
the Clifford side, β, α on the Chekanov side) and the corresponding holomorphic
coordinates on M (z1, z2 and u,w).

First we consider the case where λ > 0, i.e. Tγ(r),λ lies in the region where |x| > |y|.
When r = |ǫ|, Tγ(r),λ intersects the x-axis in a circle, which bounds a disc u0 of Maslov
index 0. In terms of the basis used on the Clifford side, the class of this disc is β1−β2;
on the Chekanov side it is α.

As r decreases through |ǫ|, two of the families of Maslov index 2 discs discussed
in the previous section survive the wall-crossing: namely the family of holomorphic
discs in the class β2 on the Clifford side becomes the family of discs in the class β on
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the Chekanov side, and the discs in the class H −β1 −β2 on the Clifford side become
the discs in the class H−2β−α on the Chekanov side. This correspondence between
relative homotopy classes determines the change of variables between the coordinate
systems (z1, z2) and (u,w) of the two charts on M along the λ > 0 part of the wall:

(5.6)






α ↔ β1 − β2 w ↔ z1/z2

β ↔ β2 u ↔ z2

H − 2β − α ↔ H − β1 − β2 e−Λ/u2w ↔ e−Λ/z1z2

However, with this “classical” interpretation of the geometry of M the formulas
(5.1) and (5.5) do not match up, and the superpotential presents a wall-crossing
discontinuity, corresponding to the contributions of the various families of discs that
exist only on one side of the wall. As r decreases through |ǫ|, holomorphic discs in the
class β1 break into the union of a disc in the class β = β2 and the exceptional disc u0,
and then disappear entirely. Conversely, new discs in the classes H−2β and H−2β+α
are generated by attaching u0 to a disc in the class H − β1 − β2 = H − 2β − α at
one or both of the points where their boundaries intersect. Thus the correspondence
between the two coordinate charts across the wall should be corrected to:

(5.7)






β ↔ {β1, β2} u ↔ z1 + z2

H − 2β + {−1, 0, 1}α ↔ H − β1 − β2
e−Λ(1 + w)2

u2w
↔ e−Λ

z1z2

This corresponds to the change of variables u = z1 + z2, w = z1/z2 as suggested by
Lemma 5.9; the formula for w is the same as in (5.6), but the formula for u is affected
by a multiplicative factor 1 + w, from u = z2 to u = z1 + z2 = (1 + w)z2. This is
precisely the expected behavior in view of Proposition 3.9.

Remark 5.10. Given c ∈ γ, the class α = β1 − β2 ∈ π2(CP
2, Tγ,λ) can be repre-

sented by taking the portion of f−1(c) lying between Tγ,λ and the equator, which has
symplectic area λ, together with a Lagrangian thimble. Therefore |w| = exp(−λ). In
particular, for λ≫ 0 the correction factor 1 + w is 1 + o(1).

The case λ < 0 can be analyzed in the same manner. For r = |ǫ| the Lagrangian
torus Tγ(r),λ now intersects the y-axis in a circle; this yields a disc of Maslov index
0 representing the class β2 − β1 = −α. The two families of holomorphic discs that
survive the wall-crossing are those in the classes β1 and H − β1 − β2 on the Clifford
side, which become β and H − 2β + α on the Chekanov side. Thus, the coordinate
change along the λ < 0 part of the wall is

(5.8)






−α ↔ β2 − β1 w−1 ↔ z2/z1

β ↔ β1 u ↔ z1

H − 2β + α ↔ H − β1 − β2 e−Λw/u2 ↔ e−Λ/z1z2

However, taking wall-crossing phenomena into account, the correspondence should be
modified in the same manner as above, from (5.8) to (5.7), which again leads to the
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change of variables u = z1 + z2, w = z1/z2; this time, the formula for u is corrected
by a multiplicative factor 1 + w−1, from u = z1 to u = z1 + z2 = (1 + w−1)z1.

Remark 5.11. The discrepancy between the gluing formulas (5.6) and (5.8) is due
to the monodromy of the family of special Lagrangian tori Tγ(r),λ around the nodal
fiber Tγ(|ǫ|),0. The vanishing cycle of the nodal degeneration is the loop ∂α, and in
terms of the basis (∂α, ∂β) of H1(Tγ(r),λ,Z), the monodromy is the Dehn twist

(
1 1
0 1

)
.

This induces monodromy in the affine structures on the moduli space B = {(r, λ)} and
its complexificationM . Namely, M carries an integral (complex) affine structure given
by the coordinates (log z1, log z2) on the Clifford chamber |r| > ǫ and the coordinates
(logw, log u) on the Chekanov chamber |r| < ǫ. Combining (5.6) and (5.8), moving
around (r, λ) = (|ǫ|, 0) induces the transformation (w, u) 7→ (w, uw), i.e.

(logw, log u) 7→ (logw, log u+ logw).

Therefore, in terms of the basis (∂log u, ∂logw) of TM , the monodromy is given by the
transpose matrix (

1 0
1 1

)
.

Taking quantum corrections into account, the discrepancy in the coordinate trans-
formation formulas disappears (the gluing map becomes (5.7) for both signs of λ),
but the monodromy remains the same. Indeed, the extra factors brought in by the
quantum corrections, 1 + w for λ > 0 and 1 + w−1 for λ < 0, are both of the form
1 + o(1) for |λ| ≫ 0.

5.4. Another example: CP
1 × CP

1. We now briefly discuss a related example:
consider X = CP

1 × CP
1, equipped with a product Kähler form such that the two

factors have equal areas, let D be the union of the two lines at infinity and the conic
{xy = ǫ} ⊂ C

2, and consider the 2-form Ω = (xy − ǫ)−1 dx ∧ dy on X \D.

