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Abstract

We consider structures analogous to symplectic Lefschetz pencils in
the context of a closed 4-manifold equipped with a “near-symplectic”
structure (i.e., a closed 2-form which is symplectic outside a union
of circles where it vanishes transversely). Our main result asserts
that, up to blowups, every near-symplectic 4-manifold (X,ω) can be
decomposed into (a) two symplectic Lefschetz fibrations over discs,
and (b) a fibre bundle over S1 which relates the boundaries of the
Lefschetz fibrations to each other via a sequence of fibrewise handle
additions taking place in a neighbourhood of the zero set of the 2-
form. Conversely, from such a decomposition one can recover a near-
symplectic structure.
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1 Introduction

The classification of smooth 4-manifolds remains mysterious, but that of
symplectic 4-manifolds is perhaps a little clearer. The purpose of this article is
to extend some of the techniques which have been developed in the symplectic
case to more general 4-manifolds.

Let X be a smooth, oriented, 4-manifold and let ω be a closed 2-form on
X. Then ω is a symplectic structure, compatible with the given orientation,
if and only if ω2 > 0 everywhere on X. We are interested in relaxing this
condition. Any form ω has, at each point of X, a rank which is 0, 2 or 4.
We consider forms with ω2 ≥ 0 and which do not have rank 2 at any point:
thus ω2 = 0 only at the set Γ ⊂ X of points where ω vanishes. The nature
of this condition becomes clearer if we recall that the wedge-product defines
a quadratic form of signature (3, 3) on Λ2R4. Locally we can regard a 2-form
as a map into Λ2R4 and the condition is that the image of the map only
meets the null-cone at the origin. Suppose ω satisfies this condition and let x
be a point of the zero-set Γ. Thus there is an intrinsically defined derivative
∇ωx : TXx → Λ2T ∗Xx. The rank of ∇ωx can be at most 3, since the wedge
product form is nonnegative on the image.

Definition 1 A closed 2-form on X is a near-symplectic structure if ω2 ≥ 0,
if ω does not have rank 2 at any point and if the rank of ∇ωx is 3 at each
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point x where ω vanishes.

It follows from this definition that the zero set Γ of a near-symplectic
form is a 1-dimensional submanifold of X. The point of this notion is that,
on the one hand, the form defines a bona fide symplectic structure outside
this “small” set, while on the other hand these near-symplectic structures
exist in abundance. We have

Proposition 1 Suppose ω is a near-symplectic form on X. Then there is
a Riemannian metric g on X such that ω is a self-dual harmonic form with
respect to g. Conversely, if X is compact and b+2 (X) ≥ 1 then for generic
Riemannian metrics on X there is a self-dual harmonic form which defines a
near-symplectic structure. Moreover there is a dense subset of metrics on X
for which we can choose ω such that the cohomology class [ω] is the reduction
of a rational class.

This is essentially a standard result, and we give the proof in Section 7. It
is also worth mentioning another existence result for near-symplectic forms,
recently obtained by Gay and Kirby, in which the 2-form is constructed ex-
plicitly from the handlebody decomposition induced by a Morse function on
X [7]. In any case, the point we wish to bring out, in formulating things the
way we have, is that the near-symplectic condition has a meaning indepen-
dent of Riemannian geometry. Indeed one can see this as the first case of a
hierarchy of conditions, for a closed 2-form on a 2n-manifold, in which one
imposes constraints on the way in which the form meets the different strata,
by rank, of Λ2R2n.

Given the abundance of near-symplectic structures, it is natural to try to
extend techniques from symplectic geometry to this more general situation.
This is, of course, the starting point for Taubes’ programme, studying the
Seiberg-Witten equations and pseudo-holomorphic curves [13, 14]. This ar-
ticle runs entirely parallel to Taubes’ programme, our aim being to extend
some of the “approximately holomorphic” techniques developed in [3, 5] to
the near-symplectic case. More specifically, recall that any compact sym-
plectic 4-manifold (X,ω) (with rational class [ω]) admits a symplectic Lef-
schetz pencil. That is, there are disjoint, finite sets A,B ⊂ X and a map
f : X \ A → S2 which conforms to the following local models, in suitable
(complex) co-ordinates about each point x ∈ X.

• If x ∈ A the model is (z1, z2) 7→ z1/z2;

• If x ∈ B the model is (z1, z2) 7→ z21 + z22 ;

• For all other x the model is (z1, z2) 7→ z1.
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Although the map f is not defined at A (the “base points” of the pencil), the
fibres f−1(p) can naturally be regarded as closed subsets of X by adjoining
the points of A. The connection with the symplectic form ω is that these
fibres are symplectic subvarieties, Poincaré dual to kω, for large k.

Conversely, under mild conditions, a 4-manifold which admits such a
Lefschetz pencil is symplectic [8]. The main aim of this paper is to generalise
these results to the near-symplectic case. To formulate our result, let Y be
any oriented 4-manifold and let ∆ ⊂ Y be a 1-dimensional submanifold. We
say that a map f : Y → S2 has indefinite quadratic singularities along ∆ if
around each point of ∆ we can choose local co-ordinates (y0, y1, y2, t) such
that ∆ is given by yi = 0 and the map f is represented in suitable local
co-ordinates on S2 by

(y0, y1, y2, t) 7→ y20 −
1

2
(y21 + y22) + it.

Definition 2 A singular Lefschetz pencil on Y , with singular set ∆, is given
by a finite set A ⊂ Y \ ∆ and a map f : Y \ A → S2 which has indefinite
quadratic singularities along ∆ and which is a Lefschetz pencil on Y \∆.

Given such a singular Lefschetz pencil we define the fibre over a point p in S2

in the obvious way, adjoining the points of A. Any such fibre is homeomorphic
to the space obtained from a disjoint union of compact oriented surfaces by
identifying a finite number of disjoint pairs of points. We refer to the image
of one of these surfaces under the composite of the homeomorphism and the
identification map as a component of the fibre. We can now state our main
result.

Theorem 1 Suppose Γ is a 1-dimensional submanifold of a compact oriented
4-manifold X. Then the following two conditions are equivalent.

• There is a near-symplectic form ω on X, with zero set Γ,

• There is a singular Lefschetz pencil f on X which has quadratic singu-
larities along Γ, with the property that there is a class h ∈ H2(X) such
that h(Σ) > 0 for every component Σ of every fibre of f .

This is a somewhat simplified statement, we actually prove rather more, in
both directions. The general drift is, roughly, that there is a correspondence
between these two kinds of objects: near-symplectic forms and singular pen-
cils. To state a more precise result, in one direction, we recall a result of
Honda [10]. Take R4 with co-ordinates (x0, x1, x2, t) and consider the 2-form

Ω = dQ ∧ dt+ ∗ (dQ ∧ dt),
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where Q(x0, x1, x2) = x20− 1
2
(x21+x

2
2) and ∗ is the standard Hodge ∗-operator

on Λ2R4. Let σ− : R3 → R3 be the map σ−(x0, x1, x2) = (−x0, x1,−x2).
Define σ+ : R4 → R4 to be the translation

σ+(x, t) = (x, t+ 2π)

and let σ− be the map

σ−(x, t) = (σ−(x), t+ 2π).

The maps σ± preserve the form Ω so we get induced forms on the quotient
spaces. Let N± be the quotients of the tube B3 ×R by σ± with the induced
near-symplectic forms. Then, according to Honda, if ω is any near-symplectic
form on a 4-manifold X with zero set Γ there is a Lipschitz homeomorphism
φ of X — equal to the identity on Γ, smooth outside Γ and supported in
an arbitrarily small neighbourhood of Γ — such that φ∗(ω) agrees with one
of the two models N± in suitable trivialisations of tubular neighbourhoods
of each component of Γ. Replacing ω by φ∗(ω) we may suppose for most
purposes that the form agrees with the standard models in these tubular
neighbourhoods. Let f± : N± → R×S1 be the maps defined by (Q, t) in the
obvious way.

Suppose now that ω is a near-symplectic form with [ω] an integral class
in H2(X). Thus we may choose a complex line bundle L with connection
over X having curvature −iω. Given the choice of this connection we get,
for each component of the singular set, a holonomy in U(1) ⊂ C. It will be
convenient to suppose that all these holonomies are equal to −1. The more
precise result we prove in one direction is:

Theorem 2 Suppose that ω is a near-symplectic form on X equal to one
of the standard models in neighbourhoods of the zero set Γ. Suppose that
[ω] = c1(L) is integral and that L has holonomy −1 around each component
of Γ. Then for all sufficiently large odd integers k there is a singular Lefschetz
pencil on X such that

• the fibres are symplectic with respect to ω;

• the fibres are in the homology class dual to kc1(L);

• in sufficiently small neighbourhoods of the components of the singular
set, the map is equal to the composite of one of the maps f± with a
diffeomorphism taking (−δ, δ)× S1 to a neighbourhood of the standard
equator in S2.
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In the last part of the statement, the diffeomorphism taking (−δ, δ)× S1 to
a neighbourhood of the equator is essentially the same for every component
of Γ, as will be clear from the proof. Hence, each component of Γ is mapped
bijectively to the equator, and there are well-defined “positive” and “nega-
tive” sides of the equator, corresponding to Q > 0 and Q < 0 in a consistent
manner for all components.

It is easy to deduce one half of Theorem 1 from Theorem 2. Given any
near-sympletic form we use Honda’s result to get a new one compatible with
the standard models. Making a small deformation away from Γ we can sup-
pose that [ω] is a rational class and then multiplying by a suitable integer we
obtain an integral class, associated to a line bundle with connection. Mak-
ing a further small deformation we can suppose that each of the holonomies
around the components of Γ is a root of zn = −1, for some large n. Then
again replacing the line bundle by its nth power we fit into the hypotheses
of Theorem 2.

The more precise result in the converse direction is the following

Theorem 3 Let X be a compact oriented 4-manifold, and let f : X\A→ S2

be a singular Lefschetz pencil with singular set Γ (i.e., a smooth map described
by the above local models in oriented local co-ordinates). If there exists a
cohomology class h ∈ H2(X) such that h(Σ) > 0 for every component Σ of
every fibre of f , then X carries a near-symplectic form ω, with zero set Γ,
and which makes all the fibres of f symplectic outside of their singular points.
Moreover, these properties determine a deformation class of near-symplectic
forms canonically associated to f .

In particular, if every component of every fibre of f contains at least one
base point, then the cohomological assumption automatically holds. In that
case we can require [ω] to be Poincaré dual to the homology class of the fibre.

The topology of singular Lefschetz pencils is made quite complicated by
the presence of the singular locus Γ. Nonetheless, Theorem 2 leads to an
interesting structure result for near-symplectic 4-manifolds. Namely, given a
near-symplectic 4-manifold (X,ω) with ω−1(0) = Γ and a singular Lefschetz
pencil f : X \ A → S2 such that Γ maps to the equator as in Theorem 2,
after blowing up the base points we can decompose the manifold into:

• two symplectic Lefschetz fibrations over discs f± : X± → D2, obtained
by restricting f to the preimages of two open hemispheres not contain-
ing the equator f(Γ);

• the preimage W of a neighbourhood of the equator.
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The 4-manifold W is a fibre bundle over S1, whose fibre Y defines a
cobordism between the fibres Σ+ and Σ− of f± (note that these need not
be connected a priori), consisting of a succession of handle additions. Hence
the cobordism W relates the boundaries of X+ and X− to each other via a
sequence of fibrewise handle additions, one for each component of Γ.

The topology of f can be described combinatorially in terms of (a) the
monodromies of the Lefschetz fibrations f±, which are given by products of
positive Dehn twists in the relative mapping class groups of (Σ±, A), and (b)
gluing data, which can be expressed e.g. in terms of a coloured link on the
boundary of one of the Lefschetz fibrations (see Section 8). This information
determines f completely if the identity components in Diff(Σ±, A) are simply
connected (e.g., if Σ± both have genus at least 2).

The paper is organised in the following way. Sections 2–6 are devoted
to the proof of Theorem 2. The proof rests on techniques of approximately
holomorphic geometry: roughly speaking, the construction of maps which
have the same topological properties as holomorphic maps but in a context
where the underlying almost-complex structure is not integrable. In Section 2
we develop the techniques from this theory that we need, encapsulated into a
general result (Theorem 4), which may have other applications. (As an aside
here, we mention that it would be interesting to compare our results with
the methods developed by Presas [12] for symplectic manifolds with contact
boundary.) The core of the paper lies in Sections 3–6. Here we show that a
4-manifold with a near symplectic form can be endowed with the geometrical
structures required to apply Theorem 4. Almost all of the work is devoted to
the geometry in a standard model around the zero set, and we make extensive
and explicit calculations here. Again, these geometrical constructions could
conceivably be of interest in other contexts. (One can also compare with the
detailed study by Taubes of other geometrical phenomena in the same local
model [14].) In Section 7 we prove the converse result, Theorem 3, together
with Proposition 1 above. Section 8 begins the exploration of the topological
aspects of singular Lefschetz pencils and their monodromy data.

2 Approximately holomorphic theory

Let (Z, ω) be a symplectic 2n-manifold, not necessarily compact and let J be
a compatible almost-complex structure on Z. Suppose we have a hermitian
line bundle L → Z with a connection having curvature −iω. We also suppose
that we have given compact subsets Z0 and K of Z, such that Z0 contains a
neighbourhood of K. We wish to formulate three “hypotheses” bearing on
various data in this situation, involving certain numerical parameters. One
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collection of parameters will be denoted C1, C2, . . . which we abbreviate to
a single symbol C. These give bounds on the geometry of the set-up: the
precise number of parameters Ci is unimportant, it would probably be possi-
ble to reduce them to a single constant C, but this would mean considerable
loss of accuracy if one was actually interested in implementing the proof
numerically. The important parameter is a small number ε which, roughly,
measures the deviation from holomorphic geometry. In the third hypothesis
we will introduce three parameters κ1, κ2, κ3 which we sometimes denote by
κ. These are a measure of transversality of certain data.

Hypothesis 1 Hypothesis H1(ε, C).
For each point p of Z0 there is a co-ordinate chart χp : B

2n → Z centred
on p such that

• The pull-back χ∗p(J) of the almost-complex structure on Z is close to
the standard structure I on B2n ⊂ Cn in that

‖χ∗p(J)− I‖Cr ≤ C1ε.

• The pull-back of the symplectic form satisfies uniform bounds

‖χ∗p(ω)‖Cr ≤ C2

and χ∗p(ω)
n ≥ C−12 .

Here r is a fixed integer, r = 3 will do.

We call such a chart an “approximately holomorphic chart”, where of course
the notion depends on the parameters ε, Ci.

Remark. In essence, this hypothesis asserts that the manifold has bounded
geometry and that the norm of the Nijenhuis tensor is O(ε).

Before stating the next hypothesis we formulate a definition. Let U ⊂
V ⊂ W be subsets of Z and let F be a positive function on Z.

Definition 3 An F -localised, ε-holomorphic system over U , relative to V
and W , consists of n+ 1 sections σ0, . . . , σn of L → Z such that

• The support of any section σi is contained in the interior of W ;

• |∇pσi| ≤ F throughout Z, for p ≤ r and all i;

• |∇p∂σi| ≤ εF in V for p ≤ r and all i;
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• |σ0| ≥ 1 in U – this means that we can define a map f : U → Cn by
the ratios σi/σ0;

• The Jacobian of f (defined using the volume form ωn on Z) is not less
than 1.

Now we can state

Hypothesis 2 Hypothesis H2(ε, C)
There is a finite collection of approximately holomorphic charts χi, i =

1, . . . ,M mapping to balls Bi contained in Z0 such that

• For a fixed λ = C3

1+C3
, the balls λBi = χi(λB

2n) cover K. We define
K+ to be the union of the balls Bi.

• There are positive functions Fi on Z and for each i an Fi-localised, ε-
holomorphic system over Bi, relative to K

+, Z0. For each point q in the
support of any section making up this system there is an approximately
holomorphic chart centred on q with image contained in Z0.

• For each point p of Z,
∑

i

Fi(p) ≤ C4.

• For all D > 1 we can divide the set {1, . . . ,M} into N = N(D) disjoint
subsets I1, . . . , IN where

N(D) ≤ C5D
C6 ,

and if p is contained in a ball Bi for i ∈ Iα then
∑

j∈Iα,j 6=i
Fj(p) ≤ C7e

−D.

Remark. In essence, this Hypothesis states that associated to each point
there are approximately holomorphic sections of the line bundle which on
the one hand decay rapidly away from the point, and on the other hand give
an approximately holomorphic projective embedding of a neighbourhood of
the point.

The third hypothesis bears on a pair of sections σ0, σ1 which should be
thought of as giving a model for a pencil outside Z0.
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Hypothesis 3 Hypothesis H3(ε, κ1, κ2, κ3, C).
There are sections σ0, σ1 of L → Z such that

• F = σ1/σ0 is a topological Lefschetz pencil over Z \K, with symplectic
fibres.

• |∇pσi| ≤ C8 in Z0, for p ≤ r.

• |∇p∂σi| ≤ C9ε in K
+.

• |σ0|2 + |σ1|2 ≥ C−110 in Z0 \ K; thus F = σ1/σ0 defines a map from
Z0 \K to the Riemann sphere S2.

• The complex-linear component ∂F of the derivative of F is κ1-transverse
to 0 throughout Z0 \K.

• |∂F | ≤ max(εκ2, |∂F | − κ3) throughout Z0 \K

Recall here that “∂F is κ-transverse to 0” means that at any point where
|∂F | < κ the covariant derivative ∇∂F is invertible and the inverse has norm
less than κ−1.

With all this in place we can state our general theorem

Theorem 4 There is a universal function ε0(κ,C) with the following prop-
erty. If we have data satisfying hypotheses H1(ε, C), H2(ε, C), H3(ε, κ, C) and
if ε ≤ ε0(κ,C) then there is a topological Lefschetz pencil on (Z, ω) with sym-
plectic fibres, equal to σ1/σ0 outside Z0.

We will not say much about the proof of Theorem 4, which would essen-
tially repeat the whole of the paper [5] (see also [3], [1], [2]). While there
are no new ideas involved in the proof, the theorem extends the previous re-
sults in two different directions. On the one hand the theorem is a “relative”
version of the previous results, extending a Lefschetz pencil which is already
prescribed over a subset of the manifold. On the other hand, the dependence
on parameters is made more explicit: in the earlier results the parameter ε is
essentially k−1/2 where one works with a fixed almost complex structure but
scales the symplectic form by a factor k. The new result allows us to vary
the almost complex structure at the same time as k, which will be one of the
main ideas in our construction.

