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Abstract. We show that every compact symplectic 4-manifold X can
be topologically realized as a covering of CP2 branched along a smooth
symplectic curve inX which projects as an immersed curve with cusps in
CP2. Furthermore, the covering map can be chosen to be approximately
pseudo-holomorphic with respect to any given almost-complex structure
on X.

1. Introduction

It has recently been shown by Donaldson [3] that the existence of ap-
proximately holomorphic sections of very positive line bundles over com-
pact symplectic manifolds allows the construction not only of symplectic
submanifolds ([2], see also [1],[5]) but also of symplectic Lefschetz pencil
structures. The aim of this paper is to show how similar techniques can be
applied in the case of 4-manifolds to obtain maps to CP2, thus proving that
every compact symplectic 4-manifold is topologically a (singular) branched
covering of CP2.

Let (X,ω) be a compact symplectic 4-manifold such that the cohomol-
ogy class 1

2π [ω] ∈ H2(X,R) is integral. This integrality condition does not
restrict the diffeomorphism type of X in any way, since starting from an ar-
bitrary symplectic structure one can always perturb it so that 1

2π [ω] becomes
rational, and then multiply ω by a constant factor to obtain integrality. A
compatible almost-complex structure J on X and the corresponding Rie-
mannian metric g are also fixed.

Let L be the complex line bundle on X whose first Chern class is c1(L) =
1
2π [ω]. Fix a Hermitian structure on L, and let ∇L be a Hermitian con-
nection on L whose curvature 2-form is equal to −iω (it is clear that such
a connection always exists). The key observation is that, for large values
of an integer parameter k, the line bundles Lk admit many approximately
holomorphic sections, thus making it possible to obtain sections which have
nice transversality properties.

For example, one such section can be used to define an approximately
holomorphic symplectic submanifold in X [2]. Similarly, constructing two
sections satisfying certain transversality requirements yields a Lefschetz pen-
cil structure [3]. In our case, the aim is to construct, for large enough k,
three sections s0k, s

1
k and s2k of Lk satisfying certain transversality properties,

in such a way that the three sections do not vanish simultaneously and that
the map from X to CP2 defined by x 7→ [s0k(x) : s

1
k(x) : s

2
k(x)] is a branched

covering.
1
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Let us now describe more precisely the notion of approximately holomor-
phic singular branched covering. Fix a constant ε > 0, and let U be a
neighborhood of a point x in an almost-complex 4-manifold. We say that
a local complex coordinate map φ : U → C2 is ε-approximately holomor-
phic if, at every point, |φ∗J − J0| ≤ ε, where J0 is the canonical complex
structure on C2. Another equivalent way to state the same property is the
bound |∂̄φ(u)| ≤ 1

2ε|dφ(u)| for every tangent vector u (this definition does

not depend on the choice of a metric on the almost-complex 4-manifold ; C2

is endowed with its usual Euclidean metric).

Definition 1. A map f : X → CP2 is locally ε-holomorphically modelled
at x on a map g : C2 → C2 if there exist neighborhoods U of x in X and
V of f(x) in CP2, and ε-approximately holomorphic C1 coordinate maps
φ : U → C2 and ψ : V → C2 such that f = ψ−1 ◦ g ◦ φ over U .

Definition 2. A map f : X → CP2 is an ε-holomorphic singular covering
branched along a submanifold R ⊂ X if its differential is surjective every-
where except at the points of R, where rank(df) = 2, and if at any point
x ∈ X it is locally ε-holomorphically modelled on one of the three following
maps :

(i) local diffeomorphism : (z1, z2) 7→ (z1, z2) ;
(ii) branched covering : (z1, z2) 7→ (z21 , z2) ;
(iii) cusp covering : (z1, z2) 7→ (z31 − z1z2, z2).

In particular it is clear that the cusp model occurs only in a neighborhood
of a finite set of points C ⊂ R, and that the branched covering model occurs
only in a neighborhood of R (away from C), while f is a local diffeomorphism
everywhere outside of a neighborhood of R. Moreover, the set of branch
points R and its projection f(R) can be described as follows in the local mod-
els : for the branched covering model, R = {(z1, z2), z1 = 0} and f(R) =
{(x, y), x = 0} ; for the cusp covering model, R = {(z1, z2), 3z21 − z2 = 0}
and f(R) = {(x, y), 27x2 − 4y3 = 0}.

It follows that, if ε < 1, R is a smooth 2-dimensional submanifold in X,
approximately J-holomorphic, and therefore symplectic, and that f(R) is an
immersed symplectic curve in CP2 except for a finite number of cusps.

We now state our main result :

Theorem 1. For any ε > 0 there exists an ε-holomorphic singular covering
map f : X → CP2.

The techniques involved in the proof of this result are similar to those
introduced by Donaldson in [2] : the first ingredient is a local transversal-
ity result stating roughly that, given approximately holomorphic sections of
certain bundles, it is possible to ensure that they satisfy certain transversal-
ity estimates over a small ball in X by adding to them small and localized
perturbations. The other ingredient is a globalization principle, which, if
the small perturbations providing local transversality are sufficiently well
localized, ensures that a transversality estimate can be obtained over all of
X by combining the local perturbations.
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We now define more precisely the notions of approximately holomorphic
sections and of transversality with estimates. We will be considering se-
quences of sections of complex vector bundles Ek over X, for all large values
of the integer k, where each of the bundles Ek carries naturally a Hermitian
metric and a Hermitian connection. These connections together with the
almost complex structure J on X yield ∂ and ∂̄ operators on Ek. Moreover,
we choose to rescale the metric on X, and use gk = k g : for example, the
diameter of X is multiplied by k1/2, and all derivatives of order p are divided
by kp/2. The reason for this rescaling is that the vector bundles Ek we will
consider are derived from Lk, on which the natural Hermitian connection
induced by ∇L has curvature −ikω.
Definition 3. Let (sk)kÀ0 be a sequence of sections of complex vector bun-
dles Ek over X. The sections sk are said to be asymptotically holomorphic
if there exist constants (Cp)p∈N such that, for all k and at every point of X,

|sk| ≤ C0, |∇psk| ≤ Cp and |∇p−1∂̄sk| ≤ Cpk
−1/2 for all p ≥ 1, where the

norms of the derivatives are evaluated with respect to the metrics gk = k g.

Definition 4. Let sk be a section of a complex vector bundle Ek, and let
η > 0 be a constant. The section sk is said to be η-transverse to 0 if,
at any point x ∈ X where |sk(x)| < η, the covariant derivative ∇sk(x) :
TxX → (Ek)x is surjective and has a right inverse of norm less than η−1

w.r.t. the metric gk.

We will often say that a sequence (sk)kÀ0 of sections of Ek is transverse
to 0 (without precising the constant) if there exists a constant η > 0 inde-
pendent of k such that η-transversality to 0 holds for all large k.

In this definition of transversality, two cases are of specific interest. First,
when Ek is a line bundle, and if one assumes the sections to be asymptoti-
cally holomorphic, transversality to 0 can be equivalently expressed by the
property

∀x ∈ X, |sk(x)| < η ⇒ |∇sk(x)|gk
> η.

Next, when Ek has rank greater than 2 (or more generally than the complex
dimension of X), the property actually means that |sk(x)| ≥ η for all x ∈ X.

An important point to keep in mind is that transversality to 0 is an open
property : if s is η-transverse to 0, then any section σ such that |s−σ|C1 < ε
is (η − ε)-transverse to 0.

The interest of such a notion of transversality with estimates is made clear
by the following observation :

Lemma 1. Let γk be asymptotically holomorphic sections of vector bundles
Ek over X, and assume that the sections γk are transverse to 0. Then, for
large enough k, the zero set of γk is a smooth symplectic submanifold in X.

This lemma follows from the observation that, where γk vanishes, |∂̄γk| =
O(k−1/2) by the asymptotic holomorphicity property while ∂γk is bounded
from below by the transversality property, thus ensuring that for large
enough k the zero set is smooth and symplectic, and even asymptotically
J-holomorphic.

We can now write our second result, which is a one-parameter version of
Theorem 1 :
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Theorem 2. Let (Jt)t∈[0,1] be a family of almost-complex structures on X
compatible with ω. Fix a constant ε > 0, and let (st,k)t∈[0,1],kÀ0 be asymp-

totically Jt-holomorphic sections of C3 ⊗ Lk, such that the sections st,k and
their derivatives depend continuously on t.
Then, for all large enough values of k, there exist asymptotically Jt-

holomorphic sections σt,k of C3 ⊗ Lk, nowhere vanishing, depending con-
tinuously on t, and such that, for all t ∈ [0, 1], |σt,k − st,k|C3,gk

≤ ε and

the map X → CP2 defined by σt,k is an approximately holomorphic singular
covering with respect to Jt.

Note that, although we allow the almost-complex structure on X to de-
pend on t, we always use the same metric gk = k g independently of t.
Therefore, there is no special relation between gk and Jt. However, since
the parameter space [0, 1] is compact, we know that the metric defined by
ω and Jt differs from g by at most a constant factor, and therefore up to a
change in the constants this has no real influence on the transversality and
holomorphicity properties.

We now describe more precisely the properties of the approximately holo-
morphic singular coverings constructed in Theorems 1 and 2, in order to
state a uniqueness result for such coverings.

Definition 5. Let sk be nowhere vanishing asymptotically holomorphic sec-
tions of C3 ⊗ Lk. Define the corresponding projective maps fk = Psk
from X to CP2 by fk(x) = [s0k(x) : s1k(x) : s2k(x)]. Define the (2, 0)-

Jacobian Jac(fk) = det(∂fk), which is a section of Λ2,0T ∗X⊗f∗kΛ2,0TCP2 =

KX ⊗ L3k. Finally, define R(sk) to be the set of points of X where Jac(fk)
vanishes, i.e. where ∂fk is not surjective.
Given a constant γ > 0, we say that sk satisfies the transversality property

P3(γ) if |sk| ≥ γ and |∂fk|gk
≥ γ at every point of X, and if Jac(fk) is γ-

transverse to 0.

If sk satisfies P3(γ) for some γ > 0 and if k is large enough, then it
follows from Lemma 1 that R(sk) is a smooth symplectic submanifold in
X. By analogy with the expected properties of the set of branch points, it
is therefore natural to require such a property for the sections which define
our covering maps.

Furthermore, recall that one expects the projection to CP2 of the set
of branch points to be an immersed curve except at only finitely many
non-degenerate cusps. Forget temporarily the antiholomorphic derivative
∂̄fk, and consider only the holomorphic part. Then the cusps correspond
to the points of R(sk) where the kernel of ∂fk and the tangent space to
R(sk) coincide (in other words, the points where the tangent space to R(sk)
becomes “vertical”). Since R(sk) is the set of points where Jac(fk) = 0, the
cusp points are those where the quantity ∂fk ∧ ∂Jac(fk) vanishes ; in this
notation ∂fk and ∂Jac(fk) are both seen as (1, 0)-forms with values in vector
bundles (f∗kTCP2 and KX ⊗ L3k, respectively), and their exterior product

is a (2, 0)-form with values in the tensor product (f ∗kTCP2)⊗ (KX ⊗ L3k).
Note that, along R(sk), ∂fk has complex rank 1 and so is actually a

nowhere vanishing (1, 0)-form with values in the rank 1 subbundle L(sk) =
Im ∂fk ⊂ f∗kTCP2. In a neighborhood of R(sk), this is no longer true,
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but one can project ∂fk onto a rank 1 subbundle in f ∗kTCP2 (which will
still be called L(sk)), thus obtaining a nonvanishing (1, 0)-form π(∂fk) with
values in the line bundle L(sk). The quantity π(∂fk)∧ ∂Jac(fk) (where the
wedge notation denotes as above the exterior product of two (1, 0)-forms
with values in line bundles), which is a section of a line bundle over R(sk),
can under the above-described transversality assumptions be thought of as a
measurement of the angle between the kernel of ∂fk and the tangent space to
R(sk). Its vanishing over R(sk) is therefore characteristic of cusp points, and
so it is natural to require that its restriction to R(sk) be transverse to 0, as it
implies that the cusp points are isolated and in some sense non-degenerate.

It is worth noting that, up to a change of constants in the estimates, this
transversality property is actually independent of the choice of the subbundle
of f∗kTCP2 on which one projects ∂fk, as long as π(∂fk) remains bounded
from below.

For convenience, we introduce the following notations :

Definition 6. Let sk be asymptotically holomorphic sections of C3 ⊗ Lk

and fk = Psk. Assume that sk satisfies P3(γ) for some γ > 0. Consider
the rank one subbundle L(sk) = (Im ∂fk)|R(sk) of f

∗
kTCP2 over R(sk), and

let π : f∗kTCP2 → L(sk) be the orthogonal projection. Finally define, over
R(sk), the quantity T (sk) = π(∂fk) ∧ ∂Jac(fk).
We say that asymptotically holomorphic sections sk of C3 ⊗ Lk are γ-

generic if they satisfy P3(γ) and if the quantity T (sk) is γ-transverse to 0
over R(sk). We then define the set of cusp points C(sk) as the set of points
of R(sk) where T (sk) = 0.

In a holomorphic setting, such a genericity property would be sufficient
to ensure that the map fk = Psk is a singular branched covering. How-
ever, in our case, extra difficulties arise because we only have approximately
holomorphic sections. This means that at a point of R(sk), although ∂fk
has rank 1, we have no control over the rank of ∂̄fk, and the local picture
may be very different from what one expects. Therefore, we need to control
the antiholomorphic part of the derivative along the set of branch points by
adding the following requirement :

Definition 7. Let sk be γ-generic asymptotically J-holomorphic sections
of C3 ⊗ Lk. We say that sk is ∂̄-tame if there exist constants (Cp)p∈N and
c > 0, depending only on the geometry of X and the bounds on sk and its
derivatives, and an ω-compatible almost complex structure J̃k, such that the
following properties hold :

(1) ∀p ∈ N, |∇p(J̃k − J)|gk
≤ Cpk

−1/2 ;

(2) the almost-complex structure J̃k is integrable over the set of points
whose gk-distance to CJ̃k

(sk) is less than c (the subscript indicates that one

uses ∂J̃k
rather than ∂J to define C(sk)) ;

(3) the map fk = Psk is J̃k-holomorphic at every point of X whose gk-
distance to CJ̃k

(sk) is less than c ;

(4) at every point of RJ̃k
(sk), the antiholomorphic derivative ∂̄J̃k

(Psk)
vanishes over the kernel of ∂J̃k

(Psk).
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Note that since J̃k is within O(k−1/2) of J , the notions of asymptotic J-

holomorphicity and asymptotic J̃k-holomorphicity actually coincide, because
the ∂ and ∂̄ operators differ only by O(k−1/2). Furthermore, if k is large

enough, then γ-genericity for J implies γ ′-genericity for J̃k as well for some
γ′ slightly smaller than γ ; and, because of the transversality properties, the
sets RJ̃k

(sk) and CJ̃k
(sk) lie within O(k−1/2) of RJ(sk) and CJ(sk).

In the case of families of sections depending continuously on a parameter
t ∈ [0, 1], it is natural to also require that the almost complex structures J̃t,k
close to Jt for every t depend continuously on t. We claim the following :

Theorem 3. Let sk be asymptotically J-holomorphic sections of C3 ⊗ Lk.
Assume that the sections sk are γ-generic and ∂̄-tame. Then, for all large
enough values of k, the maps fk = Psk are εk-holomorphic singular branched
coverings, for some constants εk = O(k−1/2).

Therefore, in order to prove Theorems 1 and 2 it is sufficient to construct
γ-generic and ∂̄-tame sections (resp. one-parameter families of sections) of
C3 ⊗ Lk. Even better, we have the following uniqueness result for these
particular singular branched coverings :

Theorem 4. Let s0,k and s1,k be sections of C3 ⊗ Lk, asymptotically holo-
morphic with respect to ω-compatible almost-complex structures J0 and J1
respectively. Assume that s0,k and s1,k are γ-generic and ∂̄-tame. Then
there exist almost-complex structures (Jt)t∈[0,1] interpolating between J0 and
J1, and a constant η > 0, with the following property : for all large enough k,
there exist sections (st,k)t∈[0,1],kÀ0 of C3⊗Lk interpolating between s0,k and
s1,k, depending continuously on t, which are, for all t ∈ [0, 1], asymptotically
Jt-holomorphic, η-generic and ∂̄-tame with respect to Jt.
In particular, for large k the approximately holomorphic singular branched

coverings Ps0,k and Ps1,k are isotopic among approximately holomorphic
singular branched coverings.

Therefore, there exists for all large k a canonical isotopy class of singular
branched coverings X → CP2, which could potentially be used to define
symplectic invariants of X.

The remainder of this article is organized as follows : §2 describes the
process of perturbing asymptotically holomorphic sections of bundles of rank
greater than 2 to make sure that they remain away from zero. §3 deals with
further perturbation in order to obtain γ-genericity. §4 describes a way of
achieving ∂̄-tameness, and therefore completes the proofs of Theorems 1, 2
and 4. Finally, Theorem 3 is proved in §5, and §6 deals with various related
remarks.

Acknowledgments. The author wishes to thank Misha Gromov for
valuable suggestions and comments, and Christophe Margerin for helpful
discussions.

2. Nowhere vanishing sections

2.1. Non-vanishing of sk. Our strategy to prove Theorem 1 is to start
with given asymptotically holomorphic sections sk (for example sk = 0)
and perturb them in order to obtain the required properties ; the proof of
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Theorem 2 then relies on the same arguments, with the added difficulty that
all statements must apply to 1-parameter families of sections.

The first step is to ensure that the three components s0k, s
1
k and s2k do

not vanish simultaneously, and more precisely that, for some constant η > 0
independent of k, the sections sk are η-transverse to 0, i.e. |sk| ≥ η over all
of X. Therefore, the first ingredient in the proof of Theorems 1 and 2 is the
following result :

Proposition 1. Let (sk)kÀ0 be asymptotically holomorphic sections of
C3 ⊗ Lk, and fix a constant ε > 0. Then there exists a constant η > 0
such that, for all large enough values of k, there exist asymptotically holo-
morphic sections σk of C3⊗Lk such that |σk−sk|C3,gk

≤ ε and that |σk| ≥ η
at every point of X. Moreover, the same statement holds for families of
sections indexed by a parameter t ∈ [0, 1].

Proposition 1 is a direct consequence of the main theorem in [1], where
it is proved that, given any complex vector bundle E, asymptotically holo-
morphic sections of E⊗Lk (or 1-parameter families of such sections) can be
made transverse to 0 by small perturbations : Proposition 1 follows simply
by considering the case where E is the trivial bundle of rank 3. However,
for the sake of completeness and in order to introduce tools which will also
be used in later parts of the proof, we give here a shorter argument dealing
with the specific case at hand.

There are three ingredients in the proof of Proposition 1. The first one is
the existence of many localized asymptotically holomorphic sections of the
line bundle Lk for sufficiently large k.

Definition 8. A section s of a vector bundle Ek has Gaussian decay in
Cr norm away from a point x ∈ X if there exists a polynomial P and a
constant λ > 0 such that for all y ∈ X, |s(y)|, |∇s(y)|gk

, . . . , |∇rs(y)|gk

are all bounded by P (d(x, y)) exp(−λ d(x, y)2), where d(., .) is the distance
induced by gk.
The decay properties of a family of sections are said to be uniform if there

exist P and λ such that the above bounds hold for all sections of the family,
independently of k and of the point x at which decay occurs for a given
section.

Lemma 2 ([2],[1]). Given any point x ∈ X, for all large enough k, there
exist asymptotically holomorphic sections srefk,x of Lk over X satisfying the

following bounds : |srefk,x| ≥ cs at every point of the ball of gk-radius 1 centered

at x, for some universal constant cs > 0 ; and the sections srefk,x have uniform

Gaussian decay away from x in C3 norm.
Moreover, given a one-parameter family of ω-compatible almost-complex

structures (Jt)t∈[0,1], there exist one-parameter families of sections sreft,k,x

which are asymptotically Jt-holomorphic for all t, depend continuously on t
and satisfy the same bounds.