The main geometric features remain the same as before, the main difference being
that the fiber at infinity of f : (x, y) 7→ xy is now a union of two lines L1

∞ = CP
1×{∞}

and L2
∞ = {∞} × CP

1; apart from this, we use the same notations as in §5.1–5.3.
In particular, it is easy to check that Proposition 5.2 still holds. Hence we consider
the same family of special Lagrangian tori Tγ(r),λ as above. Lemmas 5.3 and 5.4 also
remain valid, except that the Maslov index formula in Lemma 5.3 becomes

(5.9) µ(β) = 2(β · [f−1(w)] + β · [L1
∞] + β · [L2

∞]).

In the Clifford case (r > |ǫ|), the superpotential can again be computed by de-
forming to the toric case. Denoting again by z1 and z2 the holomorphic coordinates
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associated to the relative classes β1 and β2 parallel to the x and y coordinate axes in
(C2, S1(r1) × S1(r2)), we get

(5.10) W = z1 + z2 +
e−Λ1

z1

+
e−Λ2

z2

,

where Λi are the symplectic areas of the two CP
1 factors. (For simplicity we are only

considering the special case Λ1 = Λ2, but we keep distinct notations in order to hint
at the general case).

On the Chekanov side (r < |ǫ|), we analyze holomorphic discs in (CP
1 ×CP

1, Tγ,0)
similarly to the case of CP

2. We denote again by β the class of the trivial section of
f over the disc ∆ bounded by γ, and by α the class of the Lefschetz thimble; and we
denote by H1 = [CP

1 × {pt}] and H2 = [{pt} × CP
1]. Then we have:

Proposition 5.12. The only classes in π2(CP
1 ×CP

1, Tγ,0) which may contain holo-
morphic discs of Maslov index 2 are β, H1 − β−α, H1 − β, H2 − β, and H2 − β+α.
Moreover, Tγ,0 bounds a unique S1-family of holomorphic discs in each of these
classes, and the corresponding evaluation maps all have degree 1.

Proof. We compute the intersection numbers of α, β, H1 and H2 with the coordinate
axes, the fiber f−1(ǫ), and the lines at infinity:

class x-axis y-axis L1
∞ L2

∞ f−1(ǫ) µ

α −1 1 0 0 0 0

β 0 0 0 0 1 2

H1 0 1 0 1 1 4

H2 1 0 1 0 1 4

The Maslov index formula (5.9) and positivity of intersections with f−1(ǫ), L1
∞ and

L2
∞ imply that a holomorphic disc of Maslov index 2 must represent one of the classes

β + kα, H1 − β + kα, or H2 − β + kα, for some k ∈ Z. Positivity of intersections
with the x and y axes further restricts the list to the five possibilities mentioned in
the statement of the proposition.

Discs in the class β are sections of f over the disc ∆ bounded by γ; since they are
contained in C

2, they are the same as in the case of CP
2. Discs in the other classes are

sections of f over the complement CP
1 \ ∆. Denote by ϕ the biholomorphism from

D2 to CP
1 \ ∆ such that ϕ(0) = ∞ and ϕ(a) = 0 for some a ∈ (0, 1): we are looking

for holomorphic maps u : D2 → CP
1 × CP

1 such that f ◦ u = ϕ and u(∂D2) ⊂ Tγ,0.
Considering the map q : (x, y) 7→ x/y, we see that q ◦ u has either a pole or a zero
at 0 and at a, depending on the class represented by u, and takes non-zero complex
values everywhere else; moreover it maps the unit circle to itself. It follows that q ◦ u
has degree 2 and can be expressed as q ◦ u(z) = e2iθ z±1τa(z)±1, where eiθ ∈ S1 and
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τa(z) = (z − a)/(1 − az). Choosing a square root
√
h of h(z) = z ϕ(z)/τa(z), we

conclude that u is one of

z 7→ (eiθ z−1 τa(z)
√
h(z), e−iθ

√
h(z)), z 7→ (eiθ τa(z)

√
h(z), e−iθ z−1

√
h(z)),

z 7→ (eiθ z−1
√
h(z), e−iθ τa(z)

√
h(z)), z 7→ (eiθ

√
h(z), e−iθ z−1 τa(z)

√
h(z)).

�

As before, this implies:

Corollary 5.13. For r < |ǫ|, the superpotential is given by

(5.11) W = u+
e−Λ1(1 + w)

uw
+
e−Λ2(1 + w)

u
,

where u and w are the coordinates associated to the classes β and α respectively.

Comparing the formulas (5.10) and (5.11), we see that they are related by the
change of variables

(5.12) u = z1 + z2, w = z1/z2.

As in the case of CP
2, this can be understood in terms of wall-crossing and quantum

corrections; the discussion almost identical to that in §5.3 and we omit it.

However, we would like to point out one a slightly disconcerting feature of this
example. Since we have assumed that Λ1 = Λ2 = Λ, the right-hand side of (5.11)
simplifies to u+e−Λ(1+w)2/uw; this Laurent polynomial has only two critical points,
instead of four for the right-hand side of (5.10) (z1 = ±e−Λ/2, z2 = ±e−Λ/2). In
particular, the critical value 0 is lost in the change of variables, which is unexpected
considering the discussion after Proposition 3.9. The reason is of course that the
change of variables (5.12) does not quite map (C∗)2 to itself, and the critical points
where z1 + z2 = 0 are missing in the (u,w) picture.

6. Critical values and quantum cohomology

The goal of this section is to discuss a folklore result which asserts that the critical
values of the mirror superpotential are the eigenvalues of quantum multiplication by
c1(X). The argument we present is known to various experts in the field (Kontsevich,
Seidel, ...), but to our knowledge it has not appeared in the literature. We state the
result specifically in the toric case; however, there is a more general relation between
the superpotential and c1(X), see Proposition 6.8 below.

