SYMPLECTIC 4-MANIFOLDS AS BRANCHED
COVERINGS OF CP?

DENIS AUROUX

ABSTRACT. We show that every compact symplectic 4-manifold X can
be topologically realized as a covering of CP? branched along a smooth
symplectic curve in X which projects as an immersed curve with cusps in
CP?. Furthermore, the covering map can be chosen to be approximately
pseudo-holomorphic with respect to any given almost-complex structure
on X.

1. INTRODUCTION

It has recently been shown by Donaldson [3] that the existence of ap-
proximately holomorphic sections of very positive line bundles over com-
pact symplectic manifolds allows the construction not only of symplectic
submanifolds ([2], see also [1],[5]) but also of symplectic Lefschetz pencil
structures. The aim of this paper is to show how similar techniques can be
applied in the case of 4-manifolds to obtain maps to CPP?, thus proving that
every compact symplectic 4-manifold is topologically a (singular) branched
covering of CP?.

Let (X,w) be a compact symplectic 4-manifold such that the cohomol-
ogy class 5 [w] € H*(X,R) is integral. This integrality condition does not
restrict the diffeomorphism type of X in any way, since starting from an ar-
bitrary symplectic structure one can always perturb it so that % [w] becomes
rational, and then multiply w by a constant factor to obtain integrality. A
compatible almost-complex structure J on X and the corresponding Rie-
mannian metric g are also fixed.

Let L be the complex line bundle on X whose first Chern class is ¢1(L) =
%[w] Fix a Hermitian structure on L, and let V¥ be a Hermitian con-
nection on L whose curvature 2-form is equal to —iw (it is clear that such
a connection always exists). The key observation is that, for large values
of an integer parameter k, the line bundles LF admit many approximately
holomorphic sections, thus making it possible to obtain sections which have
nice transversality properties.

For example, one such section can be used to define an approximately
holomorphic symplectic submanifold in X [2]. Similarly, constructing two
sections satisfying certain transversality requirements yields a Lefschetz pen-
cil structure [3]. In our case, the aim is to construct, for large enough £k,
three sections 52, s,lC and sz of L* satisfying certain transversality properties,
in such a way that the three sections do not vanish simultaneously and that
the map from X to CP? defined by = ~ [s{(z) : sL(x) : s7(z)] is a branched
covering.
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Let us now describe more precisely the notion of approximately holomor-
phic singular branched covering. Fix a constant ¢ > 0, and let U be a
neighborhood of a point x in an almost-complex 4-manifold. We say that
a local complex coordinate map ¢ : U — C? is e-approzimately holomor-
phic if, at every point, |¢.J — Jo| < €, where Jj is the canonical complex
structure on C2. Another equivalent way to state the same property is the
bound [0¢(u)| < e|dp(u)| for every tangent vector u (this definition does
not depend on the choice of a metric on the almost-complex 4-manifold ; C?
is endowed with its usual Euclidean metric).

Definition 1. 4 map f : X — CP? is locally e-holomorphically modelled
at x on a map g : C> — C2 if there exist neighborhoods U of z in X and
V of f(x) in CP?, and e-approzimately holomorphic C' coordinate maps
¢:U—C?andp:V — C? such that f =1y ogo¢ overU.

Definition 2. A map f : X — CP? is an e-holomorphic singular covering
branched along a submanifold R C X if its differential is surjective every-
where except at the points of R, where rank(df) = 2, and if at any point
x € X it is locally e-holomorphically modelled on one of the three following
maps :

(i) local diffeomorphism : (z1,22) — (z1,22) ;

(ii) branched covering : (z1,22) — (22, 22) ;

(iii) cusp covering : (z1,22) — (23 — 2129, 22).

In particular it is clear that the cusp model occurs only in a neighborhood
of a finite set of points C C R, and that the branched covering model occurs
only in a neighborhood of R (away from C), while f is a local diffeomorphism
everywhere outside of a neighborhood of R. Moreover, the set of branch
points R and its projection f(R) can be described as follows in the local mod-
els : for the branched covering model, R = {(z1,22), z1 = 0} and f(R) =
{(z,y), © =0} ; for the cusp covering model, R = {(z1,22), 32? — 20 = 0}
and f(R) = {(z,y), 272% — 49> = 0}.

It follows that, if € < 1, R is a smooth 2-dimensional submanifold in X,
approximately J-holomorphic, and therefore symplectic, and that f(R) is an
immersed symplectic curve in CP? except for a finite number of cusps.

We now state our main result :

Theorem 1. For any € > 0 there exists an e-holomorphic singular covering
map f: X — CP?.

