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Abstract. The first part of this paper is a review of the Strominger-Yau-Zaslow
conjecture in various settings. In particular, we summarize how, given a pair (X,D)
consisting of a Kähler manifold and an anticanonical divisor, families of special La-
grangian tori in X \ D and weighted counts of holomorphic discs in X can be used
to build a Landau-Ginzburg model mirror to X. In the second part we turn to
more speculative considerations about Calabi-Yau manifolds with holomorphic in-
volutions and their quotients. Namely, given a hypersurface H representing twice
the anticanonical class in a Kähler manifold X, we attempt to relate special La-
grangian fibrations on X \H and on the (Calabi-Yau) double cover of X branched
along H; unfortunately, the implications for mirror symmetry are far from clear.
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1. Introduction

The phenomenon of mirror symmetry was first evidenced for Calabi-Yau manifolds,
i.e. Kähler manifolds with holomorphically trivial canonical bundle. Subsequently it
became apparent that mirror symmetry also holds in a more general setting, if one
enlarges the class of objects under consideration (see e.g. [14]); namely, one should
allow the mirror to be a Landau-Ginzburg model, i.e. a pair consisting of a non-
compact Kähler manifold and a holomorphic function on it (called superpotential).

Our motivation here is to understand how to construct the mirror manifold, starting
from examples where the answer is known and extrapolating to less familiar situa-
tions; generally speaking, the verification of the mirror symmetry conjectures for the
manifolds obtained by these constructions falls outside the scope of this paper.

The geometric understanding of mirror symmetry in the Calabi-Yau case relies on
the Strominger-Yau-Zaslow (SYZ) conjecture [28], which roughly speaking postulates
that mirror pairs of Calabi-Yau manifolds carry dual fibrations by special Lagrangian
tori, and its subsequent refinements (see e.g. [10, 21]). This program can be extended
to the non Calabi-Yau case, as suggested by Hori [12] and further investigated in [3].
In that case, the input consists of a pair (X,D) where X is a compact Kähler manifold
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and D is a complex hypersurface representing the anticanonical class. Observing that
the complement of D carries a holomorphic n-form with poles along D, we can think
of X \D as an open Calabi-Yau manifold, to which one can apply the SYZ program.
Hence, one can attempt to construct the mirror of X as a (complexified) moduli space
of special Lagrangian tori in X \D, equipped with a Landau-Ginzburg superpotential
defined by a weighted count of holomorphic discs in X. However, exceptional discs
and wall-crossing phenomena require the incorporation of “instanton corrections” into
the geometry of the mirror (see [3]).

One notable feature of the construction is that it provides a bridge between mirror
symmetry for the Kähler manifold X and for the Calabi-Yau hypersurface D ⊂ X.
Namely, the fiber of the Landau-Ginzburg superpotential is expected to be the SYZ
mirror to D, and the two pictures of homological mirror symmetry (for X and for D)
should be related via restriction functors (see Section 7 of [3] for a sketch).

In this paper, we would like to consider a slightly different situation, which should
provide another relation with mirror symmetry for Calabi-Yau manifolds. The union
of two copies of X glued together along D can be thought of as a singular Calabi-Yau
manifold, which can be smoothed to a double cover of X branched along a hypersur-
face H representing twice the anticanonical class and contained in a neighborhood of
D. This suggests that one might be able to think of mirror symmetry for X as a Z/2-
invariant version of mirror symmetry for the Calabi-Yau manifold Y . Unfortunately,
this proposal comes with several caveats which make it difficult to implement.

Let (X,ω, J) be a compact Kähler manifold, and let H be a complex hypersurface
in X representing twice the anticanonical class. Then the complement of H carries a
nonvanishing section Θ of K⊗2

X with poles along H. We can think of Θ as the square
of a holomorphic volume form defined up to sign. In this context, we can look for
special Lagrangian submanifolds of X \ H, i.e. Lagrangian submanifolds on which
the restriction of Θ is real. The philosophy of the SYZ conjecture suggests that, in
favorable cases, one might be able to construct a foliation of X \ H in which the
generic leaves are special Lagrangian tori. Indeed, denote by Y the double cover of X
branched along H: then Y is a Calabi-Yau manifold with a holomorphic involution.
If Y carries a special Lagrangian fibration that is invariant under the involution, then
by quotienting we could hope to obtain the desired foliation on X \H; unfortunately
the situation is complicated by technicalities involving the symplectic form.

Conjecture 1.1. For a suitable choice of H, X \ H carries a special Lagrangian
foliation whose lift to the Calabi-Yau double cover Y can be perturbed to a Z/2-
invariant special Lagrangian torus fibration.

If −KX is effective, we can consider a situation where H degenerates to a hyper-
surface D representing the anticanonical class in X, with multiplicity 2. As explained
above, this corresponds to the situation where Y degenerates to the union of two
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copies of X glued together along D. One could hope that under such a degener-
ation the foliation on X \ H converges to a special Lagrangian torus fibration on
X \ D. Using the mirror construction described in [3], one can then try to relate
a Landau-Ginzburg mirror (X∨,W ) of X to a Calabi-Yau mirror Y ∨ of Y . The
simplest case should be when KX|D is holomorphically trivial (which in particular
requires c1(X)2 = 0). Then W : X∨ → C is expected to have trivial monodromy
around infinity (see Remark 2.11), so that ∂X∨ ≈ S1 ×D∨ where D∨ is mirror to D.
It is then tempting to conjecture that, considering only the complex structure of the
mirror (and ignoring its symplectic geometry), Y ∨ can be obtained by gluing together
two copies of the mirror X∨ to X along their boundary S1 ×D∨. Unfortunately, as
we will see in §3.5 this is not compatible with instanton corrections.

The rest of this paper is organized as follows. In Section 2 we review the geometry of
mirror symmetry from the perspective of the SYZ conjecture, both in the Calabi-Yau
case and in the more general case (relatively to an anticanonical divisor). We then
turn to more speculative considerations in Section 3, where we discuss the geometry
of Calabi-Yau double covers, clarify the statement of Conjecture 1.1, and consider
various examples.

Acknowledgements. I would like to thank Mohammed Abouzaid, Paul Seidel, Lud-
mil Katzarkov, and Dima Orlov for many fruitful discussions. I am also grateful to
Ron Donagi, whose interest in this topic prompted the writing of this paper. This
research was partially supported by NSF grants DMS-0600148 and DMS-0652630.

2. The SYZ conjecture and mirror symmetry

2.1. Motivation. One of the most spectacular mathematical predictions of string
theory is the phenomenon of mirror symmetry, i.e. the existence of a broad dictio-
nary under which the symplectic geometry of a given manifold X can be understood
in terms of the complex geometry of a mirror manifold X∨, and vice-versa. This
dictionary works at several levels, among which perhaps the most exciting is Kontse-
vich’s homological mirror conjecture, which states that the derived Fukaya category
of X should be equivalent to the derived category of coherent sheaves of its mirror
X∨ [19]; in the non Calabi-Yau case the categories under consideration need to be
modified appropriately [20] (see also [1, 13, 18, 26, 27]).

The main goal of the Strominger-Yau-Zaslow conjecture [28] is to provide a geomet-
ric interpretation of mirror symmetry. Roughly speaking it says that mirror manifolds
carry dual fibrations by special Lagrangian tori. In the Calabi-Yau case, one way to
motivate the conjecture is to observe that, given any point p of the mirror X∨, mirror
symmetry should put the skyscraper sheaf Op in correspondence with some object Lp
of the Fukaya category of X. As a graded vector space Ext∗(Op,Op) is isomorphic
to the cohomology of T n; therefore the most likely candidate for Lp is a (special)
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Lagrangian torus in X, equipped with a rank 1 unitary local system (a flat U(1) bun-
dle). This suggests that one should try to construct X∨ as a moduli space of pairs
(L,∇) where L is a special Lagrangian torus in X and ∇ is a flat unitary connection
on the trivial line bundle over L. Since for each torus L the moduli space of flat
connections can be thought of as a dual torus, we arrive at the familiar picture.

When X is not Calabi-Yau but the anticanonical class −KX is effective, we can
still equip the complement of a hypersurface D ∈ |−KX | with a holomorphic volume
form, and thus consider special Lagrangian tori in X \ D. However, in this case,
holomorphic discs in X with boundary in L cause Floer homology to be obstructed
in the sense of Fukaya-Oh-Ohta-Ono [6]: to each object L = (L,∇) we can associate
an obstruction m0(L), given by a weighted count of holomorphic discs in (X,L), and
the Floer differential on CF ∗(L,L′) squares to m0(L′)−m0(L). Moreover, even when
the Floer homology groups HF ∗(L,L) can still be defined, they are often zero, so
that L is a trivial object of the Fukaya category. On the mirror side, these features of
the theory can be replicated by the introduction of a Landau-Ginzburg superpotential,
i.e. a holomorphic function W : X∨ → C. Without getting into details, W can be
thought of as an obstruction term for the B-model on X∨, playing the same role as
m0 for the A-model on X. In particular, a point of X∨ defines a nontrivial object of
the category of B-branes Db

sing(X
∨,W ) only if it is a critical point of W [18, 24].