Theorem 6.1. Let X be a smooth toric Fano variety, and let W : M → C be the
mirror Landau-Ginzburg model. Then all the critical values of W are eigenvalues of
the linear map QH∗(X) → QH∗(X) given by quantum cup-product with c1(X).
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6.1. Quantum cap action on Lagrangian Floer homology. The key ingredient
in the proof of Theorem 6.1 is the quantum cap action of the quantum cohomology
of X on Lagrangian Floer homology. While the idea of quantum cap action on Floer
homology of symplectomorphisms essentially goes back to Floer [12], its counterpart
in the Lagrangian setting has been much less studied; it can be viewed as a special
case of Seidel’s construction of open-closed operations on Lagrangian Floer homology
(see e.g. Section 4 of [23]). We review the construction, following ideas of Seidel and
focusing on the specific setting that will be relevant for Theorem 6.1.

Let L be a compact oriented, relatively spin Lagrangian submanifold in a compact
symplectic manifold (X2n, ω) equipped with an almost-complex structure J , and let
∇ be a flat U(1)-connection on the trivial bundle over L. We start by describing the
operation at the chain level. Following Fukaya-Oh-Ohta-Ono [13], we use singular
chains as the starting point for the Floer complex, except we use complex coefficients
and assume convergence of all power series. Moreover, for simplicity we quotient out
by those chains whose support is contained in that of a lower-dimensional chain (this
amounts to treating pseudocycles as honest cycles, and allows us to discard irrelevant
terms even when working at the chain level).

Given a class β ∈ π2(X,L), we denote by M̂(L, β) the space of J-holomorphic maps
from (D2, ∂D2) to (X,L) representing the class β (without quotienting by automor-

phisms of the disc). We denote by êvβ,±1 : M̂(L, β) → L and êvβ,0 : M̂(L, β) → X
the evaluation maps at the boundary points ±1 ∈ ∂D2 and the interior point 0 ∈ D2.
(So in fact we think of M̂(L, β) as a moduli space of pseudoholomorphic discs with
two marked points on the boundary and one marked point in the interior, constrained
to lie on the geodesic between the two boundary marked points).

We will assume throughout this section that the spaces M̂(L, β) carry well-defined
fundamental chains (of dimension n+µ(β)), and that the evaluation maps are trans-
verse to the chains in L and X that we consider; typically it is necessary to introduce
suitable perturbations in order for these assumptions to hold, but none will be needed
for the application that we have in mind.

Definition 6.2. Let C ∈ C∗(L) and Q ∈ C∗(X) be chains in L and X respectively,

such that C×Q is transverse to the evaluation maps êvβ,1× êvβ,0 : M̂(L, β) → L×X.
Then we define

(6.1) Q ∩ C =
∑

β∈π2(X,L)

zβ Q ∩β C ∈ C∗(L),

where zβ = exp(−
∫
β
ω)hol∇(∂β) and

Q ∩β C = (êvβ,−1)∗(êvβ,1 × êvβ,0)
∗(C ×Q).

In terms of the cohomological degrees deg(C) = n−dimC and deg(Q) = 2n−dimQ,
the term Q ∩β C has degree deg(C) + deg(Q) − µ(β).
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Recall that the Floer differential δ = m1 : C∗(L) → C∗(L) is defined in terms of the
moduli spaces of pseudoholomorphic discs with two marked points on the boundary,
M2(L, β) = M̂(L, β)/R (where R is the stabilizer of {±1}), and the corresponding
evaluation maps evβ,±1 : M2(L, β) → L, by the formula

δ(C) = ∂C +
∑

β 6=0

zβ δβ(C), where δβ(C) = (evβ,−1)∗(evβ,1)
∗(C).

We denote by δ′(C) =
∑

β 6=0 zβδβ(C) the “quantum” part of the differential.

Assuming there is no obstruction to the construction of Floer homology, the cap
product (6.1) descends to a well-defined map

∩ : H∗(X) ⊗HF (L,L) → HF (L,L).

In general, the failure of the cap product to be a chain map is encoded by a higher
order operation defined as follows. Let M̂+

3 (L, β) ≃ M̂(L, β)×R be the moduli space
of J-holomorphic maps from (D2, ∂D2) to (X,L), with one interior marked point at
0 and three marked points on the boundary at ±1 and at q = exp(iθ), θ ∈ (0, π).

We denote by êv+
β,q : M̂+

3 (L, β) → L the evaluation map at the extra marked point.

Define similarly the moduli space M̂−
3 (L, β) of pseudoholomorpic discs with an extra

marked point at q = exp(iθ), θ ∈ (−π, 0), and the evaluation map êv−β,q. Then given
chains C,C ′ ∈ C∗(L) and Q ∈ C∗(X) in transverse position, we define

h±(C,C ′, Q) =
∑

β∈π2(X,L)

zβ h±
β (C,C ′, Q),

where h±
β (C,C ′, Q) = (êvβ,−1)∗(êvβ,1 × êv±β,q × êvβ,0)

∗(C × C ′ ×Q).

Note that the term h±
β (C,C ′, Q) has degree deg(C) + deg(C ′) + deg(Q)−µ(β)− 1.

Also recall from §3 that the obstruction m0 ∈ C∗(L) is defined by

m0 =
∑

β 6=0

zβ (evβ,1)∗[M1(L, β)],

where M1(L, β) is the moduli space of pseudoholomorphic discs in the class β with
a single boundary marked point.

Proposition 6.3. Assume that all the chains are transverse to the appropriate eval-
uation maps. Then up to signs we have

(6.2) δ(Q ∩ C) = ±(∂Q) ∩ C ±Q ∩ δ(C) ± h+(C,m0, Q) ± h−(C,m0, Q).