The first part of this statement is Proposition 11 of [2], while the extension
to one-parameter families is carried out in Lemma 3 of [1]. Note that here we
require decay with respect to the C3 norm instead of C0, but the bounds on
all derivatives follow immediately from the construction of these sections :
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indeed, they are modelled on f(z) = exp(−|z|2/4) in a local approximately
holomorphic Darboux coordinate chart for kω at x and in a suitable lo-
cal trivialization of Lk where the connection 1-form is 1

4

∑

(zjdz̄j − z̄jdzj).
Therefore, it is sufficient to notice that the model function has Gaussian
decay and that all derivatives of the coordinate map are uniformly bounded
because of the compactness of X.

More precisely, the result of existence of local approximately holomorphic
Darboux coordinate charts needed for Lemma 2 (and throughout the proofs
of the main theorems as well) is the following (see also [2]) :

Lemma 3. Near any point x ∈ X, for any integer k, there exist local
complex Darboux coordinates (z1k, z

2
k) : (X,x) → (C2, 0) for the symplectic

structure kω (i.e. such that the pullback of the standard symplectic struc-
ture of C2 is kω) such that, denoting by ψk : (C2, 0) → (X,x) the in-
verse of the coordinate map, the following bounds hold uniformly in x and
k : |z1k(y)| + |z2k(y)| = O(distgk

(x, y)) on a ball of fixed radius around x ;
|∇rψk|gk

= O(1) for all r ≥ 1 on a ball of fixed radius around 0 ; and, with
respect to the almost-complex structure J on X and the canonical complex
structure J0 on C2, |∂̄ψk(z)|gk

= O(k−1/2|z|) and |∇r∂̄ψ|gk
= O(k−1/2) for

all r ≥ 1 on a ball of fixed radius around 0.
Moreover, given a continuous 1-parameter family of ω-compatible almost-

complex structures (Jt)t∈[0,1] and a continuous family of points (xt)t∈[0,1],
one can find for all t coordinate maps near xt satisfying the same estimates
and depending continuously on t.

Proof. By Darboux’s theorem, there exists a local symplectomorphism φ
from a neighborhood of 0 in C2 with its standard symplectic structure to a
neighborhood of x in (X,ω). It is well-known that the space of symplectic
R-linear endomorphisms of C2 which intertwine the complex structures J0
and φ∗J(x) is non-empty (and actually isomorphic to U(2)). So, choosing
such a linear map Ψ and defining ψ = φ ◦Ψ, one gets a local symplectomor-
phism such that ∂̄ψ(0) = 0. Moreover, because of the compactness of X, it
is possible to carry out the construction in such a way that, with respect to
the metric g, all derivatives of ψ are bounded over a neighborhood of x by
uniform constants which do not depend on x. Therefore, over a neighbor-
hood of x one can assume that |∇(ψ−1)|g = O(1), as well as |∇rψ|g = O(1)
and |∇r∂̄ψ|g = O(1) ∀r ≥ 1.

Define ψk(z) = ψ(k−1/2z), and switch to the metric gk : then ∂̄ψk(0) = 0,
and at every point near x, |∇(ψ−1k )|gk

= |∇(ψ−1)|g = O(1). Moreover,

|∇rψk|gk
= O(k(1−r)/2) = O(1) and |∇r∂̄ψk|gk

= O(k−r/2) = O(k−1/2) for

all r ≥ 1. Finally, since |∇∂̄ψk|gk
= O(k−1/2) and ∂̄ψk(0) = 0 we have

|∂̄ψk(z)|gk
= O(k−1/2|z|), so that all expected estimates hold. Because of

the compactness of X, the estimates are uniform in x, and because the maps
ψk for different values of k differ only by a rescaling, the estimates are also
uniform in k.

In the case of a one-parameter family of almost-complex structures, there
is only one thing to check in order to carry out the same construction for ev-
ery value of t ∈ [0, 1] while ensuring continuity in t : given a one-parameter
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family of local Darboux maps φt near xt (the existence of such maps de-
pending continuously on t is trivial), one must check the existence of a
continuous one-parameter family of R-linear symplectic endomorphisms Ψt

of C2 intertwining the complex structures J0 and φ∗tJt(xt) on C2. To prove
this, remark that for every t the set of these endomorphisms of C2 can be
identified with the group U(2). Therefore, what we are looking for is a con-
tinuous section (Ψt)t∈[0,1] of a principal U(2)-bundle over [0, 1]. Since [0, 1] is
contractible, this bundle is necessarily trivial and therefore has a continuous
section. This proves the existence of the required maps Ψt, so one can define
ψt = φt ◦ Ψt, and set ψt,k(z) = ψt(k

−1/2z) as above. The expected bounds
follow naturally ; the estimates are uniform in t because of the compactness
of [0, 1].

The second tool we need for Proposition 1 is the following local transver-
sality result, which involves ideas similar to those in [2] and in §2 of [1] but
applies to maps from Cn to Cm with m > n rather than m = 1 :

Proposition 2. Let f be a function defined over the ball B+ of radius 11
10

in Cn with values in Cm, with m > n. Let δ be a constant with 0 < δ < 1
2 ,

and let η = δ log(δ−1)−p where p is a suitable fixed integer depending only
on the dimension n. Assume that f satisfies the following bounds over B+ :

|f | ≤ 1, |∂̄f | ≤ η, |∇∂̄f | ≤ η.

Then, there exists w ∈ Cm, with |w| ≤ δ, such that |f − w| ≥ η over the
interior ball B of radius 1.
Moreover, if one considers a one-parameter family of functions (ft)t∈[0,1]

satisfying the same bounds, then one can find for all t elements wt ∈ Cm

depending continuously on t such that |wt| ≤ δ and |ft − wt| ≥ η over B.

This statement is proved in §2.3. The last, and most crucial, ingredient
of the proof of Proposition 1 is a globalization principle due to Donaldson
[2] which we state here in a general form.

Definition 9. A family of properties P(ε, x)x∈X,ε>0 of sections of bundles
over X is local and Cr-open if, given a section s satisfying P(ε, x), any
section σ such that |σ(x)− s(x)|, |∇σ(x)−∇s(x)|, . . . , |∇rσ(x)−∇rs(x)|
are smaller than η satisfies P(ε−Cη, x), where C is a constant (independent
of x and ε).

For example, the property |s(x)| ≥ ε is local and C0-open ; ε-transversality
to 0 of s at x is local and C1-open.

Proposition 3 ([2]). Let P(ε, x)x∈X,ε>0 be a local and Cr-open family of
properties of sections of vector bundles Ek over X. Assume that there exist
constants c, c′ and p such that, given any x ∈ X, any small enough δ > 0,
and asymptotically holomorphic sections sk of Ek, there exist, for all large
enough k, asymptotically holomorphic sections τk,x of Ek with the following

properties : (a) |τk,x|Cr,gk
< δ, (b) the sections 1

δ τk,x have uniform Gaussian
decay away from x in Cr-norm, and (c) the sections sk + τk,x satisfy the
property P(η, y) for all y ∈ Bgk

(x, c), with η = c′δ log(δ−1)−p.
Then, given any α > 0 and asymptotically holomorphic sections sk of Ek,

there exist, for all large enough k, asymptotically holomorphic sections σk of
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Ek such that |sk − σk|Cr,gk
< α and the sections σk satisfy P(ε, x) ∀x ∈ X

for some ε > 0 independent of k.
Moreover the same result holds for one-parameter families of sections,

provided the existence of sections τt,k,x satisfying properties (a), (b), (c) and
depending continuously on t ∈ [0, 1].

This result is a general formulation of the argument contained in §3 of
[2] (see also [1], §3.3 and 3.5). For the sake of completeness, let us recall
just a brief outline of the construction. To achieve property P over all of

X, the idea is to proceed iteratively : in step j, one starts from sections s
(j)
k

satisfying P(δj , x) for all x in a certain (possibly empty) subset U
(j)
k ⊂ X,

and perturbs them by less than 1
2C δj (where C is the same constant as in

Definition 9) to get sections s
(j+1)
k satisfying P(δj+1, x) over certain balls

of gk-radius c, with δj+1 = c′(
δj

2C ) log((
δj

2C )−1)−p. Because the property P
is open, s

(j+1)
k also satisfies P(δj+1, x) over U

(j)
k , therefore allowing one to

obtain P everywhere after a certain number N of steps.
The catch is that, since the value of δj decreases after each step and

we want P(ε, x) with ε independent of k, the number of steps needs to
be bounded independently of k. However, the size of X for the metric gk
increases as k increases, and the number of balls of radius c needed to cover
X therefore also increases. The key observation due to Donaldson [2] is
that, because of the Gaussian decay of the perturbations, if one chooses a
sufficiently large constant D, one can in a single step carry out perturbations
centered at as many points as one wants, provided that any two of these
points are distant of at least D with respect to gk : the idea is that each
of the perturbations becomes sufficiently small in the vicinity of the other
perturbations in order to have no influence on property P there (up to
a slight decrease of δj+1). Therefore the construction is possible with a
bounded number of steps N and yields property P(ε, x) for all x ∈ X and
for all large enough k, with ε = δN independent of k.

We now show how to derive Proposition 1 from Lemma 2 and Propositions
2 and 3, following the ideas contained in [2]. Proposition 1 follows directly
from Proposition 3 by considering the property P defined as follows : say
that a section sk of C3 ⊗ Lk satisfies P(ε, x) if |sk(x)| ≥ ε. This property is
local and open in C0-sense, and therefore also in C3-sense. So it is sufficient
to check that the assumptions of Proposition 3 hold for P.

Let x ∈ X, 0 < δ < 1
2 , and consider asymptotically holomorphic sections

sk of C3⊗Lk (or 1-parameter families of sections st,k). Recall that Lemma 2

provides asymptotically holomorphic sections srefk,x of Lk which have Gauss-

ian decay away from x and remain larger than a constant cs over Bgk
(x, 1).

Therefore, dividing sk by srefk,x yields asymptotically holomorphic functions

uk on Bgk
(x, 1) with values in C3. Next, one uses a local approximately

holomorphic coordinate chart as given by Lemma 3 to obtain, after com-
posing with a fixed dilation of C2 if necessary, functions vk defined on the
ball B+ ⊂ C2, with values in C3, and satisfying the estimates |vk| = O(1),

|∂̄vk| = O(k−1/2) and |∇∂̄vk| = O(k−1/2).
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Let C0 be a constant bounding |srefk,x|C3,gk
, and let α = δ

C0
log(( δ

C0
)−1)−p.

Provided that k is large enough, Proposition 2 yields constants wk ∈ C3,
with |wk| ≤ δ

C0
, such that |vk−wk| ≥ α over the unit ball in C2. Equivalently,

one has |uk − wk| ≥ α over Bgk
(x, c) for some constant c. Multiplying by

srefk,x again, one gets that |sk − wk s
ref
k,x| ≥ csα over Bgk

(x, c).
The assumptions of Proposition 3 are therefore satisfied if one chooses

η = csα (larger than c′δ log(δ−1)−p for a suitable constant c′ > 0) and τk,x =

−wk s
ref
k,x. Moreover, the same argument applies to one-parameter families

of sections st,k (one similarly constructs perturbations τt,k,x = −wt,k s
ref
t,k,x).

So Proposition 3 applies, which ends the proof of Proposition 1.

2.2. Non-vanishing of ∂fk. We have constructed asymptotically holomor-
phic sections sk = (s0k, s

1
k, s

2
k) of C3⊗Lk for all large enough k which remain

away from zero. Therefore, the maps fk = Psk from X to CP2 are well de-
fined, and they are asymptotically holomorphic, because the lower bound on
|sk| implies that the derivatives of fk are O(1) and that ∂̄fk and its deriva-

tives are O(k−1/2) (taking the metric gk on X and the standard metric on
CP2). Our next step is to ensure, by further perturbation of the sections sk,
that ∂fk vanishes nowhere and remains far from zero :

Proposition 4. Let δ and γ be two constants such that 0 < δ < γ
4 , and

let (sk)kÀ0 be asymptotically holomorphic sections of C3 ⊗ Lk such that
|sk| ≥ γ at every point of X and for all k. Then there exists a constant
η > 0 such that, for all large enough values of k, there exist asymptotically
holomorphic sections σk of C3⊗Lk such that |σk− sk|C3,gk

≤ δ and that the
maps fk = Pσk satisfy the bound |∂fk|gk

≥ η at every point of X. Moreover,
the same statement holds for families of sections indexed by a parameter
t ∈ [0, 1].

Proposition 4 is proved in the same manner as Proposition 1 and uses
the same three ingredients, namely Lemma 2 and Propositions 2 and 3.
Proposition 4 follows directly from Proposition 3 by considering the following
property : say that a section s of C3 ⊗ Lk of norm everywhere larger than
γ
2 satisfies P(η, x) if the map f = Ps satisfies |∂f(x)|gk

≥ η. This property

is local and open in C1-sense, and therefore also in C3-sense, because the
lower bound on |s| makes f depend nicely on s (by the way, note that the
bound |s| ≥ γ

2 is always satisfied in our setting since one considers only
sections differing from sk by less than γ

4 ). So one only needs to check that
the assumptions of Proposition 3 hold for this property P.

Therefore, let x ∈ X, 0 < δ < γ
4 , and consider nonvanishing asymp-

totically holomorphic sections sk of C3 ⊗ Lk and the corresponding maps
fk = Psk. Without loss of generality, composing with a rotation in C3

(constant over X), one can assume that sk(x) is directed along the first
component in C3, i.e. that s1k(x) = s2k(x) = 0 and therefore |s0k(x)| ≥ γ

2 .
Because one has a uniform bound on |∇sk|, there exists a constant r > 0
(independent of k) such that |s0k| ≥ γ

3 over Bgk
(x, r). Therefore, over this

ball one can define a map to C2 by

hk(y) = (h1k(y), h
2
k(y)) =

(s1k(y)

s0k(y)
,
s2k(y)

s0k(y)

)

.
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It is quite easy to see that, at any point y ∈ Bgk
(x, r), the ratio between

|∂hk(y)| and |∂fk(y)| is bounded by a uniform constant. Therefore, what
one actually needs to prove is that, for large enough k, a perturbation of
sk with Gaussian decay and smaller than δ can make |∂hk| larger than
η = c′δ (log δ−1)−p over a ball Bgk

(x, c), for some constants c, c′ and p.

Recall that Lemma 2 provides asymptotically holomorphic sections srefk,x

of Lk which have Gaussian decay away from x and remain larger than a
constant cs over Bgk

(x, 1). Moreover, consider a local approximately holo-
morphic coordinate chart (as given by Lemma 3) on a neighborhood of x,
and call z1k and z2k the two complex coordinate functions. Define the two
1-forms

µ1k = ∂
(z1ks

ref
k,x

s0k

)

and µ2k = ∂
(z2ks

ref
k,x

s0k

)

,

and notice that at x they are both of norm larger than a fixed constant
(which can be expressed as a function of cs and the uniform C0 bound
on sk), and mutually orthogonal. Moreover µ1k, µ

2
k and their derivatives

are uniformly bounded because of the bounds on srefk,x, on s0k and on the

coordinate map ; these bounds are independent of k. Finally, µ1k and µ2k are
asymptotically holomorphic because all the ingredients in their definition
are asymptotically holomorphic and |s0k| is bounded from below.

If follows that, for some constant r′, one can express ∂hk on the ball
Bgk

(x, r′) as (∂h1k, ∂h
2
k) = (u11k µ

1
k + u12k µ

2
k, u

21
k µ

1
k + u22k µ

2
k), thus defining a

function uk on Bgk
(x, r′) with values in C4. The properties of µi

k described
above imply that the ratio between |∂hk| and |uk| is bounded between two
constants which do not depend on k (because of the bounds on µ1k and µ2k,
and of their orthogonality at x), and that the map uk is asymptotically
holomorphic (because of the asymptotic holomorphicity of µi

k).
Next, one uses the local approximately holomorphic coordinate chart to

obtain from uk, after composing with a fixed dilation of C2 if necessary,
functions vk defined on the ball B+ ⊂ C2, with values in C4, and satisfying
the estimates |vk| = O(1), |∂̄vk| = O(k−1/2) and |∇∂̄vk| = O(k−1/2). Let
C0 be a constant larger than |ziksrefk,x|C3,gk

, and let α = δ
4C0

. log(( δ
4C0

)−1)−p.
Then, by Proposition 2, for all large enough k there exist constants wk =
(w11

k , w
12
k , w

21
k , w

22
k ) ∈ C4, with |wk| ≤ δ

4C0
, such that |vk −wk| ≥ α over the

unit ball in C2.
Equivalently, one has |uk − wk| ≥ α over Bgk

(x, c) for some constant c.
Multiplying by µi

k, one therefore gets that, over Bgk
(x, c),

∣

∣

∣

∣

∣

(

∂
(

h1k − w11
k

z1ks
ref
k,x

s0k
− w12

k

z2ks
ref
k,x

s0k

)

, ∂
(

h2k − w21
k

z1ks
ref
k,x

s0k
− w22

k

z2ks
ref
k,x

s0k

)

)∣

∣

∣

∣

∣

≥ α

C

where C is a fixed constant determined by the bounds on µi
k. In other terms,

letting

(τ0k,x, τ
1
k,x, τ

2
k,x) = (0,−(w11

k z
1
k + w12

k z
2
k)s

ref
k,x,−(w21

k z
1
k + w22

k z
2
k)s

ref
k,x),

and defining h̃k similarly to hk starting with sk+τk,x instead of sk, the above

formula can be rewritten as |∂h̃k| ≥ α
C . Therefore, one has managed to make

|∂h̃k| larger than η = α
C over Bgk

(x, c) by adding to sk the perturbation τk,x.
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Moreover, |τk,x| ≤
∑ |wij

k |.|ziksrefk,x| ≤ δ, and the sections ziks
ref
k,x have uniform

Gaussian decay away from x.
As remarked above, setting f̃k = P(sk + τk,x), the bound |∂h̃k| ≥ η im-

plies that |∂f̃k| is larger than some η′ differing from η by at most a con-
stant factor. The assumptions of Proposition 3 are therefore satisfied, since
one has η′ ≥ c′δ log(δ−1)−p for a suitable constant c′ > 0. Moreover, the
whole argument also applies to one-parameter families of sections st,k as well
(considering one-parameter families of coordinate charts, reference sections
sreft,k,x, and constants wt,k). So Proposition 3 applies. This ends the proof of
Proposition 4.

2.3. Proof of Proposition 2. The proof of Proposition 2 goes along the
same lines as that of the local transversality result introduced in [2] and
extended to one-parameter families in [1] (see Proposition 6 below). To
start with, notice that it is sufficient to prove the result in the case where
m = n + 1. Indeed, given a map f = (f 1, . . . , fm) : B+ → Cm with
m > n + 1 satisfying the hypotheses of Proposition 2, one can define f ′ =
(f1, . . . , fn+1) : B+ → Cn+1, and notice that f ′ also satisfies the required
bounds. Therefore, if it is possible to find w′ = (w1, . . . , wn+1) ∈ Cn+1 of
norm at most δ such that |f ′ − w′| ≥ η over the unit ball B, then setting
w = (w1, . . . , wn+1, 0, . . . , 0) ∈ Cm one gets |w| = |w′| ≤ δ and |f − w| ≥
|f ′ − w′| ≥ η at all points of B, which is the desired result. The same
argument applies to one-parameter families (ft)t∈[0,1].