2.2. Special Lagrangian fibrations and T-duality. Let (X,ω, J) be a smooth
compact Kähler manifold of complex dimension n. If X is Calabi-Yau, i.e. the canon-
ical bundle KX is holomorphically trivial, then X carries a globally defined holomor-
phic volume form Ω ∈ Ωn,0(X): this is the classical setting for mirror symmetry.
Otherwise, assume that K−1

X admits a nontrivial holomorphic section σ, vanishing
along a hypersurface D. Typically we will assume that D is smooth, or with normal
crossing singularities. Then Ω = σ−1 is a nonvanishing holomorphic (n, 0)-form over
X \D, with poles along D.

The restriction of Ω to a Lagrangian submanifold L ⊂ X \D does not vanish, and
can be expressed in the form Ω|L = ψ volg, where ψ ∈ C∞(L,C∗) and volg is the
volume form induced on L by the Kähler metric g = ω(·, J ·).
Definition 2.1. A Lagrangian submanifold L ⊂ X \ D is special Lagrangian if the
argument of ψ is constant.

The value of the constant depends only on the homology class [L] ∈ Hn(X \D,Z),
and we will usually arrange for it to be a multiple of π/2. For simplicity, in the rest
of this paragraph we will assume that Ω|L is a real multiple of volg.

The following classical result is due to McLean [23] (at least when |ψ| ≡ 1, which
is the case in the Calabi-Yau setting; see §9 of [16] or Proposition 2.5 of [3] for the
case where |ψ| 6= 1):
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Proposition 2.2 (McLean). Infinitesimal special Lagrangian deformations of L are
in one to one correspondence with cohomology classes in H1(L,R). Moreover, the
deformations are unobstructed.

More precisely, a section of the normal bundle v ∈ C∞(NL) determines a 1-form
α = −ιvω ∈ Ω1(L,R) and an (n − 1)-form β = ιvIm Ω ∈ Ωn−1(L,R). These satisfy
β = ψ ∗g α, and the deformation is special Lagrangian if and only if α and β are both
closed. Thus special Lagrangian deformations correspond to “ψ-harmonic” 1-forms
−ιvω ∈ H1

ψ(L) = {α ∈ Ω1(L,R)| dα = 0, d∗(ψα) = 0} (recall ψ ∈ C∞(L,R+) is the
ratio between the volume elements determined by Ω and g).

In particular, special Lagrangian tori occur in n-dimensional families, giving a local
fibration structure provided that nontrivial ψ-harmonic 1-forms have no zeroes.

The base B of a special Lagrangian torus fibration carries two natural affine struc-
tures, which we call “symplectic” and “complex”. The first one, which encodes the
symplectic geometry of X, is given by locally identifying B with a domain in H1(L,R)
(where L ≈ T n). At the level of tangent spaces, the cohomology class of −ιvω pro-
vides an identification of TB with H1(L,R); integrating, the local affine coordinates
on B are the symplectic areas swept by loops forming a basis of H1(L). The other
affine structure encodes the complex geometry of X, and locally identifies B with a
domain in Hn−1(L,R). Namely, one uses the cohomology class of ιvIm Ω to identify
TB with Hn−1(L,R), and the affine coordinates are obtained by integrating Im Ω
over the n-chains swept by cycles forming a basis of Hn−1(L).

In practice, B can usually be compactified to a larger space B̄ (with non-empty
boundary in the non Calabi-Yau case), by also considering singular special Lagrangian
submanifolds that arise as limits of degenerating families of special Lagrangian tori;
however the affine structures are only defined on the open subset B ⊂ B̄.

Ignoring singular fibers and instanton corrections, the first candidate for the mirror
of X is therefore a moduli space M of pairs (L,∇), where L is a special Lagrangian
torus in X (or X \D) and ∇ is a flat U(1) connection on the trivial line bundle over
L (up to gauge). The local geometry of M is well-understood [11, 22, 8, 3], and in
particular we have the following result (see e.g. §2 of [3]):

Proposition 2.3. M carries a natural integrable complex structure J∨ arising from
the identification

T(L,∇)M = {(v, α) ∈ C∞(NL) ⊕ Ω1(L,R) | − ιvω + iα ∈ H1
ψ(L) ⊗ C},

a holomorphic n-form

Ω∨((v1, α1), . . . , (vn, αn)) =

∫

L

(−ιv1ω + iα1) ∧ · · · ∧ (−ιvn
ω + iαn),
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and a compatible Kähler form

ω∨((v1, α1), (v2, α2)) =

∫

L

α2 ∧ ιv1Im Ω − α1 ∧ ιv2Im Ω

(this formula for ω∨ assumes that
∫

L
Re Ω has been suitably normalized).

The moduli space of pairs M can be viewed as a complexification of the moduli
space of special Lagrangian submanifolds; forgetting the connection gives a projection
map f∨ from M to the real moduli space B. The fibers of this projection are easily
checked to be special Lagrangian tori in (M,ω∨,Ω∨).

The special Lagrangian fibrations f : X → B̄ (or rather, its restriction to the
open subset f−1(B)) and f∨ : M → B can be viewed as fiberwise dual to each
other. In particular, it is easily checked that the affine structure induced on B by
the symplectic geometry of f∨ coincides with that induced by the complex geometry
of f , and vice-versa. Giving priority to the symplectic affine structure, we will often
implicitly equip B with the affine structure induced by the symplectic geometry of
X, and denote by B∨ the same manifold equipped with the other affine structure
(induced by the complex geometry of X, or the symplectic geometry of M).

Thus, the philosophy of the Strominger-Yau-Zaslow conjecture is that, in first ap-
proximation (ignoring instanton corrections), mirror symmetry amounts simply to
exchanging the two affine structures on B. However, in general it is not at all obvi-
ous how to extend the picture to the compactification B̄. The reader is referred to
[28], [8], [22] for more details in the Calabi-Yau case, and to [12] and [3] for the non
Calabi-Yau case.

2.3. Mirror symmetry for Calabi-Yau manifolds. Constructing a special La-
grangian fibration on a Calabi-Yau manifold is in general a challenging task, but
there are a few situations where it can be done explicitly, for instance in the case of
flat tori, or for hyperkähler manifolds. We give two well-known examples.

Example 2.4 (Elliptic curves). Consider an elliptic curve E = C/(Z ⊕ τZ), where
τ = iγ ∈ iR+, equipped with the holomorphic volume form Ω = dz and a Kähler
form ω such that

∫

E
ω = λ ∈ R+. (The reason why we assume τ to be pure imaginary

is that for simplicity we are suppressing any discussion of B-fields). Then the family
of circles parallel to the real axis {Im (z) = c} defines a special Lagrangian fibration
on E, with base B ≃ S1. One easily checks that the length of B with respect to the
affine metric is equal to λ for the symplectic affine structure, and γ for the complex
affine structure. The mirror elliptic curve E∨ is obtained by exchanging the two affine
structures on B; accordingly, it has modular parameter τ∨ = iλ and symplectic area
∫

E∨
ω∨ = γ. (The reader is referred to [25] for a verification of homological mirror

symmetry for the mirror pair E,E∨.)

Example 2.5 (K3 surfaces). In the case of K3 surfaces, special Lagrangian fibrations
can be built using hyperkähler geometry. Let (X, J) be an elliptically fibered K3
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surface, for example obtained as the double cover of CP
1 × CP

1 branched along a
suitably chosen algebraic curve of bidegree (4, 4): composing the covering map with
projection to the first CP

1 factor, we obtain an elliptic fibration f : X → CP
1

with 24 nodal singular fibers. Equip X with a Calabi-Yau metric g, and denote the
corresponding Kähler form by ωJ . Denote by ΩJ a holomorphic (2, 0)-form on X,
suitably normalized, and let ωK = Re(ΩJ) and ωI = Im(ΩJ): then (ωI , ωJ , ωK) is a
hyperkähler triple for the metric g. Now switch to the complex structure I = g−1ωI
determined by the Kähler form ωI , and with respect to which ΩI = ωJ + iωK is a
holomorphic volume form. Since the fibers of f : X → CP

1 are calibrated by ωJ , the
map f is a special Lagrangian fibration on (X,ωI ,ΩI).

The affine structures on the base of f are only defined away from the singularities
of the fibration. Thus the geometry of (X,ωI ,ΩI) is characterized by a pair of affine
structures on the open subset B ≃ S2 \ {24 points} of B̄ ≃ S2. The monodromies of
the two affine structures around each singular point are the transpose of each other,

and each individual monodromy is conjugate to the standard matrix
„

1 1
0 1

«

.

The mirror of (X,ωI ,ΩI) is another K3 surface, carrying a special Lagrangian
fibration whose base differs from B by an exchange of the two affine structures. In
fact, under certain assumptions (e.g., existence of a section) and for a specific choice of
[ωJ ], the mirror may be obtained simply by performing another hyperkähler rotation
to get (X,−ωK ,Ω−K = ωJ + iωI); see e.g. §7 of [15]. The reader is also referred to §7
of [8] for more details on the SYZ picture for K3 surfaces.

In the above examples, one can avoid confronting heads-on the delicate issues that
arise when trying to reconstruct the mirror from the affine geometry of B. In general,
however, the compactification of the mirror fibration over the singularities of the affine
structure and the incorporation of instanton corrections are two extremely challenging
aspects of this approach. The reader is referred to [21] and [10] for two attempts at
tackling this problem.