Sketch of proof. The boundary ∂(Q∩C) of the chain Q∩C consists of several pieces,
corresponding to the various possible limit scenarios:

(1) One of the two input marked points is mapped to the boundary of the chain
on which it is constrained to lie. The corresponding terms are (∂Q) ∩ C and
Q ∩ (∂C).
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(2) Bubbling occurs at one of the boundary marked points (equivalently, after
reparametrizing this corresponds to the situation where the interior marked
point which maps to Q converges to one of the boundary marked points). The
case where the bubbling occurs at the incoming marked point +1 yields a term
Q ∩ δ′(C), while the case where the bubbling occurs at the outgoing marked
point −1 yields a term δ′(Q ∩ C).

(3) Bubbling occurs at some other point of the boundary of the disc, i.e. we reach

the boundary of M̂(L, β); the resulting contributions are h+(C,m0, Q) when
bubbling occurs along the upper half of the boundary, and h−(C,m0, Q) when
it occurs along the lower half.

�

We will consider specifically the case where L does not bound any non-constant
pseudoholomorphic discs of Maslov index less than 2; then the following two lemmas
show that Floer homology and the quantum cap action are well-defined. (In fact,
it is clear from the arguments that the relevant property is the fact that m0 is a
scalar multiple of the fundamental class [L]). The following statement is part of the
machinery developed by Fukaya, Oh, Ohta and Ono [13] (see also [7]):

Lemma 6.4. Assume that L does not bound any non-constant pseudoholomorphic
discs of Maslov index less than 2. Then:

(1) m0 is a scalar multiple of the fundamental class [L];
(2) the Floer cohomology HF (L,L) is well-defined, and [L] is a Floer cocycle;
(3) the chain-level product m2 determines a well-defined associative product on

HF (L,L), for which [L] is a unit.

Sketch of proof. (1) The virtual dimension of M1(L, β) is n− 2 + µ(β), so for degree
reasons the only non-trivial contributions to m0 come from classes of Maslov index 2,
and m0 is an n-chain; moreover, minimality of the Maslov index precludes bubbling,
so that m0 is actually a cycle, i.e. a scalar multiple of the fundamental class [L].

(2) It is a well-known fact in Floer theory (see e.g. [13]) that the operations (mk)k≥0

satisfy the A∞ equations. In particular, for all C ∈ C∗(L) we have

(6.3) m1(m1(C)) + m2(C,m0) + (−1)deg(C)+1m2(m0, C) = 0.

To prove that m1 (= δ) squares to zero, it is enough to show that

(6.4) m2(C, [L]) = C and m2([L], C) = (−1)deg(C)C,

since it then follows that the last two terms in (6.3) cancel each other.

Recall that the products m2(C, [L]) and m2([L], C) are defined by considering for
each class β ∈ π2(X,L) the moduli space of J-holomorphic discs with three boundary
marked points in the class β, requiring two of the marked points to map to C and
[L] respectively, and evaluating at the third marked point. However, the incidence
condition corresponding to the chain [L] is vacuous; so, provided that β 6= 0, by
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forgetting the unnecessary marked point we see that the construction yields a chain
whose support is contained in that of δβ(C), which has dimension one less. It follows
that the only nontrivial contribution comes from constant discs; that contribution is
precisely C, up to a sign factor left to the reader.

The fact that [L] is a Floer cocycle follows from the observation that, for any
relative class β 6= 0 containing holomorphic discs, δβ([L]) is a chain of dimension
n− 1 + µ(β) ≥ n+ 1 in L, and hence trivial. It follows that δ([L]) = ∂[L] = 0.

(3) In the unobstructed case, the compatibility of m2 with the Floer differential and
its associativity at the level of cohomology follow from the A∞ equations. When m0 is
nonzero, terms of the form mk(. . . ,m0, . . . ) appear in these equations and make them
harder to interpret geometrically. However, we observe that mk(. . . , [L], . . . ) ≡ 0 for
all k ≥ 3. Indeed, mk(ak−1, . . . , ai, [L], ai−1, . . . , a1) counts pseudoholomorphic discs
with k + 1 boundary marked points, where the incidence condition at one of the
marked points is given by the fundamental cycle [L] and hence vacuous; as above,
deleting this extraneous marked point shows that the contribution of each relative
class β ∈ π2(X,L) to mk(ak−1, . . . , ai, [L], ai−1, . . . , a1) has support contained in that
of the corresponding contribution to mk−1(ak−1, . . . , a1), which has dimension one
less. Hence we can ignore all the terms involving m0, and the properties of m2 are
the same as in the unobstructed case.

Finally, the fact that [L] is a unit for the product in Floer cohomology follows
directly from (6.4) (recalling that the sign conventions in A∞-algebras are different
from those of usual differential graded algebras, see e.g. [13, 25]). �

Lemma 6.5. Assume that L does not bound any non-constant pseudoholomorphic
discs of Maslov index less than 2. Then the cap product descends to a well-defined
map ∩ : H∗(X) ⊗HF (L,L) → HF (L,L).

Proof. By the previous lemma, m0 is a scalar multiple of [L]. Next we observe that, in
the construction of h±(C, [L], Q), the incidence constraint at the extra marked point
q = exp(iθ) is vacuous. So the support of each chain h±

β (C, [L], Q) is contained in
that of the chain Q∩β C, which has dimension one less. This allows us to discard the
terms h±(C,m0, Q) in (6.2).

Therefore, Proposition 6.3 implies that, if Q is a cycle (∂Q = 0) and C is a Floer
cocycle (δ(C) = 0), then Q∩C determines a Floer cocycle, whose class depends only
on the classes of Q and C. �

Next we show that the cap product makes HF (L,L) a module over the quantum
cohomology ring of X. We denote by ∗ the quantum cup-product on QH∗(X) =
H∗(X,C), working again with complex coefficients, i.e., specializing the Novikov pa-
rameters appropriately so that J-holomorphic spheres in a class A ∈ H2(X) are
counted with a coefficient exp(−

∫
A
ω), and assuming convergence as usual. More-

over, we use Poincaré duality and work with homology instead of cohomology.
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Proposition 6.6. Assume that m0 is a multiple of [L], so that the cap product ∩ :
H∗(X) ⊗HF (L,L) → HF (L,L) is well-defined. Then for any [C] ∈ HF (L,L),

[X] ∩ [C] = [C],

and for any [Q1], [Q2] ∈ H∗(X),

[Q1] ∩ ([Q2] ∩ [C]) = ([Q1] ∗ [Q2]) ∩ [C].