So we are now reduced to the case m = n + 1. Let us start with the
case of a single map f , before moving on to the case of one-parameter
families. The first step in the proof is to replace f by a complex polynomial
g approximating f . For this, one approximates each of the n+1 components
f i by a polynomial gi, in such a way that g differs from f by at most a fixed
multiple of η over the unit ball B and that the degree d of g is less than a
constant times log(η−1). The process is the same as the one described in
[2] for asymptotically holomorphic maps to C, so we skip the details. To

obtain polynomial functions, one first constructs holomorphic functions f̃ i

differing from f i by at most a fixed multiple of η, using the given bounds on
∂̄f i. The polynomials gi are then obtained by truncating the Taylor series
expansion of f̃ i to a given degree. It can be shown that by this method
one can obtain polynomial functions gi of degree less than a constant times
log(η−1) and differing from f̃ i by at most a constant times η (see Lemmas
27 and 28 of [2]). The approximation process does not hold on the whole
ball where f is defined ; this is why one needs f to be defined on B+ to get
a result over the slightly smaller ball B.

Therefore, we now have a polynomial map g of degree d = O(log(η−1))
such that |f − g| ≤ c η for some constant c. In particular, if one finds
w ∈ Cn+1 with |w| ≤ δ such that |g − w| ≥ (c + 1)η over the ball B,
then it follows immediately that |f − w| ≥ η everywhere, which is the de-
sired result. The key observation for finding such a w is that the image
g(B) ⊂ Cn+1 is contained in an algebraic hypersurface H in Cn+1 of degree
at most D = (n + 1)dn. Indeed, if such were not the case, then for every
nonzero polynomial P of degree at mostD in n+1 variables, P (g1, . . . , gn+1)
would be a non identically zero polynomial function of degree at most dD
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in n variables ; since the space of polynomials of degree at most D in n+ 1
variables is of dimension

(

D+n+1
n+1

)

while the space of polynomials of degree

at most dD in n variables is of dimension
(

dD+n
n

)

, the injectivity of the map

P 7→ P (g1, . . . , gn+1) from the first space to the second would imply that
(

D+n+1
n+1

)

≤
(

dD+n
n

)

. However since D = (n+ 1)dn one has
(

D+n+1
n+1

)

(

dD+n
n

) =
(n+ 1)dn + (n+ 1)

n+ 1
· D + n

dD + n
· · · D + 1

dD + 1
≥ (dn+1) ·

(

1

d

)n

> 1,

which gives a contradiction. So g(B) ⊂ H for a certain hypersurface H ⊂
Cn+1 of degree at most D = (n + 1)dn. Therefore the following classical
result of algebraic geometry (see e.g. [4], pp. 11–15) can be used to provide
control on the size of H inside any ball in Cn+1 :

Lemma 4. Let H ⊂ Cn+1 be a complex algebraic hypersurface of degree D.
Then, given any r > 0 and any x ∈ Cn+1, the 2n-dimensional volume of
H ∩ B(x, r) is at most DV0 r

2n, where V0 is the volume of the unit ball of
dimension 2n. Moreover, if x ∈ H, then one also has vol2n(H ∩B(x, r)) ≥
V0 r

2n.

In particular, we are interested in the intersection of H with the ball
B̂ of radius δ centered at the origin. Lemma 4 implies that the volume
of this intersection is bounded by (n + 1)V0 d

nδ2n. Cover B̂ by a finite
number of balls B(xi, η), in such a way that no point is contained in more
than a fixed constant number (depending only on n) of the balls B(xi, 2η).
Then, for every i such that B(xi, η) ∩ H is non-empty, B(xi, 2η) contains
a ball of radius η centered at a point of H, so by Lemma 4 the volume of
B(xi, 2η)∩H is at least V0 η

2n. Summing the volumes of these intersections

and comparing with the total volume of H ∩ B̂, one gets that the number of
balls B(xi, η) which meet H is bounded by N = Cdnδ2nη−2n, where C is a

constant depending only on n. Therefore, H ∩ B̂ is contained in the union
of N balls of radius η.

Since our goal is to find w ∈ B̂ at distance more than (c+1)η of g(B) ⊂ H,
the set Z of values which we want to avoid is contained in a set Z+ which
is the union of N = Cdnδ2nη−2n balls of radius (c + 2)η. The volume of
Z+ is bounded by C ′dnδ2nη2 for some constant C ′ depending only on n.
Therefore, there exists a constant C ′′ such that, if one assumes δ to be
larger than C ′′dn/2η, the volume of B̂ is strictly larger than that of Z+, and
so B̂−Z+ is not empty. Calling w any element of B̂−Z+, one has |w| ≤ δ,
and |g − w| ≥ (c + 1)η at every point of B, and therefore |f − w| ≥ η at
every point of B, which is the desired result.

Since d is bounded by a constant times log(η−1), it is not hard to see
that there exists an integer p such that, for all 0 < δ < 1

2 , the relation

η = δ log(δ−1)−p implies that δ > C ′′dn/2η. This is the value of p which we

choose in the statement of the proposition, thus ensuring that B̂−Z+ is not
empty and therefore that there exists w with |w| ≤ δ such that |f − w| ≥ η
at every point of B.

We now consider the case of a one-parameter family of functions (ft)t∈[0,1].
The first part of the above argument also applies to this case, so there exist
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polynomial maps gt of degree d = O(log(η−1)), depending continuously on
t, such that |ft − gt| ≤ c η for some constant c and for all t. In particular,
if one finds wt ∈ Cn+1 with |wt| ≤ δ and depending continuously on t such
that |gt − wt| ≥ (c + 1)η over the ball B, then it follows immediately that
|ft − wt| ≥ η everywhere, which is the desired result.

As before, gt(B) is contained in a hypersurface of degree at most (n+1)dn

in Cn+1, and the same argument as above implies that the set Zt of values
which we want to avoid for wt (i.e. all the points of B̂ at distance less
than (c + 1)η from gt(B)) is contained in a set Z+

t which is the union of
N = Cdnδ2nη−2n balls of radius (c + 2)η. The rest of the proof is now a
higher-dimensional analogue of the argument used in [1] : the crucial point is

to show that, if δ is large enough, B̂−Z+
t splits into several small connected

components and only one large component, because the boundary Yt = ∂Z+
t

is much smaller than a (2n + 1)-ball of radius δ and therefore cannot split

B̂ into components of comparable sizes.
Each component of B̂−Z+

t is delimited by a subset of the sphere ∂B̂ and
by a union of components of Yt. Each component Yt,i of Yt is a real hyper-

surface in B̂ (with corners at the points where the boundaries of the various

balls of Z+
t intersect) whose boundary is contained in ∂B̂, and therefore

splits B̂ into two components C ′i and C
′′
i . So each component of B̂ − Z+

t is
an intersection of components C ′i or C

′′
i where i ranges over a certain subset

of the set of components of Yt. Let us now state the following isoperimetric
inequality :

Lemma 5. Let Y be a connected (singular) submanifold of real codimen-
sion 1 in the unit ball of dimension 2n+ 2, with (possibly empty) boundary
contained in the boundary of the ball. Let A be the (2n+1)-dimensional area
of Y . Then the volume V of the smallest of the two components delimited
by Y in the ball satisfies the bound V ≤ KA(2n+2)/(2n+1), where K is a fixed
constant depending only on the dimension.

Proof. The stereographic projection maps the unit ball quasi-isometrically
onto a half-sphere. Therefore, up to a change in the constant, it is sufficient
to prove the result on the half-sphere. By doubling Y along its intersec-
tion with the boundary of the half-sphere, which doubles both the volume
delimited by Y and its area, one reduces to the case of a closed connected
(singular) real hypersurface in the sphere S2n+2 (if Y does not meet the
boundary, then it is not necessary to consider the double). Next, one no-
tices that the singular hypersurfaces we consider can be smoothed in such a
way that the area of Y and the volume it delimits are changed by less than
any fixed constant ; therefore, Lemma 5 follows from the classical spherical
isoperimetric inequality (see e.g. [6]).

It follows that, letting Ai be the (2n + 1)-dimensional area of Yt,i, the
smallest of the two components delimited by Yt,i, e.g. C

′
i, has volume Vi ≤

KA
(2n+2)/(2n+1)
i . Therefore, the volume of the set

⋃

iC
′
i is bounded by

K
∑

iA
(2n+2)/(2n+1)
i ≤ K (

∑

iAi)
(2n+2)/(2n+1). However,

∑

iAi is the to-

tal area of the boundary Yt of Z+
t , so it is less than the total area of the

boundaries of the balls composing Z+
t , which is at most a fixed constant
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times Cdnδ2nη−2n((c+2)η)2n+1, i.e. at most a fixed constant times dnδ2nη.
Therefore, one has

vol(
⋃

i

C ′i) ≤ K ′
(

dn
η

δ

)
2n+2
2n+1

δ2n+2

for some constant K ′ depending only on n. So there exists a constant K ′′

depending only on n such that, if δ > K ′′dnη, then vol(
⋃

iC
′
i) ≤ 1

10vol(B̂),

and therefore vol(
⋂

iC
′′
i ) ≥ 8

10vol(B̂).

Since d is bounded by a constant times log(η−1), it is not hard to see
that there exists an integer p such that, for all 0 < δ < 1

2 , the relation

η = δ log(δ−1)−p implies that δ > K ′′dnη. This is the value of p which we
choose in the statement of the proposition, thus ensuring that the above
volume bounds on

⋃

iC
′
i and

⋂

iC
′′
i hold.

Now, recall that every component of B̂ −Z+
t is an intersection of sets C ′i

and C ′′i for certain values of i. Therefore, every component of B̂−Z+
t either

is contained in
⋃

iC
′
i or contains

⋂

iC
′′
i . However, because

⋃

iC
′
i is much

smaller than the ball B̂, one cannot have B̂−Z+
t ⊂

⋃

iC
′
i. Therefore, there

exists a component in B̂−Z+
t containing

⋃

iC
′′
i . Since its volume is at least

8
10vol(B̂), this large component is necessarily unique.

Let U(t) be the connected component of B̂ −Zt which contains the large

component of B̂ − Z+
t : it is the only large component of B̂ − Zt. We now

follow the same argument as in [1]. Since gt(B) depends continuously on
t, so does its (c+ 1)η-neighborhood Zt, and the set

⋃

t{t} × Zt is therefore

a closed subset of [0, 1] × B̂. Let U−(t, ε) be the set of all points of U(t)

at distance more than ε from Zt ∪ ∂B̂. Then, given any t and any small
ε > 0, for all τ close to t, U(τ) contains U−(t, ε). To see this, we first
notice that, for all τ close to t, U−(t, ε) ∩ Zτ = ∅. Indeed, if such were not
the case, one could take a sequence of points of Zτ ∩ U−(t, ε) for τ → t,

and extract a convergent subsequence whose limit belongs to U
−
(t, ε) and

therefore lies outside of Zt, in contradiction with the fact that
⋃

t{t}×Zt is

closed. So U−(t, ε) ⊂ B̂−Zτ for all τ close enough to t. Making ε smaller if
necessary, one may assume that U−(t, ε) is connected, so that for all τ close

to t, U−(t, ε) is necessarily contained in the large component of B̂ − Zτ ,
namely U(τ).

It follows that U =
⋃

t{t}×U(t) is an open connected subset of [0, 1]× B̂,
and is therefore path-connected. So we get a path s 7→ (t(s), w(s)) joining
(0, w(0)) to (1, w(1)) inside U , for any given w(0) and w(1) in U(0) and
U(1). We then only have to make sure that s 7→ t(s) is strictly increasing
in order to define wt(s) = w(s).

Getting the t component to increase strictly is not hard. Indeed, one
first gets it to be weakly increasing, by considering values s1 < s2 of the
parameter such that t(s1) = t(s2) = t and replacing the portion of the path
between s1 and s2 by a path joining w(s1) to w(s2) in the connected set
U(t). Then, we slightly shift the path, using the fact that U is open, to get
the t component to increase slightly over the parts where it was constant.
Thus we can define wt(s) = w(s) and end the proof of Proposition 2.
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3. Transversality of derivatives

3.1. Transversality to 0 of Jac(fk). At this point in the proofs of Theo-
rems 1 and 2, we have constructed for all large k asymptotically holomorphic
sections sk of C3 ⊗ Lk (or families of sections), bounded away from 0, and
such that the holomorphic derivative of the map fk = Psk is bounded away
from 0. The next property we wish to ensure by perturbing the sections
sk is the transversality to 0 of the (2, 0)-Jacobian Jac(fk) = det(∂fk). The
main result of this section is :

Proposition 5. Let δ and γ be two constants such that 0 < δ < γ
4 , and

let (sk)kÀ0 be asymptotically holomorphic sections of C3 ⊗ Lk such that
|sk| ≥ γ and |∂(Psk)|gk

≥ γ at every point of X. Then there exists a constant
η > 0 such that, for all large enough values of k, there exist asymptotically
holomorphic sections σk of C3⊗Lk such that |σk−sk|C3,gk

≤ δ and Jac(Pσk)
is η-transverse to 0. Moreover, the same statement holds for families of
sections indexed by a parameter t ∈ [0, 1].

The proof of Proposition 5 uses once more the same techniques and glob-
alization argument as Propositions 1 and 4. The local transversality result
one uses in conjunction with Proposition 3 is now the following statement
for complex valued functions :

Proposition 6 ([2],[1]). Let f be a function defined over the ball B+ of
radius 11

10 in Cn with values in C. Let δ be a constant such that 0 < δ < 1
2 ,

and let η = δ log(δ−1)−p where p is a suitable fixed integer depending only
on the dimension n. Assume that f satisfies the following bounds over B+ :

|f | ≤ 1, |∂̄f | ≤ η, |∇∂̄f | ≤ η.

Then there exists w ∈ C, with |w| ≤ δ, such that f − w is η-transverse to 0
over the interior ball B of radius 1, i.e. f − w has derivative larger than η
at any point of B where |f − w| < η.
Moreover, the same statement remains true for a one-parameter family

of functions (ft)t∈[0,1] satisfying the same bounds, i.e. for all t one can find
elements wt ∈ C depending continuously on t such that |wt| ≤ δ and ft−wt

is η-transverse to 0 over B.

The first part of this statement is exactly Theorem 20 of [2], and the
version for one-parameter families is Proposition 3 of [1].

Proposition 5 is proved by applying Proposition 3 to the following prop-
erty : say that a section s of C3⊗Lk everywhere larger than γ

2 and such that
|∂Ps| ≥ γ

2 everywhere satisfies P(η, x) if Jac(Ps) is η-transverse to 0 at x,
i.e. either |Jac(Ps)(x)| ≥ η or |∇Jac(Ps)(x)| > η. This property is local and
C2-open, and therefore also C3-open, because the lower bound on s makes
Jac(Ps) depend nicely on s. Note that, since one considers only sections
differing from sk by less than δ in C3 norm, decreasing δ if necessary, one
can safely assume that the two hypotheses |s| ≥ γ

2 and |∂(Ps)| ≥ γ
2 are

satisfied everywhere by all the sections appearing in the construction of σk.
So one only needs to check that the assumptions of Proposition 3 hold for
the property P defined above.
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Therefore, let x ∈ X, 0 < δ < γ
4 , and consider asymptotically holomorphic

sections sk of C3 ⊗ Lk and the corresponding maps fk = Psk, such that
|sk| ≥ γ

2 and |∂fk| ≥ γ
2 everywhere. The setup is similar to that of §2.2.

Without loss of generality, composing with a rotation in C3 (constant over
X), one can assume that sk(x) is directed along the first component in C3,
i.e. that s1k(x) = s2k(x) = 0 and therefore |s0k(x)| ≥ γ

2 . Because of the
uniform bound on |∇sk|, there exists r > 0 (independent of k) such that
|s0k| ≥ γ

3 , |s1k| <
γ
3 and |s2k| < γ

3 over the ball Bgk
(x, r). Therefore, over this

ball one can define the map

hk(y) = (h1k(y), h
2
k(y)) =

(s1k(y)

s0k(y)
,
s2k(y)

s0k(y)

)

.

Note that fk is the composition of hk with the map ι : (z1, z2) 7→
[1 : z1 : z2] from C2 to CP2, which is a quasi-isometry over the unit ball
in C2. Therefore, at any point y ∈ Bgk

(x, r), the bound |∂fk(y)| ≥ γ
2

implies that |∂hk(y)| ≥ γ′ for some constant γ ′ > 0. Moreover, the (2, 0)-
Jacobians Jac(fk) = det(∂fk) and Jac(hk) = det(∂hk) are related to each
other : Jac(fk)(y) = φ(y) Jac(hk)(y), where φ(y) is the Jacobian of ι at
hk(y). In particular, |φ| is bounded between two universal constants over
Bgk

(x, r), and ∇φ is also bounded.
Since ∇Jac(hk) = φ−1∇Jac(fk) − φ−2Jac(fk)∇φ, it follows from the

bounds on φ that, if Jac(fk) fails to be α-transverse to 0 at y for some
α, i.e. if |Jac(fk)(y)| < α and |∇Jac(fk)(y)| ≤ α, then |Jac(hk)(y)| < Cα
and |∇Jac(hk)(y)| ≤ Cα for some constant C independent of k and α.
This means that, if Jac(hk) is Cα-transverse to 0 at y, then Jac(fk) is α-
transverse to 0 at y. Therefore, what one actually needs to prove is that, for
large enough k, a perturbation of sk with Gaussian decay and smaller than δ
allows one to obtain the η-transversality to 0 of Jac(hk) over a ball Bgk

(x, c),
with η = c′δ (log δ−1)−p, for some constants c, c′ and p ; the η

C -transversality
to 0 of Jac(fk) then follows by the above remark.

Since |∂hk(x)| ≥ γ′, one can assume, after composing with a rotation in
C2 (constant over X) acting on the two components (s1k, s

2
k) or equivalently

on (h1k, h
2
k), that |∂h2k(x)| ≥ γ′

2 . As in §2.2, consider the asymptotically

holomorphic sections srefk,x of Lk with Gaussian decay away from x given

by Lemma 2, and the complex coordinate functions z1k and z2k of a local
approximately holomorphic Darboux coordinate chart on a neighborhood of
x. Recall that the two asymptotically holomorphic 1-forms

µ1k = ∂
(z1ks

ref
k,x

s0k

)

and µ2k = ∂
(z2ks

ref
k,x

s0k

)

are, at x, both of norm larger than a fixed constant and mutually orthogonal,
and that µ1k, µ

2
k and their derivatives are uniformly bounded independently

of k.
Because µ1k(x) and µ2k(x) define an orthogonal frame in Λ1,0T ∗xX, there

exist complex numbers ak and bk such that ∂h2k(x) = akµ
1
k(x) + bkµ

2
k(x).

Let λk,x = (b̄kz
1
k − ākz2k)srefk,x. The properties of λk,x of importance to us are

the following : the sections λk,x are asymptotically holomorphic because the
coordinates zik are asymptotically holomorphic ; they are uniformly bounded
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in C3 norm by a constant C0, because of the bounds on srefk,x, on the coor-

dinate chart and on ∂h2k(x) ; they have uniform Gaussian decay away from
x ; and, letting

Θk,x = ∂
(λk,x
s0k

)

∧ ∂h2k,

one has |Θk,x(x)| = |(b̄kµ1k(x) − ākµ
2
k(x)) ∧ (akµ

1
k(x) + bkµ

2
k(x))| ≥ γ′′ for

some constant γ ′′ > 0, because of the lower bounds on |µi
k(x)| and |∂h2k(x)|.