We outline the proof of Theorem 4. Introduce a parameter c ∈ (0, 1) and
consider modifying the sections σ0, σ1 to

σ̃0 = σ0 +
∑

ajsj , σ̃1 = σ1 +
∑

bjsj,
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where the sj run over all the sections comprising the systems provided by
Hypothesis H2 and the coefficients aj, bj are complex numbers to be chosen,
with the constraint that

|aj|, |bj| ≤ c.

The arguments of [5] show that for any fixed c and for small enough ε we can
choose the coefficients such that F̃ = σ̃1/σ̃0 is close to being a symplectic
Lefschetz pencil over K, in that we can find a set of disjoint balls of radii
O(ε) and obtain a Lefschetz pencil over K by modifying F̃ inside these balls.
Since the sections sj are supported in Z0 the map F̃ agrees with the model
pencil outside Z0. The new issue has to do with the intermediate region
Z0 \K, where we argue as follows.

Suppose that a map F̃ obtained by the procedure above satisfies

• ∂F̃ is κ̃1-transverse to 0,

• |∂F̃ | ≤ max(ν, |∂F̃ | − κ̃3),
for some ν, κ̃1, κ̃3 > 0. By construction we will also have bounds

|∇pF̃ | ≤ C,

for p ≤ 3 and some fixed C. We claim that there is a ν0 depending only on
C, κ̃1, κ̃3 such that if ν ≤ ν0 the map F̃ can be modified over a number of
small disjoint balls to yield a symplectic Lefschetz fibration.

By construction, the map F̃ agrees with the model F outside the support
of the sj and by Hypothesis H2 we have a good co-ordinate chart centred on
any point q in the union of these supports. If |∂F̃ | < |∂F̃ | at q then F̃ is
a fibration with symplectic fibres near q. If on the other hand |∂F̃ | ≥ |∂F̃ |
then we must have |∂F̃ | ≤ ν at q. It follows from the transversality estimate
on ∂F̃ that if ν is sufficiently small compared with κ̃1 then q is close to a
zero of ∂F̃ : more precisely we can find such a zero p at a distance O(ν/κ̃1)
from q. Adjusting constants slightly, we can suppose that there is a good
co-ordinate chart centred at this point p and contained in Z0.

Now we clearly have |∂F̃ | ≤ ν at p. We claim that the derivative |∇∂F̃ |
is O(ν1/2) at p. To see this, suppose that |∇∂F̃ (p)| = A. Then for any small
r, we can find a point p′ a distance r from p with |∂F̃ (p′)| ≥ Ar − C

2
r2. If

r is small compared with κ̃3/C we have |∂F̃ | < κ̃3 at p′ so it follows that
|∂F̃ |(p′) ≤ ν. Combining the inequalities gives A ≤ ν

r
+ Cr

2
. Taking r of the

order of ν1/2 we obtain the desired bound A = O(ν1/2). Now considering the
Taylor series of F̃ at p just as in [5], Section 2, we see that F̃ can be modified
in a ball of radius ρ to obtain a new map which is a Lefschetz fibration over
the ball provided we can find a radius ρ which satisfies

ν1/2 ¿ ρ¿ κ̃1/C.
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This will be possible if ν is small and we see that moreover the original point q
will lie inside the ball. So we conclude that, after making these modifications
we obtain the desired fibration.

With this discussion in place we now return to complete the proof. Recall
that, under our hypotheses, we do not have any ε bound on ∂sj outside K

+.
What we do have is a bound

|∇r(F̃ − F )| ≤ Bc

for a suitable constant B. It follows that if c is sufficiently small then ∂F̃ is
κ1/2-transverse to 0. Similarly

|∂F̃ | ≤ |∂F |+Bc ≤ max(Bc+ εκ2, |∂F̃ |+ 2Bc− κ3).

We set κ̃1 = κ1/2 and choose c so small that 2Bc ≤ κ3/2. Then we can take
κ̃3 = κ3/2. Thus we have a ν0 = ν0(κ̃1, κ̃2), as above. Now we also choose
c so small that Bc ≤ ν0/2. Then if ε is so small that εκ2 ≤ ν0/2 we achieve
the desired properties for our function F̃ .

3 Definition of the almost-complex structure

3.1 Set-up

In this section we put our problem in the general framework considered in
Section 2. To simplify notation we will consider a case where the singular
set has just one component and the model is N+. (At the end of the proof,
in §6.3 below, we discuss the easy extensions to the general case.) Thus we
suppose that X is a compact Riemannian 4-manifold containing an isomet-
rically embedded copy N ⊂ X of the standard model N+ and that ω is a
closed self-dual 2-form on X which is equal to the standard form Ω in N+

and which does not vanish outside N+. We suppose that there is a unitary
line bundle with connection L → X having holonomy −1 around the zero
set and with curvature −iω. For large odd integers k we consider the line
bundle L⊗k with curvature −ikω. Clearly the standard form Ω on R4 scales
with weight 3. Thus we can identify the pair (N, kω) with the form induced
by Ω on the quotient of B3(k1/3)×R under the translations t 7→ t+2πZk1/3,
where B3(k1/3) is the ball in R3 of radius k1/3. We will denote this form
again by Ω. It is convenient to put ε = k−1/3; this is the essential parameter
in the construction which will eventually be made very small. Throughout
the proof our attention will be focussed on this region N on which we take
our standard co-ordinates (x0, x1, x2, t) (so |x| ≤ ε−1). We recall that Ω is
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given by

Ω = (2x0dx0−x1dx1−x2dx2)∧dt+2x0dx1∧dx2−x1dx2∧dx0−x2dx0∧dx1.
(1)

So
Ω2 = (4x20 + x21 + x22) dx0 ∧ dx1 ∧ dx2 ∧ dt.

It will be convenient to write

p = (4x20 + x21 + x22)
1/4, (2)

so Ω2 is p4 times the standard volume form.
To match up with the set-up in Section 2, we let K ⊂ X \Γ be the subset

corresponding to |x| ≥ 10 and let X0 be the subset corresponding to |x| ≥ 1.
The great benefit for us given by Honda’s result [10], reducing to this

standard model, is that there are two obvious symmetries: translation in
the t-direction and rotation in the (x1, x2) plane. We use the standard polar
co-ordinates (r, θ) in the (x1, x2) plane and we define

H = x0r
2. (3)

Then one readily checks that H is the Hamiltonian for the rotation action
and that

Ω = dQ ∧ dt+ dH ∧ dθ.
Recall here that Q is the quadratic form

Q(x) = x20 −
1

2
(x21 + x22). (4)

In these (Q, t,H, θ) co-ordinates the Euclidean co-ordinate x0 is defined im-
plicitly as the root of the cubic equation

x30 −Qx0 −
H

2
= 0, (5)

having the same sign as H.

We want to define a suitable almost-complex structure J on X \ Γ. This
structure will depend on the parameter ε. It is a standard fact that the
compatible almost-complex structures on an oriented Riemannian 4-manifold
are parametrised by the unit self-dual 2-forms, so we have one structure J0
corresponding to the form ω

|ω| , which is smooth away from Γ. In our co-
ordinates on N this structure J0 can be described as follows. We let n be
the unit vector field on R3

n = p−2(2x0,−x1,−x2).
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Then J0 is characterised by the conditions that

J0(n) =
∂

∂t
, J0(

∂

∂t
) = −n,

while on the orthogonal plane n⊥ in R3, J0 is given by the standard rotation
by π/2 (with orientation fixed by that of n). Notice that n is the normalised
gradient vector field of the quadratic function Q on R3, so the planes n⊥

are tangent to the family of real quadric surfaces qiven by the level sets
{Q(x) = q} of Q. Thus these quadric surfaces are complex curves for the
almost-complex structure J0. More precisely, we have a 2-parameter family
Σq,t of Riemann surfaces in N .

The almost-complex structure J we want to use is a modification of J0.
We set

J(n) = p2ψ−2
∂

∂t
, J(

∂

∂t
) = −p−2ψ2n; (6)

where ψ = ψε(x) is a function which we will specify shortly. On the orthogo-
nal plane n⊥ we define J to be the same as J0, thus the Σq,t are still complex
curves for the almost-complex structure J . We require that the function ψ
be equal to p once |x| ≥ ε−1 = k1/3 so we can extend J over the whole of X
by the standard structure J0. The form kω and the almost-complex structure
J define a Riemannian metric g = gε on X \ Γ in the standard way: outside

N this is just the original metric scaled by a factor k |ω|√
2
.

In terms of the (Q, t,H, θ) co-ordinates, the almost complex structure J
in the ( ∂

∂Q
, ∂
∂t
) plane is given by

J(
∂

∂Q
) = ψ−2

∂

∂t
, J(

∂

∂t
) = −ψ2 ∂

∂Q
. (7)

Writing the almost-complex structure in the ∂
∂H
, ∂
∂θ
-plane explicitly is

equivalent to finding the conformal structure induced on the quadric sur-
faces – which is just the structure induced from the embedding in R3. A
short calculation, which we leave as an exercise for the reader, shows that
the metric g is given in these co-ordinates by

g = ψ−2dQ2 + ψ2dt2 + p−2r−2dH2 + p2r2dθ2. (8)

Thus

J(
∂

∂H
) = p−2r−2

∂

∂θ
, J(

∂

∂θ
) = −p2r2 ∂

∂H
. (9)

We will now specify the function ψ and hence the almost complex struc-
ture. It is convenient to make ψ a function of p, depending also on the
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parameter ε. Notice that p is essentially equivalent to the square root of the
Euclidean norm:

|x| ≤ p2 ≤ 2|x|.

Lemma 1 There are constants cr such that for all sufficiently small ε we
can find a smooth, positive, non-decreasing, function ψ(p) on the interval
[1, ε−1/2] with following properties:

• ψ(p) = ε if p ≤ 1
2
ε−1/2;

• ψ(p) = p if p ≥ 9
10
ε−1/2;

• ψ(p) ≤ c0p;

• ψ(p) ≤ c0εp
4;

• |ψ(r)

ψ
| ≤ crεp

2r (where ψ(r) denotes the r-th derivative of ψ.)

To prove the Lemma we give an explicit construction. Choose a smooth
function on [0, 1] equal to 0 for small values and to 1 for values near 1. Using
this in an obvious way, we define for any T > 1 a function αT , equal to 1 on
the interval [1, T ] and supported in (0, T + 1). Likewise we choose a smooth
function g(t), equal to t for t ≥ 9

10
and to 1

2
for t ≤ 3

4
. For fixed T , let f be

the solution of the differential equation

df

dt
= αTf

with f(t) = 1 for t ≤ 0. Thus f takes a constant value L(T ) say for large
values of t (that is, for t ≥ T + 1). Clearly L is approximately eT for large
values of T . Given a small ε we choose T so that L = 1

2
ε−3/2. Thus this

6

-

¡
¡¡

1
2ε
− 1

2
3
4ε
− 1

2 ε−
1
2

ε

1
2ε
− 1

2

ε−
1
2

Figure 1: The function ψ(p)
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T = T (ε) is much less than ε−1/2 for small ε: we can assume that T < 1
4
ε−1/2.

Now define

ψ0(p) = εf(
1

2
ε−1/2 + t).

Thus ψ0(p) = ε for p ≤ 1
2
ε−1/2 and ψ0(p) =

1
2
ε−1/2 for p ≥ 3

4
ε−1/2. Next define

ψ1(p) = ε−1/2g(ε1/2p).

Thus ψ1(p) = p for p ≥ 9
10
ε1/2 and ψ1(p) takes the same constant value 1

2
ε−1/2

as does ψ0 for p near p0 =
3
4
ε−1/2. So finally we define ψ to be equal to ψ0

for p ≤ p0 and to ψ1 for p ≥ p0 (see Figure 1).
It is straightforward to check that this function satisfies the requirements

of the Lemma.
We now fix the almost complex structure to be the one defined by any

function ψ which satisfies the requirements of Lemma 1, for example the
function constructed above.

Proposition 2 There are constants C1, C2 such that the symplectic manifold
(X\Γ, kω) with the prescribed subsets K ⊂⊂ X0 and almost complex structure
J depending on ε = k−1/3 satisfies Hypothesis H1(ε, C) for all large enough k.

This is proved in Subsection 3.3 below. The essential idea of the proof is
the following. Away from Γ what we have is just the familiar “flattening” of
the manifold by rescaling. The region N is foliated by the Riemann surfaces
Σq,t and the almost-complex structure gives vector fields ∂

∂t
and ∂

∂Q
transverse

to these. If the flow defined by these vector fields preserved the conformal
structure of the Riemann surfaces we would have an integrable structure and
we could introduce genuine local holomorphic co-ordinates. The flow by ∂

∂t

obviously preserves the conformal structure, so the whole difficulty comes
from the distortion in the conformal structure appearing in the flow of ∂

∂Q
.

However, the almost-complex structure and resulting metric g have been
arranged so that the small parameter ε makes the length of ∂

∂Q
very large so,

measured with respect to this metric, the conformal distortion is very small
and we can find approximately holomorphic co-ordinates.

3.2 Holomorphic co-ordinates

While it is not really essential for the proof of Proposition 2, we will now
find explicit holomorphic co-ordinates – i.e., holomorphic functions – on the
Riemann surfaces Σq,t. These functions will also be crucial to the work in
the later parts of the proof. The existence of the circle symmetry means that
we are able to construct these by elementary methods.
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Consider first the surface in R3 defined by the equation Q(x) = −1, and
take x0 and θ as co-ordinates. We seek a holomorhic function f on this
surface of the form f = u(x0)e

iθ. If we differentiate Equation (5) we find
that, with Q fixed,

∂x0
∂H

= p−4. (10)

By Equation (9), the Cauchy-Riemann equations for f on the surface are

∂f

∂H
+ i p−2r−2

∂f

∂θ
= 0,

so we see that u(x0) must satisfy the equation

du

dx0
=
p2

r2
u =

√

3x20 + 1√
2(x20 + 1)

u. (11)

We choose u to be the solution of this equation with u(0) = 1. Thus

u(x0) = exp

(

∫ x0

0

√
3x2 + 1√
2(x2 + 1)

dx

)

. (12)

We can evaluate this integral explicitly in terms of elementary functions, but
the formula that results is too cumbersome to be much use to us. Notice
that u(−x0) = u(x0)

−1. Clearly u has the asymptotic behaviour

u(x0) ∼ Axν0 (13)

as x0 → +∞, where ν =
√

3/2 and

A = exp

(

∫ ∞

0

√
3x2 + 1−

√
3 x√

2(x2 + 1)
dx

)

= (2
√
3)

√
3/2

(
√
3−
√
2). (14)

We now define the function F+ on the set {x : Q(x) < 0} by

F+(x) = aνu(
x0
a
)eiθ, (15)

where a =
√−Q. The function F+ is holomorphic on each quadric surface

Q(x) = −a2 for a > 0, since scaling by a−1 maps these conformally to the
quadric Q(x) = −1. The asymptotic behaviour (13) implies that as x tends
to the null cone with x0 fixed and positive F+(x) tends to Axν0e

iθ, while if
x0 is fixed and negative F+(x) tends to zero on the null cone. We take these
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limiting values as the definition of F+ on the null-cone. Symmetrically, we
define a function F− on {x : Q(x) < 0} by

F−(x) = aνu(−x0
a
)e−iθ,

so F− is also holomorphic on each surface, and F+F− = a2ν = (−Q(x))ν .
The function F− now tends to zero on the part of the null cone where x0 > 0.

We follow a similar procedure on the set where Q(x) > 0. On the sheet
of the surface {Q(x) = 1} on which x0 is positive we have a holomorphic
function of the form v(x0)e

iθ where, for x0 > 1, the function v satisfies

dv

dx0
=

√

3x20 − 1√
2(x20 − 1)

v.

This defines v (with v(1) = 0) up to a multiplicative constant, and we fix the
constant by requiring that v(x0) ∼ Axν0, where A is given by Equation (14)
above. Then we define F+ on {x : x0 > 0, Q(x) > 0} by

F+(x) = bνv(
x0
b
)eiθ,

where b =
√
Q. Symmetrically, we define F−(x) to be F+(−x) on {x :

x0 < 0, Q(x0) > 0}.
To summarise, define open sets

G+ = {x ∈ R3 : x0 > 0 if Q(x) ≥ 0},

G− = {x ∈ R3 : x0 < 0 if Q(x) ≥ 0}.
Then we have

Proposition 3 The functions F± are smooth on G± and holomorphic on
each connected component of the quadric surfaces Q(x) = q in G±.

The proof of this is a straightforward calculus argument involving the analytic
continuation of the function u(x0) to imaginary values of x0.

3.3 Proof of Proposition 2

Let r be a point in R3 with |r| = 1 and let Σ be the quadric surface passing
through r. We choose a map

L : D × (−1
4
, 1
4
)→ R3,

where D is the unit disc in C, with the following properties.
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• L(0, 0) = r and z 7→ L(z, 0) gives a conformal parametrisation of a
neighbourhood of r in Σ.

• H(L(z, q)) and θ(L(z, q)) are independent of q

• Q(L(z, q)) = Q(r) + q.

To construct this map we first choose a conformal parametrisation L(z, 0)
and then extend by integrating the vector field ∂

∂Q
. This can all be done

explicitly, using the conformal parametrisation by F+ above, but we do not
need the detailed formulae; the crucial point for the proof of Proposition 2
is the behaviour of the data under scaling. The complex structure on the
quadric surfaces pulls back to a leaf-wise structure on D × (− 1

4
, 1
4
) which is

described by a matrix-valued function J(z, q). By construction J(z, 0) is the
standard matrix J0 so

J(z, q) = J0 + qK(z, q)

say, with K smooth. The pull-back by L of the 2-form ∗(dQ ∧ dt) can be
written as

A(z, q) i dz ∧ dz,
for some positive function A, with A(z, q) ≥ A0 > 0. As r varies in the unit
sphere we get a family of such maps and it is clear that, by compactness of the
sphere, we can choose these so that K and A satisfy uniform C∞-estimates
on their derivatives, and A0 is fixed independent of r. Having said this we
will not complicate our notation by keeping the r-dependence explicitly.

Now consider the point R = λr for some λ ≥ 1. Let ψ0 be the value of
the function ψ at this point. We define a map M(z, q, τ) into R4

M(z, q, τ) =
(

λL
( z

λ3/2
,
ψ0
λ2
q
)

, ψ−10 τ
)

.