Another even more important issue is constructing a special Lagrangian torus fi-
bration on X in the first place. When there is no direct geometric construction as in
the above examples, the most promising approach seems to be Gross and Siebert’s
program to understand mirror symmetry via toric degenerations [9, 10]. The main
idea is to degenerate X to a union X0 of toric varieties glued together along toric
strata; toric geometry then provides a special Lagrangian fibration on X0, whose base
is a polyhedral complex formed by the union of the moment polytopes for the com-
ponents of X0. Gross and Siebert then analyze carefully the behavior of this special
Lagrangian fibration upon deforming X0 back to a smooth manifold, showing how
to insert singularities into the affine structure to compensate for the nontriviality of
the normal bundles to the singular strata along which the smoothing takes place.
Moreover, they also show that, in the toric degeneration limit, exchanging the affine
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structures on the base of the special Lagrangian fibration can be understood as a
combinatorial process called discrete Legendre transform [9].

Remark 2.6. The affine geometry of B is a remarkably powerful tool to understand
the symplectic and complex geometry of X (and, by exchanging the affine struc-
tures, of its mirror). Namely, away from the singularities, the two affine structures on
B = B∨ each determine an integral lattice in the tangent bundle TB; denoting these
lattices by Λ for the symplectic affine structure and Λ∨ for the complex affine struc-
ture, locally X can be identified with either one of the torus bundles T ∗B/Λ∗ (with its
standard symplectic form) and TB∨/Λ∨ (with its standard complex structure). Thus,
locally, an integral affine submanifold of B (i.e., a submanifold described by linear
equations with integer coefficients in local affine coordinates with respect to the sym-
plectic affine structure) determines a Lagrangian submanifold of X by the conormal
construction. Similarly, an integral affine submanifold with respect to the complex
affine structure B∨ locally determines a complex submanifold of X (by considering its
tangent bundle). More generally, tropical subvarieties of B or B∨ determine piecewise
smooth Lagrangian or complex subvarieties in X; whether these can be smoothed is
a difficult problem whose answer is known only in simple cases.

To give a concrete example, let us return to K3 surfaces (Example 2.5) and the
corresponding affine structures on B ≃ S2 \ {24 points}. Each singular fiber of the
special Lagrangian torus fibration f : X → CP

1 has a nodal singularity obtained
by collapsing a circle in the smooth fiber. The homology class of this vanishing
cycle determines a pair of rays in B (straight half-lines emanating from the singular
point), with the property that the conormal bundles to these rays compactify nicely
to Lagrangian discs in X (possibly after a suitable translation within the fibers).
Similarly, the nodal singularity determines a pair of rays in B∨ (different from the
previous ones), whose tangent bundles (again after a suitable translation) compactify
to holomorphic discs in X. When two singularities of the affine structure lie in a
position such that the corresponding rays in B (resp. in B∨) align with each other
(and assuming the translations in the fibers also match), the line segment joining them
in B (resp. B∨) determines a Lagrangian sphere (resp. a rational curve with normal
bundle O(−2)) in X. In the mirror X∨ the same alignment produces a rational
−2-curve (resp. a Lagrangian sphere). In fact, using the hyperkähler structure on
X and remembering that the elliptic fibration f is J-holomorphic, these spheres
correspond to (special) Lagrangian spheres in (X,ωJ) which arise from the matching
path construction and additionally are calibrated by ωK (resp. ωI).

2.4. Mirror symmetry in the complement of an anticanonical divisor. We
now consider special Lagrangian torus fibrations in the complement X \ D of an
anticanonical divisor D in a Kähler manifold X. We start with a very easy example
to make the following discussion more concrete:
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Example 2.7. Let X = CP
1, equipped with any Kähler form invariant under the

standard S1-action. Equip the complement of the anticanonical divisor D = {0,∞},
namely CP

1 \ {0,∞} = C
∗, with the standard holomorphic volume form Ω = dz/z.

It is easy to check that the circles |z| = r are special Lagrangian (with phase π/2).
Thus we have a special Lagrangian fibration f : CP

1 \ D → B, whose base B is
homeomorphic to an interval. As seen above, B carries two affine structures. With
respect to the symplectic affine structure, the special Lagrangian fibration is simply
the moment map for the S1-action on CP

1 (up to a factor of 2π). Thus B is an open
interval of length equal to the symplectic area of CP

1, and can be compactified by
adding the end points of the interval, which correspond to the S1 fixed points, i.e.
the points of D. On the other hand, with respect to the complex affine structure, B
is an infinite line: from this point of view, the special Lagrangian fibration is given
by the map z 7→ log |z|.

We can start building a mirror to X by considering the dual special Lagrangian
torus fibration M as in §2.2. M is a non-compact Kähler manifold and, after taking
instanton corrections into account, it is in fact the mirror to the open Calabi-Yau
manifoldX\D. Thus, some information is missing from this description. As explained
at the end of §2.1, adding in the divisor D very much affects the special Lagrangian
tori X \D from a Floer-theoretic point of view, and the natural way to account for the
resulting obstructions is to make the mirror a Landau-Ginzburg model by introducing
a superpotential W : M → C.

Recall that a point of M is a pair (L,∇), where L ⊂ X \D is a special Lagrangian
torus, and ∇ is a flat connection on the trivial line bundle over L. Given a homotopy
class β ∈ π2(X,L), we can consider the moduli space of holomorphic discs in X with
boundary on L, representing the class β. The virtual dimension (over R) of this
moduli space is n − 3 + µ(β), where µ(β) ∈ Z is the Maslov index; in our case, the
Maslov index is twice the algebraic intersection number β · [D] (see e.g. Lemma 3.1
of [3]). When µ(β) = 2, in favorable cases we can define a (virtual) count nβ(L)
of holomorphic discs in the class β whose boundary passes through a generic point
p ∈ L, and define

(2.1) W (L,∇) =
∑

β∈π2(X,L)
µ(β)=2

nβ(L) zβ(L,∇), where zβ(L,∇) = exp(−
∫

β
ω) hol∇(∂β).

Thus, W is a weighted count of holomorphic discs of Maslov index 2 with boundary
in L, with weights determined by the symplectic area of the disc and the holonomy
of the connection ∇ along its boundary.

For example, in the case of CP
1 (Example 2.7), each special Lagrangian fiber sep-

arates CP
1 into two discs, one containing 0 and the other one containing ∞. The

classes β1 and β2 represented by these discs satisfy β1+β2 = [CP
1], and hence the cor-

responding weights satisfy zβ1
zβ2

= exp(−
∫

CP
1 ω). One can check that nβ1

= nβ2
= 1,
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so that using z = zβ1
as coordinate on M we obtain the well-known formula for the

superpotential, W = z + e−Λ z−1, where Λ is the symplectic area of CP
1.

While the example of CP
1 is straightforward, several warnings are in order. First,

unless X is Fano the sum (2.1) is not known to converge. More importantly, if L
bounds non-constant holomorphic discs of Maslov index 0 (i.e., discs contained in
X \ D), then the counts nβ(L) depend on auxiliary data, such as the point p ∈ L
through which the discs are required to pass, or an auxiliary Morse function on L.

An easy calculation shows that the weights zβ are local holomorphic functions on
M (with respect to the complex structure defined in Proposition 2.3), and once all
ambiguities are lifted the disc counts nβ(L) are locally constant, so that W is locally
a holomorphic function on M . However, Maslov index 0 discs determine “walls”
in M , across which the counts nβ(L) jump and hence the quantity (2.1) presents
discontinuities. In terms of the affine geometry of the base of the special Lagrangian
fibration, an important mechanism for the generation of walls comes from the rays
in B∨ (the base with its complex affine structure) that emanate from the vanishing
cycles at the singular fibers of the special Lagrangian fibration: indeed, by definition
any special Lagrangian fiber that lies on such a ray bounds a holomorphic disc in
X \D (see Remark 2.6). Intersections between these “primary” walls then generate
further walls (which can be visualized as rigid tropical configurations in B∨).

Fukaya-Oh-Ohta-Ono’s results [6] imply that the formulas for W in adjacent cham-
bers of M differ by a holomorphic substitution of variables (see also Proposition 3.9
in [3]). The guiding principle that governs instanton corrections is that the various
chambers of M should be glued to each other not in the naive manner suggested
by the geometry of B, but rather via the holomorphic gluing maps that arise in the
wall-crossing formulas. Thus, the instanton-corrected mirror is precisely the analytic
space on which the weighted count (2.1) of holomorphic discs in (X,L), and more
generally the “open Gromov-Witten invariants” of (X,L) (yet to be defined in the
most general setting), become single-valued quantities. The reader is referred to [21]
and [10] for more details on instanton corrections (in the Calabi-Yau case, but the
general case is similar).

One final issue is that, according to Hori and Vafa [14], the mirror obtained by
T-duality needs to be enlarged. The holomorphic volume form Ω has poles along
D, which causes B equipped with the complex affine structure to have infinite di-
ameter (after adding in the singular fibers, B∨ is complete). On the other hand, the
fact that ω extends smoothly across D means that, with respect to the symplectic
affine structure, B has finite diameter, and compactifies to a singular affine manifold
with boundary. The consequence is that, after exchanging the affine structures, the
Kähler metric on the mirror is complete but its complex structure is “incomplete”:
for instance, in Example 2.7 the mirror of CP

1 is naturally a bounded annulus (of
modulus equal to the symplectic area of CP

1), rather than the expected C
∗. Hori and

Vafa’s suggestion (assuming that X is Fano) is to symplectically “enlarge” X \D by
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considering a family of Kähler forms (ωk)k→∞ obtained by symplectic inflation along
D, with the property that [ωk] = [ω] + k c1(X), and simultaneously rescaling the
superpotential by a factor of ek (see also §4.2 of [3]). However, this “renormalization”
procedure is definitely not desirable in the geometric setting considered in Section 3,
so we do not consider it further.