Sketch of proof. We first show that [X] acts by identity. Observe that, in the defini-
tion of the cap product, the incidence constraint at the interior marked point 0 ∈ D2

is vacuous when Q = [X]. So for β 6= 0 the support of the chain [X]∩βC is contained
in that of the chain δβ(C), which has dimension one less. Hence, nonconstant holo-
morphic discs contribute trivially to [X] ∩ [C]. On the other hand the contribution
of constant discs is just the classical intersection of chains, so that [X] ∩ [C] = [C].

To prove the second part of the proposition, consider the moduli space M̂(2)(L, β)
of J-holomorphic maps from (D2, ∂D2) to (X,L) with two boundary marked points
at ±1 and two interior marked points on the real axis, at −1 < q1 < q2 < 1 (up
to simultaneous translation). Denote by êvβ,q1 and êvβ,q2 the evaluation maps at the
interior marked points, and define

Θ(Q1, Q2, C) =
∑

β∈π2(X,L)

zβ (êvβ,−1)∗(êvβ,1 × êvβ,q1 × êvβ,q2)
∗(C ×Q1 ×Q2).

Given representatives Q1, Q2 of the given classes [Q1], [Q2] and a chain C ∈ C∗(L),
assuming transversality as usual, a case-by-case analysis similar to the proof of Propo-
sition 6.3 shows that

δ(Θ(Q1, Q2, C)) = ±Θ(Q1, Q2, δ(C)) ±Q1 ∩ (Q2 ∩ C) ± (Q1 ∗Q2) ∩ C ± (m0-terms).

More precisely, the boundary of the chain Θ(Q1, Q2, C) consists of:

(1) Θ(Q1, Q2, ∂C), corresponding to the situation where the input marked point
at +1 is mapped to the boundary of the chain C. (Note that since Q1 and Q2

are cycles, we do not include the two terms Θ(∂Q1, Q2, C) and Θ(Q1, ∂Q2, C)
which would be present in the general case.)

(2) δ′(Θ(Q1, Q2, C)) and Θ(Q1, Q2, δ
′(C)), corresponding to bubbling at one of

the boundary marked points ±1 (or equivalently after reparametrization, the
situation where the interior marked points q1, q2 both converge to ±1).

(3) Q1 ∩ (Q2 ∩C), corresponding to the situation where q1 → −1 (or equivalently
up to reparametrization, q2 → 1), resulting in a two-component map with one
interior marked point in each component.

(4) (Q1 ∗Q2)∩C, corresponding to the situation where the two marked points q1
and q2 come together, leading to the bubbling of a sphere component which
carries both marked points, attached to the disc at a point on the real axis.
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(5) terms involving m0 and higher order operations defined analogously to h±,
involving moduli spaces of discs with three marked points on the boundary
and two in the interior; these occur as in the proof of Proposition 6.3 when
bubbling occurs at a point of ∂D2 \ {±1}.

By the same argument as in the proof of Lemma 6.5, when m0 is a multiple of [L] we
can safely ignore the last set of terms because the corresponding chains are supported
on lower-dimensional subsets. Thus, if we assume that C is a Floer cocycle (i.e.,
δ(C) = 0), the above formula implies that the Floer cocycles Q1 ∩ (Q2 ∩ C) and
(Q1 ∗Q2) ∩C represent the same Floer cohomology class (up to signs, which are left
to the reader). �

6.2. Cap product by c1(X) and proof of Theorem 6.1. Let (X,ω, J) be a smooth
compact Kähler manifold of complex dimension n, equipped with a holomorphic n-
form Ω defined over the complement of an anticanonical divisor D. Let L ⊂ X \D
be a special Lagrangian submanifold, or more generally a Lagrangian submanifold
whose Maslov class vanishes in X \D (so that Lemma 3.1 holds), and let ∇ be a flat
U(1)-connection on the trivial line bundle over L. We assume that L does not bound
any nonconstant holomorphic disc of Maslov index less than 2, so that the Floer
obstruction m0 is a constant multiple of the fundamental class, m0 = m0(L,∇) [L],
and Floer homology and the quantum cap product are well-defined.

Lemma 6.7. c1(X) ∩ [L] = m0(L,∇) [L].

Proof. We actually compute the cap product [D] ∩ [L]. Since [D] ∩β [L] is a chain of
dimension n− 2 + µ(β) in L, the only contributions to [D]∩ [L] come from classes of
Maslov index at most 2. Moreover, since L ⊂ X \D, there are no contributions from
constant discs, so we only need to consider classes with µ(β) = 2.

By Lemma 3.1 every holomorphic map u : (D2, ∂D2) → (X,L) of Maslov index 2
intersects D in a single point u(z0), z0 ∈ D2. Moreover, for every q = eiθ ∈ ∂D2 there
exists a unique automorphism of D2 which maps z0 to 0 and q to −1. It follows that
[D] ∩β [L] is the chain consisting of all boundary points of all holomorphic discs in
the class β, i.e. [D] ∩β [L] = (evβ,1)∗[M1(L, β)]. Summing over β, we conclude that
[D] ∩ [L] = m0 = m0(L,∇) [L]. �

Lemma 6.7 implies the following proposition, which is the core of Theorem 6.1.

Proposition 6.8. If HF (L,L) 6= 0 then m0(L,∇) is an eigenvalue of the linear map
Λ : QH∗(X) → QH∗(X) defined by Λ(α) = α ∗ c1(X).