The techniques involved in the proof of this result are similar to those
introduced by Donaldson in [2] : the first ingredient is a local transversal-
ity result stating roughly that, given approximately holomorphic sections of
certain bundles, it is possible to ensure that they satisfy certain transversal-
ity estimates over a small ball in X by adding to them small and localized
perturbations. The other ingredient is a globalization principle, which, if
the small perturbations providing local transversality are sufficiently well
localized, ensures that a transversality estimate can be obtained over all of
X by combining the local perturbations.
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We now define more precisely the notions of approximately holomorphic
sections and of transversality with estimates. We will be considering se-
quences of sections of complex vector bundles E}, over X, for all large values
of the integer k, where each of the bundles Fj, carries naturally a Hermitian
metric and a Hermitian connection. These connections together with the
almost complex structure J on X yield 0 and d operators on Ej,. Moreover,
we choose to rescale the metric on X, and use g = kg : for example, the
diameter of X is multiplied by k2. and all derivatives of order p are divided
by kP/2. The reason for this rescaling is that the vector bundles Ej, we will
consider are derived from L*, on which the natural Hermitian connection
induced by V¥ has curvature —ikw.

Definition 3. Let (si)rs0 be a sequence of sections of complex vector bun-
dles By over X. The sections sy are said to be asymptotically holomorphic
if there exist constants (Cp)pen such that, for all k and at every point of X,
k] < Co, |VPsi| < Cp and |VP~10sy,| < Cpk™Y2 for all p > 1, where the
norms of the derivatives are evaluated with respect to the metrics g, = k g.

Definition 4. Let s, be a section of a complex vector bundle Ey, and let
n > 0 be a constant. The section s s said to be n-transverse to 0 if,
at any point x € X where |si(z)| < n, the covariant derivative Vsy(x) :
T, X — (Ey), is surjective and has a right inverse of norm less than 1=
w.r.t. the metric gy.

We will often say that a sequence (sg)rso of sections of Ey is transverse
to 0 (without precising the constant) if there exists a constant > 0 inde-
pendent of k£ such that n-transversality to 0 holds for all large k.

In this definition of transversality, two cases are of specific interest. First,
when E} is a line bundle, and if one assumes the sections to be asymptoti-
cally holomorphic, transversality to 0 can be equivalently expressed by the
property

Vo e X, |sp(z)] <n=|Vsi(z)|g, >
Next, when Ej has rank greater than 2 (or more generally than the complex
dimension of X), the property actually means that |si(z)| > n for all z € X.

An important point to keep in mind is that transversality to 0 is an open
property : if s is n-transverse to 0, then any section o such that [s—o |1 < €
is (n — e)-transverse to 0.

The interest of such a notion of transversality with estimates is made clear
by the following observation :

Lemma 1. Let vy be asymptotically holomorphic sections of vector bundles
Ey over X, and assume that the sections 7y, are transverse to 0. Then, for
large enough k, the zero set of vi is a smooth symplectic submanifold in X.

This lemma follows from the observation that, where -y, vanishes, |0y| =
O(k:_l/ 2) by the asymptotic holomorphicity property while dv; is bounded
from below by the transversality property, thus ensuring that for large
enough k the zero set is smooth and symplectic, and even asymptotically
J-holomorphic.

We can now write our second result, which is a one-parameter version of
Theorem 1 :
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Theorem 2. Let (Jt>te[0,1] be a family of almost-complex structures on X
compatible with w. Fir a constant € > 0, and let (St,k)te[o,l},k>>0 be asymp-
totically J;-holomorphic sections of C3 ® L*, such that the sections S5 and
their derivatives depend continuously on t.

Then, for all large enough values of k, there exist asymptotically J;-
holomorphic sections oy of C3 @ L*, nowhere vanishing, depending con-
tinuously on t, and such that, for all t € [0,1], |0y — st ilcs g, < € and
the map X — CP? defined by ok 45 an approzimately holomorphic singular
covering with respect to Jy.

Note that, although we allow the almost-complex structure on X to de-
pend on t, we always use the same metric g = kg independently of ¢.
Therefore, there is no special relation between g, and J;. However, since
the parameter space [0, 1] is compact, we know that the metric defined by
w and J; differs from g by at most a constant factor, and therefore up to a
change in the constants this has no real influence on the transversality and
holomorphicity properties.

We now describe more precisely the properties of the approximately holo-
morphic singular coverings constructed in Theorems 1 and 2, in order to
state a uniqueness result for such coverings.

Definition 5. Let s be nowhere vanishing asymptotically holomorphic sec-
tions of C3 @ L*. Define the corresponding projective maps fr, = Psy
from X to CP? by fr(z) = [sU(z) : si(z) : si(z)]. Define the (2,0)-
Jacobian Jac(fy) = det(0fy), which is a section of A20T*X @ ff A20TCP? =
Kx ® L**. Finally, define R(sy) to be the set of points of X where Jac(f)
vanishes, i.e. where Jfy, is not surjective.

Given a constant v > 0, we say that sy satisfies the transversality property
P3(v) if |sk| > v and [0fklg, > v at every point of X, and if Jac(fy) is -
transverse to 0.

If sj satisfies P3(vy) for some v > 0 and if k is large enough, then it
follows from Lemma 1 that R(sj) is a smooth symplectic submanifold in
X. By analogy with the expected properties of the set of branch points, it
is therefore natural to require such a property for the sections which define
our covering maps.