Because ∇Θk,x is uniformly bounded and |Θk,x(x)| ≥ γ′′, there exists a

constant r′ > 0 independent of k such that |Θk,x| remains larger than γ′′

2

over the ball Bgk
(x, r′). Define on Bgk

(x, r′) the function uk = Θ−1k,xJac(hk)

with values in C : because Θk,x is bounded from above and below and has
bounded derivative, the transversality to 0 of uk is equivalent to that of
Jac(hk). Moreover, for any wk ∈ C, adding wkλk,x to s1k is equivalent to
adding wkΘk,x to Jac(hk) = ∂h1k ∧ ∂h2k, i.e. adding wk to uk. Therefore, to

prove Proposition 5 we only need to find wk ∈ C with |wk| ≤ δ
C0

such that
the functions uk − wk are transverse to 0.

Using the local approximately holomorphic coordinate chart, one can ob-
tain from uk, after composing with a fixed dilation of C2 if necessary, func-
tions vk defined on the ball B+ ⊂ C2, with values in C, and satisfying the
estimates |vk| = O(1), |∂̄vk| = O(k−1/2) and |∇∂̄vk| = O(k−1/2). One can
then apply Proposition 6, provided that k is large enough, to obtain con-
stants wk ∈ C, with |wk| ≤ δ

C0
, such that vk − wk is α-transverse to 0 over

the unit ball in C2, where α = δ
C0

log(( δ
C0

)−1)−p. Therefore, uk − wk is α
C′ -

transverse to 0 over Bgk
(x, c) for some constants c and C ′. Multiplying by

Θk,x, one finally gets that, over Bgk
(x, c), Jac(hk) − wkΘk,x is η-transverse

to 0, where η = α
C′′ for some constant C ′′.

In other terms, let (τ 0k,x, τ
1
k,x, τ

2
k,x) = (0,−wkλk,x, 0), and define h̃k sim-

ilarly to hk starting with sk + τk,x instead of sk : then the above dis-

cussion shows that Jac(h̃k) is η-transverse to 0 over Bgk
(x, c). Moreover,

|τk,x|C3 = |wk| |λk,x|C3 ≤ δ, and the sections τk,x have uniform Gaussian

decay away from x. As remarked above, the η-transversality to 0 of Jac(h̃k)
implies that Jac(P(sk+τk,x)) is η′-transverse to 0 for some η′ differing from η
by at most a constant factor. The assumptions of Proposition 3 are therefore
satisfied, since η′ ≥ c′δ log(δ−1)−p for a suitable constant c′ > 0.

Moreover, the whole argument also applies to one-parameter families of
sections st,k as well. The only nontrivial point to check, in order to apply the
above construction for each t ∈ [0, 1] in such a way that everything depends
continuously on t, is the existence of a continuous family of rotations of

C2 acting on (h1k, h
2
k) allowing one to assume that |∂h2t,k(x)| > γ′

2 for all t.

For this, observe that, for every t, such rotations in SU(2) are in one-to-
one correspondence with pairs (α, β) ∈ C2 such that |α|2 + |β|2 = 1 and

|α∂h1t,k(x) + β ∂h2t,k(x)| > γ′

2 . The set Γt of such pairs (α, β) is non-empty

because |∂ht,k(x)| ≥ γ′ ; let us now prove that it is connected.
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First, notice that Γt is invariant under the diagonal S1 action on C2.
Therefore, it is sufficient to prove that the set of (α : β) ∈ CP1 such that

φ(α : β) :=
|α∂h1t,k(x) + β ∂h2t,k(x)|2

|α|2 + |β|2 >
(γ′)2

4

is connected. For this, consider a critical point of φ over CP1. Composing
with a rotation in CP1, one may assume that this critical point is (1 : 0).
Then it follows from the property ∂

∂βφ(1 : β)|β=0 = 0 that ∂h1t,k(x) and

∂h2t,k(x) must necessarily be orthogonal to each other. Therefore, one has

φ(1 : β) =
|∂h1t,k(x)|2 + |β|2|∂h2t,k(x)|2

1 + |β|2 ,

and it follows that either φ is constant over CP1 (if |∂h1t,k(x)| = |∂h2t,k(x)|),
or the critical point is nondegenerate of index 0 (if |∂h1t,k(x)| < |∂h2t,k(x)|),
or it is nondegenerate of index 2 (if |∂h1t,k(x)| > |∂h2t,k(x)|). As a conse-
quence, since φ has no critical point of index 1, all nonempty sets of the
form {(α : β) ∈ CP1, φ(α, β) > constant} are connected.

Lifting back from CP1 to the unit sphere in C2, it follows that Γt is
connected. Therefore, for each t the open set Γt ⊂ SU(2) of admissible
rotations of C2 is connected. Since ht,k depends continuously on t, the sets
Γt also depend continuously on t (with respect to nearly every conceivable
topology), and therefore

⋃

t{t} × Γt is connected. The same argument as
in the end of §2.3 then implies the existence of a continuous section of
⋃

t{t}×Γt over [0, 1], i.e. the existence of a continuous one-parameter family

of rotations of C2 which allows one to ensure that |∂h2t,k(x)| > γ′

2 for all t.
Therefore, the argument described in this section also applies to the case of
one-parameter families, and the assumptions of Proposition 3 are satisfied
by the property P even in the case of one-parameter families of sections.
Proposition 5 follows immediately.

3.2. Nondegeneracy of cusps. At this point in the proof, we have ob-
tained sections satisfying the transversality property P3(γ). The only miss-
ing property in order to obtain η-genericity for some η > 0 is the transver-
sality to 0 of T (sk) over R(sk). The main result of this section is therefore
the following :

Proposition 7. Let δ and γ be two constants such that 0 < δ < γ
4 , and let

(sk)kÀ0 be asymptotically holomorphic sections of C3 ⊗ Lk satisfying P3(γ)
for all k. Then there exists a constant η > 0 such that, for all large enough
values of k, there exist asymptotically holomorphic sections σk of C3 ⊗ Lk

such that |σk−sk|C3,gk
≤ δ and that the restrictions to R(σk) of the sections

T (σk) are η-transverse to 0 over R(σk). Moreover, the same statement holds
for families of sections indexed by a parameter t ∈ [0, 1].

Note that, decreasing δ if necessary in the statement of Proposition 7, it
is safe to assume that all sections lying within δ of sk in C3 norm, and in
particular the sections σk, satisfy P3(

γ
2 ).

For technical reasons that will be clear below, we need to extend the
definition of the quantity T (sk) to a neighborhood of R(sk). As suggested
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in the introduction, this can be done by extending to a neighborhood of
R(sk) the rank 1 subbundle L(sk) of f∗kTCP2 over which the quantity ∂fk
is projected. Recall from the introduction that L(sk) has been defined over
R(sk) to be the line bundle Im ∂fk, and denote again by L(sk) its extension
over a neighborhood of R(sk) as a subbundle of f∗kTCP2, constructed by
radial parallel transport along directions normal to R(sk). Finally define,
over the same neighborhood of R(sk) and as in the introduction, T (sk) =
π(∂fk)∧ ∂Jac(fk), where π : f∗kTCP2 → L(sk) is the orthogonal projection.

There are several ways of obtaining transversality to 0 of certain sections
restricted to asymptotically holomorphic symplectic submanifolds : for ex-
ample, one such technique is described in the main argument of [1]. However
in our case, the perturbations we will add to sk in order to get the transver-
sality to 0 of T (sk) have the side effect of moving the submanifolds R(sk)
along which the transversality conditions have to hold, which makes things
slightly more complicated. Therefore, we choose to use the equivalence be-
tween two different transversality properties :

Lemma 6. Let σk and σ′k be asymptotically holomorphic sections of vector
bundles Ek and E

′
k respectively over X. Assume that σ′k is γ-transverse to 0

over X for some γ > 0, and let Σ′k be its (smooth) zero set. Fix a constant
r > 0 and a point x ∈ X. Then :

(1) There exists a constant c > 0, depending only on r, γ and the bounds
on the sections, such that, if the restriction of σk to Σ′k is η-transverse to 0
over Bgk

(x, r) ∩Σ′k for some η < γ, then σk ⊕ σ′k is c η-transverse to 0 at x
as a section of Ek ⊕ E′k.

(2) If σk ⊕ σ′k is η-transverse to 0 at x and x belongs to Σ′k, then the
restriction of σk to Σ′k is η-transverse to 0 at x.

Proof. We start with (1), whose proof follows the ideas of §3.6 of [1] with
improved estimates. Let C1 be a constant bounding |∇σk| everywhere, and
let C2 be a constant bounding |∇∇σk| and |∇∇σ′k| everywhere. Fix two

constants 0 < c < c′ < 1
2 , such that the following inequalities hold : c < r,

c < 1
2γ C

−1
1 , c′ < (2 + γ−1C1)

−1, and (2C2γ
−1 + 1)c < c′. Clearly, these

constants depend only on r, γ, C1 and C2.
Assume that |σk(x)| and |σ′k(x)| are both smaller than c η. Because of

the γ-transversality to 0 of σ′k and because |σ′k(x)| < c η < γ, the covariant
derivative of σ′k is surjective at x, and admits a right inverse (E ′k)x → TxX
of norm less than γ−1. Since the connection is unitary, applying this right
inverse to σ′k itself one can follow the downward gradient flow of |σ′k|, and
since one remains in the region where |σ′k| < γ this gradient flow converges
to a point y where σ′k vanishes, at a distance d from the starting point x
no larger than γ−1c η. In particular, d < c < r, so y ∈ Bgk

(x, r) ∩ Σ′k, and
therefore the restriction of σk to Σ′k is η-transverse to 0 at y.

Since c < 1
2γ C

−1
1 , the norm of σk(y) differs from that of σk(x) by at most

C1d <
η
2 , and so |σk(y)| < η. Since y ∈ Bgk

(x, r) ∩ Σ′k, we therefore know
that ∇σ′k is surjective at y and vanishes in all directions tangential to Σ′k,
while ∇σk restricted to TyΣ

′
k is surjective and larger than η. It follows that

∇(σk⊕σ′k) is surjective at y. Let ρ : (Ek)y → TyΣ
′
k and ρ′ : (E′k)y → TyX be

the right inverses of∇yσk |Σ′

k
and∇yσ

′
k given by the transversality properties
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of σk |Σ′

k
and σ′k. We now construct a right inverse ρ̂ : (Ek ⊕E′k)y → TyX of

∇y(σk ⊕ σ′k) with bounded norm.
Considering any element u ∈ (Ek)y, the vector û = ρ(u) ∈ TyΣ

′
k has

norm at most η−1|u| and satisfies ∇σk(û) = u. Clearly ∇σ′k(û) = 0 because
û is tangent to Σ′k, so we define ρ̂(u) = û. Now consider an element v
of (E′k)y, and let v̂ = ρ′(v) : we have |v̂| ≤ γ−1|v| and ∇σ′k(v̂) = v. Let
ŵ = ρ(∇σk(v̂)) : then ∇σk(ŵ) = ∇σk(v̂) and ∇σ′k(ŵ) = 0, while |ŵ| ≤
η−1C1|v̂| ≤ η−1γ−1C1|v|. Therefore ∇(σk ⊕ σ′k)(v̂ − ŵ) = v, and we define
ρ̂(v) = v̂ − ŵ.

Therefore ∇(σk ⊕ σ′k) admits at y a right inverse ρ̂ of norm bounded by
η−1 + γ−1 + η−1γ−1C1 ≤ (2 + γ−1C1)η

−1 < (c′η)−1. Finally, note that
∇x(σk ⊕ σ′k) differs from ∇y(σk ⊕ σ′k) by at most 2C2d < 2C2γ

−1c η <
(c′ − c)η. Therefore, ∇x(σk ⊕ σ′k) is also surjective, and is larger than
(c′η) − ((c′ − c)η) = c η. In other terms, we have shown that σk ⊕ σ′k is
c η-transverse to 0 at x, which is what we sought to prove.

The proof of (2) is much easier : we know that x ∈ Σ′k, i.e. σ
′
k(x) = 0,

and let us assume that |σk(x)| < η. Then |σk(x) ⊕ σ′k(x)| = |σk(x)| < η,
and the η-transversality to 0 of σk ⊕ σ′k at x implies that ∇x(σk ⊕ σ′k) has
a right inverse ρ̂ of norm less than η−1. Choose any u ∈ (Ek)x, and let
ρ(u) = ρ̂(u ⊕ 0). One has ∇σ′k(ρ(u)) = 0, therefore ρ(u) lies in TxΣ

′
k, and

∇σk(ρ(u)) = u by construction. So (∇σk)|TxΣ′

k
is surjective and admits ρ as

a right inverse. Moreover, |ρ(u)| = |ρ̂(u ⊕ 0)| ≤ η−1|u|, so the norm of ρ is
less than η−1, which shows that σk |Σ′

k
is η-transverse to 0 at x.

It follows from assertion (2) of Lemma 6 that, in order to obtain the
transversality to 0 of T (σk)|R(σk), it is sufficient to make T (σk)⊕ Jac(Pσk)
transverse to 0 over a neighborhood of R(σk). Therefore, we can use once
more the globalization principle of Proposition 3 to prove Proposition 7.
Indeed, consider a section s of C3 ⊗Lk satisfying P3(

γ
2 ), a point x ∈ X and

a constant η > 0, and say that s satisfies the property P(η, x) if either x is
at distance more than η of R(s), or x lies close to R(s) and T (s)⊕ Jac(Ps)
is η-transverse to 0 at x (i.e. one of the two quantities |(T (s)⊕ Jac(Ps))(x)|
and |∇(T (s)⊕Jac(Ps))(x)| is larger than η). Since Jac(Ps)⊕T (s) is, under
the assumption P3(

γ
2 ), a smooth function of s and its first two derivatives,

and since R(s) depends nicely on s, it is easy to show that the property
P is local and C3-open. So one only needs to check that P satisfies the
assumptions of Proposition 3. Our next remark is :

Lemma 7. There exists a constant r′0 > 0 (independent of k) with the
following property : choose x ∈ X and r′ < r′0, and let sk be asymptotically
holomorphic sections of C3 ⊗ Lk satisfying P3(

γ
2 ). Assume that Bgk

(x, r′)
intersects R(sk). Then there exists an approximately holomorphic map θk,x
from the disc D+ of radius 11

10 in C to R(sk) such that : (i) the image by
θk,x of the unit disc D contains Bgk

(x, r′) ∩R(sk) ; (ii) |∇θk,x|C1,gk
= O(1)

and |∂̄θk,x|C1,gk
= O(k−1/2) ; (iii) θk,x(D

+) is contained in a ball of radius
O(r′) centered at x.
Moreover the same statement holds for one-parameter families of sec-

tions : given sections (st,k)t∈[0,1] depending continuously on t, satisfying
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P3(
γ
2 ) and such that Bgk

(x, r′) intersects R(st,k) for all t, there exist approx-
imately Jt-holomorphic maps θt,k,x depending continuously on t and with the
same properties as above.

Proof. We work directly with the case of one-parameter families (the re-
sult for isolated sections follows trivially) and let jt,k = Jac(Pst,k). First
note that R(st,k) is the zero set of jt,k, which is γ

2 -transverse to 0 and has
uniformly bounded second derivative. So, given any point y ∈ R(st,k),
|∇jt,k(y)| > γ

2 , and therefore there exists c > 0, depending only on γ and

the bound on ∇∇jt,k, such that ∇jt,k varies by a factor of at most 1
10 in the

ball of radius c centered at y. It follows that Bgk
(y, c)∩R(st,k) is diffeomor-

phic to a ball (in other words, R(st,k) is “trivial at small scale”).
Assume first that 3r′ < c. For all t, choose a point yt,k (not neces-

sarily depending continuously on t) in Bgk
(x, r′) ∩ R(st,k) 6= ∅. The in-

tersection Bgk
(yt,k, 3r

′) ∩ R(st,k) is diffeomorphic to a ball and therefore

connected, and contains Bgk
(x, r′)∩R(st,k) which is nonempty and depends

continuously on t. Therefore, the set
⋃

t{t} ×Bgk
(yt,k, 3r

′) ∩R(st,k) is con-
nected, which implies the existence of points xt,k ∈ Bgk

(yt,k, 3r
′)∩R(st,k) ⊂

Bgk
(x, 4r′) ∩R(st,k) which depend continuously on t.
Consider local approximately Jt-holomorphic coordinate charts over a

neighborhood of xt,k, depending continuously on t, as given by Lemma 3,
and call ψt,k : (C2, 0)→ (X,xt,k) the inverse of the coordinate map. Because
of asymptotic holomorphicity, the tangent space to R(st,k) at xt,k lies within

O(k−1/2) of the complex subspace T̃xt,k
R(st,k) = Ker ∂jt,k(xt,k) of Txt,k

X.

Composing ψt,k with a rotation in C2, one can get maps ψ′t,k satisfying the

same bounds as ψt,k and such that the differential of ψ′t,k at 0 maps C×{0}
to T̃xt,k

R(st,k).
The estimates of Lemma 3 imply that there exists a constant λ = O(r′)

such that ψ′t,k(BC2(0, λ)) ⊃ Bgk
(x, r′). Define ψ̃t,k(z) = ψ′t,k(λz) : if r′

is sufficiently small, this map is well-defined over the ball BC2(0, 2). Over

BC2(0, 2) the estimates of Lemma 3 imply that |∂̄ψ̃t,k|C1,gk
= O(λk−1/2)

and |∇ψ̃t,k|C1,gk
= O(λ). Moreover, because λ = O(r′) the image by ψ̃t,k of

BC2(0, 2) is contained in a ball of radius O(r′) around x.
Assuming r′ to be sufficiently small, one can also require that the image

of BC2(0, 2) by ψ̃t,k has diameter less than c. The submanifolds R(st,k) are
then trivial over the considered balls, so it follows from the implicit function
theorem that R(st,k) ∩ ψ̃t,k(D

+ × D+) can be parametrized in the chosen

coordinates as the set of points of the form ψ̃t,k(z, τt,k(z)) for z ∈ D+, where

τt,k : D+ → D+ satisfies τt,k(0) = 0 and ∇τt,k(0) = O(k−1/2).
The derivatives of τt,k can be easily computed, since they are characterized

by the equation jt,k(ψ̃t,k(z, τt,k(z))) = 0. Notice that, if r′ is small enough,

it follows from the transversality to 0 of jt,k that |∇jt,k ◦ dψ̃t,k(v)| is larger
than a constant times λ|v| for all v ∈ {0}×C and at any point of D+×D+.
Combining this estimate with the bounds on the derivatives of jt,k given by

asymptotic holomorphicity and the above bounds on the derivatives of ψ̃t,k,

one gets that |∇τt,k|C1 = O(1) and |∂̄τt,k|C1 = O(k−1/2) over D+.
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One then defines θt,k(z) = ψ̃t,k(z, τt,k(z)) over D+, which satisfies all
the required properties : the image θt,k(D

+) is contained in R(st,k) and in
a ball of radius O(r′) centered at x ; θt,k(D) contains the intersection of

R(st,k) with ψ̃t,k(D×D+) ⊃ ψ′t,k(BC2(0, λ)) ⊃ Bgk
(x, r′) ; and the required

bounds on derivatives follow directly from those on derivatives of τt,k and

ψ̃t,k. Therefore, Lemma 7 is proved under the assumption that r′ is small
enough. We set r′0 in the statement of the lemma to be the bound on r′

which ensures that all the assumptions we have made on r′ are satisfied.

We now prove that the assumptions of Proposition 3 hold for property
P in the case of single sections sk (the case of one-parameter families is
discussed later). Let x ∈ X, 0 < δ < γ

4 , and consider asymptotically

holomorphic sections sk of C3 ⊗ Lk satisfying P3(
γ
2 ) and the corresponding

maps fk = Psk. We have to show that, for large enough k, a perturbation of
sk with Gaussian decay and smaller than δ in C3 norm can make property
P hold over a ball centered at x. Because of assertion (1) of Lemma 6, it is
actually sufficient to show that there exist constants c, c′ and p independent
of k and δ such that, if x lies within distance c of R(sk), then sk can be
perturbed to make the restriction of T (sk) to R(sk) η-transverse to 0 over the
intersection of R(sk) with a ball Bgk

(x, c), where η = c′δ (log δ−1)−p. Such a
result is then sufficient to imply the transversality to 0 of T (sk)⊕Jac(fk) over
the ball Bgk

(x, c2), with a transversality constant decreased by a bounded
factor.