Proof. Since [L] is the unit for the product on Floer cohomology, the assumption
HF (L,L) 6= 0 implies that [L] is a nonzero element of HF (L,L). Lemma 6.7 states
that (c1(X) −m0(L,∇)) ∩ [L] = 0. But then Proposition 6.6 implies that quantum
cup-product by c1(X) −m0(L,∇) is not invertible. �
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The only remaining ingredient of the proof of Theorem 6.1 is to show that critical
points of the superpotential correspond to special Lagrangians with nonzero Floer
homology. This follows from a general interpretation of the k-th derivatives of the
superpotential in terms of mk, at least in the toric Fano case (see the works of Cho
and Oh [9, 8]). Theorem 10.1 in [9] states that, if X is a toric Fano variety and L
is a toric fiber, then HF (L,L) is non-zero if and only if the contributions of Maslov
index 2 classes to δ([pt]) cancel out in H1(L). In our terminology, the statement is:

Proposition 6.9 (Cho-Oh [9]). Let L be a toric fiber in a toric Fano variety, equipped
with a flat U(1) connection ∇. Then HF (L,L) 6= 0 if and only if

(6.5) m1(L,∇) :=
∑

µ(β)=2

nβ(L) exp(−
∫
β
ω)hol∇(∂β) [∂β] = 0 ∈ H1(L,C).

The “only if” part actually holds even in the non-toric case, assuming the minimal
Maslov index of a holomorphic disc to be 2. Indeed, it is easy to check that if C is a
codimension 1 cycle in L (i.e. ∂C = 0) then

(6.6) δ(C) = ±([C] ·m1(L,∇)) [L]

(classes of Maslov index > 2 do not contribute to δ(C) for dimension reasons), so that
when m1(L,∇) 6= 0 the fundamental class [L] can be realized as a Floer coboundary.
However, to our knowledge the “if” part of the statement has not been proved outside
of the toric case; the argument in [9] relies on the specific features of holomorphic
discs in toric varieties to show that classes of Maslov index > 2 never contribute to
the Floer differential (Proposition 7.2 in [9]), so that (6.6) holds for cycles of any
dimension, and vanishing of m1(L,∇) implies nontriviality of the Floer homology.

Finally, recall from Section 2 that T(L,∇)M ≃ H1
ψ(L) ⊗ C ≃ H1(L,C), by mapping

(v, α) ∈ T(L,∇)M ⊂ C∞(NL) ⊕ Ω1(L,R) to [−ιvω + iα]. Then we have:

Lemma 6.10. The differential of W = m0 : M → C is

dW(L,∇)(v, α) = 〈[−ιvω + iα],m1(L,∇)〉.

Proof. Let zβ = exp(−
∫
β
ω)hol∇(∂β), and observe as in the proof of Lemma 2.7 that

d log zβ(v, α) = 〈[−ιvω + iα], [∂β]〉 (by Stokes’ theorem). Hence, the differential of
W =

∑
nβ(L) zβ is dW (v, α) =

∑
nβ(L) zβ 〈[−ιvω + iα], [∂β]〉. �

Theorem 6.1 now follows from Proposition 6.8, Proposition 6.9 and Lemma 6.10:
if (L,∇) is a critical point of W then by Lemma 6.10 it satisfies m1(L,∇) = 0, and
hence by Proposition 6.9 the Floer cohomology HF (L,L) is nontrivial. Proposition
6.8 then implies that the critical value W (L,∇) = m0(L,∇) is an eigenvalue of
quantum multiplication by c1(X).
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7. Admissible Lagrangians and the reference fiber

In this section we give a brief, conjectural discussion of the manner in which the
mirror construction discussed in the preceding sections relates to mirror symmetry
for the Calabi-Yau hypersurface D ⊂ X. For simplicity, unless otherwise specified we
assume throughout this section that D is smooth.

7.1. The boundary of M and the reference fiber. Denote by σ ∈ H0(X,K−1
X )

the defining section of D, and identify a tubular neighborhood U of D with a neighbor-
hood of the zero section in the normal bundle ND ≃ (K−1

X )|D, denoting by p : U → D

the projection. Then we have:

Lemma 7.1. D carries a nonvanishing holomorphic (n − 1)-form ΩD, called the
residue of Ω along D, such that, in a neighborhood of D,

(7.1) Ω = σ−1dσ ∧ p∗ΩD +O(1).

Note that, even though σ−1dσ depends on the choice of a holomorphic connection on
K−1
X (one can e.g. use the Chern connection), it only does so by a bounded amount,

so this ambiguity has no incidence on (7.1). The choice of the projection p : U → D
does not matter either, for a similar reason.

Proof. Near any given point q ∈ D, choose local holomorphic coordinates (x1, . . . , xn)
on X such that D is the hypersurface x1 = 0. Then locally we can write Ω =
x−1

1 h(x1, x2, . . . , xn) dx1 ∧ · · · ∧ dxn, for some nonvanishing holomorphic function h.
We set ΩD = h(0, x2, . . . , xn) dx2 ∧ · · · ∧ dxn; in other terms, ΩD = (x1ι∂x1

Ω)|D.

If we change the coordinate system to a different one (y1, . . . , yn) for which D is
again defined by y1 = 0, then x1 = y1 φ(y1, . . . , yn) for some nonvanishing holomor-
phic function φ, so that x−1

1 dx1 = y−1
1 dy1 + d(log φ). Therefore, denoting by J

the Jacobian of the change of variables (x2, . . . , xn) 7→ (y2, . . . , yn) on D, we have
x−1

1 h dx1 ∧ · · · ∧ dxn = (y−1
1 hJ +O(1)) dy1 ∧ · · · ∧ dyn. Hence ΩD is well-defined.