We end here our discussion of the various delicate points that come up in the
construction of the mirror and its superpotential, and simply refer the reader to [3]
for more details. Instead, we return to examples.

Example 2.8 (Toric varieties). Let (X,ω, J) be a toric variety of complex dimension
n, and consider the toric anticanonical divisor D (i.e., the divisor of points where the
T n-action is not free). Recall that X \ D is biholomorphic to (C∗)n, and equip it
with the holomorphic (n, 0)-form Ω = d log z1 ∧ · · · ∧ d log zn, which has poles along
D. Then the orbits of the standard T n-action define a special Lagrangian fibration
on X \ D ≃ (C∗)n. With respect to the symplectic affine structure, the base B of
this fibration is the moment polytope for (X,ω), or rather its interior, and the special
Lagrangian fibration is simply given by the moment map. On the other hand, the
complex affine structure on B naturally identifies it with R

n; from this point of view
the special Lagrangian fibration is the Log map (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|).

Exchanging the two affine structures, the mirror ofX is naturally a bounded domain
in (C∗)n (the subset of points whose image under the Log map lies in the moment
polytope of X), equipped with a complete Kähler metric and a superpotential W
defined by a Laurent polynomial consisting of one term for each component of D.
Details can be found in [5] and [7] (see also §4 of [3] for a brief overview, and [1] for
a partial verification of homological mirror symmetry).

Example 2.9 (CP
2). Consider CP

2 equipped with the Fubini-Study Kähler form ω0.
Let D ⊂ CP

2 be a smooth elliptic curve defined by a homogeneous polynomial of
degree 3, and let Ω be a holomorphic volume form on CP

2 with poles along D.

Conjecture 2.9. CP
2 \D carries a special Lagrangian torus fibration over the disc

with (generically) three nodal singular fibers.

Tentatively, the construction of this special Lagrangian fibration proceeds as follows.
Start with the toric setting, i.e. equip CP

2 with a holomorphic volume form with
poles along the toric anticanonical divisor D0 consisting of the three coordinate lines
(Ω0 = dx∧ dy/xy in an affine chart). As mentioned above, the orbits of the standard
T 2-action define a special Lagrangian fibration on (C∗)2 = CP

2 \D0; with respect to
the symplectic affine structure, the base B0 of this fibration is the moment polytope
for CP

2, i.e. a triangle. Deforming this situation to the case of a holomorphic volume
form Ω′ with poles along a smooth cubic curve D′ obtained by smoothing out the
three nodal points of D0 modifies the structure of the special Lagrangian fibration
near the three toric fixed points. A local model for what happens near each of these
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points is described in §5 of [3]. Namely, if we replace Ω0 by Ωε = dx ∧ dy/(xy − ε),
then the complement of the anticanonical divisor Dε formed by the conic xy = ε and
the line at infinity carries a special Lagrangian torus fibration with one nodal singular
fiber: the fibers are formed by intersecting the level sets of the moment map for the
S1-action eiθ · (x, y) = (eiθx, e−iθy) with the level sets of the function |xy − ε|2, and
the singularity is at the origin [3]. If ε is small then this family is close to the toric
family away from the origin. Therefore, general considerations about deformations
of families of special Lagrangians suggest that, if the smooth elliptic curve D′ lies
in a sufficiently small neighborhood of D0, then (CP

2 \ D′, ω0,Ω
′) carries a special

Lagrangian fibration with three nodal singular fibers. From the point of view of the
affine geometry of the base B′ of this fibration, the smoothing of each node of D0

amounts to replacing a corner of the triangle B0 by a singular point in the interior of
B′ (so that B′ is a singular affine manifold with boundary but without corners).

The special Lagrangian fibers over points close to the boundary of B′ lie in a
tubular neighborhood of D′, and collapse to closed loops in D′ as one approaches
the boundary. Thus their first homology group is generated by a meridian m (the
boundary of a small disc that intersects D′ transversely once) and by a longitude ℓ
(a curve that runs parallel to a closed loop on D′). The monodromy of the special
Lagrangian fibration along ∂B′ fixes m, but because the normal bundle to D′ has
degree 9 it maps ℓ to ℓ + 9m. Thus, in a suitable basis the monodromy along the

boundary of B′ can be expressed by the matrix
„

1 9
0 1

«

(see equation (7.2) in [3]).

The general case, where the cubic curve D is not necessarily close to the singular
toric configuration D0 ⊂ CP

2, should follow from a suitable result on deformations
of two-dimensional special Lagrangian torus fibrations with nodal singularities. (To
our knowledge such a result hasn’t been proved yet; however it should follow from
an explicit analysis of the deformations of the nodal singularities and the implicit
function theorem applied to the smooth part of the fibration. In our case one also
needs to control the behavior of the fibration near the boundary of B.)

When constructing the mirror, the singular fibers create walls, which require in-
stanton corrections. In the case of a cubic D′ obtained by a small deformation of
the toric configuration D0, the local model for a single smoothing suggests that the
walls run parallel to the boundary of the base B′. In fact, the special Lagrangian
fibers which lie sufficiently far from D′ are Floer-theoretically equivalent to standard
product tori. Thus, in the “main” chamber the superpotential is given by the same
formula as in the toric case, W = x + y + e−Λ/xy in suitable coordinates (where
Λ =

∫

CP
1 ω); in the other chambers it is given by some analytic continuation of this

expression (see §5 of [3] for an explicit formula in the case of smoothing a single node
of D0). In fact, ignoring completeness issues (e.g., looking only at |W | ≪ 1), the
overall effect of deforming D0 to a smooth cubic curve on the complex geometry of
the Landau-Ginzburg mirror is expected to be a fiberwise compactification. Simul-
taneously, the symplectic area of the fiber of the Landau-Ginzburg model, which is
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infinite in the toric case, is expected to become finite and equal to the imaginary part
of the modular parameter of the elliptic curve D′ (see also [4]).

Example 2.10 (Rational elliptic surface). Let X be a rational elliptic surface ob-
tained by blowing up CP

2 at the nine base points of a pencil of cubics, equipped with
a Kähler form ω̂. Let D̂ ⊂ X be a smooth elliptic fiber (the proper transform of a

cubic of the pencil), and let Ω̂ be a holomorphic (2, 0)-form on X with poles along

D̂. We expect:

Conjecture 2.10. X\D̂ carries a special Lagrangian torus fibration over the disc with
(generically) 12 nodal singular fibers. The monodromy of the affine structure around

each singularity is conjugate to
„

1 1
0 1

«

, and the monodromy along ∂B̂ is trivial.

The construction starts with (CP
2, D, ω0,Ω), where D ⊂ CP

2 is an elliptic curve and
Ω is a holomorphic (2,0)-form with poles along D, as in Example 2.9 above. By
Conjecture 2.9, we expect CP

2 \D to carry a special Lagrangian torus fibration with
three nodal singular fibers. Now we blow up CP

2 at nine points on the cubic D, to
obtain the rational elliptic surface X. Pulling back Ω under the blowup map yields a
holomorphic (2,0)-form Ω̂ on X, with poles along an elliptic curve D̂ ⊂ X (the proper
transform of D). On the other hand, the Kähler form ω̂ on X is not canonical, and
depends in particular on the choice of the symplectic areas of the exceptional divisors.
We claim that, provided these areas are sufficiently small, the blowup should carry a
special Lagrangian torus fibration with 12 nodal singular fibers.

The local model for each blowup operation is as follows [2]. Consider a neighbor-
hood of the origin in C

2 equipped with the standard symplectic form, the holomorphic
volume form dx∧dy/y with poles along C×{0}, and the family of special Lagrangian

cylinders {Re(x) = t1,
1
2
|y|2 = t2} ⊂ C × C

∗. Equip the blowup Ĉ
2 with a toric

Kähler form ω̂0 (invariant under the standard T 2-action) for which the area of the

exceptional divisor is ǫ > 0, and the holomorphic volume form Ω̂0 obtained by pulling
back dx ∧ dy/y under the blowup map π : Ĉ

2 → C
2. The lift to Ĉ

2 of the S1-action

eiθ · (x, y) = (x, eiθy) preserves ω̂0 and Ω̂0; its fixed point set consists of on one hand

the proper transform D̂0 of C×{0}, and on the other hand the point where the proper

transform of {0}×C hits the exceptional divisor. Denote by µ : Ĉ
2 → R the moment

map for this S1-action, normalized to equal 0 on D̂0 and ǫ at the isolated fixed point.
Then it is easy to check that the submanifolds {Re(π∗x) = t1, µ = t2} ⊂ Ĉ

2 \ D̂0 are

special Lagrangian with respect to ω̂0 and Ω̂0 [2]. This family of special Lagrangians
presents one nodal singular fiber – the fiber which corresponds to (t1, t2) = (0, ǫ) and
passes through the isolated S1-fixed point. Moreover, if ǫ is small then away from
a neighborhood of the exceptional divisor this family is close to the initial family of
special Lagrangians in C × C

∗.
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Even though the local model is only an asymptotic description of the geometry of
the special Lagrangian fibration on CP

2\D near a point of D, it should be possible to
glue this local construction into the fibration of Conjecture 2.9, and thereby construct
a special Lagrangian fibration on the rational elliptic surface X obtained by blowing
up CP

2 at 9 points on the elliptic curve D. Each blow-up operation inserts a nodal
singular fiber into the fibration; thus the base B̂ of the special Lagrangian fibration
on X presents 12 singular points. From the point of view of the symplectic affine
structure, an easy calculation on the local model shows that each new singular point
lies at a distance from the boundary of B̂ equal to the symplectic area of the excep-
tional curve of the corresponding blowup; in fact the exceptional curve can be seen
as a complex ray that runs from the singular point to the boundary of B̂. Moreover,
the monodromy of the fibration along the boundary of B̂ is trivial, reflecting the fact
that the anticanonical divisor D̂ ⊂ X has trivial normal bundle.