As in previous sections, composing with a rotation in C3 (constant over
X), one can assume that sk(x) is directed along the first component in C3,
i.e. that s1k(x) = s2k(x) = 0 and therefore |s0k(x)| ≥ γ

2 . Because of the
uniform bound on |∇sk|, there exists r > 0 (independent of k) such that
|s0k| ≥ γ

3 , |s1k| <
γ
3 and |s2k| < γ

3 over the ball Bgk
(x, r). Therefore, over this

ball one can define the map

hk(y) = (h1k(y), h
2
k(y)) =

(s1k(y)

s0k(y)
,
s2k(y)

s0k(y)

)

.

The map fk is the composition of hk with the map ι : (z1, z2) 7→ [1 : z1 : z2]
from C2 to CP2, which is a quasi-isometry over the unit ball in C2. Therefore,
at any point y ∈ Bgk

(x, r), the bound |∂fk(y)| ≥ γ
2 implies that |∂hk(y)| ≥ γ′

for some constant γ ′ > 0. Moreover, one has Jac(fk) = φ Jac(hk), where
φ(y) is the Jacobian of ι at hk(y). In particular, Jac(hk) vanishes at exactly
the same points of Bgk

(x, r) as Jac(fk). Since |φ| is bounded between two
universal constants over Bgk

(x, r) and ∇φ is bounded too, it follows from
the γ

2 -transversality to 0 of Jac(fk) that, decreasing γ
′ if necessary, Jac(hk)

is γ′-transverse to 0 over Bgk
(x, r).

Since |∂hk(x)| ≥ γ′, after composing with a rotation in C2 (constant over

X) acting on the two components (s1k, s
2
k) one can assume that |∂h2k(x)| ≥ γ′

2 .
Since ∇∇hk is uniformly bounded, decreasing r if necessary one can ensure

that |∂h2k| remains larger than γ′

4 at every point of Bgk
(x, r).

Let us now show that, over R̂x(sk) = Bgk
(x, r)∩R(sk), the transversality

to 0 of T (sk) follows from that of T̂ (sk) = ∂h2k ∧ ∂Jac(hk).
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It follows from the identity Jac(fk) = φ Jac(hk) and the vanishing of

Jac(hk) over R̂x(sk) that ∂Jac(fk) = φ∂Jac(hk) over R̂x(sk). Moreover
the two (1, 0)-forms ∂fk and ∂hk have complex rank one at any point of

R̂x(sk) and are related by ∂fk = dι(∂hk), so they have the same kernel
(in some sense they are “colinear”). Because |∂h2k| is bounded from below
over Bgk

(x, r), the ratio between |∂hk| and |∂h2k| is bounded. Because the
line bundle L(sk) on which one projects ∂fk coincides with Im ∂fk over
R(sk), we have |π(∂fk)| = |∂fk| over R(sk). Since ι is a quasi-isometry
over the unit ball, it follows that the ratio between |π(∂fk)| and |∂h2k| is
bounded from above and below over R̂x(sk). Moreover, the two 1-forms
π(∂fk) and ∂h2k have same kernel, so one can write π(∂fk) = ψ ∂h2k over

R̂x(sk), with ψ bounded from above and below. Because of the uniform
bounds on derivatives of sk and therefore fk and hk, it is easy to check that
the derivatives of ψ are bounded.

So T (sk) = φψ T̂ (sk) over R̂x(sk). Therefore, assume that T̂ (sk)|R(sk) is

η-transverse to 0 at a given point y ∈ R̂x(sk), and let C > 1 be a constant

such that 1
C < |φψ| < C and |∇(φψ)| < C over R̂x(sk). If |T (sk)(y)| < η

2C3 ,

then |T̂ (sk)(y)| < η
2C2 < η, and therefore |∂(T̂ (sk))(y)| > η, so at y one has

|∂(T (sk))| ≥ |φψ ∂(T̂ (sk))| − |T̂ (sk)∂(φψ)| > 1
C η −

η
2C2C = η

2C > η
2C3 . In

other terms, the restriction to R(sk) of T (sk) is η
2C3 -transverse to 0 at y.

Therefore, we only need to show that there exists a constant c > 0 such
that, if Bgk

(x, c) ∩R(sk) 6= ∅, then by perturbing sk it is possible to ensure

that T̂ (sk)|R(sk) is transverse to 0 over Bgk
(x, c) ∩R(sk).

By Lemma 7, given any sufficiently small constant c > 0 and assuming
that Bgk

(x, c) ∩R(sk) 6= ∅, there exists an approximately holomorphic map
θk : D+ → R(sk) such that θk(D) contains Bgk

(x, c) ∩ R(sk) and satisfying

bounds |∇θk|C1,gk
= O(1) and |∂̄θk|C1,gk

= O(k−1/2). We call c̄ = O(c) the

size of the ball such that θk(D
+) ⊂ Bgk

(x, c̄), and assume that c is small
enough to have c̄ < r.

From now on, we assume that Bgk
(x, c) ∩R(sk) 6= ∅.

Let srefk,x be the asymptotically holomorphic sections of Lk with Gaussian

decay away from x given by Lemma 2, and let z1k and z2k be the complex
coordinate functions of a local approximately holomorphic Darboux coordi-
nate chart on a neighborhood of x. There exist two complex numbers a and
b such that ∂h2k(x) = a ∂z1k(x) + b ∂z2k(x). Composing the coordinate chart
(z1k, z

2
k) with the rotation

1

|a|2 + |b2|

(

b̄ −ā
a b

)

,

we can actually write ∂h2k(x) = λ∂z2k(x), with |λ| bounded from below

independently of k and x. We now define Qk,x =
(

0, (z1k)
2srefk,x, 0

)

and study

the behavior of T̂ (sk + wQk,x) for small w ∈ C.

First we look at how adding wQk,x to sk affects the submanifold R(sk) :
for small enough w, R(sk +wQk,x) is a small deformation of R(sk) and can
therefore be seen as a section of TX|R(sk). Because the derivative of Jac(hk)
is uniformly bounded and Bgk

(x, c)∩R(sk) is not empty, if c is small enough
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then |Jac(hk)| remains less than γ ′ over Bgk
(x, c̄). Recall that Jac(hk) is γ

′-
transverse to 0 over Bgk

(x, r) : therefore, at every point y ∈ Bgk
(x, c̄),

∇Jac(hk) admits a right inverse ρ : Λ2,0T ∗yX → TyX of norm less than 1
γ′ .

Adding wQk,x to sk increases Jac(hk) by w∆k,x, where

∆k,x = ∂
((z1k)

2srefk,x

s0k

)

∧ ∂h2k.

Therefore, R(sk +wQk,x) is obtained by shifting R(sk) by an amount equal
to −ρ(w∆k,x) + O(|w∆k,x|2). It follows immediately that the value of

T̂ (sk + wQk,x) at a point of R(sk + wQk,x) differs from the value of T̂ (sk)
at the corresponding point of R(sk) by an amount

Θk,x(w) = w ∂h2k ∧ ∂∆k,x −∇(T̂ (sk)).ρ(w∆k,x) +O(w2).

Our aim is therefore to show that, if c is small enough, for a suitable value
of w the quantity T̂ (sk)+Θk,x(w) is transverse to 0 over R(sk)∩Bgk

(x, c).

Notice that the quantities T̂ (sk) and Jac(hk) are asymptotically holo-

morphic, so that ∇(T̂ (sk)) and ρ are approximately complex linear. There-

fore, ∇(T̂ (sk)).ρ(w∆k,x) = w∇(T̂ (sk)).ρ(∆k,x) + O(k−1/2). It follows that

Θk,x(w) = wΘ0
k,x +O(w2) +O(k−1/2), where

Θ0
k,x = ∂h2k ∧ ∂∆k,x −∇(T̂ (sk)).ρ(∆k,x).

We start by computing the value of Θ0
k,x at x, using the fact that ∂h2k(x) =

λ∂z2k(x) while z
1
k(x) = 0 and therefore ∆k,x(x) = 0. Because of the identity

∆k,x =
srefk,x

s0
k

2z1k∂z
1
k ∧ ∂h2k +O(|z1k|2), an easy calculation yields that

∂∆k,x = 2
srefk,x

s0k
(∂z1k ∧ ∂h2k) ∂z1k +O(|z1k|)

and therefore

Θ0
k,x(x) = −2λ2

srefk,x(x)

s0k(x)

(

∂z1k(x) ∧ ∂z2k(x)
)2
.

The important point is that there exists a constant γ ′′ > 0 independent of
k and x such that |Θ0

k,x(x)| ≥ γ′′.

Since the derivatives of Θ0
k,x are uniformly bounded, |Θ0

k,x| remains larger

than γ′′

2 at every point of Bgk
(x, c̄) if c is small enough. It follows that, over

R(sk)∩Bgk
(x, c), the transversality to 0 of T̂ (sk)+Θk,x(w) is equivalent to

that of (T̂ (sk) + Θk,x(w))/Θ
0
k,x. The value of c we finally choose to use in

Lemma 7 for the construction of θk is one small enough to ensure that all
the above statements hold (but still independent of k, x and δ). Now define,
over the disc D+ ⊂ C, the function

vk(z) =
T̂ (sk)(θk(z))
Θ0

k,x(θk(z))

with values in C. Because Θ0
k,x is bounded from below over Bgk

(x, c̄) and
because of the bounds on the derivatives of θk given by Lemma 7, the func-
tions vk : D+ → C satisfy the hypotheses of Proposition 6 for all large
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enough k. Therefore, if C0 is a constant larger than |Qk,x|C3,gk
, and if k

is large enough, there exists wk ∈ C, with |wk| ≤ δ
C0

, such that vk + wk is

α-transverse to 0 over the unit disc D in C, where α = δ
C0

log(( δ
C0

)−1)−p.

Multiplying again by Θ0
k,x and recalling that θk maps diffeomorphically D

to a subset of R(sk) containing R(sk)∩Bgk
(x, c), we get that the restriction

toR(sk) of T̂ (sk)+wkΘ
0
k,x is α

′-transverse to 0 overR(sk)∩Bgk
(x, c) for some

α′ differing from α by at most a constant factor. Recall that Θk,x(wk) =

wkΘ
0
k,x+O(|wk|2)+O(k−1/2), and note that |wk|2 is at most of the order of

δ2, while α′ is of the order of δ log(δ−1)−p : so, if δ is small enough, one can

assume that |wk|2 is much smaller than α′. If k is large enough, k−1/2 is also

much smaller than α′, so that T̂ (sk)+Θk,x(wk) differs from T̂ (sk)+wkΘ
0
k,x

by less than α′

2 , and is therefore α′

2 -transverse to 0 over R(sk) ∩Bgk
(x, c).

Next, recall that R(sk + wkQk,x) is obtained by shifting R(sk) by an
amount −ρ(wk∆k,x) +O(|wk∆k,x|2) = O(|wk|) (because |∆k,x| is uniformly
bounded, or more generally because the perturbation of sk is O(|wk|) in C3

norm). So, if δ is small enough, one can safely assume that the distance
by which one shifts the points of R(sk) is less than c

2 . Therefore, given
any point in R(sk + wkQk,x) ∩ Bgk

(x, c2), the corresponding point in R(sk)
belongs to Bgk

(x, c).

We have seen above that the value of T̂ (sk + wkQk,x) at a point of

R(sk+wkQk,x) differs from the value of T̂ (sk) at the corresponding point of
R(sk) by Θk,x(wk) ; therefore it follows from the transversality properties of

T̂ (sk)+Θk,x(wk) that the restriction to R(sk+wkQk,x) of T̂ (sk+wkQk,x) is
α′′-transverse to 0 over R(sk+wkQk,x)∩Bgk

(x, c2) for some α′′ > 0 differing
from α′ by at most a constant factor.

By the remarks above, this transversality property implies transversality
to 0 of the restriction of T (sk + wkQk,x) over R(sk + wkQk,x) ∩ Bgk

(x, c2) ;
therefore, by Lemma 6, T (sk+wkQk,x)⊕Jac(P(sk+wkQk,x)) is η-transverse
to 0 over Bgk

(x, c4), with a transversality constant η differing from α′′ by
at most a constant factor. So, if δ is small enough and k large enough,
in the case where Bgk

(x, c) ∩ R(sk) 6= ∅, we have constructed wk such
that sk + wkQk,x satisfies the required property P(η, y) at every point
y ∈ Bgk

(x, c4). By construction, |wkQk,x|C3,gk
≤ δ, the asymptotically holo-

morphic sections Qk,x have uniform Gaussian decay away from x, and η is
larger than c′δ log(δ−1)−p for some constant c′ > 0, so all required properties
hold in this case.

Moreover, in the case where Bgk
(x, c) does not intersect R(sk), the section

sk already satisfies the property P( 34c, y) at every point y of Bgk
(x, c4) and

no perturbation is necessary. Therefore, the property P under consideration
satisfies the hypotheses of Proposition 3 whether Bgk

(x, c) intersects R(sk)
or not. This ends the proof of Proposition 7 for isolated sections sk.

In the case of one-parameter families of sections, the argument still works
similarly : we are now given sections st,k depending continuously on a pa-
rameter t ∈ [0, 1], and try to perform the same construction as above for
each value of t, in such a way that everything depends continuously on t.
As previously, we have to show that one can perturb st,k in order to ensure
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that, for all t such that x lies in a neighborhood of R(st,k), T (st,k)|R(st,k) is

transverse to 0 over the intersection of R(st,k) with a ball centered at x.
As before, a continuous family of rotations of C3 can be used to ensure

that s1t,k(x) and s
2
t,k(x) vanish for all t, allowing one to define ht,k for all t.

Moreover the argument at the end of §3.1 proves the existence of a continu-
ous one-parameter family of rotations of C2 acting on the two components

(s1t,k, s
2
t,k) allowing one to assume that |∂h2t,k(x)| ≥ γ′

2 for all t. Therefore,
as in the case of isolated sections, the problem is reduced to that of per-
turbing st,k when x lies in a neighborhood of R(st,k) in order to obtain the

transversality to 0 of T̂ (st,k)|R(st,k) over the intersection of R(st,k) with a
ball centered at x.

Because Lemma 7 and Proposition 6 also apply in the case of 1-parameter
families of sections, the argument used above to obtain the expected transver-
sality result for isolated sections also works here for all t such that x lies in
the neighborhood of R(st,k). However, the ball Bgk

(x, c) intersects R(st,k)
only for certain values of t ∈ [0, 1], which makes it necessary to work more
carefully.

Define Ωk ⊂ [0, 1] as the set of all t for which Bgk
(x, c) ∩ R(st,k) 6= ∅.

For all large enough k and for all t ∈ Ωk, Lemma 7 allows one to define
maps θt,k : D+ → R(st,k) depending continuously on t and with the same
properties as in the case of isolated sections. Using local coordinates zit,k
depending continuously on t given by Lemma 3 and sections sreft,k,x given

by Lemma 2, the quantities Qt,k,x, ∆t,k,x, Θt,k,x(w), Θ
0
t,k,x and vt,k can be

defined for all t ∈ Ωk by the same formulae as above and depend continuously
on t.

Proposition 6 then gives, for all large k and for all t ∈ Ωk, complex
numbers wt,k of norm at most δ

C0
and depending continuously on t, such

that the functions vt,k + wt,k are transverse to 0 over D. As in the case
of isolated sections, this implies that st,k + wt,kQt,k,x satisfies the required
transversality property over Bgk

(x, c4).
Our problem is to define asymptotically holomorphic sections τt,k,x of

C3⊗Lk for all values of t ∈ [0, 1], of C3-norm less than δ and with Gaussian
decay away from x, in such a way that the sections st,k + τt,k,x depend
continuously on t ∈ [0, 1] and satisfy the property P over Bgk

(x, c4) for all t.
For this, let β : R+ → [0, 1] be a continuous cut-off function equal to 1 over
[0, 3c4 ] and to 0 over [c,+∞). Define, for all t ∈ Ωk,

τt,k,x = β
(

distgk
(x,R(st,k))

)

wt,kQt,k,x,

and τt,k,x = 0 for all t 6∈ Ωk. It is clear that, for all t ∈ [0, 1], the sections
τt,k,x are asymptotically holomorphic, have Gaussian decay away from x,
depend continuously on t and are smaller than δ in C3 norm. Moreover,
for all t such that distgk

(x,R(st,k)) ≤ 3c
4 , one has τt,k,x = wt,kQt,k,x, so the

sections st,k + τt,k,x satisfy property P over Bgk
(x, c4) for all such values of t.

For the remaining values of t, namely those such that x is at distance more
than 3c

4 from R(st,k), the argument is the following : since the perturbation
τt,k,x is smaller than δ, every point of R(st,k + τt,k,x) lies within distance
O(δ) of R(st,k). Therefore, decreasing the maximum allowable value of δ in
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Proposition 3 if necessary, one can safely assume that this distance is less
than c

4 . It follows that x is at distance more than c
2 of R(st,k + τt,k,x), and

so that the property P( c4 , y) holds at every point y ∈ Bgk
(x, c4).

Therefore, for all large enough k and for all t ∈ [0, 1], the perturbed
sections st,k + τt,k,x satisfy property P over the ball Bgk

(x, c4). It follows
that the assumptions of Proposition 3 also hold for P in the case of one-
parameter families, and so Proposition 7 is proved.

4. Dealing with the antiholomorphic part

4.1. Holomorphicity in the neighborhood of cusp points. At this
point in the proof, we have constructed asymptotically holomorphic sections
of C3⊗Lk satisfying all the required transversality properties. We now need
to show that, by further perturbation, one can obtain ∂̄-tameness. We first
handle the case of cusp points :

Proposition 8. Let (sk)kÀ0 be γ-generic asymptotically J-holomorphic sec-
tions of C3⊗Lk. Then there exist constants (Cp)p∈N and c > 0 such that, for

all large k, there exist ω-compatible almost-complex structures J̃k on X and
asymptotically J-holomorphic sections σk of C3⊗Lk with the following prop-
erties : at any point whose gk-distance to CJ̃k

(σk) is less than c, the almost-

complex structure J̃k is integrable and the map Pσk is J̃k-holomorphic ; and
for all p ∈ N, |J̃k − J |Cp,gk

≤ Cpk
−1/2 and |σk − sk|Cp,gk

≤ Cpk
−1/2.

Furthermore, the result also applies to one-parameter families of γ-generic
asymptotically Jt-holomorphic sections (st,k)t∈[0,1],kÀ0 : for all large k there

exist almost-complex structures J̃t,k and asymptotically Jt-holomorphic sec-
tions σt,k depending continuously on t and such that the above properties
hold for all values of t. Moreover, if s0,k and s1,k already satisfy the re-
quired properties, and if one assumes that, for some ε > 0, Jt and st,k are
respectively equal to J0 and s0,k for all t ∈ [0, ε] and to J1 and s1,k for all
t ∈ [1− ε, 1], then it is possible to ensure that σ0,k = s0,k and σ1,k = s1,k.

The proof of this result relies on the following analysis lemma, which states
that any approximately holomorphic complex-valued function defined over
the ball B+ of radius 11

10 in C2 can be approximated over the interior ball B
of unit radius by a holomorphic function :

Lemma 8. There exist an operator P : C∞(B+,C)→ C∞(B,C) and con-
stants (Kp)p∈N such that, given any function f ∈ C∞(B+,C), the function

f̃ = P (f) is holomorphic over the unit ball B and satisfies |f − f̃ |Cp(B) ≤
Kp |∂̄f |Cp(B+) for every p ∈ N.