The fourth condition of Lemma 1 implies that ψ0/λ
2 = O(ε), so we can

suppose that M is defined on D × I × I for some fixed interval I. Then

M∗(Ω) = dq ∧ dτ + A
( z

λ3/2
,
ψ0
λ2
q
)

i dz ∧ dz.

Clearly, then, M ∗(Ω) satisfies uniform C∞ bounds and with volume form
bounded below by A0 as the point R = λr ranges over the set {|R| ≥ 1}. To
prove Proposition 2 we need to show that the almost-complex structure differs
from the standard one in these co-ordinates byO(ε), with all derivatives. This
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almost-complex structure is given by a matrix valued function which is the
direct sum

J(
z

λ3/2
)⊕

(

0 −Ψ2/ψ20
ψ20/Ψ

2 0

)

(16)

where Ψ is the composite ψ ◦ p ◦M .
Now the first term is

J(
z

λ3/2
) = J0 +

ψ0q

λ2
K(

z

λ3/2
,
ψ0q

λ2
).

This satisfies the required bound since ψ0λ
−2 = O(ε). Thus the real work

involves the second term: we want to show that all derivatives of 1 − Ψ/ψ0
are O(ε).

Return again to the function L(z, q). Write

p(L(z, q)) = G(z, q).

Using homogeneity, our function Ψ is given in the co-ordinates M(z, q, τ) by

Ψ(z, q, τ) = ψ(λ1/2G(
z

λ3/2
,
ψ0q

λ2
)).

We are left then with the elementary task of showing that the hypotheses
in Lemma 1 bound the derivatives of this composite function. For simplicity
we will just work at the origin of the co-ordinates. We claim that

λ1/2G(
z

λ3/2
,
ψ0
λ2
q) = λ1/2G(0, 0) + λ−1B(z, q),

where B is a smooth function, depending on the parameters λ, ψ0 but all of
whose derivatives are bounded. For if we write the Taylor series of G in the
schematic form G(z, q) =

∑

aIJz
IqJ , then

B(z, q) =
∑

(I,J)6=(0,0)
aIJλ

3/2λ−3I/2λ−2JψJ0 z
IqJ .

Now the assertion follows from the fact that ψ0 ≤ Cλ1/2. Thus our function
is

1−Ψ/ψ0 = 1− ψ(p0)−1ψ(p0 + λ−1B(z, w)),

The fact that all derivatives of this are O(ε) follows from the condition

ψ(r) ≤ εcrp
2rψ,

in Lemma 1.
It is now straightforward to complete the proof of Proposition 2. We

use the maps M as above, together with their obvious translates in the t
variable, to get co-ordinate charts over a neighboorhood of N ∩ X0. Over
the remainder of X0 we can use the familiar rescaled osculating co-ordinates,
just as in the case of compact symplectic manifolds.
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4 Construction of approximately holomorphic

sections

We now start to work towards the verification of Hypothesis 2, involving
sections of the line bundle L⊗k over X. The crucial constructions and ar-
guments will take up this Section 4 and the following Section 5. As one
would expect, the essential issues involve the local model around the zero
set. Thus in Sections 4 and 5 we will work with a line bundle L over R4

with a connection of curvature −iΩ. We use the almost-complex structure
J , defined in the previous section, over the complement in R4 of the t-axis.
In Section 6 we will adapt our constructions to the 4-manifold X. We write
the line bundle L over R4 as the tensor product

L = L1 ⊗ L2
where L1 has curvature −i dH ∧ dθ and L2 has curvature −i dQ ∧ dt.

We will omit some of the steps required to give a complete verification
of Hypothesis 2. The proofs that we do give seem to us quite long enough,
having in mind that the whole discussion is largely a matter of elementary
calculus and geometry in R3, and the techniques we develop can easily be
extended to cover the parts we do not go through in detail.

4.1 Holomorphic sections over the quadric surfaces

In this section we will work with the Hermitian line bundle L1. We can
ignore the t-variable and consider L1 as a line bundle over R3. Our goal is
to find sections of L1 over suitable open sets in R3 which are holomorphic
along the quadric surfaces and with appropriate localisation and smooth-
ness properties. Exploiting the fact that the rotations in the x1, x2 plane
act as symmetries of the whole set-up, we can find the desired sections by
elementary methods.

Fix a trivialisation of L1 in which the connection form is −iHdθ. We
define the section σ of L1, in this trivialisation, to be

σ = exp(− p
6

18
) (17)

Lemma 2 The section σ is holomorphic along each of the quadric surfaces
in R3 \ {0}.

With the connection form −iHdθ, the Cauchy-Riemann equation for a
holomorphic section σ of L2 is:

p2r2
∂σ

∂H
+ i
(∂σ

∂θ
− iHσ

)

= 0.
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We have
p4 = 6x20 − 2Q (18)

so, on a surface with Q(x) constant,

4p3
∂p

∂H
= 12x0

∂x0
∂H

=
12x0
p4

,

using Equation (10). Thus
∂p

∂H
=

3x0
p7
, (19)

and the Cauchy-Riemann equation for a section with no θ dependence is

3x0r
2

p5
∂σ

∂p
= −Hσ.

But, since H = x0r
2, this is just

∂σ

∂p
= −p

5

3
σ,

with solution σ = exp(−p6/18).
The section σ can obviously be regarded as being localised at the origin

in R3, with exponential decay as we move away from the origin. We obtain
more sections – holomorphic along the quadric surfaces – by multiplying σ by
suitable functions. The basic model to have in mind here is that in ordinary

flat space, say C. The Gaussian exp(− |z|2
4
) represents a holomorphic section

s0 of the Hermitian line bundle with curvature −idx ∧ dy in a trivialisation
in which the connection matrix is − i

2
(xdy − ydx). Given a point a ∈ C let

fa be the holomorphic function

fa(z) = exp(
az

2
− |a|

2

4
).

Then fas0 is a holomorphic section with norm exp
(

− |z−a|2
4

)

, concentrated

around the point a in C.

To implement this idea in our setting, consider a section τ̂ = exp(f)σ
on one of the quadric surfaces, where f = µ + iν is a holomorphic function
on the surface. We want to locate the points where |τ̂ | is stationary. In our
trivialisation, these are points where the H and θ derivatives of µ + log |σ|
vanish. Since σ is independent of θ and ∂σ

∂H
= −p−2r−2Hσ, the conditions

are:
∂µ

∂H
= p−2r−2H,

∂µ

∂θ
= 0.
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But the Cauchy-Riemann equations are

∂µ

∂H
= p−2r−2

∂ν

∂θ
,

∂ν

∂H
= −p2r2∂µ

∂θ
,

so the conditions just become:

∂f

∂θ
= iH (20)

Now, given fixed H0, θ0 we want to construct a section τ = τH0,θ0 of the
line bundle L1 over a suitable open set in R3 which, on each quadric surface
Q(x) = q, is holomorphic and which can be regarded as concentrated at the
point in the surface with co-ordinates H = H0, θ = θ0. For simplicity we
suppose H0 6= 0. The construction is simpler in the region where Q(x) > 0,
and we begin with that case. We first assume H0 > 0, in which case we
consider the component where x0 > 0. Here we define

τ̂ = τ̂H0,θ0 = exp(
H0

F+(H0, θ0)
F+)σ. (21)

That is, we take the function f above to be AF+ where A is, on each surface,
the constant H0/F

+(H0, θ0). Now ∂F+

∂θ
= iF+ so ∂f

∂θ
= iAF+ which, by

construction, is equal to iH when H = H0, θ = θ0. So the modulus of this
section τ̂ has a critical point at (H0, θ0), which we will see is a maximum (cf.
§5.1). Now we normalise by defining

τH0,θ0 = λτ̂H0,θ0 ,

where λ = |τ̂(H0, θ0)|−1. Thus the value of |τ | at the point with co-ordinates
(H0, θ0) is 1.

If H0 < 0, we work symmetrically on the region where Q(x) > 0 but
x0 < 0 with the function F−, setting

τ̂ = exp(− H0

F−(H0, θ0)
F−)σ.

The complication comes from the region Q(x) < 0 where we need to use a
combination of the functions F±, smoothly interpolating between the two
cases already defined.

Consider the quadric surface {Q(x) = −1} on which we have functions
H, p, and u = u(x0) (defined by Equation (12)). Any of u,H, x0 can (along
with θ) be used as a co-ordinate on the surface. For example we can regard
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x0 as a function x0(H). Equation (13) implies that the positive function on
this quadric

D = (p2 − x0)r2u
tends to infinity as x0 → ±∞. Thus D has a strictly positive minimum value,
η say. (The significance of this number will appear in the proof of Lemma 6
in §5.1.) Now given small δ > 0 choose an even function g on R with

• g′(h) ≥ 0 for h ≥ 0

• g(h) ≥ |h|

• g(h) = δ/2 for |h| ≤ δ/4 and g(h) = |h| for |h| ≥ δ.

It is clear that if δ is sufficiently small we will have

g(h)− h ≤ η

U(h)
(22)

for all h > 0, where U(h) = u(x0(h)). We fix such a δ and hence, once and
for all, a function g. Define ϕ(h) = 1

2
(h+ g(h)) so

ϕ(h)− ϕ(−h) = h

ϕ(h) + ϕ(−h) = g(h),

and ϕ(h) vanishes if h < −δ. Now, on the set where Q(x) < 0 write Q(x) =
−a2 and define a section τ̂H0,θ0 of L1 by

τ̂H0,θ0 = exp(
α

F+(H0, θ0,−a2)
F+ +

β

F−(H0, θ0,−a2)
F−)σ, (23)

where

α = a3ϕ(
H0

a3
),

β = a3ϕ(−H0

a3
).

Thus

α− β = H0, α + β = a3g(
H0

a3
).

On each quadric surface Q(x) = −a2 the section τ̂ = τ̂H0,θ0 is holomorphic,
since α, β and F±(H0, θ0,−a2) are all constant on the surface. We claim that,
on each surface, |τ̂ | is stationary at the point where H = H0 and θ = θ0.
Indeed τ̂ = efσ where f = AF+ + BF− and A,B are constants on the
surface. So

∂f

∂θ
= iAF+ − iBF−

24



which is equal to i(α − β) at the given point. Then the claim follows from
the fact that α − β = H0. Once again, we define τH0,θ0 by normalising so
that the modulus is 1 at the critical point.

To sum up, if H0 > 0 we have defined sections τH0,θ0 separately over the
two regions {Q(x) < 0} and {Q(x) > 0, x0 > 0}. However it follows from
the construction that these sections have the same limit over the positive
part of the null cone, and define a smooth section over the region G+ ⊂ R3.
This is because the coefficient B of F− vanishes near the positive part of the
null cone. Likewise if H0 < 0 we get a section τH0,θ0 defined over G−. We
obtain

Proposition 4 For any H0 6= 0, θ0 the section τH0,θ0 defined above is a
smooth section of L1 over G+ or G−. The section is holomorphic along each
connected component of the quadric surfaces in its domain of definition and
has modulus 1 at the point with co-ordinates (H0, θ0).

Note that some of the steps in the construction work equally well when
H0 = 0 but there are some difficulties. From one point of view this is because
we are really attempting to define a family of sections indexed by the set of
integral curves of the vector field ∂

∂Q
on R3 \ {0} and this set, in its natural

topology, is not Hausdorff. To avoid these essentially irrelevant complications
we do not define sections τH0,θ0 when H0 = 0.

4.2 Sections of L2 and cut-off functions.

In this subsection we first define suitable sections of the line bundle L2 over
R4. Recall that this has curvature −idQ ∧ dt. let (x′, t′) be a point of R4

where x′ has (Q,H, θ) co-ordinates (Q0, H0, θ0). Let ψ0 be the value of the
function ψ at x′. We can choose a trivialisation of the bundle such that the
connection form is

− i
2
((Q−Q0)dt− (t− t′)dQ).

In this trivialisation, we define a section by

ρ̂x′,t′ = exp

(

−ψ
2
0(t− t′)2 + ψ−20 (Q−Q0)2

4

)

. (24)

(The trivialisation is ambiguous up to an overall phase, so this definition is
not strictly precise, but we can ignore this here.) Notice that in a region
where ψ is constant the section will be a holomorphic section of L2; we post-
pone until Section 5 the estimates for ∂ρ̂ in general. Obviously |ρ̂| achieves
its maximum value 1 at points where Q = Q0, t = t′.
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Figure 2: The sets G± and G±0

The section ρ̂x′,t′ decays rapidly away from the surface Q(x) = Q0. We
will now introduce a cut-off function to construct a section which vanishes
outside a neighbourhood of this surface. Let χ(q) be a fixed, standard, cut-
off function equal to 1 for |q| ≤ 1 and vanishing when |q| ≥ 2. Let b1 be a
small positive constant, to be fixed later, and define a function χQ0 on R3 by

χQ0 = χ

(

ε

b1

Q−Q0
ψ0

)

. (25)

Then set
ρx′,t′ = χQ0 ρ̂x′,t′ (26)

We now return to the sections τH0,θ0 defined in the previous section. We
want to modify these by suitable cut-off functions to overcome the difficulties
with their domains of definition. This cut-off construction will depend on
another small positive parameter b2. Let c0 be the constant from Lemma 1,
so ψ(p) ≤ c0εp

4 for |p| ≥ 1. Recall that p4 is the quadratic form 4x20 + r2 on
R3. We choose the constant b2 so that b2c0 <

1
10
, say. Then the quadratic

form Q+ b2c0p
4 is indefinite. Define G±0 ⊂ R3 by

G±0 = {x : Q(x) + b2c0p
4 < 0 or Q(x) + b2c0p

4 ≥ 0 and ± x0 > 0}.

Thus G±0 ⊂ G± and G+0 ∪ G−0 = R3 \ {0}. Let N be the 1-neighbourhood,
in the metric g, of the plane-minus-disc {(0, x1, x2) ∈ R3 : x21 + x22 ≥ 4}.
It is easy to check (using the fact that Q = − 1

2
p4 for x0 = 0, the formula

‖ ∂
∂Q
‖g = ψ−1 and the estimates on ψ) that we can choose b2 small enough

(depending on the constants in Lemma 1) so that

G+0 ∩G−0 ⊃ N. (27)

We now fix a value of b2 such that (27) holds. Let λ be a standard cut-off
function with λ(q) = 1 for q ≤ −1 and λ(q) = 0 for q > −1/2. Define a
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function L on the set {|x| ≥ 1} in R3 by

L = λ(
ε

b2

Q

ψ
).

Suppose a point x lies in the support of ∇L. Then we must have

−b2
ε
ψ < Q < 0.

Thus −b2c0p4 < Q < 0. So the support of ∇L is contained in the set

{x : |x| > 1, Q < 0, Q+ b2c0p
4 > 0}

which is the disjoint union of two components,

S± = (G± \G±0 ) ∩ {|x| > 1}.

It follows that there are smooth functions L̂+, L̂− on {|x| > 1}, supported in
G+, G− respectively and equal to 1 on G+0 , G

−
0 respectively, such that L̂±

and L have the same restriction to S±. Finally, define

L± = χ(
2

|x|) L̂
±.

Now suppose that the point x′ ∈ R3 with co-ordinates Q0, H0, θ0 has
|x′| > 3. Suppose that H0 6= 0. We define a section τ ∗x′ of L1 as follows. If
H0 > 0 the section τH0,θ0 is smooth on G+ and we set

τ ∗x′ = L+τH0,θ0 ,

extending in the obvious way by zero outside the support of L+. Thus τ ∗x′ is
equal to the section τH0,θ0 – holomorphic along the quadric surfaces – near
x′, and the modulus of τ ∗x′ at the point x′ is 1. In fact, because of (27), the

1-ball Bx′ centred at x′ in the metric g is contained in G+0 , and by estimating
the norm of d(|x|2) one can verify that Bx′ ⊂ {|x| > 2}. Hence τ ∗x′ is equal
to τH0,θ0 on the unit ball Bx′ .

We proceed similarly if H0 < 0 (using L− instead of L+). Finally, we
combine this with the other construction. For (x′, t′) as above, we set

sx′,t′ = τ ∗x′ ⊗ ρx′,t′ . (28)

What we have now achieved is a collection of sections of the line bundle
L and in the next section we will derive the estimates which will ultimately
allow us to verify Hypothesis 2. That hypothesis requires rather more input
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data. Associated to each point (x′, t′) we need not just one section sx′,t′
of L but a triple of sections (s, s′, s′′) say, so that s′/s and s′′/s give local
approximately holomorphic co-ordinates. We will not go through this part
of the construction in detail, since it would not contain any new ideas. For
example, one approach is to define s′, s′′ by differentiating the section sx′,t′
with respect to the parameters x′, t′.

5 Estimates for approximately holomorphic

sections

5.1 Estimates for τ

In this subsection (5.1) and the following (5.2) we develop estimates for the
sections constructed in §4.2. Fix H0 and θ0 and suppose that H0 > 0 (of
course there will be symmetrical statements for the case H0 < 0). Then
we have defined a section τ = τH0,θ0 of L1 over the open set G+ ⊂ R3. We
introduce some notation. Let x be a point in G+, with co-ordinates (Q,H, θ).
Let x′ be the point in G+ with co-ordinates (Q,H0, θ0). Let x

′′ be the point
with co-ordinates (Q,H0, θ) if x does not lie on the positive x0-axis, and
otherwise set x′′ = x′. We define two functions S = SH0,θ0 and L = LH0,θ0 on
G+. The value S(x) is the distance in the metric g from x to x′′, measured
along the quadric surface through x. The value L(x) is 1/2π times the length,
in the metric g, of the orbit of x′ under the rotation action. Now for α > 0
we define a function Eα = Eα,H0,θ0 on G+ by

Eα(x) = exp(−α
(

S(x)2 + (θ − θ0)2L(x)2
)

) (29)

(Here we interpret (θ − θ0) as taking values in (−π, π]; thus L(x)(θ − θ0) is
the distance in the metric g from x′ to x′′, measured along the circle orbit.)

Now given c > 0 let Ω+c be the set

Ω+c = {x : x ∈ G+, |x| > 1, Q(x) < −c if x0 < 0}. (30)

The result we will prove in this section is

Proposition 5 For any c there are C, α (independent of H0, θ0) such that
in Ω+c ,

|τ | ≤ CEα.

Recall that, given x and H0, θ0, we write x
′ for the point with co-ordinates

H0, θ0 on the quadric surface through x. In §5.2 below we will prove

28



Proposition 6 For any c, r there are C, α such that at points x ∈ Ω+c for
which |x′| ≥ 1 and for all p ≤ r:

• |∇pτ | ≤ CEα,

• |∇p∂τ | ≤ ε CEα at points where |x| ≥ 3.