The general case, where the exceptional divisors of the blowups are not assumed to
have small symplectic areas, should again follow from a careful analysis of deforma-
tions of two-dimensional special Lagrangian torus fibrations with nodal singularities
(with the same caveats as in the case of CP

2).

Remark 2.11. Assume D is smooth. Then the holomorphic (n, 0)-form Ω on X \D
induces a holomorphic volume form ΩD = ResD(Ω) on D: the residue of Ω along D. It
is reasonable to expect that, as is the case in the various examples considered above,
in a neighborhood of D the special Lagrangian fibration on (X \D,ω,Ω) consists of
tori which are S1-bundles over special Lagrangian submanifolds of (D,ω|D,ΩD). As
a toy example, consider X = D × C, ω = ωD + i

2
dz ∧ dz̄, and Ω = ΩD ∧ dz/z: then

the product any special Lagrangian submanifold of D with a circle centered at the
origin in C is easily seen to be special Lagrangian. We conjecture that the qualitative
behavior is the same in the general case; see §7 of [3] for more details.

Assuming that this picture holds, the special Lagrangian fibration f : X \D → B
can be extended over the boundary of B by a special Lagrangian fibration on D. In
particular, the boundary of B, with the induced affine structures, is the base BD of an
SYZ fibration on D. More precisely: with respect to the symplectic affine structure,
the compactified base B̄ is a singular affine manifold with boundary (and corners if
D has normal crossings), and its boundary is BD. With respect to the complex affine
structure, B∨ (after adding in the interior singular fibers) is a complete singular affine
manifold, isomorphic to R+ ×B∨

D outside of a compact subset.

As already seen in Example 2.9, near ∂B the monodromy of the affine structures on
B is determined explicitly by the affine structures on BD and by the first Chern class
of the normal bundle to D. Indeed, given a fiber of f near the boundary of B, i.e. an
S1-fibered special Lagrangian L ⊂ X \D, the action of the monodromy on H1(L) can
be determined by working in a basis consisting of a meridian loop linking D and n−1
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longitudes running parallel to D; from this one deduces the corresponding actions on
H1(L) (monodromy of B) and Hn−1(L) (monodromy of B∨).

Next, we look at the mirror, and observe that near its boundary M consists of pairs
(L,∇) where L is an S1-fibered special Lagrangian contained in a neighborhood of
D. Denote by δ ∈ π2(X,L) the homotopy class of a small meridian disc intersecting
D transversely once (with boundary the meridian loop), and let zδ(L,∇) be the
corresponding weight as in equation (2.1). Then zδ is a holomorphic function on
M near its boundary. (In fact, zδ is the dominant term in the expression of the
superpotential W near ∂M , as the meridian discs have the smallest symplectic area
among all Maslov index 2 holomorphic discs.) By construction, the boundary of
M corresponds to the case where the area of the meridian disc reaches zero, i.e.
∂M = {|zδ| = 1}.

Consider the complex hypersurface MD = {zδ = 1} (⊂ ∂M). Geometrically, MD

corresponds to limits of sequences of pairs (L,∇) where L collapses onto a special La-
grangian torus Λ ⊂ D and the connection ∇ has trivial holonomy along the collapsed
S1-factor in L, i.e. is pulled back from a flat connection on the trivial bundle over Λ.
Thus MD is none other than the SYZ mirror to D. Moreover, the restriction of zδ to
∂M induces a locally trivial fibration zδ : ∂M → S1 with fiber MD. The monodromy
of this fibration can be realized geometrically as follows. Start with a pair (L,∇)
where L is almost collapsed onto Λ ⊂ D and ∇ has trivial holonomy along the merid-
ian loop (so zδ ∈ R+): then we can change the holonomy of ∇ along the meridian loop
by adding to it a multiple of σ−1∇σ, where σ is the defining section of D and ∇ is a
suitable connection on K−1

X . From there it follows easily that the monodromy of the
fibration zδ : ∂M → S1 is a symplectomorphism of MD which geometrically realizes
(as a fiberwise translation in the special Lagrangian fibration MD → BD dual to the
SYZ fibration on D) the mirror to the autoequivalence −⊗K−1

X |D of DbCoh(D).

This rich geometric picture naturally leads to a formulation of mirror symmetry
for the pairs (X,D) and (M,MD); see §7 of [3] for details.

3. Special Lagrangian fibrations and double covers

3.1. Special Lagrangians and Calabi-Yau double covers. Let (X,ω, J) be a
smooth compact Kähler manifold of complex dimension n, and let s be a nontrivial
holomorphic section of K−2

X . Unless otherwise specified we assume that the hypersur-
face H = s−1(0) is smooth. Θ = s−1 is a nonvanishing section of K⊗2

X over X\H, with
poles along H, and locally Ω = Θ1/2 is a nonvanishing holomorphic n-form, defined
up to sign. The restriction of Θ to a Lagrangian submanifold L ⊂ X \ H does not
vanish, and can be expressed in the form η vol2g, where η ∈ C∞(L,C∗). By analogy
with the situation considered previously, we make the following definition:

Definition 3.1. A Lagrangian submanifold L ⊂ X \ H is special Lagrangian if the
argument of η is constant. (In fact Θ will usually be normalized so that η is real).
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It is easy to see that, if L ⊂ X \H is an orientable special Lagrangian submanifold,
then over L the holomorphic quadratic differential Θ admits a globally defined square
root Ω. Therefore Proposition 2.2 still applies in this setting; since Ω|L = η1/2volg,

special Lagrangian deformations are now given by η1/2-harmonic 1-forms on L.

As before, the base B of a special Lagrangian torus fibration carries two natural
affine structures, one arising from the symplectic geometry of X and the other one
arising from its complex geometry.

We now turn to the Calabi-Yau double cover of X branched along H, namely
the unique double cover π : Y → X with the property that Θ̃ = π∗Θ admits a
globally defined square root Ω̃ ∈ Ωn,0(Y ). More explicitly, the obstruction for Θ to
admit a globally defined square root is given by an element of H1(X \ H,Z/2) ≃
Hom(π1(X \H),Z/2), and we consider the branched cover with this monodromy.

The complex geometry of Y is fairly straightforward, as the complex structure J̃
and the holomorphic volume form Ω̃ are simply lifted from those of X via π. In
particular, it is easy to check that Ω̃ is well-behaved along the ramification divisor.
(To give the simplest example, consider the map z 7→ z2 from C to itself: the pullback
of Θ = z−1dz⊗2 is Θ̃ = 4 dz⊗2, which has a well-defined square root Ω̃ = 2 dz.)

On the other hand, constructing a Kähler form on Y requires some choices, because
the pullback form π∗ω is degenerate along the ramification locus H̃ = π−1(H). One
approach is to view Y as a complex hypersurface in the total space of the line bundle
K−1
X over X, equipped with a suitable Kähler metric. More directly, one can equip Y

with a Kähler form ω̃ = π∗ω + ǫ λ, where ǫ > 0 is a sufficiently small constant and λ
is an exact real (1, 1)-form whose restriction to the complex line Ker(dπ) is positive
at every point of the ramification locus. Any two forms obtained in this manner are
symplectically isotopic; for example one can take λ = −i∂∂̄φ where φ : Y → [0, 1]
is supported in a neighborhood of H̃, equal to 1 on H̃, and strictly concave in the
normal directions at every point of H̃.

Thus, given a compact special Lagrangian submanifold L ⊂ X \ H, the two lifts
of L are in general not special Lagrangian submanifolds of Y , even though the re-
striction of Ω̃ has constant phase, because they are not necessarily Lagrangian for
ω̃. In very specific cases (for instance in dimension 1 or in product situations) this is
not an issue, but in general one needs to deform the lift of L to a nearby special La-
grangian submanifold L̃ ⊂ Y , whose existence is guaranteed by the unobstructedness
of deformations (Proposition 2.2) as long as ω̃ is sufficiently close to π∗ω.

When considering not just one submanifold but a whole special Lagrangian fibration
on X \H, it is natural to ask whether the lifts can be similarly deformed to a special
Lagrangian fibration on Y . Away from H and from the singular fibers, we can rely
on an implicit function theorem for special Lagrangian fibrations which again follows
from unobstructedness. In spite of the wealth of results that have been obtained
on singularities of special Lagrangians and their deformations (see e.g. [17]), to our
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knowledge there is no general result that would yield a special Lagrangian fibration
on Y from one on X \H. Nonetheless, it seems reasonable to expect that such a result
might hold at least in low dimensions if the Kähler form on Y is chosen suitably and
the family of special Lagrangians only presents generic singularities.