Proof. (see also [2]). This is a standard fact which can be proved e.g. using
the Hörmander theory of weighted L2 spaces. Using a suitable weighted
L2 norm on B+ which compares uniformly with the standard norm on the
interior ball B′ of radius 1 + 1

20 (B ⊂ B′ ⊂ B+), one obtains a bounded

solution to the Cauchy-Riemann equation : for any ∂̄-closed (0, 1)-form ρ
on B+ there exists a function T (ρ) such that ∂̄T (ρ) = ρ and |T (ρ)|L2(B′) ≤
C|ρ|L2(B+) for some constant C.

Take ρ = ∂̄f and let h = T (ρ) : since ∂̄h = ρ = ∂̄f , the function f̃ = f−h
is holomorphic (in other words, we set P = Id−T ∂̄). Moreover the L2 norm



30 DENIS AUROUX

of h and the Cp norm of ∂̄h = ∂̄f over B′ are bounded by multiples of
|∂̄f |Cp(B+) ; therefore, by standard elliptic theory, the same is true for the
Cp norm of h over the interior ball B, which gives the desired result.

We first prove Proposition 8 in the case when there is no parameter,
where the argument is fairly easy. Because sk is γ-generic, the set of points
of R(sk) where T (sk) vanishes, i.e. CJ(sk), is finite. Moreover ∇T (sk)|R(sk)

is larger than γ at all cusp points and ∇∇T (sk) is uniformly bounded, so
there exists a constant r > 0 such that the gk-distance between any two
points of CJ(sk) is larger than 4r.

Let x be a point of CJ(sk), and consider a local approximately J-holo-
morphic Darboux map ψk : (C2, 0)→ (X,x) as given by Lemma 3. Because
of the bounds on ∂̄ψk, the ω-compatible almost-complex structure J ′k on the
ball Bgk

(x, 2r) defined by pulling back the standard complex structure of

C2 satisfies bounds of the type |J ′k − J |Cp,gk
= O(k−1/2) over Bgk

(x, 2r) for
all p ∈ N.

Recall that the set of ω-skew-symmetric endomorphisms of square −1
of the tangent bundle TX (i.e. ω-compatible almost-complex structures) is
a subbundle of End(TX) whose fibers are contractible. Therefore, there
exists a one-parameter family (J τ

k )τ∈[0,1] of ω-compatible almost-complex

structures over Bgk
(x, 2r) depending smoothly on τ and such that J0

k = J
and J1

k = J ′k. Also, let τx : Bgk
(x, 2r) → [0, 1] be a smooth cut-off function

with bounded derivatives such that τx = 1 over Bgk
(x, r) and τx = 0 outside

of Bgk
(x, 32r).

Then, define J̃k to be the almost-complex structure which equals J out-
side of the 2r-neighborhood of CJ(sk), and which at any point y of a ball

Bgk
(x, 2r) centered at x ∈ CJ(sk) coincides with J

τx(y)
k : it is quite easy

to check that J̃k is integrable over the r-neighborhood of CJ(sk) where it

coincides with J ′k, and satisfies bounds of the type |J̃k − J |Cp,gk
= O(k−1/2)

∀p ∈ N.

Let us now return to a neighborhood of x ∈ CJ(sk), where we need to per-

turb sk to make the corresponding projective map locally J̃k-holomorphic.
First notice that, by composing with a rotation of C3 (constant over X),
one can safely assume that s1k(x) = s2k(x) = 0. Therefore, |s0k(x)| ≥ γ, and
decreasing r if necessary one can assume that |s0k| remains larger than γ

2 at

every point of Bgk
(x, r). The J̃k-holomorphicity of Psk over a neighborhood

of x is then equivalent to that of the map hk with values in C2 defined by

hk(y) = (h1k(y), h
2
k(y)) =

(s1k(y)

s0k(y)
,
s2k(y)

s0k(y)

)

.

Because of the properties of the map ψk given by Lemma 3, there exist
constants λ > 0 and r′ > 0, independent of k, such that ψk(BC2(0, 1110λ))

is contained in Bgk
(x, r) while ψk(BC2(0, 12λ)) contains Bgk

(x, r′). We now

define the two complex-valued functions f 1k (z) = h1k(ψk(λz)) and f2k (z) =

h2k(ψk(λz)) over the ball B+ ⊂ C2. By definition of J̃k, the map ψk in-

tertwines the almost-complex structure J̃k over Bgk
(x, r) and the standard
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complex structure of C2, so our goal is to make the functions f 1k and f2k
holomorphic in the usual sense over a ball in C2.

This is where we use Lemma 8. Remark that, because of the estimates on
∂̄Jψk given by Lemma 3 and those on ∂̄Jhk coming from asymptotic holo-
morphicity, we have |∂̄f i

k|Cp(B+) = O(k−1/2) for every p ∈ N and i ∈ {1, 2}.
Therefore, by Lemma 8 there exist two holomorphic functions f̃1k and f̃2k ,

defined over the unit ball B ⊂ C2, such that |f i
k − f̃ i

k|Cp(B) = O(k−1/2) for
every p ∈ N and i ∈ {1, 2}.

Let β : [0, 1] → [0, 1] be a smooth cut-off function such that β = 1
over [0, 12 ] and β = 0 over [ 34 , 1], and define, for all z ∈ B and i ∈ {1, 2},
f̂ i
k(z) = β(|z|)f̃ i

k(z) + (1 − β(|z|))f i
k(z). By construction, the functions f̂ i

k

are holomorphic over the ball of radius 1
2 and differ from f i

k by O(k−1/2).

Going back through the coordinate map, let ĥik be the functions on the

neighborhood Ux = ψk(BC2(0, λ)) of x which satisfy ĥik(ψk(λz)) = f̂ i
k(z) for

every z ∈ B. Define ŝ0k = s0k, ŝ
1
k = ĥ1ks

0
k and ŝ2k = ĥ2ks

0
k over Ux, and let σk

be the global section of C3 ⊗ Lk which ∀x ∈ CJ(sk) equals ŝk over Ux and
which coincides with sk away from CJ(sk).

Because f̂ i
k = f i

k near the boundary of B, ŝk coincides with sk near the

boundary of Ux, and σk is therefore a smooth section of C3 ⊗ Lk. For
every p ∈ N, it follows from the bound |f̂ i

k − f i
k|Cp(B) = O(k−1/2) that

|σk − sk|Cp,gk
= O(k−1/2). Moreover, the functions f̂ i

k are holomorphic

over BC2(0, 12) where they coincide with f̃ i
k, so the functions ĥik are J̃k-

holomorphic over ψk(BC2(0, 12λ)) ⊃ Bgk
(x, r′), and it follows that Pσk is

J̃k-holomorphic over Bgk
(x, r′).

Therefore, the almost-complex structures J̃k and the sections σk satisfy
all the required properties, except that the integrability of J̃k and the holo-
morphicity of Pσk are proved to hold on the r′-neighborhood of CJ(sk) rather
than on a neighborhood of CJ̃k

(σk).

However, the Cp bounds |J̃k − Jk| = O(k−1/2) and |σk − sk| = O(k−1/2)

imply that |JacJ̃k
(Pσk) − JacJ(Psk)| = O(k−1/2) and |TJ̃k

(σk) − TJ(sk)| =
O(k−1/2). Therefore it follows from the transversality properties of sk that

the points of CJ̃k
(σk) lie within gk-distance O(k−1/2) of CJ(sk). In particular,

if k is large enough, the r′

2 -neighborhood of CJ̃k
(σk) is contained in the r′-

neighborhood of CJ(sk), which ends the proof of Proposition 8 in the case
of isolated sections.

In the case of one-parameter families of sections, the argument is similar.
One first notices that, because of γ-genericity, there exists r > 0 such that,
for every t ∈ [0, 1], the set CJt(st,k) consists of finitely many points, any
two of which are mutually distant of at least 4r. Therefore, the points of
CJt(st,k) depend continuously on t, and their number remains constant.

Consider a continuous family (xt)t∈[0,1] of points of CJt(st,k) : Lemma 3
provides approximately Jt-holomorphic Darboux maps ψt,k depending con-
tinuously on t on a neighborhood of xt. By pulling back the standard
complex structure of C2, one obtains integrable almost-complex structures
J ′t,k over Bgk

(xt, 2r), depending continuously on t and differing from Jt by
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O(k−1/2). As previously, because the set of ω-compatible almost-complex
structures is contractible, one can define a continuous family of almost-
complex structures J̃t,k on X by gluing together Jt with the almost-complex
structures J ′t,k defined over Bgk

(xt, 2r), using a cut-off function at distance

r from CJt(st,k). By construction, the almost-complex structures J̃t,k are in-

tegrable over the r-neighborhood of CJt(st,k), and |J̃t,k−Jt|Cp,gk
= O(k−1/2)

for all p ∈ N.
Next, we perturb st,k near xt ∈ CJt(st,k) in order to make the corre-

sponding projective map locally J̃t,k-holomorphic. As before, composing
with a rotation of C3 (constant over X and depending continuously on t)
and decreasing r if necessary, we can assume that s1t,k(xt) = s2t,k(xt) = 0

and therefore that |s0t,k| remains larger than γ
2 over Bgk

(xt, r). The J̃t,k-

holomorphicity of Pst,k over Bgk
(xt, r) is then equivalent to that of the map

ht,k with values in C2 defined as above.

As previously, there exist constants λ and r′ such that ψt,k(BC2(0, 1110λ))

is contained in Bgk
(xt, r) and ψt,k(BC2(0, 12λ)) ⊃ Bgk

(xt, r
′) ; once again,

our goal is to make the functions f i
t,k : B+ → C defined by f i

t,k(z) =

hit,k(ψt,k(λz)) holomorphic in the usual sense.

Because of the estimates on ∂̄Jtψt,k and ∂̄Jtht,k, we have |∂̄f i
t,k|Cp(B+) =

O(k−1/2) ∀p ∈ N, so Lemma 8 provides holomorphic functions f̃ i
t,k over

B which differ from f i
t,k by O(k−1/2). By the same cut-off procedure as

above, we can thus define functions f̂ i
t,k which are holomorphic overBC2(0, 12)

and coincide with f i
t,k near the boundary of B. Going back through the

coordinate maps, we define as previously functions ĥit,k and sections ŝt,k
over the neighborhood Ut,xt = ψt,k(BC2(0, λ)) of xt. Since ŝt,k coincides
with st,k near the boundary of Ut,xt , we can obtain smooth sections σt,k of

C3 ⊗ Lk by gluing st,k together with the various sections ŝt,k defined near
the points of CJt(st,k).

As previously, the maps Pσt,k are J̃t,k-holomorphic over the r′-neighbor-

hood of CJt(st,k) and satisfy |σt,k − st,k|Cp,gk
= O(k−1/2) ; therefore the de-

sired result follows from the observation that, for large enough k, CJ̃t,k
(σt,k)

lies within distance r′

2 of CJt(st,k).

We now consider the special case where s0,k already satisfies the re-
quired conditions, i.e. there exists an almost-complex structure J̄0,k within

O(k−1/2) of J0, integrable near CJ̄0,k
(s0,k), and such that Ps0,k is J̄0,k-

holomorphic near CJ̄0,k
(s0,k). Although this is actually not necessary for

the result to hold, we also assume, as in the statement of Proposition 8,
that st,k = s0,k and Jt = J0 for every t ≤ ε, for some ε > 0. We want to
prove that one can take σ0,k = s0,k in the above construction.

We first show that one can assume that J̃0,k coincides with J̄0,k over
a small neighborhood of CJ0(s0,k). For this, remark that CJ0(s0,k) lies

within O(k−1/2) of CJ̄0,k
(s0,k), so there exists a constant δ such that, for

large enough k, J̄0,k is integrable and Ps0,k is J̄0,k-holomorphic over the
δ-neighborhood of CJ0(s0,k).
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Fix points (xt)t∈[0,1] in CJt(st,k), and consider, for all t ≥ ε, the approx-

imately Jt-holomorphic Darboux coordinates (z1t,k, z
2
t,k) on a neighborhood

of xt and the inverse map ψt,k given by Lemma 3 and which are used to

define the almost-complex structures J ′t,k and J̃t,k near xt. We want to show

that one can extend the family ψt,k to all t ∈ [0, 1] in such a way that the
map ψ0,k is J̄0,k-holomorphic. The hypothesis that Jt and st,k are the same
for all t ∈ [0, ε] makes things easier to handle because Jε = J0 and xε = x0.

Since J̄0,k is integrable over Bgk
(x0, δ) and ω-compatible, there exist

local complex Darboux coordinates Zk = (Z1
k , Z

2
k) at x0 which are J̄0,k-

holomorphic. It follows from the approximate J0-holomorphicity of the
coordinates zε,k = (z1ε,k, z

2
ε,k) and from the bound |J0 − J̄0,k| = O(k−1/2)

that, composing with a linear endomorphism of C2 if necessary, one can
assume that the differentials at x0 of the two coordinate maps, namely
∇x0zε,k and ∇x0Zk, lie within O(k−1/2) of each other. For all t ∈ [0, ε],
žt,k = t

εzε,k + (1− t
ε)Zk defines local coordinates on a neighborhood of x0 ;

however, for t ∈ (0, ε) this map fails to be symplectic by an amount which is

O(k−1/2). So we apply Moser’s argument to žt,k in order to get local Dar-
boux coordinates zt,k over a neighborhood of x0 which interpolate between

Zk and zε,k and which differ from žt,k by O(k−1/2). It is easy to check that,
if k is large enough, then the coordinates zt,k are well-defined over the ball

Bgk
(xt, 2r). Since ∂̄J0Zk and ∂̄J0zε,k are O(k−1/2), and because zt,k differs

from žt,k by O(k−1/2), the coordinates defined by zt,k are approximately
J0-holomorphic (in the sense of Lemma 3) for all t ∈ [0, ε].

Defining ψt,k as the inverse of the map zt,k for every t ∈ [0, ε], it follows
immediately that the maps ψt,k, which depend continuously on t, are ap-
proximately Jt-holomorphic over a neighborhood of 0 for every t ∈ [0, 1],
and that ψ0,k is J̄0,k-holomorphic.

We can then define J ′t,k as previously on Bgk
(xt, 2r), and notice that J ′0,k

coincides with J̄0,k. Therefore, the corresponding almost-complex structures

J̃t,k overX, in addition to all the properties described previously, also satisfy

the equality J̃0,k = J̄0,k over the r-neighborhood of CJ0(s0,k).
It follows that, constructing the sections σt,k from st,k as previously, we

have σ0,k = s0,k. Indeed, since Ps0,k is already J̃0,k-holomorphic over the
r-neighborhood of CJ0(s0,k), we get that, in the above construction, h10,k and

h20,k are J̃0,k-holomorphic, and so f10,k and f20,k are holomorphic. Therefore,

by definition of the operator P of Lemma 8, we have f̃10,k = f10,k and f̃20,k =

f20,k, which clearly implies that σ0,k = s0,k.
The same argument applies near t = 1 to show that, if s1,k already satisfies

the expected properties and if Jt and st,k are the same for all t ∈ [1− ε, 1],
then one can take σ1,k = s1,k. This ends the proof of Proposition 8.

4.2. Holomorphicity at generic branch points. Our last step in order
to obtain ∂̄-tame sections is to ensure, by further perturbation, the vanishing
of ∂̄J̃k

(Psk) over the kernel of ∂J̃k
(Psk) at every branch point.

Proposition 9. Let (sk)kÀ0 be γ-generic asymptotically J-holomorphic sec-
tions of C3⊗Lk. Assume that there exist ω-compatible almost-complex struc-
tures J̃k such that |J̃k − J |Cp,gk

= O(k−1/2) for all p ∈ N and such that, for
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some constant c > 0, fk = Psk is J̃k-holomorphic over the c-neighborhood of
CJ̃k

(sk). Then, for all large k, there exist sections σk such that the following

properties hold : |σk − sk|Cp,gk
= O(k−1/2) for all p ∈ N ; σk coincides with

sk over the c
2 -neighborhood of CJ̃k

(σk) = CJ̃k
(sk) ; and, at every point of

RJ̃k
(σk), ∂̄J̃k

(Pσk) vanishes over the kernel of ∂J̃k
(Pσk).

Moreover, the same result holds for one-parameter families of asymptoti-
cally Jt-holomorphic sections (st,k)t∈[0,1],kÀ0 satisfying the above properties.
Furthermore, if s0,k and s1,k already satisfy the properties required of σ0,k
and σ1,k, then one can take σ0,k = s0,k and σ1,k = s1,k.

The role of the almost-complex structure J in the statement of this result
may seem ambiguous, as the sections sk are also asymptotically holomorphic
and generic with respect to the almost-complex structures J̃k. The point
is that, by requiring that all the almost-complex structures J̃k lie within
O(k−1/2) of a fixed almost-complex structure, one ensures the existence of

uniform bounds on the geometry of J̃k independently of k.
We now prove Proposition 9 in the case of isolated sections. In all the

following, we use the almost complex structure J̃k implicitly. Consider a
point x ∈ R(sk) at distance more than 3

4c from C(sk), and let Kx be the
one-dimensional complex subspace Ker ∂fk(x) of TxX. Because x 6∈ C(sk),
we have TxX = TxR(sk) ⊕ Kx. Therefore, there exists a unique 1-form
θx ∈ T ∗xX ⊗ Tfk(x)CP2 such that the restriction of θx to TxR(sk) is zero and

the restriction of θx to Kx is equal to ∂̄fk(x)|Kx
.

Because the restriction of T (sk) to R(sk) is transverse to 0 and because x
is at distance more than 3

4c from C(sk), the quantity |T (sk)(x)| is bounded
from below by a uniform constant, and therefore the angle between TxR(sk)
and Kx is also bounded from below. So there exists a constant C indepen-
dent of k and x such that |θx| ≤ Ck−1/2. Moreover, because ∂̄fk vanishes
over the c-neighborhood of C(sk), the 1-form θx vanishes at all points x close
to C(sk) ; therefore we can extend θ into a section of T ∗X ⊗ f∗kTCP2 over
R(sk) which vanishes over the c-neighborhood of C(sk), and which satisfies

bounds of the type |θ|Cp,gk
= O(k−1/2) for all p ∈ N.

Next, use the exponential map of the metric g to identify a tubular neigh-
borhood of R(sk) with a neighborhood of the zero section in the normal bun-
dle NR(sk). Given δ > 0 sufficiently small, we define a section χ of f ∗kTCP2

over the δ-tubular neighborhood of R(sk) by the following identity : given
any point x ∈ R(sk) and any vector ξ ∈ NxR(sk) of norm less than δ,

χ(expx(ξ)) = β(|ξ|) θx(ξ),
where the fibers of f∗kTCP2 at x and at expx(ξ) are implicitly identified using
radial parallel transport, and β : [0, δ] → [0, 1] is a smooth cut-off function
equal to 1 over [0, 12δ] and 0 over [34δ, δ]. Since χ vanishes near the boundary
of the chosen tubular neighborhood, we can extend it into a smooth section
over all of X which vanishes at distance more than δ from R(sk).

Decreasing δ if necessary, we can assume that δ < c
2 : it then follows from

the vanishing of θ over the c-neighborhood of C(sk) that χ vanishes over

the c
2 -neighborhood of C(sk). Moreover, because |θ|Cp,gk

= O(k−1/2) for all
p ∈ N and because the cut-off function β is smooth, χ also satisfies bounds
|χ|Cp,gk

= O(k−1/2) for all p ∈ N.
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Fix a point x ∈ R(sk) : χ is identically zero over R(sk) by construction,
so ∇χ(x) vanishes over TxR(sk) ; and, because β ≡ 1 near the origin and
by definition of the exponential map, ∇χ(x)|NxR(sk) = θx|NxR(sk). Since
TxR(sk) and NxR(sk) generate TxX, we conclude that ∇χ(x) = θx. In
particular, restricting to Kx, we get that ∇χ(x)|Kx

= θx|Kx
= ∂̄fk(x)|Kx

.