Finally, equation (7.1) follows by considering a coordinate system in which the first
coordinate is exactly σ in a local trivialization of K−1

X and the other coordinates are
pulled back from D by the projection p. �

Lemma 7.1 shows that D (equipped with the restricted complex structure and
symplectic form, and with the volume form ΩD) is a Calabi-Yau manifold.

Remark 7.2. If D has normal crossing singularities, then the same construction
yields a holomorphic (n− 1)-form ΩD which has poles along the singular locus of D.

Assume that Λ is a special Lagrangian submanifold in (D,ΩD): then, in favorable
cases, we can try to look for special Lagrangian submanifolds in X \D which are S1-
fibered over Λ. For example, if we are in a product situation, i.e. locally X = C×D,
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with the product complex structure and Kähler form, and Ω = x−1dx ∧ ΩD, then
S1(r) × Λ is special Lagrangian in (X \D,Ω).

In general, the classical symplectic neighborhood theorem implies that U is sym-
plectomorphic to a neighborhood of the zero section in a symplectic vector bundle over
D. It is then easy to see that the preimage of Λ is foliated by Lagrangian submani-
folds (which intersect each fiber in concentric circles). Due to the lack of compatibility
between the standard symplectic chart and the holomorphic volume form, these sub-
manifolds are not special Lagrangian in general, but Lemma 7.1 implies that, as the
radius of the circle in the fiber tends to zero (i.e., as the submanifolds get closer to
D), they become closer and closer to being special Lagrangian. Thus it is reasonable
to hope for the existence of a nearby family of special Lagrangian submanifolds.

In terms of the moduli space M of pairs (L,∇) consisting of a special Lagrangian
submanifold of (X \ D,Ω) and a flat U(1)-connection on the trivial bundle over L,
this suggests the following (somewhat optimistic) conjecture:

Conjecture 7.3. Near its boundary, M consists of pairs (L,∇) such that the La-
grangian submanifold L ⊂ U ∩ (X \ D) is a circle bundle over a special Lagrangian
submanifold of D, with the additional property that every fiber bounds a holomorphic
disc of Maslov index 2 contained in U .

The main evidence for this conjecture is given by the examples in Sections 4 and 5
above. In those examples D has normal crossing singularities, along which ΩD has
poles, so special Lagrangian submanifolds of D are defined as in Section 2. In this
setting, the moduli space M also has corners, corresponding to the situation where L
lies close to the singular locus of D. Apart from this straightforward adaptation, the
boundary structure of the moduli space of special Lagrangians is exactly as described
by the conjecture.

More precisely, as one approaches the boundary of M , the special Lagrangian sub-
manifold L collapses to a special Lagrangian submanifold Λ of D, and the collapsing
makes L a (topologically trivial) S1-bundle over Λ. Moreover, each circle fiber bounds
a small holomorphic disc which intersects D transversely in a single point; we denote
by δ ∈ π2(X,L) the homotopy class of these discs. As L collapses onto Λ, the sym-
plectic area

∫
δ
ω shrinks to zero; in terms of the variable zδ = exp(−

∫
δ
ω)hol∇(∂δ),

we get |zδ| → 1. In other terms, Conjecture 7.3 implies that ∂M is defined by the
equation |zδ| = 1.

Among the points of ∂M , those where zδ = 1 stand out, because they correspond
to the situation where the holonomy of ∇ is trivial along the fiber of the S1-bundle
L → Λ, i.e. ∇ is lifted from a connection on the trivial bundle over Λ. The set of
such points can therefore be identified with a moduli space MD of pairs of special
Lagrangian submanifolds in D and flat U(1)-connections over them.

Conjecture 7.4. The subset MD = {zδ = 1} ⊂ ∂M is the Strominger-Yau-Zaslow
mirror of D.
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Assuming these conjectures, it is tempting to think of MD as the reference fiber
(or “fiber at infinity”) of the Landau-Ginzburg model W : M → C. Of course, MD

is not actually a fiber of W ; but the contributions of other relative homotopy classes
to the superpotential are negligible compared to zδ, at least in the rescaling limit
suggested by Conjecture 4.4. So, near ∂M , we expect to have W = zδ + o(1), and
the fiber W−1(1) (when it is well-defined, which is not always the case considering
wall-crossing and boundary phenomena) can essentially be identified with MD.

Moreover, we expect the boundary of M to fiber over S1. Indeed, we can set the
holonomy of ∇ along the fiber of the S1-bundle L → Λ to equal any given unit
complex number, rather than 1. Thus we have:

Proposition 7.5. Assuming Conjecture 7.3, the map zδ : ∂M → S1 is a fibration
with fiber MD.

A hasty look at the situation might lead one to conclude, incorrectly, that the
fibration zδ : ∂M → S1 is trivial. In fact, the symplectic monodromy of this fibration,
viewed as an autoequivalence of the Fukaya category of MD, is expected to be mirror
to the autoequivalence of DbCoh(D) induced by E 7→ (KX)|D ⊗ E .

For example, consider the case where X = CP
2 and D is a smooth elliptic curve

obtained by a small generic deformation of the union of the coordinate lines. While
we do not have an explicit description of M in this setting, one can use the toric
model as a starting point, and the example in Section 5 as an indication of how the
smoothing of D affects the geometry of M near the corners of the moment polytope.
Let L be a special Lagrangian torus which lies close to the portion of D located along
the x and y coordinate axes: then δ is the relative homotopy class called β in §5;
using the same notations as in §5, ∂β is the fiber of the S1-bundle L → Λ, while ∂α
is a section. If we move Λ by translations all around the elliptic curve D, and look
at the corresponding family of special Lagrangians L ⊂ X \ D, a short calculation
shows that the monodromy acts on H1(L) by

(7.2) ∂β 7→ ∂β, ∂α 7→ ∂α + 9 ∂β.