Here, more precisely, ∂τ is defined by extending the section τ to G+ ×R
but since there is no t dependence we can formulate the result entirely within
R3.

We begin the proof of Proposition 5 by considering the restriction of τ to
the sheet {x0 > 0} of the quadric Q(x) = 1. We may obviously suppose that
θ0 = 0 and to begin with we consider the restriction to θ = 0. Thus we are
considering the section τ over a single arc, homeomorphic to [0,∞). In our
analysis we will use two convenient co-ordinates on this arc. One co-ordinate
is the function v, the modulus of the holomorphic function F+. The other
co-ordinate is the arc length s, measured from the intersection with the x0-
axis, in the metric g. We write v0, s0 for the co-ordinate values corresponding
to H = H0; i.e. corresponding to the point x′. The co-ordinates v and s both
run from 0 to ∞ and the asymptotic relation between them is

s ∼ Cv
√
3/2,

as s, v →∞. In fact, in terms of the radial co-ordinate r, we have

s ∼ C ′r3/2 , v ∼ C ′′r
√
3/2.

The corresponding asymptotic relations hold for the mutual derivatives of
these different co-ordinate functions.

Recall that our basic section is σ = exp(−p6/18). We can write p6/18 as
a function of v – f(v) say, on this arc. Thus f is an increasing function of v,
asymptotic to a multiple of vλ, where λ =

√
6 > 2. We introduce a piece of

notation. For a function g of a real variable v ∈ [0,∞) we write

∆g(v, v0) = g(v)− g(v0)− (v − v0)g′(v0). (31)

The relevance of this, working with the co-ordinate v over the arc, is that
our definition of the section τ is just

τ(v) = exp (−∆f (v, v0)) .

To see this, note that dp
dx0

= 3x0p
−3 (by differentiating p4 = 6x20 − 2Q with

Q fixed), and dv
dx0

= p2r−2 v (by definition of v). Therefore f ′(v) = H/v, and

∆f (v, v0) =
1
18
(p6 − p60)− H0

v0
(v − v0) = − log |τ |. The first point to note is:
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Lemma 3 The function f is a convex function of v, its second derivative is
strictly positive.

To see this, recall that f ′(v) = H/v, so we have to show that H/v is an
increasing function of v, or equivalently of the variable x0. Now, with Q
fixed,

dH

dx0
= 6x20 − 2 = p4 ,

dv

dx0
=
p2x0
H

v.

Thus
d

dx0
(H/v) =

p4

v
− H

v2
p2x0
H

v =
p2

v
(p2 − x0).

This is positive since p2 =
√

4x20 + r2 > x0.

This Lemma shows that the modulus of the section τ does indeed attain
a unique maximum at the point v = v0. Next we need

Lemma 4 Suppose f is a function of v ∈ [0,∞) and f ′′(v) ≥ k(1 + vλ−2)
for some k > 0, λ > 2. Then there is a constant c such that

∆f (v, v0) ≥ c
(

(1 + v)λ/2 − (1 + v0)
λ/2
)2
.

To prove this Lemma note that we can write

∆f (v1, v0) =

∫ v1

v0

f ′′(v)(v1 − v) dv. (32)

Thus the hypothesis implies that ∆f (v, v0) ≥ ∆g(v, v0) where g(v) = k( v
2

2
+

vλ

λ(λ−1)). So, for a suitable constant c,

∆f (v, v0) ≥ c
(

(vλ − vλ0 )− λ(v − v0)vλ−10 + (v − v0)2
)

.

The convexity of the function vλ implies that the expression

vλ − vλ0 − λ(v − v0)vλ−10

is non-negative. By considering the scaling behaviour under simultaneous
scaling of v and v0 (or by using the Taylor formula), one sees that it is
bounded below by a positive multiple of (v − v0)2(vλ−2 + vλ−20 ). Thus

∆f (v, v0) ≥ c(v − v0)2(1 + vλ−2 + vλ−20 ).

On the other hand it is clear that
(

(1 + v0)
λ/2 − (1 + v)λ/2

)2 ≤ c′(v − v0)2
(

(1 + v)λ/2−1 + (1 + v0)
λ/2−1)2

≤ c′′(v − v0)2
(

1 + vλ−2 + vλ−20

)
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which implies the desired result.

In the case of f(v) = 1
18
p6 the quantity f ′′(v) = d

dv
(H
v
) = r2

v2
(p2 − x0)

is bounded below by a positive multiple of (1 + vλ−2), so by Lemma 4 we
obtain a bound on |τ |. Now the functions s and s̃ = (1+v)λ/2 have the same
asymptotic behaviour, so the derivative ds

ds̃
is bounded above and below by

positive constants. Thus we see that on this arc

|τ(s)| ≤ exp(−c(s− s0)2),

which is precisely the statement of Proposition 5 (on the arc).
Still working on the surface Q(x) = 1, x0 > 0, we now consider the

dependence on the angular variable θ. (Recall that we are assuming θ0 = 0.)
We have

log |τ(s, θ)| = log |τ(s, 0)| − v

v0
H0(1− cos θ).

Now H0 is bounded below by a multiple of s20. For θ ∈ [−π, π], the function
(1− cos θ) is bounded below by a multiple of θ2. Thus we have

|τ(s, θ)| ≤ exp(−c
(

(s− s0)2 +
v

v0
s20θ

2

)

). (33)

Recall that we defined L = L(x′) to be 1/2π times the length of the circle
orbit through x′. This is p r, evaluated at x′, which is bounded above and
below by multiples of s0. Thus, on this quadric surface, we have

Eα(s, θ) = exp(−α
(

(s− s0)2 + Cs20θ
2
)

).

The difficulty comes from the term v
v0

in Equation (33). For this we use:

Lemma 5 There is a constant C > 0 such that

(s− s0)2 + s20θ
2 ≤ C((s− s0)2 +

v

v0
s20θ

2)

for all s, s0 ≥ 0 and θ ∈ [−π, π].
We consider the function v/s as a function of s. This tends to a positive
limit as s → 0 and tends to zero as s → ∞. Thus there is a constant b,
independent of s and s0, such that

v0
s0
≤ b

v

s

whenever v < v0. This means that whenever v/v0 ≤ 1/2b we have s ≤ s0/2.
So either v/v0 > 1/2b in which case the desired inequality holds with C = 2b,
or s20 ≤ 4(s− s0)2 in which case the inequality holds with C = 4π2 + 1.
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Lemma 5 implies that τ is bounded by a suitable function Eα on the
quadric surface Q(x) = 1, x0 > 0. We can extend this bound to the entire
cone Q(x) > 0, x0 > 0 in a very simple way, by homogeneity. We will use this
principle repeatedly below, so we will spell it out clearly now. If we write, in
the fixed trivialisation of the line bundle L1

τ = τH0,θ0 = exp(−A(x;H0, θ0)) (34)

then the function A satisfies

A(λx;λ3H0, θ0) = λ3A(x;H0, θ0). (35)

The functions logEα satisfy exactly the same scaling behaviour

logEα,λ3H0,θ0(λx) = λ3 logEα,H0,θ0(x).

Thus the bound |τ | ≤ Eα on the quadric surface, for all choices of the pa-
rameter H0, immediately gives the same bound over the whole cone.

This scaling behaviour may be clearer if we change notation and regard
A and Eα as functions of pairs of points x, x′ on the same quadric surface.
Then the scaling reads

A(λx, λx′) = λ3A(x, x′) , logEα(λx, λx
′) = λ3 logEα(x, x

′).

We now follow a similar argument for the region where Q(x) < 0. By
the same scaling argument it suffices to work on the quadric Q(x) = −1.
Again, we begin with arc on this quadric where θ = 0. We have two different
co-ordinates on this arc. One is the arc length s in the metric g which now
runs from −∞ to∞. The other is the function u, the modulus of F+, which

runs over (0,∞). The function u is asymptotic to |s|±
√
2/3 as s→ ±∞. The

choice of the parameter H0 > 0 defines corresponding values u0 > 1, s0 > 0.
Recall that over this arc our section τ is given by

τ = exp(−f(u) + α
u

u0
+ β

u0
u

+ c(u0))

where now f is p6/18, expressed as a function of u on the quadric, c(u0) is
a normalisation constant ensuring that |τ(u0)| = 1, and α and β are defined
by u0 as in §4.1.

Lemma 6 log |τ(u)| has just one critical point, when u = u0 and this point
is a global maximum.
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To see this, we have

d

du
(− log |τ |) = H

u
− α

u0
+ β

u0
u2
.

We want to see that this vanishes only when u = u0, where it vanishes by
construction (since α − β = H0). Thus it suffices to show that the function
H
u
+ β u0

u2 is an increasing function of u, or equivalently of H. Now

d

dH

(

H

u
+ β

u0
u2

)

=
1

u
− H

p2r2u
− 2β

u0
p2r2u2

,

using the fact that du
dH

= u
p2r2

. Rearranging terms, we need

2βu0 < (p2 − x0)r2u.

But this precisely the condition we required in the choice of α, β defining τ
(Equation (22)) so the assertion follows. This discussion also shows that
log |τ | is a concave function of u along the arc θ = 0. Thus u0 is a maximum
along this arc. On the other hand the θ-dependence is again proportional to
cos θ so clearly the maximum on each circle u = constant is attained when
θ = 0.

We claim that, on the arc θ = 0,

τ ≤ exp(−α(s− s0)2).

The proof follows the same pattern as in the positive case above. Recall that
β = 0 once u0 is bigger than some K > 1 say. When u, u0 > K the argument
is identical. There are then various other cases to check, a task which we will
largely leave to the reader. We just discuss two representative sample cases.
First, if u0 = 1 then we have to show that

f(u)− f(1)− c(u+ u−1 − 2) ≥ cs2.

This holds when u is close to 1 by the critical point analysis above. When
u → ∞ the left hand side grows like f(u) ∼ u

√
6 since

√
6 > 1, and this is

the same growth as s2. Similarly when u→ 0. For the second case, consider
u→ 0 and u0 →∞. Then we have to show that

f(u)− f(u0)− (u− u0)f ′(u0) ≥ c(s20 + s2).

Now f(u0)+(u−u0)f ′(u0) grows like (1−
√
6)u

√
6

0 , which is large and negative,

while f(u) grows like u−
√
6, which is large and positive. Thus the left hand

side is bounded below by a multiple of u
√
6

0 + u−
√
6, or equivalently s20 + s2.
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5.2 Estimates for derivatives of τ

In this section we obtain estimates for the derivatives of a section τ = τH0,θ0 .
We suppose that H0 > 0, so τ is defined over G+. Recall that given x ∈ G+
we write x′ for the point with co-ordinates (Q,H0, θ0) where Q = Q(x). In
the fixed trivialisation of L1 we write τ = exp(−A) as above. We fix a
positive integer r and c > 0. The result we prove is

Proposition 7 For any α there is a constant C such that

|x|2r
∣

∣

∣

( ∂

∂Q

)2r

A
∣

∣

∣
≤ CE−1α ,

in the set where |x|, |x′| ≥ 1 and Q(x) < −c if x0 < 0.

It is not hard to deduce Proposition 6 from this. The simplest case is the
estimate on |∂τ |. Since τ is holomorphic along the quadric surfaces we have

|∂τ | = ψ

∣

∣

∣

∣

∂τ

∂Q

∣

∣

∣

∣

= ψ

∣

∣

∣

∣

∂A

∂Q
e−A
∣

∣

∣

∣

≤ Cψ

∣

∣

∣

∣

∂A

∂Q

∣

∣

∣

∣

Eα,

using Proposition 5. Now ψ ≤ Cεp4 ≤ Cε|x|2 so Proposition 7 yields

|∂τ | ≤ ε CEα̃

(over the given set) for some α̃ slightly smaller than α. The other estimates
in Proposition 6 are obtained similarly. Using the fact that τ is holomorphic
along the surfaces we can bound the partial derivatives in the (H, θ) directions
in terms of |τ | (via either elliptic theory or the Cauchy integral formula).
Thus we can estimate any partial derivative of τ by the derivatives in the Q
variable. We leave the details to the reader.

We follow the same pattern as in the previous subsection, proving Propo-
sition 7 first on the cone {Q(x) > 0, x0 > 0}. Again we can exploit homo-
geneity under scaling x 7→ λx, H0 7→ λ3H0. Thus we begin by considering
the restriction of |x|2r( ∂A

∂Q
)r to the surface Q(x) = 1, x0 > 0. The θ-variable

will play essentially no role, so we suppose θ0 = 0 and restrict to the arc
Γ where θ = 0. We recall from the previous subsection that we have two
useful co-ordinates along this arc, one the function v and the other the arc
length s. In what follows we will also have to bring in a third co-ordinate, the
restriction of the function H. Recall also that the fixed parameter H0 corre-
sponds to values v0, s0 – i.e. the co-ordinates of the point x′ in the different
parametrisations of the arc. For a suitable fixed N we write

R(s, s0) =

(

1 + s

1 + s0

)N

+

(

1 + s0
1 + s

)N

.
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With all these preliminaries out of the way, what we actually prove is

Proposition 8 For any r there are N,C such that on the arc Γ

|x|2r
∣

∣

∣

(∂A

∂Q

)r∣
∣

∣
≤ CR(s, s0)(s− s0)2.

To see that this implies Proposition 7 in the positive cone, we argue as follows.
For any point x in this cone we define s to be the length of the obvious arc
in the quadric surface through x, running from the x0 axis to x. Similarly
we define s0 to be the length of the arc in the same quadric surface to the
point x′. Thus S(x) = s− s0. The function |x|2r|( ∂

∂Q
)rA| is homogeneous of

degree 3 under rescaling, while s, s0 are homogeneous of degree 3/2. Thus
the estimate in Proposition 8 scales to the general estimate

|x|2r
∣

∣

∣

(∂A

∂Q

)r∣
∣

∣
≤ CR(Q−3/2s,Q−3/2s0) (s− s0)2. (36)

We use

Lemma 7 For any b, β > 0 there is a C such that

R(Q−3/2s,Q−3/2s0) (s− s0)2 e−β(s−s0)
2 ≤ C

provided that Q ≥ b or s, s0 ≥ b.

The proof is elementary and left to the reader. We can obviously choose b so
that |x| ≥ 1, |x′| ≥ 1 implies that Q ≥ b or s, s0 ≥ b. Hence the Lemma and
Equation (36) imply Proposition 7 in the positive cone.

We now turn to the heart of the matter: the proof of Proposition 8. The
complication here is the interaction between the three co-ordinates H, v, s on
Γ. For a function f on Γ and two points x, x′ on Γ we write

∆(f ;x, x′) = ∆f (v, v0)

where on the right hand side we understand that we use the co-ordinate v to
parametrise Γ and v, v0 are the co-ordinates of x, x′.

Lemma 8 Suppose f is a smooth function on Γ and f ∼ Hµ, df
dH
∼ µHµ−1,

d2f
dH2 ∼ µ(µ− 1)Hµ−2. Then for a suitable N depending on µ we have:

|∆(f ;x, x′)| ≤ CR(s, s0)(s− s0)2(1 +H)µ−1,

where H corresponds to the point x.
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To see this we express f as a function of v, f ∼ Cv
√
6µ. We have

d2f

dv2
∼ Cv

√
6µ−2

The integral formula Equation (32) gives

|∆(f ;x, x′)| ≤ C(v − v0)2(1 + v∗)
√
6µ−2,

where v∗ is one of v, v0 (which one depending on the sign of
√
6µ − 2 and

which of v, v0 is the larger). The function s is asymptotic to a multiple of

v
√
3/2, hence

|s− s0| ≥ C|v − v0|(1 + v∗∗)
√
3/2−1,

where v∗∗ is the smaller of v, v0. Then the result follows by elementary argu-
ments. (The point is that introducing the function R allows us to essentially
interchange v, v0 in our estimates.)

Now consider the function A = A(Q,H,H0). By construction this satis-
fies

A(Q,H0, H0) = 0;
∂A

∂H

∣

∣

∣

H=H0

= 0.

In other words, A vanishes to second order along the “diagonal” H = H0.
Differentiating r times with respect to Q, we see that ( ∂

∂Q
)rA also vanishes

to second order along the diagonal. This means that on the arc Γ it is equal
to

∆(
( ∂

∂Q

)r

A;x, x′).

Thus we see that, on Γ,

( ∂

∂Q

)r

A = B1 −B2,

where

B1 = ∆(
( ∂

∂Q

)r p6

18
;x, x′)

B2 = ∆(
( ∂

∂Q

)rH0F
+(H,Q)

F+(H0, Q)
;x, x′).

Now f = ( ∂
∂Q

)rp6 is a homogeneous function of degree 3−2r on R3. It follows

that f ∼ CHλ on Γ, where λ = 1− 2r
3
(since H is homogeneous of degree 3);

similarly for the derivatives of f . Applying Lemma 8 we see that

|B1| ≤ CR(s, s0)(s− s0)2(1 +H)−2r/3
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Now on Γ, |x|2 ≤ C(1 +H)2/3 so we obtain

|x|2r|B1| ≤ CR(s, s0)(s− s0)2,

which is just the form of estimate we need.
The term B2 is more complicated. Regard v as a function of H – taking

Q = 1. Then we can write

H0F
+(H,Q)

F+(H0, Q)
= Q
√
3/8v(H/Q3/2)

H0

Q
√
3/8v(H0/Q3/2)

.

Set

fp =

(

∂

∂Q

)p

Q
√
3/8v(H/Q3/2),

gq =

(

∂

∂Q

)q
H0

Q
√
3/8v(H0/Q3/2)

.

Then fp, gq are smooth functions on Γ (i.e. we set Q = 1 after performing
the differentiation). We have

B2 =
∑

p+q=r

gq(H0)∆(fp;x, x
′).

Now, regarded as a function of x0, it is easy to see that v has a series
expansion for x0 large:

v = x

√
3/2

0 (a0 + a1x
−2
0 + . . .).

This means that v(H) has an expansion

v(H) = H1/
√
6(b0 + b1H

−2/3 + . . .).

Hence
Q
√
3/8v(H/Q3/2) = H1/

√
6(b0 + b1QH

−2/3 + . . .).

So we see that fp ∼ bpH
1/
√
6−2p/3. Applying Lemma 8 we get

|∆(fp;x, x
′)| ≤ CR(s, s0)(s− s0)2(1 +H)1/

√
6−1−2p/3.