Thus, Conjecture 1.1 can be stated more precisely as follows:

Conjecture 3.2.

(1) X carries a special Lagrangian fibration (or rather, foliation) f : X → B̄,
where B̄ is a singular affine manifold with boundary (with two affine struc-
tures), such that the generic fibers of f are special Lagrangian tori in X \H,
and the fibers of f above ∂B̄ are special Lagrangians with boundary in H.

(2) Y carries a special Lagrangian torus fibration f̃ : Y → B̃, where B̃ is a sin-
gular affine manifold without boundary (with two affine structures), obtained
by gluing together two copies of B̄ along their boundary.

Note that the boundaries of the two copies of B̄ are identified using the identity
map, whereas the normal direction is reflected; thus this is an orientation-reversing
gluing, and the resulting singular affine manifold B̃ admits an orientation-reversing
involution whose fixed point locus is the “seam” of the gluing.

3.2. Example: CP
1 and elliptic curves. As our first example, we consider X =

CP
1 equipped with any Kähler form and a holomorphic quadratic differential Θ with

poles at a subset H ⊂ CP
1.

We first consider the special case Θ = dz2/(z2 − a2), with simple poles at ±a and
a double pole at infinity. Setting a = 0, we recover the classical situation discussed
in Example 2.7, in which the circles centered at the origin are special Lagrangian.
For arbitrary a, it follows from classical geometry that every ellipse with foci ±a
is special Lagrangian with phase π/2 for Ω = Θ1/2 = dz/

√
z2 − a2. Thus we get a

special Lagrangian foliation of C\{±a} by this family of ellipses, the sole noncompact
leaf being the real interval (−a, a). The general case is less explicit but essentially
amounts to modifying the special Lagrangian family in the same manner not only
near zero but also near infinity.

More precisely, equip CP
1 with a generic holomorphic quadratic differential Θ =

z2 dz2/(z− a)(z− b)(z− c)(z− d) with poles at H = {a, b, c, d}. Then, for a suitable
choice of phase, CP

1 \H admits a special Lagrangian foliation in which all the leaves
are closed loops with the exception of two noncompact leaves, each connecting two
of the points of H (say a and b on one hand, and c and d on the other hand). For
instance, if a < b < c < d are real, then we have such a foliation (with phase π/2) in
which the two noncompact leaves are the real line segments (a, b) and (c, d). Indeed,
after removing the two intervals [a, b] and [c, d], the quadratic differential Θ admits a
well-defined square root Ω, which is a closed 1-form and hence has the same period
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(easily checked to be pure imaginary) on any homotopically nontrivial embedded
curve. The general case follows from the same argument.

From a symplectic point of view, the base B of this foliation is again an interval of
length equal to the symplectic area of CP

1. However, unlike the situation of Example
2.7, the affine structure induced on B by the holomorphic volume form identifies it
with a finite interval: if we normalize Ω so that the integral of Im Ω over each special
Lagrangian fiber is 1, then the length of this interval is equal to

∫ c

b
Re Ω.

The double cover of CP
1 branched at H is an elliptic curve Y , and the family of

special Lagrangians in CP
1 \H lifts to a smooth special Lagrangian fibration on Y .

The base B̃ ≃ S1 of this fibration, and its two affine structures, are obtained by
doubling B along its boundary. For instance, the symplectic area of Y (which is the
length of B̃ with respect to the symplectic affine structure, cf. Example 2.4) is twice
that of CP

1, whereas the integral of Re Ω̃ over a section of the special Lagrangian
fibration (which is the length of B̃ with respect to the complex affine structure) is
twice

∫ c

b
Re Ω.

Remark 3.3. With respect to the complex affine structure, the base B of the special
Lagrangian foliation on (CP

1 \H,Ω) is a finite interval, whereas the base B0 of the
special Lagrangian fibration on (CP

1\{0,∞},Ω0 = dz/z) has infinite size. The reason
is that, as a, b→ 0 and c, d→ ∞, the elliptic curve Y degenerates to a curve with two
nodal singularities, and the base B̃ of its special Lagrangian fibration degenerates to
a union of two infinite intervals. On the other hand, the symplectic structure on Y ,
which determines the length of the base with respect to the other affine structure, is
unaffected by the degeneration.

3.3. Example: Elliptic surfaces. We revisit Example 2.10, and again denote by X
a rational elliptic surface obtained by blowing up CP

2 at the 9 base points of a pencil
of cubics, equipped with a Kähler form ω̂. We previously considered a holomorphic
volume form Ω̂ on X with poles along an elliptic fiber D̂. Now we equip X with a
section Θ of K⊗2

X , with poles along the union H = D+ ∪ D− of two smooth fibers
of the elliptic fibration; for simplicity we assume that D± lie close to a same smooth
fiber D̂, so that away from a neighborhood of D̂ the quadratic volume element Θ is
close to the square Ω̂⊗2 of the volume form considered in Example 2.10.

Conjecture 3.4. The special Lagrangian fibration on X\D̂ constructed in Conjecture
2.10 deforms to a special Lagrangian family on X \H. The base B of this family is
homeomorphic to a closed disc, and over its interior the fibers are special Lagrangian
tori, with the exception of 12 nodal singular fibers. The fibers above ∂B are special
Lagrangian annuli with one boundary component on D+ and the other on D−.

We now explain the geometric intuition behind this conjecture by considering a
simplified local model in which everything is explicit. The actual geometry of X near
D̂ differs from this local model by higher order terms; however the local model is
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expected to accurately describe all the qualitative features of the special Lagrangian
families of Conjectures 2.10 and 3.4 in a small neighborhood of D̂.

In a small neighborhood of the fiber D̂, the elliptic fibration X → CP
1 is topologi-

cally trivial, and even though it is not holomorphically trivial, in first approximation
we can consider a local model of the form E×U , where E is an elliptic curve (E ≃ D̂)
and U is a neighborhood of the origin in C (with coordinate z). In this simplified

local model, the holomorphic volume form Ω̂ can be written in the form dw ∧ dz/z,
where dw is a holomorphic 1-form on E (in fact, the residue of Ω̂ along D̂), the sym-
plectic form ω̂ is a product form, and the special Lagrangian family of Conjecture
2.10 consists of product tori, where the first factor is a special Lagrangian circle in
(E, dw) and the second factor is a circle centered at the origin.

We now equip E×U with the quadratic volume element Θ = (dw∧dz)⊗2/(z2−ǫ2),
with poles along H = E × {±ǫ}. Then the previous family of special Lagrangians
deforms to one where each submanifold is again a product: the first factor is still a
special Lagrangian circle in (E, dw), and the second factor is now an ellipse with foci
at ±ǫ (in the degenerate case, the line segment [−ǫ, ǫ]).

The bases of these two special Lagrangian fibrations on E×U , equipped with their
symplectic affine structures, are naturally isomorphic, as each ellipse with foci at ±ǫ
can be used interchangeably with the circle that encloses the same symplectic area (in
fact, the corresponding product Lagrangian tori in E × U are Hamiltonian isotopic
to each other). In this sense, passing from X \ D̂ to X \ H (i.e., from B̂ to B) is
expected to be a trivial operation from the symplectic point of view. However, the
complex affine structures on B̂ and B are very different: from that perspective B̂ is
“complete” (its boundary lies “at infinity”, since the affine structure blows up near

∂B̂ due to the singular behavior of Ω̂ along D̂), whereas B has finite diameter. This

is most easily seen in terms of the local model near D̂, which allows us to reduce to
the one-dimensional case (see Remark 3.3).

Finally, we consider the double cover Y of the rational elliptic surface X branched
along H. It is easy to see that Y is an elliptically fibered K3 surface, carrying a
holomorphic involution under which the holomorphic volume form Ω̃ = (π∗Θ)1/2 is
anti-invariant. By Conjecture 1.1 we expect that Y , equipped with a suitably chosen
Kähler form in the class [π∗ω̂], carries a special Lagrangian fibration with 24 nodal
singular fibers, whose base B̃ ≃ S2 is obtained by doubling B along its boundary.

In fact, it is well-known that such a fibration can be readily obtained using hy-
perkähler geometry as in Example 2.5. Indeed, consider an elliptically fibered K3
surface with a real structure for which the real part consists of two tori. For example,
let Y ′ be the double cover of CP

1 ×CP
1 branched along the zero set of a generic real

homogeneous polynomial of bidegree (4, 4) without any real roots. Composing the
covering map with projection to the first CP

1 factor, we obtain an elliptic fibration
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f : Y ′ → CP
1 with 24 singular fibers. Complex conjugation lifts to an involution ι on

Y ′ which is antiholomorphic with respect to the given complex structure J , and whose
fixed point locus is the trivial (disconnected) double cover of RP

1 × RP
1 (i.e., two

tori). The involution ι maps each fiber of f to the fiber above the complex conjugate
point of CP

1, and in particular it interchanges pairs of complex conjugate singular
fibers.

Equip Y ′ with a Calabi-Yau metric, such that the Kähler form ωJ is anti-invariant
under ι (this is guaranteed by uniqueness of the Calabi-Yau metric if one imposes
[ωJ ] to be the pullback of a Kähler class on CP

1 × CP
1 and hence anti-invariant).