Observe that MD,θ = {zβ = eiθ} ⊂ ∂M is an S1-bundle over S1, where the base
corresponds to the moduli space BD of special Lagrangians Λ ⊂ D (occurring as
collapsed limits of special Lagrangian tori L ⊂ X \ D), and the fiber corresponds
to the holonomy of the flat connection over L with the constraint hol∇(∂β) = eiθ.
For θ = 0, a section of the S1-bundle MD,0 = MD → BD is given by fixing the
holonomy along ∂α, e.g. requiring hol∇(∂α) = 1; since hol∇(∂β) = 1 this constraint
is compatible with the monodromy (7.2). Now, increase θ from 0 to 2π and deform
this section into each MD,θ = {zβ = eiθ}: it follows from (7.2) that we get a section
of the S1-bundle MD,θ → BD along which the holonomy hol∇(∂α) varies by 9 θ. So,
when we return to MD as θ reaches 2π, the homotopy class of the section has changed
by 9 times the fiber of the S1-bundle MD → BD: i.e., in this example the monodromy



MIRROR SYMMETRY AND T-DUALITY 39

of the fibration zβ : ∂M → S1 is given by
(

1 0
9 1

)
.

7.2. Fukaya categories and restriction functors. We now return to the general
case, and discuss briefly the Fukaya category of the Landau-Ginzburg model W :
M → C, assuming that Conjectures 7.3 and 7.4 hold. The general idea, which goes
back to Kontsevich [17] and Hori-Iqbal-Vafa [15], is to allow as objects admissible
Lagrangian submanifolds of M , i.e. potentially non-compact Lagrangian submanifolds
which, outside of a compact subset, are invariant under the gradient flow of −Re(W ).
The case of Lefschetz fibrations (i.e., when the critical points of W are nondegenerate)
has been studied in great detail by Seidel; in this case, which is by far the best
understood, the theory can be formulated in terms of the vanishing cycles at the
critical points (see e.g. [25]).

The formulation which is the most relevant to us is the one which appears in
Abouzaid’s work [1, 2]: in this version, one considers Lagrangian submanifolds of M
with boundary contained in a given fiber of the superpotential, and which near the
reference fiber are mapped by W to an embedded curve γ ⊂ C. In our case, using
the fact that near ∂M the superpotential is W = zδ + o(1), we consider Lagrangian
submanifolds with boundary in MD = {zδ = 1}:

Definition 7.6. A Lagrangian submanifold L ⊂ M with (possibly empty) boundary
∂L ⊂MD is admissible with slope 0 if the restriction of zδ to L takes real values near
the boundary of L.

Similarly, we say that L is admissible with slope θ ∈ (−π
2
, π

2
) if ∂L ⊂MD and, near

∂L, zδ takes values in the half-line 1 − eiθR+. The definition of Floer homology for
admissible Lagrangians is the usual one in this context: to determine HF (L1, L2),
one first deforms L2 (rel. its boundary) to an admissible Lagrangian L+

2 whose slope is
greater than that of L1, and one computes Floer homology for the pair of Lagrangians
(L1, L

+
2 ) inside M (ignoring boundary intersections).

We denote by F(M,MD) the Fukaya category constructed in this manner. Re-
placing the superpotential by zδ in the definition has two advantages: on one hand
it makes admissibility a much more geometric condition, and on the other hand it
eliminates difficulties associated with wall-crossing and definition of the superpoten-
tial. In particular, when comparing the B-model on X and the A-model on M this
allows us to entirely eliminate the superpotential from the discussion. Since in the
rescaling limit of Conjecture 4.4 the superpotential is expected to be W = zδ + o(1),
we conjecture that F(M,MD) is derived equivalent to the physically relevant category
of Lagrangian submanifolds.

Finally, we conclude the discussion by observing that, by construction, the bound-
ary of an admissible Lagrangian in M is a Lagrangian submanifold of MD (possibly
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empty, and not necessarily connected). We claim that there is a well-defined restric-
tion functor ρ : F(M,MD) → F(MD) from the Fukaya category of M to that of
MD, which at the level of objects is simply (L,∇) 7→ (∂L,∇|∂L). At the level of
morphisms, the restriction functor essentially projects to the part of the Floer com-
plex generated by the intersection points near the boundary. More precisely, given an
intersection point p ∈ int(L1) ∩ int(L+

2 ), ρ(p) is a linear combination of intersection
points in which the coefficient of q ∈ ∂L1 ∩ ∂L2 counts the number of holomorphic
strips connecting p to q in (M,L1 ∪ L+

2 ).

This suggests the following conjecture, which can be thought of as “relative homo-
logical mirror symmetry” for the pair (X,D):

Conjecture 7.7. There is a commutative diagram

DbCoh(X)
restr−−−→ DbCoh(D)

≃

y
y≃

DπF(M,MD)
ρ−−−→ DπF(MD)

In this diagram, the horizontal arrows are the restriction functors, and the vertical
arrows are the equivalences predicted by homological mirror symmetry.

Some evidence for Conjecture 7.7 is provided by the case of Del Pezzo surfaces [4].
Even though it is not clear that the construction of the mirror in [4] corresponds to
the one discussed here, it is striking to observe how the various ingredients fit together
in that example. Namely, by comparing the calculations for Del Pezzo surfaces in [4]
with Polishchuk and Zaslow’s work on mirror symmetry for elliptic curves [21], it is
readily apparent that:

• the fiber of the Landau-Ginzburg model W : M → C is mirror to an elliptic
curve E in the anticanonical linear system |K−1

X |;
• the Fukaya category of the superpotential admits an exceptional collection

consisting of Lefschetz thimbles; under mirror symmetry for elliptic curves,
their boundaries, which are the vanishing cycles of the critical points of W ,
correspond exactly to the restrictions to E of the elements of an exceptional
collection for DbCoh(X);

• the behavior of the restriction functors on these exceptional collections is
exactly as predicted by Conjecture 7.7.
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