Similarly

|gq| ≤ C(1 +H0)
1−1/

√
6−2q/3.

So

(1 +H)2r/3|gq∆(fp, x, x
′)| ≤ CR(s, s0)(s− s0)2

(

1 +H

1 +H0

)
1√
6
−1+ 2q

3

.
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Now changing the value of N suitably, the power of (1+H)/(1+H0) can be
absorbed into R(s, s0) and we get

|x|2r|gq∆(fp, x, x
′)| ≤ CR(s, s0)(s− s0)2,

Hence |x|2rB2 is bounded by a multiple of R(s, s0)(s − s0)
2 and we have

finished the proof of Proposition 8 over the positive cone.

We omit the details of the extension of this argument to the region Q(x) <
0. Let us just explain where the condition Q(x) < −c enters, if x0 ≤ 0. Using
homogeneity we can throw the calculations onto the quadric Q(x) = −1. We
consider the arc θ = 0 in this quadric on which we have arc length co-
ordinates s for the point x and s0 for the point x′. Alternatively, we can
use the co-ordinates H,H0. Then H0 and s0 are positive by hypothesis. The
problem comes when H and s are large and negative. The function u(H) for
large positive H has a series expansion

u(H) = H1/
√
6(b0 + b1H

−2/3 + . . .),

just as before. For large negative H on the other hand the series is

u(H) = u(−H)−1 = (−H)−1/
√
6(b−10 + . . .).

This means that the ratio H0
F+(H,Q)
F+(H0,Q)

, for H0 À 0 and H ¿ 0, is

H
1−1/

√
6

0 (−H)−1/
√
6(−Q)

√
3/2

(b0 − b1QH−2/3
0 + . . .)(b0 − b1Q(−H)−2/3 + . . .)

.

The presence of the term (−Q)
√
3/2 makes for the difference with the previous

case. When we differentiate r times this term contributes so we only get the
bound:

(

∂

∂Q

)r

H0
F+(H,Q)

F+(H0, Q)
≤ CH

1−1/
√
6

0 (−H)−1/
√
6.

This means that we get

|x|2r|B2| ≤ C(−s)4r/3−
√
2/3 s

2−
√
2/3

0 .

Now scaling back and using homogeneity the derivative bound becomes

(−Q)
√
3/2−r (−s)4r/3−

√
2/3 s

2−
√
2/3

0 .

If r ≥ 2 this blows up as Q → 0 for fixed s < 0, s0 > 0. (As we know it
must since the functions are only Hölder continuous along the null cone.) On
the other hand if Q < −c then we can proceed to obtain a subexponential
bound much as before. We leave it to the reader to check that the additional
subtleties induced by the presence of F− in the definition of τ for Q < 0
(Equation (23)) do not affect things in any significant manner.
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5.3 Estimates for s

Given a point (x′, t′) in R4 with |x′| > 3 we have defined a section s = sx′,t′
of L. For α > 0 define a function

Fα = exp(−α
(

ψ−20 (Q−Q0)2 + ψ20(t− t′)2
)

) (37)

Also define

Ψ(x, x′) =
ψ

ψ0
+
ψ0
ψ
,

and

δ(x, x′) =
∣

∣

∣

ψ

ψ0
− ψ0

ψ

∣

∣

∣
.

The goal of this subsection is to prove

Proposition 9 For any r, c there are α, C such that for p ≤ r

• |∇ps| ≤ CΨ(x, x′)pEαFα everywhere,

• |∇p(∂s)| ≤ C(ε+δ(x, x′))Ψ(x, x′)p+1EαFα throughout {(x, t) : |x| ≥ 3}.
The proof of this will require a number of steps. For simplicity we will just

prove the estimate on |∂s| – the extension to higher derivatives is straight-
forward (using the appropriate results from §5.2). Since s = τ ∗ ⊗ ρ we have

|∂s| ≤ |∂τ ∗||ρ|+ |τ ∗||∂ρ|. (38)

Throughout this subsection and the next we will make frequent use of the
bounds on the derivative of the function ψ. Note that we have

∂p

∂Q
=

3x20 +Q

p7
= O(p−3) (39)

(by differentiating (5) and (18) with H fixed), while Equation (19) gives

∂p

∂H
=

3x0
p7

= O(p−5). (40)

Thus Lemma 1 implies that

ψ−1
∣

∣

∣

∂ψ

∂Q

∣

∣

∣
≤ Cεp−1, ψ−1

∣

∣

∣

∂ψ

∂H

∣

∣

∣
≤ Cεp−3. (41)

Lemma 9 For suitable C, α we have

|∂τ ∗| ≤ CεEα

when |x| ≥ 3.
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Recall that when |x| > 3 the section τ ∗ is equal to L̂+τ , so

|∂(τ ∗)| ≤ |L̂+∂τ |+ |∇L̂+||τ |. (42)

There are two issues here. The first issue is that the estimates of Proposition 6
for ∂τ only hold in a region Ω+c . However L̂

+ vanishes at points where x0 < 0
and Q(x) > − b2ψ

2ε
. Since ψ ≥ ε we see that the support of L̂+ lies in Ω+c with

c = b2/2 and the estimates of Proposition 6 deal with the first term in
Equation (42). The second issue concerns the term involving ∇L̂+. Thus it
suffices to show that

|∇(λ( ε
b2

Q

ψ
))| ≤ Cε.

The derivative of λ( ε
b2

Q
ψ
) vanishes if |Q| > ψb2/ε. Since the function λ has

bounded derivative it suffices to show that

|∇
( ε

b2

Q

ψ

)

| ≤ Cε,

when |Q| ≤ ψb2/ε. The relevant components of ∇ with respect to the stan-
dard orthonormal basis of tangent vectors for our metric g are ψ ∂

∂Q
and pr ∂

∂H
.

Consider first the Q derivative. We have

∣

∣

∣
ψ
∂

∂Q

( ε

b2

Q

ψ

)∣

∣

∣
=

ε

b2

∣

∣

∣
1−Qψ−1 ∂ψ

∂Q

∣

∣

∣
≤ ε

b2
+
∣

∣

∣

∂ψ

∂Q

∣

∣

∣
≤ ε

b2
+ Cεp−1ψ.

Now ψ ≤ Cp by the third item of Lemma 1, so we are done.
For the H derivative we have similarly:

∣

∣

∣
pr

∂

∂H

( ε

b2

Q

ψ

)∣

∣

∣
=
∣

∣

∣
pr
ε

b2

Q

ψ2
∂ψ

∂H

∣

∣

∣
≤ prψ−1

∣

∣

∣

∂ψ

∂H

∣

∣

∣
≤ Cε,

which completes the proof of Lemma 9.

We now turn attention to the section ρ. We begin with ρ̂.

Lemma 10 For any α < 1 there is a constant C such that

|∂ρ̂| ≤ Cδ(x, x′)Fα.

In our standard orthonormal frame, and the given trivialisation of L2,

∂ρ̂ =

(

ψ

(

∂

∂Q
+
i

2
(t− t′)

)

+ iψ−1
(

∂

∂t
− i

2
(Q−Q0)

))

ρ̂

where

ρ̂ = exp

(

−ψ
2
0(t− t′)2 + ψ−20 (Q−Q0)2

4

)

.
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This is
1

2

(

ψ0
ψ
− ψ

ψ0

)(

Q−Q0
ψ0

− iψ0(t− t′)
)

ρ̂.

The Lemma follows from the fact that for any α < 1 there is a C such that

Ae−A
2 ≤ Ce−αA

2

.

Next we have

Lemma 11 For any α < 1 there is a constant C, depending on b1, such that

|∂ρ| ≤ C(ε+ δ(x, x′))Ψ(x, x′)Fα,

in the set where |x| > 3.

Given the preceding lemma, we just have to estimate the derivative of the
cut-off function χ( ε

b1

Q−Q0

ψ0
). This is bounded in modulus by C ε

b1

ψ
ψ0
, which

gives the desired result.

The main result (Proposition 9) in the case of |∂s| follows from Equa-
tion (38) and Lemmas 9 and 11, since we clearly have

|τ ∗| ≤ |τ | ≤ CEα, |ρ| ≤ |ρ̂| = F1.

Notice that if we estimate ∂τ ∗ over the region |x| ≤ 2 we get a new term
involving the cut-off function χ(2/|x|) and our estimate is only as good as
that on the full covariant derivative ∇τ ∗. This is why we only consider the
case |x| ≥ 3 in the second half of Proposition 9.

5.4 Estimates on sums

For each point (x′, t′) with |x′| ≥ 3 we have now got a section sx′,t′ obeying
estimates expressed in terms of functions Eα, Fα,Ψ(x, x′), δ(x, x′). Moreover,
sx′,t′ is supported in a set S(x′)× R where S(x′) is the set of points x in R3

which satisfy the conditions

• |Q(x)−Q(x′)| ≤ 2b1
ε
ψ(x′) ,

• Q(x) ≤ − b2
2ε
ψ(x) if x0 and x

′
0 have different signs,

• |x| ≥ 1.
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Given x with |x| ≥ 1 let N(x) ⊂ R3 be the set

N(x) = {x′ : |x′| ≥ 3, x ∈ S(x′)}.

The modulus of the section sx′,t′ at the point (x′, t′) is 1 and it is quite
clear from the constructions that the section is not small on a ball (in the
metric g) of uniform size. Let us say |sx′,t′ | ≥ C−1 on the ball of radius 1/10
centred at (x′, t′). Our goal in this subsection is to prove

Proposition 10 For any α we can find a countable collection of points
(x′i, t

′
i)i∈I with |x′i| ≥ 3 having the following properties:

• The balls Bi of radius 1/10 centred at the (x
′
i, t
′
i) cover {(x, t) : |x| ≥ 4}.

• Let Eα,i, Fα,i denote the functions associated with these points and write
δi = δ( · , x′i) and Ψi = Ψ( · , x′i). Then for any p there is a C such that

∑

i, x′i∈N(x)
δiEα,iFα,iΨ

p
i ≤ Cε,

and
∑

i, x′i∈N(x)
Eα,iFα,iΨ

p
i ≤ C.

• There is a constant K such that for all D > 1 we can divide the index
set I into N(D) disjoint subsets Iµ where N(D) ≤ KD4, such that if
(x, t) is contained in a ball Bi for i ∈ Iµ then for any p there is a C
such that

∑

j∈Iµ, j 6=i, x′j∈N(x)
δjEα,j(x, t)Fα,j(x, t)Ψ

p
j ≤ Cε e−D,

∑

j∈Iµ, j 6=i, x′j∈N(x)
Eα,j(x, t)Fα,j(x, t)Ψ

p
j ≤ C e−D.

Notice that this Proposition does not involve the sections we have con-
structed, only the geometry of the metric g and the functions Fα, Eα,Ψ, δ.

To begin the proof of Proposition 10 we consider the restriction of the
metric g to the (x0, x1)-plane. We first choose a sequence of points on the
x0-axis such that the 1

20
-balls about these points cover the portion |x0| > 3

of this axis. It is easy to check then that the corresponding 1
10
-balls cover the

neighbourhood T = {pr < δ} for some small δ. We then choose a collection
of points in the half-plane x1 > 0 and outside T such that the 1

10
-discs (in the
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metric g) about these points cover the complement U of T and the Euclidean
ball {x20 + x21 ≤ 9} in the half-plane. We denote the centres obtained in this
way by P ′j and the 1

10
-discs by Dj. It is fairly clear that we can do this in

such a way that any intersection of more than n discs Dj is empty, for some
fixed n.

We now move to 3-space. We use the balls centred on the axis to cover
the relevant portion of the x0-axis in 3-space in the obvious way. Recall that
the length of the circle orbit under rotations is 2πpr. It is straightforward to
check that there is a constant R such that for each point P ′j which is not on
the axis

maxDj∩U(pr)

minDj∩U(pr)
≤ R.

As a consequence of this we can, for each such P ′j , choose an integer mj

which is comparable to pr for all points in Dj ∩ U . Then we get a cover of
R3, minus the Euclidean ball of radius 3, in the following way. We take the
images of these points P ′j under rotations through multiples of 2π/Mmj for
suitable fixed M , and the balls of radius 1

10
centred on these points. In this

way we get a collection of 1
10
-balls Bk with centres x′(k) in R3 such that

• The balls Bk cover {|x| > 3},

• The centre of any ball Bk either lies on the x0-axis or is contained in the
orbit of a P ′j under a cyclic subgroup of the rotation group, where the
order of the cyclic group is bounded by a fixed multiple of pr, evaluated
at the centre.

Next we move to 4-space. Equation (41) above shows that

ψ−1|∇ψ| ≤ Cε. (43)

This means that, once ε is sufficiently small, we can suppose that

maxBk(ψ)

minBk(ψ)
≤ 11

10
,

say. We fix a constant M ′ and for each centre x′(k) we take a countable
collection of points

(

x′(k),
ν

M ′ ψ(x′(k))

)

, ν ∈ Z.

This finally gives us our collection of centres (x′i, t
′
i) in R4. For a suitable

choice of the constantsM andM ′ we can arrange that the 1
10
-balls about the

(x′i, t
′
i) cover {(x, t) : |x| > 3}.
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Now let (x, t) be a point with |x| ≥ 3. We want to study the sum

B(x, t) =
∑

i

Ei,α(x, t)Fi,α(x, t)Ψ(x, x′i)
pδ(x, x′i) (44)

with the set of centres (x′i, t
′
i) obtained above. The manner in which these

centres were chosen allows us to easily sum over the θ and t-variables.

Lemma 12 Let ui be an arithmetic progression ui = Ai+C, A > 0, labelled
by i ∈ Z. Then there are universal constants k0, k1 such that for all B > 0

∑

i∈Z
exp(−

(ui
B

)2

) ≤ k0 + k1
B

A
.

This is standard and elementary. When we consider the contribution to the
sum in Equation (44) from the centres which lie in the same orbit under
the translation action we get terms precisely of the form considered in the
Lemma (with A = 1

M ′ψ0
and B = (αψ20)

−1/2, where ψ0 = ψ(x′i)). Thus we
can reduce to a 3-dimensional problem by summing over translation orbits
(which yields at most a uniform constant factor).

The rotation action can also be factored out in a similar way, but requires
a more careful treatment. Let

λ = pr = (4H2 + r6)1/4.

The centres in a same rotation orbit yield (finitely many) terms of the
form considered in Lemma 12, but now A = 2π

Mmj
∼ λ(x′i)

−1, while B =

(αL(x)2)−1/2 ∼ λ(x′)−1, where x′ is the point introduced in §5.1, lying on
the same quadric as x but with H(x′) = H(x′i). Hence, denoting by (Q,H)
and (Q0, H0) the co-ordinates of x and x′i respectively, the factor Σ resulting
from summation over a rotation orbit satisfies

|Σ| ≤ min
(

C + C
λ(Q0, H0)

λ(Q,H0)
, C ′λ(Q0, H0)

)

(45)

(using Lemma 12 and the fact that the number of centres in the orbit is of
the order of λ(Q0, H0)). We now use

Lemma 13 There is a constant C such that

|Σ| ≤ C + Cψ−10 |Q−Q0|,

where ψ0 = ψ(x′i).
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There are several cases to consider. First assume that Q0 ≥ −|H0|2/3.
Then the co-ordinates of x′i satisfy |x0| ≥ cr for some c ∈ (0, 1

2
). Hence

r ≤ C|H0|1/3, and λ(Q0, H0) = (4H2
0 + r6)1/4 ≤ C|H0|1/2. On the other hand

λ(Q,H0) ≥ |2H0|1/2, so we get a constant bound on |Σ| using Equation (45).
In the other case Q0 ≤ −|H0|2/3, the co-ordinates of x′i satisfy |x0| ≤ cr, so
r ∼ |Q0|1/2 and p ∼ |Q0|1/4, so λ ∼ |Q0|3/4. If Q ≤ 1

2
Q0 then

|Σ| ≤ C + C(Q0/Q)3/4

is bounded by a uniform constant. Otherwise, we have |Q−Q0| ≥ 1
2
|Q0|, so

|Σ| ≤ C ′λ(Q0, H0) = C ′pr ≤ Cψ−10 p2r ≤ Cψ−10 |Q0| ≤ Cψ−10 |Q−Q0|.
This completes the proof of the Lemma. Since the factor ψ−10 |Q − Q0| can
be absorbed into Fα up to an arbitrarily small modification of the constant
α, Lemma 13 allows us to sum over rotation orbits.

Thus we can reduce to a 2-dimensional problem. For this we adapt our
notation slightly. We regard Q and H as functions on R2 in the obvious
way and for P in the half-space x1 ≥ 0 in R2 let Σ(P ) be the part of the
corresponding quadric through P which lies in the half-space. Thus Σ(P )
can be identified with the quotient of one of our quadrics in R3 under the
rotation action. We write N(P ) for the quotient of the corresponding set
N defined above. For each of the centres P ′j we have chosen above we write
Ej(P ), Fj(P ), δ(P, P

′
j),Ψ(P, P ′j) for the corresponding functions on the half-

plane.
To prove the second item of Proposition 10 it suffices to prove:

Proposition 11 Let {P ′j} ∈ R2 be the set of centres constructed above. Then
there is a C such that for any P ∈ R2

∑

j:P ′j∈N(P )
δ(P, P ′j)Ej(P )Fj(P )Ψ(P, P ′j)

p ≤ Cε

∑

j:P ′j∈N(P )
Ej(P )Fj(P )Ψ(P, P ′j)

p ≤ C

The essential thing now is to understand the set N(P ). Notice first that
if P ′ ∈ N(P ) and if the x0 co-ordinates P0 and P ′0 have different signs then

we have Q(P ) ≤ − b2
2
ψ(P )
ε

which implies that Q(P ) ≤ − 1
2
b2. Thus we have

the following “quarter-space property”: if Q(P ) > − 1
2
b2 the sign of the co-

ordinate x0 on the whole of N(P ) is the same as that at P (see Figure 3).
Now, given P , let Σ = Σ(P ) be the the quotient of the quadric through

P as above. We claim that N(P ) is contained in a “thin neighbourhood” of
Σ. To state what we need precisely,
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x0

- x1

qP1 q
P2

HHHj
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N(P1)

N(P2)

H =const

Figure 3: The set N(P ) (case 1: Q(P ) > − b2
2
; case 2: Q(P ) < − b2

2
)

Lemma 14 If b1 is sufficiently small then for any point P
′ in N(P ) the

corresponding level set H−1(H(P ′)) of H meets Σ(P ) in exactly one point
P ′′, and moreover if Γ(P ′) is the connected arc of the level set joining P ′ to
P ′′ then

maxP ∗∈Γ(P ′) |P ∗|
minP ∗∈Γ(P ′) |P ∗|

≤ 11/10.