Denote by ΩJ a holomorphic (2, 0)-form on Y ′: then ι∗ΩJ is a scalar multiple of Ω̄J ,
because dimH0,2

J (Y ) = 1. So after normalization we can assume that ι∗ΩJ = −Ω̄J ,
i.e. ωK := Re(ΩJ) is anti-invariant and ωI := Im(ΩJ) is invariant.

Now switch to the complex structure I determined by the Kähler form ωI . Then ι
becomes a holomorphic involution, and the holomorphic volume form ΩI = ωJ + iωK
is anti-invariant. Since the fibers of f : Y ′ → CP

1 are calibrated by ωJ , the map f is
a special Lagrangian fibration on (Y ′, ωI ,ΩI), compatible with the involution ι.

It seems likely that this construction can be used as an alternative approach to
Conjecture 3.4, by considering the quotient of this special Lagrangian fibration by
the involution ι.

Remark 3.5. The elliptic surface X contains nine exceptional spheres, arising from
the nine blow-ups performed on CP

2; these spheres intersect H in two points, so their
preimages in the double cover Y are rational curves with normal bundle O(−2). These
curves can be seen by looking at the complex affine structures on the bases B and B̃
of the special Lagrangian fibrations on X and Y , as discussed in Remark 2.6. Namely,
the exceptional curves in X correspond to complex rays that run from singularities
of the affine structure of B to its boundary (as in Example 2.10). Doubling B along
its boundary to form B̃ creates alignments between pairs of singular points lying
symmetrically across from each other. For at least 9 of the 12 pairs of points (those
which correspond to the blowups) the corresponding complex rays match up to yield
−2-curves in Y .

3.4. Example: CP
2 and K3. We now revisit Example 2.9, and now equip CP

2 with
a section Θ of K⊗2 with poles along a smooth curve H of degree 6. We assume that
H lies in a small neighborhood of a cubic D, i.e. it is defined by a homogeneous
polynomial of the form p = σ2 − ǫq, where σ ∈ H0(O(3)) is the defining section of D
and ǫ is a small constant. Thus, away from a neighborhood of D the quadratic volume
element Θ is close to the square Ω⊗2 of the volume form considered in Example 2.9.

Conjecture 3.6. The special Lagrangian fibration on CP
2 \ D constructed in Con-

jecture 2.9 deforms to a special Lagrangian family on CP
2 \ H. The base B of this

family is homeomorphic to a closed disc, and over its interior the fibers are special
Lagrangian tori, with the exception of three nodal singular fibers. The fibers above ∂B
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are special Lagrangian annuli with boundary on H, with the exception of 18 pinched
annuli (with one arc connecting the two boundaries collapsed to a point).

While we do not have a complete picture to propose, the rough idea is as follows.
Looking at the defining section p = σ2 − ǫq of H, away from the zeroes of q we
can think of H as two parallel copies of D, and special Lagrangians are expected to
behave as in the previous example. Namely, near D a special Lagrangian in CP

2 \D
looks like the product of a special Lagrangian Λ (≃ S1) in D with a small circle in
the normal direction, and the corresponding special Lagrangian in CP

2 \ H should
be obtained by replacing the circle factor by a family of ellipses whose foci lie on
H. In the degenerate limit case, the ellipses become line segments joining the two
foci, forming an annulus; when Λ passes through a zero of q, the corresponding line
segment is collapsed to a point, giving a pinched annulus.

In fact, we are unable to provide an explicit local model for this behavior on X \H.
However, Conjecture 3.6 can be corroborated by calculations on a local model for the
double cover Y of X branched along H.

Near a point of D, we can consider local coordinates (u, v) on a domain in C
2

such that D is defined by the equation u = 0, and H is defined by the equation
u2 − ǫq(v) = 0 for some holomorphic function q. The corresponding section of K⊗2

X is
given by Θ = (u2− ǫq(v))−1 (du∧dv)⊗2. As ǫ→ 0, this converges to the square of the
holomorphic volume form u−1 du ∧ dv, for which the cylinders {Re v = a, |u|2 = r}
are special Lagrangians (the circle factor corresponds to the direction normal to D,
while the other factor corresponds to a local model for a special Lagrangian in D).

In this local model the double cover of C
2 branched along H is the hypersurface

Y ⊂ C
3 defined by the equation z2 = u2 − ǫq(v). The pullback of Θ under the

projection map (z, u, v) 7→ (u, v) admits the square root

Ω̃ = z−1 du ∧ dv = u−1 dz ∧ dv.
It is worth noting that Ω̃ is the natural holomorphic volume form induced on Y by
the standard volume form of C

3: denoting by f = z2−u2+ǫq(v) the defining function
of Y , we have df ∧ Ω̃ = dz ∧ du∧ dv. We equip Y with the restriction of the standard
Kähler form ω0 = i

2
dz ∧ dz̄+ i

2
du∧ dū+ i

2
dv∧ dv̄, which differs from the pullback of

the standard Kähler form of C
2 by the extra term i

2
dz ∧ dz̄ = i

2
∂∂̄|u2 − ǫq(v)|2. We

claim that the (possibly singular) submanifolds

L̃a,b = {(z, u, v) ∈ Y | Re (v) = a, Re (uz̄) = b} (a, b) ∈ R
2

are special Lagrangian with respect to Ω̃ and ω0. Indeed, the vector field ξ(z, u, v) =
(iu, iz, 0) is tangent to the submanifolds L̃a,b, and the 1-forms ιξIm Ω̃ = Re dv and

ιξω0 = −dRe(uz̄) + i
2
dv ∧ dv̄ both vanish on L̃a,b. Moreover, L̃a,b is singular if and

only if it passes through a point (0, 0, v0) with v0 a root of q.



22 DENIS AUROUX

The involution (z, u, v) 7→ (−z, u, v) maps L̃a,b to L̃a,−b. Thus, the special La-
grangian fibration (z, u, v) 7→ (Re v,Re (uz̄)) descends to a family of submanifolds in
C

2, parameterized by the quotient of R
2 by the reflection (a, b) 7→ (a,−b), i.e. the

closed upper half-plane. The image of L̃a,b under this projection is

La,b = {(u, v) ∈ C
2 |Re (v) = a, Re (ū

√

u2 − ǫq(v)) = ±b},
and behaves exactly as described above: fixing a value of v (i.e., a point of D), the
intersection of La,b with C × {v} is an ellipse with foci the two square roots of ǫq(v)
(i.e. the two points where H intersects C×{v}). For b = 0 the ellipse degenerates to
a line segment; when v is a root of q the ellipses become circles and the line segment
collapses to a point. However, a quick calculation shows that La,b is not Lagrangian
with respect to the standard Kähler form on C

2.

Thus, it may well be easier to construct a special Lagrangian fibration on the
double cover of CP

2 branched at H (namely, a K3 surface) than on CP
2 \H. In fact,

as in the previous example, the easiest way to construct such a fibration is probably
through hyperkähler geometry, starting from an elliptically fibered K3 surface with a
real structure for which the real part is a smooth connected surface of genus 10. Let
P be a real homogeneous polynomial of bidegree (4, 4) whose zero set in RP

1 × RP
1

consists of nine homotopically trivial circles C1, . . . , C9 bounding mutually disjoint
discs Di, and let Y ′ be the double cover of CP

1 × CP
1 branched along the zero set

of P (over C). Then complex conjugation lifts to a J-antiholomorphic involution ι of
Y ′, whose fixed point locus is a connected surface of genus 10, namely the preimage
of RP

1×RP
1\(D1∪· · ·∪D9) (whereas the fixed point set of the composition of ι with

the nontrivial deck transformation consists of 9 spheres, the preimages of D1, . . . , D9).
After performing a hyperkähler rotation as in §3.3, we obtain a new complex structure
I on Y ′ with respect to which ι is holomorphic and the elliptic fibration induced by
projection to a CP

1 factor is special Lagrangian.

Remark 3.7. The curve H ⊂ CP
2 bounds a number of Lagrangian discs, arising

as relative vanishing cycles for degenerations of H to a nodal curve. For instance,
considering a degeneration of H to two intersecting cubics singles out 9 such discs.
The preimages of these discs are Lagrangian spheres in the double cover Y , and can
be seen by looking at the symplectic affine structure on the bases B and B̃ of the
special Lagrangian fibrations on CP

2 and Y . Namely, B̃ is obtained by doubling B
along its boundary, and 18 of its singular points are aligned along the “seam” of this
gluing. The rays emanating from these singular points run along the seam, and match
with each other to give rise to Lagrangian spheres.

Remark 3.8. Consider a singular K3 surface Y0 with 9 ordinary double point sin-
gularities, obtained as the double cover of CP

2 branched along the union H0 of two
intersecting cubics. The singularities of Y0 can be either smoothed, which amounts to
smoothing H0 to a smooth sextic curve, or blown up, which is equivalent to blowing
up CP

2 at the 9 intersection points between the two components of H0. These two
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procedures yield respectively the K3 surface considered in the above discussion, and
the K3 surface considered in §3.3. Y0 admits a special Lagrangian fibration whose base

B̃0 presents 9 singularities with monodromy conjugate to
„

1 2

0 1

«

; viewing B̃0 as two

copies of a disc glued along the boundary, these 9 singularities all lie along the seam of
the gluing. Smoothing Y0 replaces each ordinary double point by a Lagrangian sphere,
and resolves the corresponding singularity of B̃0 into a pair of singular points aligned
along the seam. Blowing up Y0 replaces each ordinary double point by an exceptional
curve, and resolves the corresponding singularity of B̃0 into a pair of singular points
lying symmetrically across from each other on either side of the seam.