Equivalently, since Kx is a complex subspace of TxX, we have ∂̄χ(x)|Kx
=

∂̄fk(x)|Kx
and ∂χ(x)|Kx

= 0 = ∂fk(x)|Kx
.

Recall that, for all x ∈ X, the tangent space to CP2 at fk(x) = Psk(x)
canonically identifies with the space of complex linear maps from Csk(x) to
(Csk(x))⊥ ⊂ C3 ⊗ Lk

x. This allows us to define σk(x) = sk(x)− χ(x).sk(x).
It follows from the properties of χ described above that σk coincides with

sk over the c
2 -neighborhood of C(sk) and that |σk − sk|Cp,gk

= O(k−1/2) for
all p ∈ N. Because of the transversality properties of sk, we get that the
points of C(σk) lie within distance O(k−1/2) of C(sk), and therefore if k is
large enough that C(σk) = C(sk).

Let f̃k = Pσk, and consider a point x ∈ R(sk) : since χ(x) = 0 and

therefore f̃k(x) = fk(x), it is easy to check that ∇f̃k(x) = ∇fk(x)−∇χ(x)
in T ∗xX ⊗ Tfk(x)CP2. Therefore, setting Kx = Ker ∂fk(x) as above, we get

that ∂f̃k(x) = ∂fk(x)−∂χ(x) and ∂̄f̃k(x) = ∂̄fk(x)− ∂̄χ(x) both vanish over

Kx. A first consequence is that ∂f̃k(x) also has rank one, i.e. x ∈ R(σk) :

therefore R(sk) ⊂ R(σk). However, because σk differs from sk by O(k−1/2),
it follows from the transversality properties of sk that, for large enough k,
R(σk) is contained in a small neighborhood of R(sk), and so R(σk) = R(sk).

Furthermore, recall that at every point x of R(σk) = R(sk) one has

∂̄f̃k(x)|Kx
= ∂f̃k(x)|Kx

= 0. Therefore ∂̄f̃k(x) vanishes over the kernel

of ∂f̃k(x), and so the sections σk satisfy all the required properties.

To handle the case of one-parameter families, remark that the above con-
struction consists of explicit formulae, so it is easy to check that θ, χ and σk

depend continuously on sk and J̃k. Therefore, starting from one-parameter
families st,k and J̃t,k, the above construction yields for all t ∈ [0, 1] sections
σt,k which satisfy the required properties and depend continuously on t.

Moreover, if s0,k already satisfies the required properties, i.e. if ∂̄f0,k(x)|Kx

vanishes at any point x ∈ R(s0,k), then the above definitions give θ ≡ 0, and
therefore χ ≡ 0 and σ0,k = s0,k ; similarly for t = 1, which ends the proof of
Proposition 9.

4.3. Proof of the main theorems. Assuming that Theorem 3 holds, The-
orems 1 and 2 follow directly from the results we have proved so far : com-
bining Propositions 1, 4, 5 and 7, one gets, for all large k, asymptotically
holomorphic sections of C3⊗Lk which are γ-generic for some constant γ > 0 ;
Propositions 8 and 9 imply that these sections can be made ∂̄-tame by per-
turbing them by O(k−1/2) (which preserves the genericity properties if k is
large enough) ; and Theorem 3 implies that the corresponding projective
maps are then approximately holomorphic singular branched coverings.

Let us now prove Theorem 4. We are given two sequences s0,k and s1,k
of sections of C3 ⊗Lk which are asymptotically holomorphic, γ-generic and
∂̄-tame with respect to almost-complex structures J0 and J1, and want to
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show the existence of a one-parameter family of almost-complex structures
Jt interpolating between J0 and J1 and of generic and ∂̄-tame asymptotically
Jt-holomorphic sections interpolating between s0,k and s1,k.

One starts by defining sections st,k and compatible almost-complex struc-
tures Jt interpolating between (s0,k, J0) and (s1,k, J1) in the following way :

for t ∈ [0, 27 ], let st,k = s0,k and Jt = J0 ; for t ∈ [27 ,
3
7 ], let st,k = (3− 7t)s0,k

and Jt = J0 ; for t ∈ [37 ,
4
7 ], let st,k = 0 and take Jt to be a path of ω-

compatible almost-complex structures from J0 to J1 (recall that the space
of compatible almost-complex structures is connected) ; for t ∈ [ 47 ,

5
7 ], let

st,k = (7t − 4)s1,k and Jt = J1 ; and for t ∈ [57 , 1], let st,k = s1,k and
Jt = J1. Clearly, Jt and st,k depend continuously on t, and the sections st,k
are asymptotically Jt-holomorphic for all t ∈ [0, 1].

Since γ-genericity is a local and C3-open property, there exists α > 0 such
that any section differing from s0,k by less than α in C3 norm is γ

2 -generic,
and similarly for s1,k. Applying Propositions 1, 4, 5 and 7, we get for all
large k asymptotically Jt-holomorphic sections σt,k which are η-generic for
some η > 0, and such that |σt,k − st,k|C3,gk

< α for all t ∈ [0, 1].

We now set s′t,k = s0,k for t ∈ [0, 17 ] ; s
′
t,k = (2− 7t)s0,k + (7t− 1)σ 2

7
,k for

t ∈ [17 ,
2
7 ] ; s

′
t,k = σt,k for t ∈ [27 ,

5
7 ] ; s

′
t,k = (7t − 5)s1,k + (6 − 7t)σ 5

7
,k for

t ∈ [57 ,
6
7 ] ; and s′t,k = s1,k for t ∈ [67 , 1]. By construction, the sections s′t,k

are asymptotically Jt-holomorphic for all t ∈ [0, 1] and depend continuously
on t. Moreover, they are γ

2 -generic for t ∈ [0, 27 ] because s
′
t,k then lies within

α in C3 norm of s0,k, and similarly for t ∈ [ 57 , 1] because s
′
t,k then lies within

α in C3 norm of s1,k. They are also η-generic for t ∈ [ 27 ,
5
7 ] because s

′
t,k is

then equal to σt,k. Therefore the sections s′t,k are η′-generic for all t ∈ [0, 1],

where η′ = min(η, γ2 ).
Next, we apply Proposition 8 to the sections s′t,k : since s′0,k = s0,k

and s′1,k = s1,k are already ∂̄-tame, and since the families s′t,k and Jt are

constant over [0, 17 ] and [67 , 1], one can require of the sections s′′t,k given by

Proposition 8 that s′′0,k = s′0,k = s0,k and s′′1,k = s′1,k = s1,k. Finally, we apply

Proposition 9 to the sections s′′t,k to obtain sections σ′′t,k which simultaneously

have genericity and ∂̄-tameness properties. Since s′′0,k and s′′1,k are already

∂̄-tame, one can require that σ′′0,k = s′′0,k = s0,k and σ′′1,k = s′′1,k = s1,k.

The sections σ′′t,k interpolating between s0,k and s1,k therefore satisfy all the
required properties, which ends the proof of Theorem 4.

5. Generic tame maps and branched coverings

5.1. Structure near cusp points. In order to prove Theorem 3, we need
to check that, given any generic and ∂̄-tame asymptotically holomorphic sec-
tions sk of C3⊗Lk, the corresponding projective maps fk = Psk : X → CP2

are, at any point of X, locally approximately holomorphically modelled on
one of the three model maps of Definition 2. We start with the case of the
neighborhood of a cusp point.

Let x0 ∈ X be a cusp point of fk, i.e. an element of CJ̃k
(sk), where J̃k is

the almost-complex structure involved in the definition of ∂̄-tameness. By
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definition, J̃k differs from J by O(k−1/2) and is integrable over a neighbor-

hood of x0, and fk is J̃k-holomorphic over a neighborhood of x0. Therefore,
choose J̃k-holomorphic local complex coordinates on X near x0, and local
complex coordinates on CP2 near fk(x0) : the map h corresponding to fk in
these coordinate charts is, locally, holomorphic. Because the coordinate map
on X is within O(k−1/2) of being J-holomorphic, we can restrict ourselves
to the study of the holomorphic map h = (h1, h2) defined over a neighbor-
hood of 0 in C2 with values in C2, which satisfies transversality properties
following from the genericity of sk. We need to show that, composing h with
holomorphic local diffeomorphisms of the source space C2 or of the target
space C2, we can get h to be of the form (z1, z2) 7→ (z31 − z1z2, z2) over a
neighborhood of 0.

This statement is a standard result in singularity theory and was first
proven by Whitney in [7] (§16–19). Due to a differently formulated definition
of cusp points and for the sake of completeness, we provide here the first
part of Whitney’s argument.

First, because |∂fk| is bounded from below and x0 is a cusp point, the
derivative ∂h(0) does not vanish and has rank one. Therefore, composing
with a rotation of the target space C2 if necessary, we can assume that its
image is directed along the second coordinate, i.e. Im (∂h(0)) = {0} × C.

Calling Z1 and Z2 the two coordinates on the target space C2, it fol-
lows immediately that the function z2 = h∗Z2 over the source space has a
non-vanishing differential at 0, and can therefore be considered as a local
coordinate function on the source space. Choose z1 to be any linear function
whose differential at the origin is linearly independent with dz2(0), so that
(z1, z2) define holomorphic local coordinates on a neighborhood of 0 in C2.
In these coordinates, h is of the form (z1, z2) 7→ (h1(z1, z2), z2) where h1 is
a holomorphic function such that h1(0) = 0 and ∂h1(0) = 0.

Next, notice that, because Jac(fk) vanishes transversely at x0, the quan-
tity Jac(h) = det(∂h) = ∂h1/∂z1 vanishes transversely at the origin, i.e.

(

∂2h1
∂z21

(0),
∂2h1
∂z1∂z2

(0)

)

6= (0, 0).

Moreover, an argument similar to that of §3.2 shows that locally, because
we have arranged for |∂h2| to be bounded from below, the ratio between the

quantities T (sk) and T̂ = ∂h2 ∧ ∂Jac(h) is bounded from above and below.

In particular, the fact that x0 ∈ CJ̃k
(sk) implies that the restriction of T̂ to

the set of branch points vanishes transversely at the origin.
In our case, T̂ = dz2∧∂(∂h1

∂z1
) = −(∂2h1/∂z21) dz1∧dz2. Therefore, the van-

ishing of T̂ (0) implies that ∂2h1/∂z
2
1 (0) = 0. It follows that ∂2h1/∂z1∂z2 (0)

must be non-zero ; rescaling the coordinate z1 by a constant factor if neces-
sary, this derivative can be assumed to be equal to −1. Therefore, the map
h can be written as

h(z1, z2) = (−z1z2 + λz22 +O(|z|3), z2)
= (−z1z2 + λz22 + αz31 + βz21z2 + γz1z

2
2 + δz32 +O(|z|4), z2)

where λ, α, β, γ and δ are complex coefficients.
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We now consider the following coordinate changes : on the target space
C2, define ψ(Z1, Z2) = (Z1 − λZ2

2 − δZ3
2 , Z2), and on the source space C2,

define φ(z1, z2) = (z1 + βz21 + γz1z2, z2). Clearly, these two maps are local
diffeomorphisms near the origin. Therefore, one can replace h by ψ ◦ h ◦ φ,
which has the effect of killing most terms of the above expansion : this
allows us to consider that h is of the form

h(z1, z2) = (−z1z2 + αz31 +O(|z|4), z2).
Next, recall that the set of branch points is, in our local setting, the set of

points where Jac(h) = ∂h1/∂z1 = −z2+3αz21 +O(|z|3) vanishes. Therefore,
the tangent direction to the set of branch points at the origin is the z1 axis,
and the transverse vanishing of T̂ at the origin implies that ∂

∂z1
T̂ (0) 6= 0.

Using the above formula for T̂ , we conclude that ∂3h1/∂z
3
1 6= 0, i.e. α 6= 0.

Rescaling the two coordinates z1 and Z1 by a constant factor, we can
assume that α is equal to 1. Therefore, we have used all the transversality
properties of h to show that, on a neighborhood of x0, it is of the form

h(z1, z2) = (−z1z2 + z31 +O(|z|4), z2).
The uniform bounds and transversality estimates on sk can be used to show
that all the rescalings and transformations we have used are “nice”, i.e. they
have bounded derivatives and their inverses have bounded derivatives.

It then remains to show that further coordinate changes can kill the higher
order terms still present in the expression of h. The idea of Whitney’s
argument is to use successive coordinate changes in order to reduce to the
case where the perturbation term vanishes up to order at least 2 over the
parabola z2 = 3z21 , which makes it possible to kill all higher order terms
by composing h with a well-chosen diffeomorphism of the source space C2.
Details can be found in §16–19 of [7]. One eventually gets that, setting
h0(z1, z2) = (−z1z2+z31 , z2), there exist holomorphic diffeomorphisms Φ and
Ψ of C2 near the origin such that Ψ ◦ h0 ◦Φ = h over a small neighborhood
of 0 in C2, which is what we wanted to prove.

Moreover, because of the uniform transversality estimates and bounds on
the derivatives of sk, the derivatives of h are uniformly bounded. It follows
easily, by going over the argument, that the neighborhood of x0 over which
the map fk has been shown to be O(k−1/2)-approximately holomorphically
modelled on the map h0 can be assumed to contain a ball of fixed radius
(depending on the bounds and transversality estimates, but independent of
x0 and k).

5.2. Structure near generic branch points. We now consider a branch
point x0 ∈ RJ̃k

(sk), which we assume to be at distance more than a fixed

constant δ from the set of cusp points CJ̃k
(sk). We want to show that, over

a neighborhood of x0, fk = Psk is approximately holomorphically modelled
on the map (z1, z2) 7→ (z21 , z2).

From now on, we implicitly use the almost-complex structure J̃k and write
R for the intersection of RJ̃k

(sk) with the ball Bgk
(x0,

δ
2). First note that,

since R remains at distance more than δ
2 from the cusp points, the tangent

space to R remains everywhere away from the kernel of ∂fk. Therefore, the
restriction of fk to R is a local diffeomorphism over a neighborhood of x0,
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and so fk(R) is locally a smooth approximately holomorphic submanifold
in CP2. It follows that there exist approximately holomorphic coordinates
(Z1, Z2) on a neighborhood of fk(x0) in CP2 such that fk(R) is locally defined
by the equation Z1 = 0.

Define the approximately holomorphic function z2 = f∗kZ2 over a neigh-
borhood of x0, and notice that its differential dz2 = dZ2◦dfk does not vanish,
because by construction Z2 is a coordinate on fk(R). Therefore, z2 can be
considered as a local complex coordinate function on a neighborhood of x0.
In particular, the level sets of z2 are smooth and intersect R transversely at
a single point.

Take z1 to be an approximately holomorphic function on a neighborhood
of x0 which vanishes at x0 and whose differential at x0 is linearly independent
with that of z2 (e.g. take the two differentials to be mutually orthogonal),
so that (z1, z2) define approximately holomorphic coordinates on a neigh-
borhood of x0. From now on we use the local coordinates (z1, z2) on X and
(Z1, Z2) on CP2.

Because dz2|TR remains away from 0, R has locally an equation of the
form z1 = ρ(z2) for some approximately holomorphic function ρ (satisfying
ρ(0) = 0 since x0 ∈ R). Therefore, shifting the coordinates on X in order to
replace z1 by z1−ρ(z2), one can assume that z1 = 0 is a local equation of R.
In the chosen local coordinates, fk is therefore modelled on an approximately
holomorphic map h from a neighborhood of 0 in C2 with values in C2, of
the form (z1, z2) 7→ (h1(z1, z2), z2), with the following properties.

First, because R = {z1 = 0} is mapped to fk(R) = {Z1 = 0}, we have
h1(0, z2) = 0 for all z2. Next, recall that the differential of fk has real rank
2 at any point of R (because ∂fk has complex rank 1 and ∂̄fk vanishes over
the kernel of ∂fk), so its image is exactly the tangent space to fk(R). It
follows that ∇h1 = 0 at every point (0, z2) ∈ R.

Finally, because the chosen coordinates are approximately holomorphic
the quantity Jac(fk) is within O(k−1/2) of det(∂h) = (∂h1/∂z1) ∂z1∧∂z2 by

O(k−1/2). Therefore, the transversality to 0 of Jac(fk) implies that, along R,
the norm of (∂2h1/∂z

2
1 , ∂

2h1/∂z1∂z2) remains larger than a fixed constant.
However ∂2h1/∂z1∂z2 vanishes at any point of R because ∂h1/∂z1 (0, z2) = 0
for all z2. Therefore the quantity ∂2h1/∂z

2
1 remains bounded away from 0

on R.
The above properties imply that h can be written as

h(z1, z2) =
(

α(z2)z
2
1 + β(z2)z1z̄1 + γ(z2)z̄

2
1 + ε(z1, z2), z2

)

,

where α is approximately holomorphic and bounded away from 0, while β
and γ are O(k−1/2) (because of asymptotic holomorphicity), and ε(z1, z2) =
O(|z1|3) is approximately holomorphic. Moreover, composing with the co-
ordinate change (Z1, Z2) 7→ (α(Z2)

−1Z1, Z2) (which is approximately holo-
morphic and has bounded derivatives because α is bounded away from 0),
one reduces to the case where α is identically equal to 1.

We now want to reduce further the problem by removing the β and γ
terms in the above expression : for this, we first remark that, given any
small enough complex numbers β and γ, there exists a complex number λ,
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of norm less than |β|+ |γ| and depending smoothly on β and γ, such that

λ = −γλ̄+
β

2
(1 + |λ|2).

Indeed, if |β|+ |γ| < 1
2 the right hand side of this equation is a contracting

map of the unit disc to itself, so the existence of a solution λ in the unit disc
follows immediately from the fixed point theorem. Furthermore, using the
bound |λ| < 1 in the right hand side, one gets that |λ| < |β|+ |γ|. Finally,
the smooth dependence of λ upon β and γ follows from the implicit function
theorem.

Assuming again that |β|+ |γ| < 1
2 and defining λ as above, let

A =
1− λ̄2γ
1− |λ|4 and B =

γ − λ2
1− |λ|4 .

The complex numbers A and B are also smooth functions of β and γ, and
it is clear that |A− 1| = O(|β|+ |γ|) and |B| = O(|β|+ |γ|). Moreover, one
easily checks that, in the ring of polynomials in z and z̄,

A(z + λz̄)2 +B(z̄ + λ̄z)2 = z2 + 2
λ+ γλ̄

1 + |λ|2 zz̄ + γz̄2 = z2 + βzz̄ + γz̄2.

Therefore, if one assumes k to be large enough, recalling that the quanti-
ties β(z2) and γ(z2) which appear in the above expression of h are bounded

by O(k−1/2), there exist λ(z2), A(z2) and B(z2), depending smoothly on z2,

such that |A(z2) − 1| = O(k−1/2), |B(z2)| = O(k−1/2), |λ(z2)| = O(k−1/2)
and

A(z2)(z1 + λ(z2)z̄1)
2 +B(z2)(z1 + λ(z2)z̄1)

2 = z21 + β(z2)z1z̄1 + γ(z2)z̄
2
1 .

So, let h0 be the map (z1, z2) 7→ (z21 , z2), and let Φ and Ψ be the two ap-
proximately holomorphic local diffeomorphisms of C2 defined by Φ(z1, z2) =
(z1 + λ(z2)z̄1, z2) and Ψ(Z1, Z2) = (A(Z2)Z1 +B(Z2)Z̄1, Z2) : then

h(z1, z2) = Ψ ◦ h0 ◦ Φ(z1, z2) + (ε(z1, z2), 0).

It follows immediately that Ψ−1◦h◦Φ−1(z1, z2) = (z21+O(|z1|3), z2). There-
fore, this new coordinate change allows us to consider only the case where
h is of the form (z1, z2) 7→ (z21 + ε̃(z1, z2), z2), where ε̃(z1, z2) = O(|z1|3).