This is fairly clear from a picture (see Figure 3), and can be verified by
routine calculations. Next we have

Lemma 15 If b1 is sufficiently small then for any P
′ in N(P ) we have

maxP ∗∈Γ(P ′) ψ(P
∗)

minP ∗∈Γ(P ′) ψ(P ∗)
≤ 11/10.

To prove this recall that by Equation (41) and Lemma 1 we have

∣

∣

∣

∂ψ

∂Q

∣

∣

∣
≤ Cε.

The variation of Q over the connected arc Γ(P ′) is at most 2b1
ε
ψ(P ′). Inte-

grating over the arc we find that for any point P ∗ on Γ(P ′),

|ψ(P ∗)− ψ(P ′)| ≤ Cb1ψ(P
′).

Now we choose b1 so small that Cb1 ≤ 1/50 (say).

We now define a map M from N(P ) to Σ(P )× R by

M(P ′) = (P ′′, Q(P ′)).

We define a metric g0 on Σ(P ) × R as follows. In the Σ factor we take the
metric induced by g, and in the R factor, with co-ordinate Q, we take

ψ(P ′′)−2dQ2.
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In other words, if we take Q and H as co-ordinates we obtain the metric
by “freezing” the coefficients of dQ2 and dH2 at their values on Q = Q(P ).
Now by the quarter-space property above, the image ofM lies in a connected
subset Σ0 × R of Σ× R, where Σ0 lies in {P : |P | ≥ c} for some fixed c > 0
depending on b2.

Lemma 16 If b1 is sufficiently small then M is an 11/10 quasi-isometry
from the metric g restricted to N(P ) to an open subset in Σ0×R with metric
g0.

For the Q variable this follows from Lemma 15. For the H variable we
have to check that the variation of log pr along the arc Γ is small, which
follows from calculations similar to those above.

Now choose the arc length s along Σ(P ) as co-ordinate, taking the point
P as the origin s = 0. Thus we can regard the restriction of ψ to Σ as
a function ψ(s). (This notation is not really consistent with that used in
Section 3, but we hope this will not cause confusion). On Σ0 we have

|dψ
ds
| ≤ Cεψ

so if s1, s2 are the arc-length co-ordinates of two points in Σ0

ψ(s1)

ψ(s2)
≤ eCε|s1−s2|. (46)

We can now prove Proposition 11. We just consider the first inequality,
the second being similar. The points P ′j which contribute to the sum lie in
N(P ) and we can map these by M to get points (s′j, Q

′
j) in Σ0 × R. We use

three facts:

• The quasi-isometry property implies that

E(P, P ′j) ≤ exp(−α(s′j − s)2),

for some α.

• The function logψ varies little over the arcs Γ(P ′), so we can replace
ψ(P ′) by ψ(P ′′) in estimating the sum.

• The terms Ψ(P, P ′j) and ψ(P )/ψ(P ′j) appearing in the sum can be
relaced by the exponential bound Equation (46) above.
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Putting all of this together, it suffices to bound the sum
∑

exp
(

−α((s′j)2 + ψ(s′j)
−2(Q′j −Q)2)

)

exp(Cε|s′j|)(exp(Cε|s′j|)− 1) (47)

Now it is easy to check that for any α′ < α we have an inequality

(eεA − 1)e−αA
2 ≤ Cεe−α

′A2

.

This means that, changing the value of α slightly, it suffices to bound the
sum

∑

exp(−α((s′j)2 +
(Q′j −Q
ψ(s′j)

)2

)) (48)

To do this we compare with the corresponding integral. We consider the
image M(Dj) of the 1/10-disc centred on P ′j under the map M and let

Ij(β) =

∫

M(Dj)

e−βf
dQ′

ψ(s′)
ds′,

where

f(s′, Q′) = (s′)2 +
(Q′ −Q
ψ(s′)

)2

.

Now over M(Dj) the function ψ(s
′) is essentially constant and the variations

in Q′/ψ(s′) and s′ are O(1). It follows then that there are constants A, B
such that

sup
M(Dj)

f ≤ Af(s′j, Q
′
j) +B.

This implies that

eβBIj(β) ≥ e−βAf(s
′
j ,Q

′
j)

∫

M(Dj)

dQ′

ψ(s′)
ds′.

We take β = α/A. Clearly
∫

M(Dj)

dQ′

ψ(s′)
ds′ ≥ c

for some fixed c > 0. We see then that the sum in Equation (48) is bounded
by a multiple of

∑

j

Ij(β).

By construction of our open sets Dj, no more than n of the M(Dj) intersect,
so

∑

j

Ij(β) ≤ n

∫

R2

e−βf
dQ′

ψ(s′)
ds′.
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But this last integral can be evaluated explicitly
∫

R2

e
−β(s′2+

(

Q−Q′
ψ(s′)

)2
) dQ′

ψ(s′)
ds′ =

π

β
.

This completes the verification of the first two items of Proposition 10.
We omit the verification of the third item which follows similar lines.

6 Completion of proof

6.1 Verification of Hypothesis 2

In this subsection we will bring together the different strands of the analysis in
Sections 4 and 5 to complete the verification of Hypothesis 2. The main issue
we have to deal with is the fact that the model for our neighbourhood N of
the zero set Γ is a quotient of a tube in R4 under translations t 7→ t+2πZε−1
whereas in Sections 4 and 5 we have worked in R4. To deal with this we
go back to examine the definition of the section ρ̂x′,t′ in §4.2. To construct
the line bundle corresponding to L2 on the quotient space we proceed as
follows. On R4 we take a trivialisation of L2 in which the connection form
is −i(Q + ε

2
)dt. This 1-form is preserved by the translations so we get a

line bundle with connection over the quotient space in the obvious way. The
factor ε

2
means that the holonomy is −1 around the zero set, as required.

Now given Q0, H0, t
′, the section ρ̂x′,t′ we defined in §4.2 is given, in this

trivialisation, by

exp(−1

4

(

ψ20(t− t′)2 + ψ−20 (Q−Q0)2
)

) exp(iU)

where

U =
1

2
(Q+Q0 + ε)(t− t′).

We now replace t′ by t′ν = t′ + 2πνε−1 and form the sum

Θx′,t′ =
∑

ν∈Z
ρ̂x′,t′ν , (49)

working always in the fixed trivialisation of L2. Then Θx′,t′ is a 2πε
−1-periodic

section. Essentially these are the standard θ-functions.
The modulus of Θx′,t′ at the point (x′, t′) is no longer 1. However it is

very close to 1, the difference is bounded by the sum

2
∑

ν≥1
e−π

2ν2

,
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which is very small. More generally, the section Θx,t′ is very close to ρ̂x′,t′ over
a ball (in the metric g) of radius 1/10 centred on (x′, t′). This means that
these sections have essentialy the same local behaviour as those considered
before.

The sections Θx′,t′ define sections of the corresponding line bundle over
the quotient space N and we can repeat all the constructions of Sections 4
and 5 using these in place of the ρ̂. However it easier to keep working in R4.
We can the reduce all the estimates for this modified construction to those
established before by the following simple device. Recall that for any point
x′, we have ψ0 = ψ(x′) ≥ ε. We can choose an integer q such that

q ≤ ψ0
ε
≤ 2q.

Now we modify the construction in §5.4, when we go from a covering in 3-
space to a covering in 4-space, slightly. We have centres x′(k) in R3 as before
and we take the sequence of centres

(x′(k),
ν

Nqε
) ν ∈ Z,

where N is some suitable fixed integer (independent of x′(k), while q depends
on ψ(x′(k))). The separation between these centres, in the metric g, is ψ

Nqε

which lies between N−1 and 2N−1: bounded above and below independently
of x′(k). When we estimate the sum over these centres and combine with
the sum involved in the definition of Θx′,t′ we get exactly the same form of
sum considered in Lemma 12. (Since we estimate via the sum of moduli, the
phase factors are irrelevant.)

The verification of Hypothesis 2 should now be clear.

• For fixed k, and hence ε, we choose a covering of an appropriate annular
region around Γ from the covering in R4 constructed in §5.4, adapted
to the quotient as above. Along with this covering we get a collection
of approximately holomorphic sections, multiplying the sections of Sec-
tion 4 by cut-off functions to extend over the 4-manifold. There is just
one very small point to mention. In the covering constructed in §5.4
some of the centres are taken to lie on the x0-axis, where the co-ordinate
H vanishes. On the other hand, when we defined the sections sx′,t′ we
ruled out this case. However this is a completely artificial problem and
we merely need to take sections associated to points arbitrarily close
to the axis.

• We extend this covering to the remainder of the 4-manifold using the fa-
miliar approximately holomorphic co-ordinates. Likewise for each ball
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in the covering we have approximately holomorphic sections, defined
just as in the theory for compact symplectic manifolds.

• The localisation properties of the sections, expressed through the con-
vergence of the sums in the last two items of Hypothesis 2, follow from
the estimates in Section 5.

6.2 The local model, Verification of Hypothesis 3

In this subsection we will construct sections σ0, σ1 satisfying Hypothesis 3.
The construction is completely explicit but is reasonably complicated so we
will perform it in four stages.

Stage I.

Consider the Riemann surface C/2πiZ with the symplectic form dx ∧ dy,
where z = x+ iy is the standard co-ordinate on C. Let L be the Hermitian
holomorphic line bundle over C/2πiZ with a connection having curvature
−i dx ∧ dy and with holonomy −1 around the circle C corresponding to the
imaginary axis.

Lemma 17 There are holomorphic sections θ0, θ1 of L such that

• The θi are bounded.

• The sections θ0, θ1 have no common zeros and the map f I = θ1/θ0 :
C/2πiZ→ CP1 maps the circle C bijectively to the circle iR ∪ {∞} in
CP1.

• The derivative ∂f I is λ-transverse to 0 for some λ > 0.

These sections can be constructed as follows. Recall that the Weierstrass
℘-function of the rectangular lattice Λ = 2Z⊕ 2πiZ is an even meromorphic
function on the elliptic curve C/Λ with a double pole at the origin, repre-
senting it as a double cover of CP1 ramified at p0 = 0, p1 = 1, p2 = iπ and
p3 = 1+ iπ. The meromorphic function ℘ is the quotient of two holomorphic
sections of the line bundle O(2p0) over C/Λ. Since ℘(z) and ℘(1−z) have the
same ramification points, they must differ by an automorphism of CP1 (this
also follows from the fact that O(2p0) and O(2p1) are isomorphic). Setting
a = ℘(1) and b = ℘( 1

2
)2 − 2℘(1

2
)℘(1), we have

℘(1− z) = a℘(z) + b

℘(z)− a .
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The line Re(z) = 1
2
is one of the two components of the fixed point locus of

the antiholomorphic involution z 7→ 1− z of C/Λ, and is mapped bijectively
by ℘ to the fixed point locus Θ of the involution

w 7→ aw + b

w − a .

Choose a fractional linear transformation ϕ ∈ Aut(CP1) mapping the circle
Θ to the imaginary axis iR ∪ {∞}, and let

f I(z) = ϕ(℘(z +
1

2
)).

Then f I is a doubly-periodic meromorphic function which maps the imag-
inary axis to itself, without ramification. We can write f I as the quotient
f I = θ1/θ0 of two holomorphic sections of the line bundle O(2p′) over C/Λ,
where p′ = −1

2
. This degree 2 line bundle can easily be seen to admit a

holomorphic connection with curvature −i dx∧ dy and holonomy −1 around
the circle corresponding to the imaginary axis.

Now recall that in our standard model around a component of Γ we write
our line bundle L as L1⊗L2, where L1 has curvature −idH ∧ dθ and L2 has
curvature −idQ ∧ dt. Writing z = ε−1Q + iεt, we can identify L2 with Λ.
Here we use the condition that the holonomy around each component of Γ
is −1. Thus we can regard θ0 and θ1 as sections of L2. Then define

σI0 = θ0 ⊗ σ , σI1 = θ1 ⊗ σ,

where σ is the section of L1 constructed in Section 4 above.
These sections σI0 , σ

I
1 have some of the properties required by Hypothe-

sis 3. Let zr ∈ C be the branch points of f I . We can choose disjoint discs
in C of a fixed radius δ centred on the zr. We also suppose that δ is chosen
small enough that |Re(zr)| > 2δ for all r. Let Nr be the tubular region in R4

defined by the condition |z − zr| ≤ δ. Then the sections have all the desired
properties outside the region

(
⋃

Nr) ∩ (X \K),

where we recall that K is the set defined by |x| ≥ 10. In the following
stages we will modify the sections to achieve all the required properties. (In
fact, except for the very last step, the modifications will only involve the
“numerator” σI1 .)
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Stage II.

In the second stage we improve the sections over the intersection of the
tubular regions Nr with the annulus Ω = {2 < |x| < 5}. We take a standard
cut-off function β supported in [0, δ) and equal to 1 on [0, δ/2]. Then define
βr = β(|z − zr|). Thus βr is supported in the tube Nr and equal to 1 on a
half-sized tube. Recall that we have functions F+, F− which are holomorphic
along the quadric surfaces z = const. In Section 3 these were only defined
over the subsets G±, but we now extend them by zero over the complement
of G±. For a small parameter α, to be chosen later, we set:

σII0 = σI0 , σII1 = σI1 + α
∑

r

βr(F+ + F−)σ
I
0 . (50)

Thus f II = σII1 /σ
II
0 is

f II = f I + α
∑

r

βr(F+ + F−).

Lemma 18 For sufficiently small α, ε there are κ1, κ2, κ3 > 0 such that, over
Ω,

• ∂f II is κ1-transverse to 0;

• |∂f II | ≤ max(εκ2, |∂f II | − κ3).

There are positive constants, independent of ε, so that over Ω

• |∇βr| ≤ k1

• |F+ + F−| ≤ k2

• |∇(F+ + F−)| ≤ k3

• |∇z(F+ + F−)| ≤ k4ε.

Here we write ∇z for the component of the derivative in the z direction. The
existence of these bounds is fairly clear, there is just one point we want to
spell out here. The function F+ is not smooth along the part of the null
cone where x0 < 0, but behaves like (−Q)ν when Q < 0 and vanishes when
Q ≥ 0, where ν is

√

3/2. Since ν > 1 we have a uniform bound on the first
derivative, but one might worry about the higher derivatives. In terms of
x = Re(z) = Q/ε, F+ behaves like εν(−x)ν ; so on the set where x < −δ
all derivatives with respect to z are bounded by multiples of εν . Since our
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formulae only involve F+ over the tubes Nr, on which |x| > δ, we do not
encounter any problems from the singularities of F±.

Let Mr ⊂ Nr be the interior tube on which βr = 1. Then there is a
K1 > 0 such that |∂f I | ≥ K1 outside the Mr (but inside Ω). So on this set

|∂f II | ≥ |∂f I | − α
∣

∣

∣

∑

∇βr(F+ + F−) + βr∇(F+ + F−)
∣

∣

∣
.

At any given point there is at most one term contributing to the sum (since
the Nr are disjoint) so we have

|∂f II | ≥ K1 − α(k1k2 + k3).

Thus if we choose α < K1/(10(k1k2 + k3)) we have |∂f II | ≥ 9K1/10 outside
the Mr. On the other hand, outside the Mr, we have

|∂f II | ≤ α(k1k2 + k3) ≤ K1/10.

Now consider the situation inside a tube Mr where

f II = f I + α(F+ + F−).

Then
|∂f II | = α|∂(F+ + F−)| ≤ αk4ε,

since F+ + F− is holomorphic along the quadric surfaces and only the z
derivative contributes. Now on each quadric surface the holomorphic function
F++F− is either unramified (for Q > 0) or has two ramification points (where
x0 = 0 and θ ∈ {0, π}, for Q < 0). Let p±r be the ramification points on the
surface corresponding to zr and B

±
r be the δ-balls about p±r . It is clear then

that there is a K2 > 0 such that in the intersection of Ω and Mr \ (B+r ∪B−r ),
and once ε is sufficiently small, we have

|∂w(F+ + F−)| ≥ K2,

where ∂w denotes the derivative along the quadric surfaces. Thus, on this
set,

|∂f II | ≥ αK2.

On the other hand it is also clear that if B±r meets the annulus Ω we have a
bound on the inverse of the Hessian of f II over B±r :

|(∇∂f II)−1| ≤ K3α
−1.

In sum then, ∂f II is κ1-transverse to 0 over Ω with

κ1 = min( 9
10
K1, αK2, αK

−1
3 ),

while
|∂f II | ≤ max(κ2ε, |∂f II | − κ3)

with κ2 = αk4, κ3 = 8K1/10.
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Stage III.

The formulae (50) define σIIi over all of R4 but they do not satisfy the re-
quirements of Hypothesis 3. One problem is that the section σII1 is not
ε-holomorphic over {|x| ≥ 10} because when we differentiate we pick up
a term from ∇βr which is multiplied by the small parameter α but is not
controlled by ε. We now get over this problem.

First we address the fact that the functions F+, F− are not smooth along
the null cone. This is similar to the construction in §4.2. We define a function
γ+ in the region |x| > 0.5 in the following way. We let γ+(x) = 1 if x0 > 0
and γ+(x) = γε(Q(x)) if x0 ≤ 0, where γε is a standard cut-off function, with
γε(t) = 1 if t ≤ −δε and γε(t) = 0 if t ≥ − 1

2
δε. Once ε is sufficiently small,

the function γ+ is smooth in {|x| > 0.5}. Now we put F̃+ = γ+F+. Then
F̃+ is a smooth function over {|x| > 0.5}, holomorphic along the quadric
surfaces. We define F̃− in a symmetrical fashion. Notice that F̃± = F± over
⋃

Nr.
Let χ = χ(|x|) be a standard cut-off function, equal to 1 when |x| ≤ 5

and zero when |x| ≥ 10. Now we set σIII0 = σII0 = σI0 and

σIII1 = χσII1 + (1− χ)(σI1 + α(F̃+ + F̃−)σ
I
0).

These sections are well-defined everywhere, even though the F̃± are not,
because the factor (1− χ) vanishes when |x| ≤ 0.5.