3.5. Towards mirror symmetry for double covers. Conjecture 3.2 suggests that
a mirror Y ∨ of the Calabi-Yau double cover Y of X branched along H can be obtained
by gluing two copies of the mirror of X \ H along their boundary. From the point
of view of affine geometry, we start with a special Lagrangian fibration f∨ : M → B
(T-dual to the special Lagrangian fibration on X \H), and glue together two copies
of M using an orientation-reversing diffeomorphism of ∂M which induces a reflection
in each fiber of f∨ above ∂B.

Arguably the “usual” mirror of X arises from considering the complement of an
anticanonical divisor D, rather than the hypersurface H. Consider a degeneration of
H under which it collapses onto D (with multiplicity 2). At the level of double covers,
this amounts to degenerating Y to the union of two copies of X glued together along
D. By Moser’s theorem, this deformation affects the complex geometry of Y but not
its symplectic geometry. Hence, the special Lagrangian fibrations on X \H and X \D
can reasonably be expected to have the same base B, as long as we only consider the
symplectic affine structure. (The complex affine structures are very different: in the
case of X \ D the complex affine structure blows up near the boundary of B, while
in the case of X \H it doesn’t. See e.g. Remark 3.3.) So, as long as we only consider
the complex geometry of the mirror and not its symplectic structure, it should be
possible to construct the mirror of Y simply by gluing two copies of the mirror of
X \D (which is also the mirror of X without its superpotential).

A complication arises when the normal bundle to D is not holomorphically triv-
ial. In that case, the family of special Lagrangians in X \ H presents additional
singularities at the boundary of B; these singularities are not directly visible in the
special Lagrangian fibration on X \D. An example of this phenomenon is presented
in §3.4 (compare Conjecture 3.6 with Conjecture 2.9). Thus, when building B̃ out
of two copies of the base B of the special Lagrangian fibration on X \ D, we need
to introduce extra singularities into the affine structure along the seam of the gluing.
This is essentially the same phenomenon as in Gross and Siebert’s program (where
singularities of the affine structure also arise from the nontriviality of the normal
bundles to the codimension 1 toric strata along which the smoothing takes place).
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For simplicity, let us just consider the case where D has trivial normal bundle.
In that case, the discussion in Remark 2.11 implies that the boundary of the (un-
corrected) mirror M of X \ D is the product of S1 with a complex hypersurface
MD ⊂ ∂M (the uncorrected SYZ mirror to D). In fact, we have a trivial fibration
zδ : ∂M ≈MD×S1 → S1, where zδ is the weight associated to the homotopy class of
a meridian disc (collapsing to a point as the special Lagrangian torus L collapses onto
a special Lagrangian submanifold of D, whence |zδ| = 1 on ∂M). The orientation-
reversing diffeomorphism ϕ : ∂M → ∂M used to glue the two copies of M together
corresponds to a reversal of the coordinate dual to the class of the meridian loop.
More precisely, view a point of ∂M as a pair (Λ,∇) where Λ is a special Lagrangian
torus in D and ∇ is a flat unitary connection on the trivial bundle over Λ× S1 (here
we use the triviality of the normal bundle to D to view nearby special Lagrangians
in X \ D as products Λ × S1 rather than S1-bundles over Λ). Then the gluing dif-
feomorphism ϕ is given by (Λ,∇) 7→ (Λ, ∇̄), where ∇̄ is the pullback of ∇ by the
diffeomorphism (p, eiθ) 7→ (p, e−iθ) of Λ × S1. Thus, under the identification of ∂M
with MD × S1, the diffeomorphism ϕ is the product of the identity map in MD and
the complex conjugation map zδ 7→ z̄δ = z−1

δ from S1 to itself.

At this point it would be tempting to conclude that, if KX|D is holomorphically
trivial, then a mirror of Y can be obtained (at least as a complex manifold) by gluing
together two copies of the mirror of X along their boundary S1 × MD, to obtain
a Calabi-Yau variety with a holomorphic involution given near the “seam” of the
gluing by zδ 7→ z−1

δ . Unfortunately, in the presence of instanton corrections this
seems to always fail; in particular, the fibers of zδ : ∂X∨ → S1 above two complex
conjugate points are not necessarily biholomorphic. The following example in complex
dimension 2 (inspired by calculations in [2]) illustrates a fairly general phenomenon.

Example 3.9. We consider again the local model for blow-ups mentioned in Example
2.10, modified so the special Lagrangian fibers are tori rather than cylinders [2]. Start
with C

∗ ×C equipped the holomorphic volume form d log x∧ d log y with poles along
C

∗ × {0}, and blow up the point (1, 0) to obtain a complex manifold X equipped
the holomorphic volume form Ω = π∗(d log x ∧ d log y), with poles along the proper
transform D of C

∗ × {0}. Observe that the S1-action eiθ · (x, y) = (x, eiθy) lifts to
X, and consider an S1-invariant Kähler form ω for which the area of the exceptional
divisor is ǫ. Denote by µ : X → R the moment map for the S1-action, normalized
to equal 0 on D and ǫ at the isolated fixed point. The S1-invariant tori Lt1,t2 =
{log |π∗x| = t1, µ = t2} define a special Lagrangian fibration on X \ D, with one
nodal singularity at the isolated fixed point (for (t1, t2) = (0, ǫ)) [2].

The base B of this special Lagrangian fibration is a half-plane, with a singular
point at distance ǫ from the boundary (and nontrivial monodromy around the sin-
gularity), as pictured in Figure 1; we place the cut above the singular point in order
to better visualize wall-crossing phenomena near the boundary of B. The complex
rays emanating from the singular point (one of which corresponds precisely to the
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Figure 1. A special Lagrangian fibration on the blowup of C
∗ × C

exceptional divisor of the blowup) are responsible for wall-crossing jumps in holomor-
phic disc counts, and split the mirror M into two chambers, which are essentially the
preimages of the left and right halves of the figure.

Denote by z (= zδ) the holomorphic coordinate on M which corresponds to the
holomorphic disc {π∗x = et1 , µ < t2} in (X,Lt1,t2); it can be thought as a complexified
and exponentiated version of the downward-pointing affine coordinate pictured on
Figure 1. In one of the two chambers of M , denote by u the holomorphic coordinate
that similarly corresponds to the leftward-pointing affine coordinate represented in
the figure. For instance, if we partially compactifyX to allow π∗x to become zero (i.e.,
if we had blown up C

2 at (1, 0) rather than C
∗ ×C), then u becomes (up to a scaling

factor) the weight associated to a disc that runs parallel to the x-axis. Similarly,
denote by v the holomorphic coordinate in the other chamber of M corresponding
to a rightward-pointing affine coordinate, normalized so that, if we ignore instanton
corrections, the gluing across the wall is given by u = v−1.

Imagine that Lt1,t2 in the “left” chamber (t1 < 0) bounds a holomorphic disc with
associated weight u (such a disc doesn’t exist in X, but it exists in a suitable partial
compactification), and increase the value of t1 past zero, keeping t2 less than ǫ: then
this holomorphic disc deforms appropriately (and its weight is now called v−1), but it
also generates a new disc with weight e−ǫz−1v−1, obtained by attaching an exceptional
disc (the part of the exceptional divisor where µ > t2) as one crosses the wall. This
phenomenon is pictured on Figure 1 (where the various discs are abusively represented
as tropical curves, which actually should be drawn in the complex affine structure).
Thus the instanton-corrected gluing is given by u = v−1 + e−ǫz−1v−1, i.e.,

(3.1) uv = 1 + e−ǫz−1.

Actually the portion of the wall where t2 > ǫ also gives rise to the same instanton-
corrected gluing, so that the corrected mirror is globally given by (3.1); see [2].

Now replace D by the union H = D+ ∪ D− of two disjoint complex curves, e.g.
the proper transforms of two complex lines intersecting transversely at the blown up
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point (1, 0), and consider the double cover Y of X branched along H. (We leave the
details unspecified, as the construction should arguably be carried out in a global
setting such as that of Conjecture 3.4 rather than in the local setting.)

Conjecture 1.1 suggests that Y should carry a special Lagrangian fibration whose
base (considering only the symplectic affine structure) is obtained by doubling B along
its boundary. Pictorially, this corresponds to flipping Figure 1 about the horizontal
axis and gluing the two pictures together. On the mirror, before instanton corrections
this amounts to reflecting the z variable via z 7→ z−1, and gluing M and its reflected
copy along their common boundary |z| = 1. However, the gluing via z 7→ z−1 is not
compatible with the instanton corrections discussed above; this is because when we
cross the wall there are now two different exceptional discs to consider. Namely, Y
contains a −2-curve C (the preimage of the exceptional curve in X), corresponding
to the alignment between the walls that come out of the two singular fibers on either
side of the seam. Special Lagrangian fibers which lie on the wall intersect C in a
circle and split it into two Maslov index 0 discs, which both contribute to instanton
corrections. A careful calculation shows that the instanton-corrected gluing is now

(3.2) uv = (1 + e−ǫz−1)(1 + e−ǫz).

Thus the instanton-corrected mirror to Y does carry a holomorphic involution defined
by z 7→ z−1, but restricting to the subset |z| < 1 does not yield the instanton-corrected
mirror to X.
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