Because ε̃(z1, z2) = O(|z1|3), the bound |ε̃(z1, z2)| < 1
2 |z1|2 holds over a

neighborhood of the origin whose size can be bounded from below indepen-
dently of k and x0 by using the uniform estimates on all derivatives. Over
this neighborhood, define

φ(z1, z2) = z1

√

1 +
ε̃(z1, z2)

z21

for z1 6= 0, where the square root is determined without ambiguity by the
condition that

√
1 = 1. Setting φ(0, z2) = 0, it follows from the bound

|φ(z1, z2)− z1| = O(|z1|2) that the function φ is C1. In general φ is not C2,
because ε̃ may contain terms involving z̄21z1 or z̄31 .

Because φ(z1, z2) = z1 + O(|z1|2), the map Θ : (z1, z2) 7→ (φ(z1, z2), z2)
is a C1 local diffeomorphism of C2 over a neighborhood of the origin. As
previously, the uniform bounds on all derivatives imply that the size of
this neighborhood can be bounded from below independently of k and x0.
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Moreover, it follows from the asymptotic holomorphicity of sk that ε̃ has
antiholomorphic derivatives bounded by O(k−1/2), and so |∂̄φ| = O(k−1/2).

Therefore Θ is O(k−1/2)-approximately holomorphic, and we have

h0 ◦Θ(z1, z2) = h(z1, z2),

which finally gives the desired result.

5.3. Proof of Theorem 3. Theorem 3 follows readily from the above argu-
ments : indeed, consider γ-generic and ∂̄-tame asymptotically holomorphic
sections sk of C3⊗Lk, and let J̃k be the almost-complex structures involved
in the definition of ∂̄-tameness. We need to show that, at any point x ∈ X,
the maps fk = Psk are approximately holomorphically modelled on one of
the three maps of Definition 2.

First consider the case where x lies close to a point y ∈ CJ̃k
(sk). The

argument of §5.1 implies the existence of a constant δ > 0 independent of k
and y such that, over the ball Bgk

(y, 2δ), the map fk is J̃k-holomorphically
modelled on the cusp covering map (z1, z2) 7→ (z31−z1z2, z2). If x lies within
distance δ of y, Bgk

(y, 2δ) is a neighborhood of x ; therefore the expected
result follows at every point within distance δ of CJ̃k

(sk) from the observation

that, because |J̃k − J | = O(k−1/2), the relevant coordinate chart on X is

O(k−1/2)-approximately J-holomorphic.
Next, consider the case where x lies close to a point y of RJ̃k

(sk) which

is itself at distance more than δ from CJ̃k
(sk). The argument of §5.2 then

implies the existence of a constant δ′ > 0 independent of k and y such that,
over the ball Bgk

(y, 2δ′), the map fk is, in O(k−1/2)-approximately holomor-
phic C1 coordinate charts, locally modelled on the branched covering map
(z1, z2) 7→ (z21 , z2). Therefore, if one assumes the distance between x and y
to be less than δ′, the given ball is a neighborhood of x, and the expected
result follows.

So we are left only with the case where x is at distance more than δ ′

from RJ̃k
(sk). Assuming k to be large enough, it then follows from the

bound |J̃k−J | = O(k−1/2) that x is at distance more than 1
2δ
′ from RJ(sk).

Therefore, the γ-transversality to 0 of Jac(fk) implies that |Jac(fk)(x)| is
larger than α = min( 12δ

′γ, γ) (otherwise, the downward gradient flow of

|Jac(fk)| would reach a point of RJ(sk) at distance less than 1
2δ
′ from x).

Recalling that |∂̄fk| = O(k−1/2), one gets that fk is a O(k−1/2)-approx-
imately holomorphic local diffeomorphism over a neighborhood of x. There-
fore, choose holomorphic complex coordinates on CP2 near fk(x) and pull

them back by fk to obtain O(k−1/2)-approximately holomorphic local coor-
dinates over a neighborhood of x : in these coordinates, the map fk becomes
the identity map, which ends the proof of Theorem 3.

6. Further remarks

6.1. Branched coverings of CP2. A natural question to ask about the
results obtained in this paper is whether the property of being a (singular)
branched covering of CP2, i.e. the existence of a map to CP2 which is locally
modelled at every point on one of the three maps of Definition 2, strongly
restricts the topology of a general compact 4-manifold. Since the notion of
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approximately holomorphic coordinate chart on X no longer has a mean-
ing in this case, we relax Definition 2 by only requiring the existence of a
local identification of the covering map with one of the model maps in a
smooth local coordinate chart on X. However we keep requiring that the
corresponding local coordinate chart on CP2 be approximately holomorphic,
so that the branch locus in CP2 remains an immersed symplectic curve with
cusps. Call such a map a topological singular branched covering of CP2.
Then the following holds :

Proposition 10. Let X be a compact 4-manifold and consider a topological
singular covering f : X → CP2 branched along a submanifold R ⊂ X. Then
X carries a symplectic structure arbitrarily close to f ∗ω0, where ω0 is the
standard symplectic structure of CP2.

Proof. The closed 2-form f ∗ω0 on X defines a symplectic structure on X−R
which degenerates along R. Therefore, one needs to perturb it by adding
a small multiple of a closed 2-form with support in a neighborhood of R in
order to make it nondegenerate. This perturbation can be constructed as
follows.

Call C the set of cusp points, i.e. the points of R where the tangent space
to R lies in the kernel of the differential of f , or equivalently the points
around which f is modelled on the map (z1, z2) 7→ (z31 − z1z2, z2). Consider
a point x ∈ C, and work in local coordinates such that f identifies with
the model map. In these coordinates, a local equation of R is z2 = 3z21 ,
and the kernel K of the differential of f coincides at every point of R with
the subspace C × {0} of the tangent space ; this complex identification
determines a natural orientation of K. Fix a constant ρx > 0 such that
BC(0, 2ρx)×BC(0, 2ρ

2
x) is contained in the local coordinate patch, and choose

cut-off functions χ1 and χ2 over C in such a way that χ1 equals 1 over
BC(0, ρx) and vanishes outside of BC(0, 2ρx), and that χ2 equals 1 over
BC(0, ρ

2
x) and vanishes outside of BC(0, 2ρ

2
x). Then, let ψx be the 2-form

which equals d(χ1(z1)χ2(z2)x1 dy1) over the local coordinate patch, where
x1 and y1 are the real and imaginary parts of z1, and which vanishes over the
remainder of X : the 2-form ψx coincides with dx1∧dy1 over a neighborhood
of x. More importantly, it follows from the choice of the cut-off functions
that the restriction of ψx to K = C× {0} is non-negative at every point of
R, and positive non-degenerate at every point of R which lies sufficiently
close to x.

Similarly, consider a point x ∈ R away from C and local coordinates
such that f identifies with the model map (z1, z2) 7→ (z21 , z2). In these
coordinates, R identifies with {0} × C, and the kernel K of the differential
of f coincides at every point of R with the subspace C× {0} of the tangent
space. Fix a constant ρx > 0 such that BC(0, 2ρx)×BC(0, 2ρx) is contained
in the local coordinate patch, and choose a cut-off function χ over C which
equals 1 over BC(0, ρx) and 0 outside of BC(0, 2ρx). Then, let ψx be the
2-form which equals d(χ(z1)χ(z2)x1 dy1) over the local coordinate patch,
where x1 and y1 are the real and imaginary parts of z1, and which vanishes
over the remainder of X : as previously, the restriction of ψx to K = C×{0}
is non-negative at every point of R, and positive non-degenerate at every
point of R which lies sufficiently close to x.
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Choose a finite collection of points xi ofR (including all the cusp points) in
such a way that the neighborhoods of xi over which the 2-forms ψxi

restrict
positively to K cover all of R, and define α as the sum of all the 2-forms
ψxi

. Then it follows from the above definitions that the 2-form α is exact,
and that at any point of R its restriction to the kernel of the differential of f
is positive and non-degenerate. Therefore, the 4-form f ∗ω0 ∧α is a positive
volume form at every point of R.

Now choose any metric on a neighborhood of R, and let dR be the distance
function to R. It follows from the compactness of X and R and from the
general properties of the map f that, using the orientation induced by f
and the chosen metric to implicitly identify 4-forms with functions, there
exist positive constants K, C, C ′ and M such that the following bounds
hold over a neighborhood of R : f ∗ω0 ∧ f∗ω0 ≥ KdR, f

∗ω0 ∧α ≥ C −C ′dR,
and |α ∧ α| ≤ M . Therefore, for all ε > 0 one gets over a neighborhood of
R the bound

(f∗ω0 + ε α) ∧ (f∗ω0 + ε α) ≥ (2εC − ε2M) + (K − 2εC ′)dR.

If ε is chosen sufficiently small, the coefficients 2εC−ε2M and K−2εC ′ are
both positive, which implies that the closed 2-form f ∗ω0+ ε α is everywhere
nondegenerate, and therefore symplectic.

Another interesting point is the compatibility of our approximately holo-
morphic singular branched coverings with respect to the symplectic struc-
tures ω on X and ω0 in CP2 (as opposed to the compatibility with the
almost-complex structures, which has been a major preoccupation through-
out the previous sections).

It is easy to check that given a covering map f : X → CP2 defined by
a section of C3 ⊗ Lk, the number of preimages of a generic point is equal
to 1

4π2 k
2(ω2.[X]), while the homology class of the preimage of a generic

line CP1 ⊂ CP2 is Poincaré dual to 1
2πk[ω]. If we normalize the standard

symplectic structure ω0 on CP2 in such a way that the symplectic area of a
line CP1 ⊂ CP2 is equal to 2π, it follows that the cohomology class of f ∗ω0
is [f∗ω0] = k[ω].

As we have said above, the pull-back f ∗ω0 of the standard symplectic
form of CP2 by the covering map degenerates along the set of branch points,
so there is no chance of (X, f ∗ω0) being symplectic and symplectomorphic
to (X, kω). However, one can prove the following result which is nearly as
good :

Proposition 11. The 2-forms ω̃t = tf∗ω0 + (1− t)kω on X are symplectic
for all t ∈ [0, 1). Moreover, for t ∈ [0, 1) the manifolds (X, ω̃t) are all
symplectomorphic to (X, kω).

This means that f∗ω0 is, in some sense, a degenerate limit of the sym-
plectic structure defined by kω : therefore the covering map f behaves quite
reasonably with respect to the symplectic structures.

Proof. The 2-forms ω̃t are all closed and lie in the same cohomology class.
We have to show that they are non-degenerate for t < 1. For this, let x be
any point of X and let v be a nonzero tangent vector at x. It is sufficient
to prove that there exists a vector w ∈ TxX such that ω(v, w) > 0 and
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f∗ω0(v, w) ≥ 0 : then ω̃t(v, w) > 0 for all t < 1, which implies the non-
degeneracy of ω̃t.

Recall that, by definition, there exist local approximately holomorphic
coordinate maps φ over a neighborhood of x and ψ over a neighborhood of
f(x) such that locally f = ψ−1 ◦ g ◦ φ where g is a holomorphic map from a
subset of C2 to C2. Define w = φ−1∗ J0φ∗v, where J0 is the standard complex
structure on C2 : then we have w = (φ∗J0)v and, because g is holomorphic,
f∗w = (ψ∗J0)f∗v.

Because the coordinate maps are O(k−1/2)-approximately holomorphic,

we have |w − Jv| ≤ Ck−1/2|v| and |f∗w − J0f∗v| ≤ Ck−1/2|f∗v|, where
C is a constant and J0 is the standard complex structure on CP2. It
follows that ω(v, w) ≥ |v|2 − Ck−1/2|v|2 > 0, and that ω0(f∗v, f∗w) ≥
|f∗v|2 − Ck−1/2|f∗v|2 ≥ 0. Therefore, ω̃t(v, w) > 0 for all t ∈ [0, 1) ; since
the existence of such a w holds for every nonzero vector v, this proves that
the closed 2-forms ω̃t are non-degenerate, and therefore symplectic.

Moreover, these symplectic forms all lie in the cohomology class [kω],
so it follows from Moser’s stability theorem that the symplectic structures
defined on X by ω̃t for t ∈ [0, 1) are all symplectomorphic.

6.2. Symplectic Lefschetz pencils. The techniques used in this paper
can also be applied to the construction of sections of C2 ⊗ Lk (i.e. pairs of
sections of Lk) satisfying appropriate transversality properties : this is the
existence result for Lefschetz pencil structures (and uniqueness up to isotopy
for a given value of k) obtained by Donaldson [3].

For the sake of completeness, we give here an overview of a proof of
Donaldson’s theorem using the techniques described in the above sections.
Let (X,ω) be a compact symplectic manifold (of arbitrary dimension 2n)
such that 1

2π [ω] is integral, and as before consider a compatible almost-
complex structure J , the corresponding metric g, and the line bundle L
whose first Chern class is 1

2π [ω], endowed with a Hermitian connection of
curvature −iω. The required properties of the sections we wish to construct
are determined by the following statement :

Proposition 12. Let sk = (s0k, s
1
k) be asymptotically holomorphic sections

of C2 ⊗ Lk over X for all large k, which we assume to be η-transverse to
0 for some η > 0. Let Fk = s−1k (0) (it is a real codimension 4 symplectic
submanifold of X), and define the map fk = Psk = (s0k : s1k) from X − Fk

to CP1. Assume furthermore that ∂fk is η-transverse to 0, and that ∂̄fk
vanishes at every point where ∂fk = 0. Then, for all large k, the section sk
and the map fk define a structure of symplectic Lefschetz pencil on X.

Indeed, Fk corresponds to the set of base points of the pencil, while the
hypersurfaces (Σk,u)u∈CP1 forming the pencil are Σk,u = f−1k (u) ∪ Fk, i.e.

Σk,u is the set of all points where (s0k, s
1
k) belongs to the complex line in C2

determined by u. The transversality to 0 of sk gives the expected pencil
structure near the base points, and the asymptotic holomorphicity implies
that, near any point of X−Fk where ∂fk is not too small, the hypersurfaces
Σk,u are smooth and symplectic (and even approximately J-holomorphic).

Moreover, the transversality to 0 of ∂fk implies that ∂fk becomes small
only in the neighborhood of finitely many points where it vanishes, and that
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at these points the holomorphic Hessian ∂∂fk is large enough and nonde-
generate. Because ∂̄fk also vanishes at these points, an argument similar to
that of §5.2 shows that, near its critical points, fk behaves like a complex
Morse function, i.e. it is locally approximately holomorphically modelled on
the map (z1, . . . , zn) 7→

∑

z2i from Cn to C.
The approximate holomorphicity of fk and its structure at the critical

points can be easily shown to imply that the hypersurfaces Σk,u are all
symplectic, and that only finitely many of them have isolated singular points,
which correspond to the critical points of fk and whose structure is therefore
completely determined.

Therefore, the construction of a Lefschetz pencil structure on X can be
carried out in three steps. The first step is to obtain for all large k sections
sk of C2⊗Lk which are asymptotically holomorphic and transverse to 0 : for
example, the existence of such sections follows immediately from the main
result of [1]. As a consequence, the required properties are satisfied on a
neighborhood of Fk = s−1k (0).

The second step is to perturb sk, away from Fk, in order to obtain the
transversality to 0 of ∂fk. For this purpose, one uses an argument similar to
that of §2.2, but where Proposition 2 has to be replaced by a similar result for
approximately holomorphic functions defined over a ball of Cn with values in
Cn which has been announced by Donaldson (see [3]). Over a neighborhood
of any given point x ∈ X − Fk, composing with a rotation of C2 in order to
ensure the nonvanishing of s0k over a ball centered at x and defining hk =
(s0k)

−1s1k, one remarks that the transversality to 0 of ∂fk is locally equivalent
to that of ∂hk. Choosing local approximately holomorphic coordinates zik,
it is possible to write ∂hk as a linear combination

∑n
i=1 u

i
kµ

i
k of the 1-forms

µi
k = ∂(zik.(s

0
k)
−1srefk,x). The existence of wk ∈ Cn of norm less than a given

δ ensuring the transversality to 0 of uk − wk over a neighborhood of x is
then given by the suitable local transversality result, and it follows easily
that the section (s0k, s

1
k −

∑

wi
kz

i
ks

ref
k,x) satisfies the required transversality

property over a ball around x. The global result over the complement in X
of a small neighborhood of Fk then follows by applying Proposition 3.

An alternate strategy allows one to proceed without proving the local
transversality result for functions with values in Cn, if one assumes s0k and
s1k to be linear combinations of sections with uniform Gaussian decay (this
is not too restrictive since the iterative process described in [1] uses precisely
the sections srefk,x as building blocks). In that case, it is possible to locally
trivialize the cotangent bundle T ∗X, and therefore work component by com-
ponent to get the desired transversality result ; in a manner similar to the
argument of [1], one uses Lemma 6 to reduce the problem to the transver-
sality of sections of line bundles over submanifolds of X, and Proposition
6 as local transversality result. The assumption on sk is used to prove the
existence of asymptotically holomorphic sections which approximate sk very
well over a neighborhood of a given point x ∈ X and have Gaussian decay
away from x : this makes it possible to find perturbations with Gaussian
decay which at the same time behave nicely with respect to the trivializa-
tion of T ∗X. This way of obtaining the transversality to 0 of ∂fk is very
technical, so we don’t describe the details.
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The last step in the proof of Donaldson’s theorem is to ensure that ∂̄fk
vanishes at the points where ∂fk vanishes, by perturbing sk by O(k−1/2) over
a neighborhood of these points. The argument is a much simpler version
of §4.2 : on a neighborhood of a point x where ∂fk vanishes, one defines
a section χ of f∗kTCP1 by χ(expx(ξ)) = β(|ξ|) ∂̄fk(x)(ξ), where β is a cut-
off function, and one uses χ as a perturbation of sk in order to cancel the
antiholomorphic derivative at x.

6.3. Symplectic ampleness. We have seen that similar techniques apply
in various situations involving very positive bundles over a compact sym-
plectic manifold, such as constructing symplectic submanifolds ([2],[1]), Lef-
schetz pencils [3], or covering maps to CP2. In all these cases, the result is
the exact approximately holomorphic analogue of a classical result of com-
plex projective geometry. Therefore, it is natural to wonder if there exists
a symplectic analogue of the notion of ampleness : for example, the line
bundle L endowed with a connection of curvature −i ω, when raised to a
sufficiently large power, admits many approximately holomorphic sections,
and so it turns out that some of these sections behave like generic sections
of a very ample bundle over a complex projective manifold.

Let (X,ω) be a compact 2n-dimensional symplectic manifold endowed
with a compatible almost-complex structure, and fix an integer r : it seems
likely that any sufficiently positive line bundle over X admits r+ 1 approx-
imately holomorphic sections whose behavior is similar to that of generic
sections of a very ample line bundle over a complex projective manifold of
dimension n. For example, the zero set of a suitable section is a smooth ap-
proximately holomorphic submanifold of X ; two well-chosen sections define
a Lefschetz pencil ; for r = n, one expects that n + 1 well-chosen sections
determine an approximately holomorphic singular covering X → CPn (this
is what we just proved for n = 2) ; for r = 2n, it should be possible to con-
struct an approximately holomorphic immersion X → CP2n, and for r > 2n
a projective embedding. Moreover, in all known cases, the space of “good”
sections is connected when the line bundle is sufficiently positive, so that
the structures thus defined are in some sense canonical up to isotopy.

However, the constructions tend to become more and more technical when
one gets to the more sophisticated cases, and the development of a general
theory of symplectic ampleness seems to be a necessary step before the re-
lations between the approximately holomorphic geometry of compact sym-
plectic manifolds and the ordinary complex projective geometry can be fully
understood.
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