Lemma 19 There are constants C, κ1, κ2, κ3 such that for small enough α
and ε we have

• |∂σIIIi | ≤ Cε in {|x| ≥ 10}

• if f III = σIII1 /σIII0 then over {2 ≤ |x| ≤ 10}, ∂f III is κ1-transverse to
0 and |∂f III | ≤ max(εκ2, |∂f III | − κ3)

Consider the second item of the Lemma. The proof of the previous Lemma
applies equally well to any fixed annulus, with suitable adjustment of con-
stants. Thus here we have to deal with extra terms introduced by, on the one
hand, the passage from F± to F̃± and on the other hand the introduction of
the cut-off function χ. The first issue is essentially covered by the discussion
at the beginning of the proof of Lemma 18, which applies equally well to F̃±.
So we will simply ignore the distinction between F̃± and F±, and consider
the function

f I + α (χ
∑

βr + (1− χ))(F+ + F−).

When we differentiate this we get a new term

α∇χ (
∑

βr − 1)(F+ + F−)
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which is supported outside theMr. The size of∇χ is bounded (independently
of ε): |∇χ| ≤ k5 say. Then the size of the new term is bounded by αk2k5.
Thus the estimates inside Mr are completely unchanged and outside Mr we
have

|∂f III | ≥ 9
10
K1 − αk2k5, |∂f III | ≤ 1

10
K1 + αk2k5.

This establishes the second item of the lemma, once α is sufficiently small
and the constants κi are adjusted suitably.

The first item of the lemma follows from the fact that on {|x| ≥ 10} we
have simply

f III = f I + α(F̃+ + F̃−)

and we can apply the bounds on the derivatives of F̃±, together with the
rapid exponential decay of σ.

Stage IV.

In this final stage, we modify the construction to ensure that we get a topo-
logical Lefschetz fibration over the inner region. For each point z in one of
the discs |z− zr| < δ we have a corresponding quadric surface Σ(z), say. We
can use our standard co-ordinates H, θ to identify these surfaces for different
values of z, so we have diffeomorphisms τz : Σ(z)→ Σ(zr). Let ρ be a stan-
dard cut-off function with ρ(x) = 0 if |x| ≤ 1 and ρ(x) = 1 if |x| ≥ 2. On
the surface Σ(z) we define

F±,r = ρF± + (1− ρ)F± ◦ τz.

This defines new functions F±,r on the tube Nr which are equal to F± when
|x| ≥ 2. Now define σIV1 to be equal to σIII1 in |x| ≥ 2 and to be given by
the modified formula

σIV1 = σI1 + α
∑

βr(F+,r + F−,r)σ
I
0

in the inner region |x| ≤ 2. Again, we keep the same “denominator” σIV0 =
σIII0 .

Lemma 20 When α is sufficiently small the ratio f IV = σIV1 /σIV0 is a topo-
logical Lefschetz fibration over {|x| ≤ 1}, with symplectic fibres.

Notice that the statement of this lemma does not involve any almost
complex structure or quantative estimates. Clearly the only issue involves
the behaviour over the tubes Nr and to prove the Lemma we consider an
auxiliary almost-complex structure on the tubes – just the integrable product
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structure given by the identification with Dr × Σ(zr). Thus taking w as a
complex co-ordinate on Σ(zr) our function has the simple form on Nr,

f IV (z, w) = f I(z) + αβr(z) g(w),

where g is the holomorphic function F++F− on Σ(zr). This function f
IV is

holomorphic on the interior tube Mr with nondegenerate critical points. So
it suffices to show that

|∂f IV | < |∂f IV |
on Nr \Mr, where now ∂, ∂ refer to the product complex structure. Then on
this region we still have

|∂f I | ≥ K1, |∇βr| ≤ k1, |F+ + F−| ≤ k1.

Now
|∂f IV | = α|∇βr| |g| ≤ αk1k2,

while
|∂f IV | ≥ |∂zf IV | = |∂zf I + α∇βr g| ≥ K1 − αk1k2.

Thus the result follows once α < K1/2k1k2. (The point of this proof is that
we do not need to control the derivatives of F± in the inner region where
|x| < 1. )

This essentially completes our construction. There is just one last issue;
that we want to have sections defined over the whole manifold X while up
to now we have been working in the local model. So we define

σi = φσIVi

where φ is a cut-off function equal to 1 for |x| ≤ c ε−1 and to zero when
|x| ≥ 2c ε−1 (for some fixed c > 0). Thus these sections σi can be extended
by 0 over the whole of X. Our final result is:

Proposition 12 There are constants κ1, κ2, κ3, C such that for a suitable
value of α, and once ε is sufficiently small, the sections σ0, σ1 satisfy Hypoth-
esis H3(ε, κ1, κ2, κ3, C).

The proof of this proposition has been largely covered in the preceding
lemmas. There is one point left over from Stage IV: we need to check that
the map f IV satisfies the required transversality estimates over the annulus
{1 ≤ |x| ≤ 2}. Here the discussion follows the same lines as in Stage II,
except that we replace the functions F± by the linear combinations

F±,r = ρF± + (1− ρ)F± ◦ τz = F± + (1− ρ)(F± ◦ τz − F±).
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But F±,r − F± is O(ε) (along with its derivatives). So the extra term intro-
duced here causes no problem.

Finally, we check that the terms introduced by the cut-off function φ are
much smaller than ε due to the rapid decay of σ away from the origin; this
completes the argument.

6.3 The odd case

In all our discussion so far we have focussed on the case when the zero set
Γ has just one component and the local model is the “even” version N+.
We now consider the modifications required for the general case. It is quite
obvious that the existence of several components makes no difference to the
argument, all we have to discuss is the case of the “odd” model N−. In this
case the map σ− interchanges the two components of the positive cone and
maps (H, θ) to (−H,−θ) but preserves the co-ordinate Q.

We begin with the last part of the construction, the local model in Section
6.2 above. Since the sections σI0 , σ

I
1 only depend on the Q, t variables the first

step goes through unchanged. In the later stages we use the fact that the
involution interchanges the functions F+ and F−, and so preserves their sum.
The upshot is that the whole construction in §6.2 goes over immediately to
the odd case.

The slightly more substantial discussion involves the construction of the
localised sections in the odd case. Working in R4, in §6.1 we have defined
2πε−1-periodic sections Θx′,t′ . We write these as

Θx′,t′ = Θ+
x′,t′ +Θ−x′,t′ ,

taking the even and odd terms respectively in the sum (49). Thus Θ±x′,t′
are 4πε−1-periodic and the translation t 7→ t + 2πε−1 interchanges the two
sections. Now we define

sx′,t′ = Θ+
x′,t′ ⊗ τ ∗x′ +Θ−x′,t′ ⊗ τ ∗σ−(x′).

These sections are invariant under the map σ− on R4 so descend to N−.

7 The converse result

7.1 Proof of Theorem 3

The proof of Theorem 3 is very similar to that of Gompf’s result for sym-
plectic Lefschetz fibrations and pencils [8], which in turn relies on a classical
argument of Thurston [15].
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Let X be a compact oriented 4-manifold, and let f : X \ A → S2 be a
singular Lefschetz pencil with singular set Γ. LetB be the finite set of isolated
critical points of f inX\Γ, near which f is modelled on (z1, z2) 7→ z21+z

2
2 . We

assume that there exists a cohomology class h ∈ H2(X) such that h(Σ) > 0
for every component Σ of a fibre of f (if every component Σ contains a base
point of the pencil, then we can choose h to be Poincaré dual to the homology
class of the fibre).

Step 1. We start by constructing a closed 2-form ω0 over a regular
neighbourhood U of A ∪B ∪ Γ, non-degenerate outside of Γ and positive on
the fibres of f , in the following manner. Near A ∪ B, we take ω0 to be the
standard Kähler form of C2 in some local oriented co-ordinates in which f is
given by the standard models (z1, z2) 7→ z1/z2 and (z1, z2) 7→ z21 + z22 . Near
a point p ∈ Γ, we have oriented local co-ordinates in which f is modelled on
(x0, x1, x2, t) 7→ x20 − 1

2
(x21 + x22) + it. Then we let

ωp = d
(

χ(|t|)x0(x1 dx2 − x2 dx1)
)

,

where χ is a suitable smooth cut-off function, and we extend ωp into a closed
2-form defined over a tubular neighbourhood of the component of Γ contain-
ing p, supported near p. The 2-form ωp vanishes on Γ, and its restriction
to the fibres of f is non-negative, and positive near p (outside of Γ). By
choosing a suitable finite subset {pi} of Γ and setting ω0 =

∑

i ωpi + f
∗(ωS2),

we obtain a closed 2-form defined over a neighbourhood of Γ, positive on the
fibres, vanishing on Γ and non-degenerate outside of Γ.

Step 2. Our next task is to construct local closed 2-forms over neighbour-
hoods of the fibres of f , compatible with our local model ω0 near A∪B ∪ Γ,
and restricting positively to the vertical tangent spaces; we will then glue
these into a globally defined 2-form. For this purpose, we choose a closed
2-form η ∈ Ω2(X), with [η] = h. Since U retracts onto a union of points and
circles, H2(U) = 0, and there is a 1-form β such that ω0 − η = dβ over U .
Extending β to an arbitrary 1-form on M with support in a neighbourhood
of U , and replacing η by η + dβ, we can assume that η|U = ω0.

Given any point q ∈ S2, we can find a regular neighbourhood Vq of the
fibre Fq = f−1(q) ∪A, and neighbourhoods U ′′ ⊂ U ′ ⊂ U of A ∪B ∪ Γ, with
the following properties:

• Vq ∩ U ′ retracts onto Fq ∩ (A ∪B ∪ Γ);

• Vq \ (Vq ∩ U ′′) is diffeomorphic to a product D2 × (Fq \ (Fq ∩ U ′′));

• there exists a smooth map π : Vq → Vq with image in Fq ∪ (Vq ∩ U ′),
equal to identity over Fq ∪ (Vq ∩ U ′′).

59



The first and second properties can easily be ensured by shrinking Vq so that
all critical points of f over Vq lie close to the singular locus of Fq; the map
π can then be built by interpolating between the identity map over Vq ∩ U ′
and the projection map from Vq \ (Vq ∩ U ′′) to Fq \ (Fq ∩ U ′′) given by the
product structure.

Since by assumption [η] = h evaluates positively over each component of
Fq, shrinking U

′ if necessary we can equip Fq with a (near) symplectic form
σq which coincides with η over Fq ∩ U ′, is symplectic over the smooth part
of Fq, and such that [σq − η|Fq ] = 0 in H2(Fq, Fq ∩ U ′) (i.e.,

∫

Σ
σq = h(Σ) for

every component Σ of Fq). Using the projection π to pull back the 2-forms
η on Vq ∩ U ′ and σq on Fq, we obtain a 2-form η̃q on Vq with the following
properties:

• η̃q is closed, and [η̃q] = h|Vq ;

• η̃q coincides with η over Vq ∩ U ′′;
• [η̃q − η] = 0 in H2(Vq, Vq ∩ U ′′) ' H2(Fq, Fq ∩ U ′′);
• (shrinking Vq if necessary) the restriction of η̃q to Ker(df) is positive at

every regular point of f in Vq.

By the third property, there is a 1-form βq on Vq, vanishing identically over
Vq ∩ U ′′, such that η̃q = η + dβq.

Step 3. For each q ∈ S2, the above construction yields a 2-form η̃q
defined over a neighbourhood Vq of the fibre Fq. By compactness, each Vq
contains the preimage of a neighbourhood Dq of q in S

2, and there is a finite
set Q ⊂ S2 such that the open subsets (Dq)q∈Q cover S2. Consider a smooth
partition of unity

∑

q∈Q ρq = 1 with ρq supported inside Dq, and define

η̃ = η + d
(

∑

q∈Q
(ρq ◦ f) βq

)

. (51)

The closed 2-form η̃ coincides with η over the intersection Ũ of the neighbour-
hoods U ′′ considered above for all q ∈ Q, and hence is well-defined over all
X even though (51) only makes sense outside of A. Moreover, the restriction
of η̃ to a fibre Fp of f is

η̃|Fp =
∑

q∈Q
ρq(f(p)) (η + dβq)|Fp =

∑

q∈Q
ρq(f(p)) η̃q|Fp ,

i.e. a convex combination of positive forms; hence η̃ induces a symplectic
structure on each fibre of f (outside of the critical points). Hence, as in
Thurston’s original argument, for large enough λ > 0 the 2-form

ωλ = η̃ + λ f ∗ωS2
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is closed and non-degenerate over X \ (A∪Γ), and restricts positively to the
fibres of f ; moreover ωλ vanishes transversely along Γ, as expected. However,
ωλ does not extend smoothly over the base locus A, and we need to apply a
trick due to Gompf [8] in order to complete the construction.

Step 4. Near a base point of f , consider local co-ordinates in which f is
the projectivisation map from C2 \ {0} to CP1, and denote by r the radial
co-ordinate and by α the pullback to C2 \ {0} = R+ × S3 of the standard
contact form of S3. Then we have

ωλ = λ f ∗ωS2 + ω0 = (λ+ r2) f ∗ωS2 +
1

2
d(r2) ∧ α.

Setting R2 = λ+r2, we have ωλ = R2 f ∗ωS2+ 1
2
d(R2)∧α. Hence, the radially

symmetric map ϕ(z) = (λ + |z|2)1/2 z/|z| defines a symplectic embedding of
(C2\{0}, ωλ) into (C2, ω0), whose image is the complement of a ball of radius
λ1/2. Therefore, by replacing the ball of radius ε around each point of A in
(X,ωλ) by a standard ball of radius (λ + ε2)1/2 in (C2, ω0) we can obtain a
globally defined near-symplectic structure ω. More precisely, ω is naturally
defined on the 4-manifold Y obtained from X by this cut-and-paste process;
however Y can easily be identified with X via a diffeomorphism which equals
identity outside of an arbitrarily small neighbourhood of A.

Another viewpoint is to observe that ωλ extends smoothly to the manifold
X̂ obtained by blowing up X at the base points; gluing in standard balls
in place of the exceptional divisors amounts to a symplectic blowdown of
(X̂, ωλ), and yields a well-defined near-symplectic form on X. In any case,
one easily checks that the various requirements satisfied by ωλ (vanishing
along Γ, and positivity over the fibres of f) still hold for the modified form
ω; this completes the main part of the argument.

The cohomology class of the constructed form ω is h+ λ f ∗[ωS2 ] (identi-
fying implicitly H2(X) with H2(X \A)). If we assume that every component
of every fibre contains a base point we can take h to be Poincaré dual to
the class of the fibre. In that case f ∗[ωS2 ] = h (up to a scalar factor), so
after scaling by 1

1+λ
we can ensure that [ω] = h is Poincaré dual to the fibre.

(However, since we have no control over the relative class [ω] ∈ H2(X,Γ),
deformations of near-symplectic forms in the class h are not always generated
by isotopies of X).

Before we can state more precisely our uniqueness result for the deforma-
tion class of ω, we consider again the positivity property for the restriction of
ω to the fibres of f , and its implications for the local structure near a point of
Γ. Recall that the first-order variation of ω at a point x of Γ yields canonically
a linear map ∇xω : NΓx → Λ2T ∗Xx. Restrict locally f to a normal slice D
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to Γ through x obtained as the preimage of a transverse arc to f(Γ) through
f(x). Then the 2-jet of f|D at x defines a non-degenerate quadratic form Q
on TDx ' NΓx; and, if one approaches x in the direction of a non-zero vector
v ∈ TDx, the plane field Ker df converges to v⊥ = KerQ(v, ·) ⊂ TDx. Hence,
the positivity condition on the restriction of the near-symplectic form ω to
the fibres of f implies that, for every v ∈ TDx\{0}, the 2-form ∇xω(v) evalu-
ates non-negatively on the 2-dimensional subspace v⊥ ⊂ TDx (since it is the
limit of the tangent spaces to the fibres when approaching x in the direction
of v). However, in our case it is easy to check that the above construction of
ω guarantees that ω|Ker df is bounded from below by a constant multiple of
the distance to Γ (i.e., a constant multiple of the norm of ω). Equivalently,
the tangent spaces to the fibres near x do not tend to degenerate to isotropic
subspaces as one approaches x. This implies that the restriction of ∇xω(v)
to the 2-plane v⊥ is in fact positive for every v 6= 0. Now we have:

Lemma 21 Let ω0, ω1 be two near-symplectic forms with the same zero set
Γ and for which the smooth parts of the fibres of f are symplectic. Assume
moreover that for all x ∈ Γ, v ∈ NΓx \ {0}, j ∈ {0, 1}, the restriction of
∇xωj(v) to the limiting tangent plane v⊥ is positive. Then ω0 and ω1 are de-
formation equivalent through near-symplectic forms with the same properties.

Proof. We start with the convex combinations ωs = (1− s)ω0 + s ω1. For all
s ∈ [0, 1], ωs is a closed 2-form which vanishes on Γ and evaluates positively
on the fibres of f outside of the critical points, but it may be degenerate
at some points of X \ Γ. We can avoid this problem by deforming ω0 and
ω1 to make them standard over a small neighbourhood of A, choosing a
large enough constant λ > 0, and considering the 2-forms ω̃s obtained from
ωs + λ f ∗ωS2 by inserting standard balls near the base points as described
above.

The 2-forms ω̃s are closed and positive on fibres, they vanish on Γ, and if
λ is large enough they are non-degenerate outside of Γ (away from A∪B this
follows from Thurston’s classical argument; and at a point x ∈ A ∪ B this
follows from positivity on the fibres, which implies that ω̃s tames a naturally
defined complex structure on TxX). Moreover, ω̃0 and ω0 are deformation
equivalent through the family of near-symplectic forms obtained by blowing
down ω0 + t f ∗ωS2 for t ∈ [0, λ]; and similarly for ω̃1 and ω1. Hence, all that
remains to be checked is the non-degeneracy of ∇ω̃s along Γ for all s ∈ [0, 1].

By assumption, for all x ∈ Γ and v ∈ NΓx \ {0}, the 2-forms ∇xωj(v)
(j = 0, 1), and consequently ∇xω̃j(v) too, evaluate positively on the limiting
vertical tangent space v⊥. Since this positivity condition is preserved by
convex combinations, we conclude that ∇xω̃s(v) evaluates positively on v⊥.
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Moreover this implies that∇xω̃s(v) 6= 0 for all s ∈ [0, 1], x ∈ Γ, v ∈ NΓx\{0},
which proves that ω̃s vanishes transversely along Γ and hence is a near-
symplectic form.

7.2 Proof of Proposition 1

Consider R4 with its standard Euclidean structure and orientation, inducing
a splitting Λ2R4 = Λ2+,0 ⊕ Λ2−,0. The wedge-product restricts to a given 3-
dimensional subspace P ⊂ Λ2R4 as a definite positive bilinear form if and
only if P can be written as the graph P = {α + L(α), α ∈ Λ2+,0} of a
linear map L : Λ2+,0 → Λ2−,0 with operator norm less than 1. Therefore,
positive definite subspaces form a “convex” subset of the Grassmannian of
3-planes in Λ2R4. Moreover, given an element β ∈ Λ2R4 with β ∧ β > 0, the
space of all positive definite 3-planes containing β is again convex (and hence
contractible). In another guise, the set of positive definite subspaces can be
identified with the set of conformal classes of Euclidean metrics on R4, i.e.
for each such subspace P there is a unique metric, up to scale, which realises
P as its space of self-dual forms.

Given a near-symplectic form ω on X, our goal is to build a Riemannian
metric with respect to which ω is self-dual; for this purpose, we first build
a smooth rank 3 subbundle P of Λ2T ∗X, positive definite with respect to
the wedge-product, and such that ω is a section of P . The smoothness
assumption implies that, at every point x ∈ Γ = ω−1(0), Px must coincide
with the image of the intrinsically defined derivative ∇ωx : TxX → Λ2T ∗Xx.
We can extend the construction of P first to a neighbourhood of Γ, and
then to all of X, using the convexity property mentioned in the previous
paragraph to patch together local constructions by means of a partition of
unity.

By the discussion above, there is a unique conformal class [g] which re-
alises the subbundle P as the bundle of self-dual forms. For any metric g
in this conformal class, the 2-form ω is self-dual, and then closedness im-
plies harmonicity. This completes the proof of the first statement in the
Proposition.

We now consider the claim that if X is compact and b+2 (X) ≥ 1 then for
generic Riemannian metrics on X one can obtain near-symplectic structures
from self-dual harmonic forms. This is proved by considering the space C of
pairs (g, a), where g is a Ck,α Riemannian metric on X and a ∈ H2

+,g is a
cohomology class such that a2 = 1 and admitting a self-dual representative.
The universal bundle Λ+ over X × C, whose fibre at (x, g, a) is Λ2+,gT

∗Xx,
admits a universal section Ω whose restriction to X × {(g, a)} is the unique
harmonic self-dual 2-form in the given cohomology class. It can be shown
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that Ω is transverse to the zero section of Λ+ (cf. e.g. [11], Section 3). The
statement follows by observing that the regular values of the projection of
Ω−1(0) to C form a dense subset of the second Baire category in C. Detailed
proofs have already appeared in the literature, and the reader is referred to
[9] (Theorem 1.1) or [11] (Proposition 1).

The only remaining statement to prove is that [ω] ∈ H2(X,R) can be
chosen to be the reduction of a rational class. However, this follows readily
from the observation that the set of all (g, a) ∈ C for which the self-dual
harmonic form in the class a has transverse zeros is an open subset of C, and
therefore necessarily contains points such that a is proportional to a rational
cohomology class.

8 Topological considerations and examples

8.1 Monodromy

Consider a near-symplectic 4-manifold (X,ω) with ω−1(0) = Γ, and a singu-
lar Lefschetz pencil f : X \ A → S2 such that each component of Γ maps
bijectively to the equator as in Theorem 2. Up to a small perturbation we
can assume that f is injective on the set B of isolated critical points, and
that f(B) ∩ f(Γ) = ∅. After blowing up the base points, we obtain a new
manifold X̂, and f extends to a well-defined map f̂ : X̂ → S2.

Let V be a tubular neighbourhood of the equator in S2, disjoint from
f(B), and denote by D± the two components of S2 \V . Then we can decom-
pose X̂ into three pieces: X+ = f̂−1(D+), W = f̂−1(V ), and X− = f̂−1(D−).
The zero locus Γ of the near-symplectic form is entirely contained in W .
The manifolds X± are symplectic, and the restriction of f̂ to X± yields two
symplectic Lefschetz fibrations f± : X± → D±, with fibres Σ±.

Consider the quadratic local model (x, t) 7→ (Q(x), t) describing the be-
haviour of f near Γ: the fibres are locally given by hyperboloids in R3,
two-sheeted for Q > 0 and one-sheeted for Q < 0, with a conical singularity
for Q = 0. Hence, the fibres for Q < 0 are obtained from those for Q > 0
by attaching a handle, which decreases the Euler characteristic by 2. Since
the diffeomorphisms used to paste this local model into f are oriented in the
same manner for all components of Γ, the induced normal orientations of the
equator are consistent, and we can choose D+ (resp. D−) to correspond to
positive (resp. negative) values of Q in the local models near all components
of Γ. With this convention, χ(Σ−) = χ(Σ+) − 2m, where m is the number
of components of Γ (if we assume that Σ+ is connected of genus g, then the
genus of Σ− is g +m).
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Since the restriction of f̂ to W has no critical points outside of Γ, the
4-manifold W is a fibre bundle over S1, whose fibre Y (the preimage of a
small arc transverse to the equator) defines a cobordism between Σ+ and
Σ−, consisting of a series of handle attachment operations (one for each
component of Γ). Hence W relates the boundaries of X+ and X− to each
other via a sequence of fibrewise handle additions.

More precisely, identify V with S1× [−δ, δ], and consider for each θ ∈ S1
the two boundary fibres Σ±,θ = f̂−1(θ,±δ). Then Σ−,θ is obtained from Σ+,θ
by deleting 2m small discs and identifying m pairs of boundary components.
Conversely Σ+,θ is obtained from Σ−,θ by cutting it open along m disjoint
simple closed curves, and capping the boundary components with discs.

Letting θ vary, the union of these discs forms the tubular neighbourhood
UL of a link L ⊂ ∂X+. The link L intersects each fibre of ∂X+ in 2m points
(i.e., it is in fact a braid with 2m strands in ∂X+); these points are naturally
partitioned into m pairs, according to the manner in which the boundary
components of Σ+,θ \ (Σ+,θ ∩ UL) are glued to each other in order to obtain
Σ−,θ. Since each pair of points canonically corresponds to a component of Γ,
the components of L are naturally labelled (“coloured”) by components of Γ
(or, less canonically, by integers 1, . . . ,m).

Moreover, L also carries naturally a relative framing, which keeps track
of the manner in which the boundary components of ∂X+ \UL with the same
colour are identified. More precisely, the relative framing is the choice of a
smooth involution ρ : ∂UL → ∂UL, preserving the fibration structure above
S1, the colouring and the orientation, but exchanging the two components
with the same colour in each fibre, up to isotopy. Given two relative framings
ρ, ρ′, for each of them colours the restrictions of ρ and ρ′ to the corresponding
components of ∂UL differ by an element of π1Diff(S1) ' Z. Hence, the set
of relative framings is a Zm-torsor.

The monodromy of ∂X+, the 2m-strand braid L ⊂ ∂X+, the colouring
c : L → {1, . . . ,m} and the relative framing ρ determine completely the
topology of the fibred cobordism W .

Recall that the symplectic Lefschetz fibrations f± : X± → D± are deter-
mined by their monodromies, which take values in the relative mapping class
groups Map(Σ±, A), i.e. the set of isotopy classes of orientation-preserving
diffeomorphisms of Σ± which coincide with identity over a small neighbour-
hood of the base locus A. If we assume that Σ± are connected of genus g±
and the number of base points is n, then Map(Σ±, A) is nothing but the
mapping class group Mapg±,n of a genus g± surface with n boundary com-
ponents. The monodromy around each isolated singular fibre is a positive
Dehn twist along a simple closed curve (the corresponding vanishing cycle),
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and the product of these Dehn twists is equal to the monodromy ψ± of the
boundary fibration ∂X± → S1.

The coloured braid L and the relative framing ρ determine a lift of ψ+
from Map(Σ+, A) to Map(Σ−, A), which we denote by ψ̂+. More precisely,
starting from the mapping torus ∂X+ of ψ+, by deleting a tubular neigh-
bourhood of the braid L one obtains a new fibre bundle over S1, whose fibre
has genus g+ and 2m boundary components (if L is trivial, this lifts ψ+ from
Mapg+,n to Mapg+,n+2m). The colouring and the relative framing then specify
a manner in which the 2m boundary components are glued to each other, to
obtain a bundle over S1 with closed fibres of genus g+ +m = g−, and whose
monodromy is by definition ψ̂+ ∈ Map(Σ−, A). Because this 3-manifold co-
incides with ∂X− up to a change of orientation, ψ̂+ ·ψ− belongs to the kernel
of the natural morphism Map(Σ−, A) → Map(Σ−). However, because each
exceptional section of f̂ obtained by blowing up A has a normal bundle of
degree −1, the product ψ̂+ · ψ− is not Id, but rather the boundary twist
δA ∈ Map(Σ−, A), i.e., the product of the Dehn twists along small loops
encircling the various points of A.

If we assume that the identity components in Diff(Σ±, A) are simply
connected (e.g., if Σ± both have genus at least 2), then the manner in which
the boundaries of X± and W are glued to each other is determined uniquely
up to isotopy. The above data (the monodromies of X±, and the coloured
link L with its relative framing) then determine completely the topology
of f . Otherwise, the possible gluings of ∂X± to the boundary of W are
parametrised by elements of π1Diff(Σ±, A).

Example. To make the above discussion more concrete, we briefly con-
sider the case where X+ has no singular fibres (X+ ' Σ+ × D2) and Γ is
connected. Then L intersects each fibre of ∂X+ in two points, and Σ− is
obtained from Σ+ by cutting it open at these two points and attaching a
handle in the manner prescribed by the relative framing of L. The core of
this handle is a simple closed loop γ ⊂ Σ−, which can be thought of as the
“vanishing cycle” associated to the equator.

The link L is an arbitrary element of the braid group B2(Σ+), i.e. the
fundamental group of the complement of the diagonal in the second sym-
metric product of Σ+. Depending on whether the monodromy preserves or
exchanges the two points of Σ+ ∩ L (i.e., whether L has one or two compo-
nents), the S1-bundle over S1 formed by the “vanishing cycle” inside ∂X−
can be either a torus or a Klein bottle. These two cases correspond respec-
tively to the two local models N+ and N− described in the Introduction for
the behaviour of ω in a neighbourhood of Γ.

We finish with a simple remark illustrating the importance of the relative
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framing of L. Even when the braid L is trivial, the boundary of X− need
not be diffeomorphic to S1×Σ−: in general, the monodromy of ∂X− can be
an arbitrary power of the Dehn twist along the vanishing cycle γ ⊂ Σ−.

8.2 Examples

Example 1. The simplest non-trivial examples of singular Lefschetz fibra-
tions f : X → S2 are those where Γ is connected, with a neighbourhood
modelled on N+, there are no isolated singular fibres, and the fibres are
connected of genus 0 over D+ and genus 1 over D− (see Figure 4).
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Figure 4: A genus 0/1 singular fibration

The total space of the fibration is a smooth 4-manifold X obtained by
gluing together the three open pieces X− ' T 2×D2 lying over the southern
hemisphere D−, W lying over a neighbourhood of the equator, and X+ '
S2 × D2 lying over the northern hemisphere D+. The manifold W is a
product of S1 with the standard cobordism from the torus T 2 to sphere S2,
which is diffeomorphic to a solid torus with a small ball removed. Hence,
W ' S1 × (S1 ×D2 \B3).

Because the diffeomorphism groups of S2 and T 2 are not simply con-
nected, there are various possible choices for the identification diffeomor-
phisms φ± between the boundaries S1 × S2 (resp. S1 × T 2) of X± and W .
Since φ± must be compatible with the fibration structure over S1, they are
described by families of diffeomorphisms of the boundary fibres, i.e. elements
of π1Diff(S2) ' Z/2 and π1Diff(T 2) ' Z2 (compare with the case of ordinary
sphere or torus bundles over S2).

Let us consider e.g. the “untwisted” fibration f : X → S2, correspond-
ing to trivial choices for both gluings. This fibration admits a section with
trivial normal bundle (considering a point lying away from the “vanishing
cycle” in each T 2 fibre, and the corresponding point in each S2 fibre), and
its fundamental group is Z (generated by a loop transverse to the vanishing
cycle in a T 2 fibre). Its total space is diffeomorphic to the connected sum
(S1 × S3)#(S2 × S2). Indeed, using the decomposition of S3 into two solid
tori, it is easy to see that X− ∪ W is diffeomorphic to the complement of
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an embedded loop γ in S1 × S3 (the S1 factor corresponds to the direction
transverse to the vanishing cycles in the T 2 fibres). In the untwisted case,
the loop γ projects to a single point in the S1 factor, and represents an un-
knot in S3; in particular, it can be contracted into an arbitrarily small ball
in S1 × S3, and the attachment of the handle X+ can be viewed as a con-
nected sum operation performed on S1 × S3. Observing that S4 splits into
(S1 ×B3) ∪ (D2 × S2) and hence that the corresponding handle attachment
operation turns S4 \ S1 into a S2-bundle over S2 (in this case S2 × S2), we
conclude that X is as claimed.

If we still glue X− via the trivial element in π1Diff(T 2) but glue X+ using
the non-trivial element in π1Diff(S2), then we obtain (S1 × S3)#CP2#CP2
instead. However, if e.g. we twist the fibration by a loop of diffeomorphisms
of T 2 corresponding to a unit translation in the direction transverse to the
vanishing cycle, we lose the existence of a section, and the total space becomes
simply connected. In fact, the new total space X ′ is diffeomorphic to S4.
Indeed, X− ∪W is still the complement of a closed loop in S1 × S3, but the
missing loop γ ′ now projects non-trivially to the S1 factor, and is isotopic
to S1 × {pt} ⊂ S1 × S3. Therefore, we now have X− ∪W ' S1 × B3, and
by gluing X+ = D2 × S2 along the boundary we obtain X ′ ' S4. Theorem
3 fails to apply in this case, because the cohomological assumption fails to
hold (the fibres are homologically trivial).

Example 2 – Isotropic blow-up. There are several different opera-
tions that can be performed on a singular Lefschetz fibration f : X4 → S2 in
order to modify its total space by a topological blow-up operation (i.e., con-
nected sum with CP2). Keeping symplectic Lefschetz fibrations in mind, the
“usual” blow-up construction amounts to the insertion of an isolated singular
fibre with a homotopically trivial vanishing cycle. The exceptional sphere is
then obtained as a component of the singular fibre, and is hence naturally
symplectic with respect to any 2-form compatible with the fibration struc-
ture. If we perform the blow-up near a point p ∈ Γ, we can instead modify
f according to the local operation represented on Figure 5.
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Figure 5: Blowing up near Γ: f (left) and f ′ (right)
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We start from a small ball B4 centred at p, over which f is as shown in
the left half of Figure 5, and replace it with the total space of the fibration
f ′ represented in the right half of the figure. The map f ′ differs from f in
two respects: (1) it has an additional isolated critical point q ∈ X−, where
the vanishing cycle γ is the same as at p; (2) the relative framing of the link
L ⊂ ∂X+ is modified by −1. As explained at the end of the previous Section,
changing the relative framing modifies the lift ψ̂+ of the monodromy of ∂X+

to Map(Σ−, A) by the inverse of the Dehn twist along γ; this compensates
the modification of the monodromy of ∂X− by the same Dehn twist due to
the new isolated singular fibre.

The total space of f ′ is the union of two subsets U1 and U2 (see figure),
both diffeomorphic to 4-balls. Over U1 the map f ′ is modelled on (t, x, y, z) 7→
(t, x2+ y2− z2), while over U2 it is modelled on (z1, z2) 7→ z21 + z22 . The total
space of U1 can be viewed as a disc bundle over a discD1 = {z = t = 0}, while
the total space of U2 is a disc bundle over a disc D2 = {Im z1 = Im z2 = 0}.
The boundaries of the two discs D1 and D2 match with each other, so that
the total space of f ′ is a disc bundle over a sphere S = D1 ∪D2 (dotted in
Figure 5). Moreover, it is easy to check that the normal bundle of S has
degree −1.

From the near-symplectic point of view, this type of blow-up is not equiv-
alent to the usual one. Indeed, in this setup the exceptional sphere S arises
from a matching pair of vanishing cycles above an arc joining the critical
values f ′(p) and f ′(q), and for a suitable choice of the compatible near-
symplectic form ω on the total space of f ′ it will be ω-isotropic.

Example 3. Consider an isolated Lefschetz-type critical point of a sin-
gular fibration, with vanishing cycle a loop γ in the nearby generic fibre.
We can remove a neighbourhood of this singular fibre and insert in its place
a configuration where the critical values form a simple closed loop δ, with
fibre genus decreased by 1 inside δ, and using the same loop γ as “vanishing
cycle”, as shown in Figure 6. This adds a new component to Γ (this compo-
nent is not mapped to the equator of S2; here we consider singular Lefschetz
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Figure 6: Inserting a critical circle: f (left) and f ′ (right)
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fibrations more general than those given by Theorem 2).
The fibres outside δ are obtained from those inside by attaching a handle

joining two points q, q′ as shown in the figure. Along δ the points q, q′ describe
a trivial braid, but the relative framing differs from the trivial one by +1, so
that on the outer side the monodromy around δ consists of a single positive
Dehn twist along γ (which balances the loss of the isolated singular fibre).

The total space of the local model for f given on Figure 6 (left) is simply
a 4-ball. On the other hand, the total space of the new fibration f ′ contains
a smoothly embedded sphere S, obtained by considering the two points q
and q′ in each of the fibres inside δ (yielding the two hemispheres of S), and
the singular points in the fibres above δ (yielding the equator). Using the
fact that the monodromy around δ is a positive Dehn twist along γ, it can
be checked easily that S has self-intersection +1. Moreover, the preimage of
the interior region V is the disjoint union of two D2×D2’s, and hence a disc
bundle over S∩f ′−1(V ). On the other hand, the preimage of the outer region
is diffeomorphic to S1×B3, and is again a disc bundle over a neighbourhood
of the equator in S. Therefore, the total space of f ′ is a disc bundle over the
sphere S, and it is diffeomorphic to the complement of a ball in CP2.

It follows that the operation we have described amounts to a connected
sum with CP2 – an operation whose result is never a symplectic 4-manifold
unless the original manifold had b+2 = 0, by the work of Taubes. In particular,
if the configuration f ′ occurs inside a singular Lefschetz fibration satisfying
the assumptions of Theorem 3, then its total space has b+2 ≥ 2 and splits off
a CP2 summand, and hence does not admit any symplectic structure (more
generally, this also holds for similar configurations with arbitrarily positive
relative framings, since these contain +n-spheres which can be blown up to
produce a CP2 summand).
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