Furthermore, recall that one expects the projection to CP? of the set
of branch points to be an immersed curve except at only finitely many
non-degenerate cusps. Forget temporarily the antiholomorphic derivative
Ofi, and consider only the holomorphic part. Then the cusps correspond
to the points of R(sy) where the kernel of df; and the tangent space to
R(sy,) coincide (in other words, the points where the tangent space to R(sg)
becomes “vertical”). Since R(sg) is the set of points where Jac(fx) = 0, the
cusp points are those where the quantity 0fy A dJac(f) vanishes ; in this
notation dfy and dJac(fx) are both seen as (1, 0)-forms with values in vector
bundles (f}; TCP? and Kx ® L%, respectively), and their exterior product
is a (2,0)-form with values in the tensor product (f;TCP?) ® (Kx ® L3¥).

Note that, along R(sg), Ofr has complex rank 1 and so is actually a
nowhere vanishing (1,0)-form with values in the rank 1 subbundle L(sy) =
Im 0f, C f,jT(CPQ. In a neighborhood of R(sg), this is no longer true,
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but one can project dfy onto a rank 1 subbundle in f;T' CP? (which will
still be called L(sg)), thus obtaining a nonvanishing (1, 0)-form 7 (9 f;) with
values in the line bundle £(s;). The quantity 7(9fx) A 0Jac(fx) (where the
wedge notation denotes as above the exterior product of two (1,0)-forms
with values in line bundles), which is a section of a line bundle over R(sg),
can under the above-described transversality assumptions be thought of as a
measurement of the angle between the kernel of 0 f; and the tangent space to
R(sg). Its vanishing over R(sy) is therefore characteristic of cusp points, and
so it is natural to require that its restriction to R(sy) be transverse to 0, as it
implies that the cusp points are isolated and in some sense non-degenerate.

It is worth noting that, up to a change of constants in the estimates, this
transversality property is actually independent of the choice of the subbundle
of f,jT(CIP’2 on which one projects df, as long as 7(Jfx) remains bounded
from below.

For convenience, we introduce the following notations :

Definition 6. Let s, be asymptotically holomorphic sections of C3 @ L*
and fr, = Psi. Assume that s satisfies Ps(7y) for some v > 0. Consider
the rank one subbundle L(sy) = (Im Ofy)|r(s,) of fiTCP? over R(sy), and
let m : !)C,;‘T(CIP’2 — L(sg) be the orthogonal projection. Finally define, over
R(sk), the quantity T (si) = w(0fx) A 0Jac(fr).

We say that asymptotically holomorphic sections s, of C> @ L* are ~-
generic if they satisfy Ps(y) and if the quantity T (si) is y-transverse to 0
over R(s). We then define the set of cusp points C(sy) as the set of points
of R(sk) where T (sy) = 0.

In a holomorphic setting, such a genericity property would be sufficient
to ensure that the map fr = Ps; is a singular branched covering. How-
ever, in our case, extra difficulties arise because we only have approximately
holomorphic sections. This means that at a point of R(sg), although O f
has rank 1, we have no control over the rank of dfy, and the local picture
may be very different from what one expects. Therefore, we need to control
the antiholomorphic part of the derivative along the set of branch points by
adding the following requirement :

Definition 7. Let si be y-generic asymptotically J-holomorphic sections
of C3 ® L*. We say that s, is O-tame if there exist constants (Cp)pen and
¢ > 0, depending only on the geometry of X and the bounds on sy and its
derivatives, and an w-compatible almost complex structure Jy, such that the
following properties hold :

(1) Vp e N, [VP(Jy, — J)|g, < Cpk™1/2 ;

(2) the almost-complex structure Jy, is integrable over the set of points
whose gi-distance to Cj (sk) is less than ¢ (the subscript indicates that one
uses 05 rather than 0y to define C(si)) ;

(3) the map fr, = Psy, is Jy-holomorphic at every point of X whose gj-
distance to Cj (sk) is less than c ;

(4) at every point of Rj (sk), the antiholomorphic derivative 5jk (Psg)
vanishes over the kernel of 05 (Psg).
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Note that since .J is within O(k~'/2) of .J, the notions of asymptotic J-
holomorphicity and asymptotic J;-holomorphicity actually coincide, because
the @ and 0 operators differ only by O(kfl/ 2). Furthermore, if k is large
enough, then y-genericity for J implies ~/-genericity for J;, as well for some
~" slightly smaller than + ; and, because of the transversality properties, the
sets Rj (sx) and Cj (sx) lie within O(k=Y2) of Ry(si,) and Cy(sy).

In the case of families of sections depending continuously on a parameter
t € [0,1], it is natural to also require that the almost complex structures jt’k
close to J; for every t depend continuously on ¢t. We claim the following :

Theorem 3. Let s;, be asymptotically J-holomorphic sections of C> ® L*.
Assume that the sections sj, are y-generic and O-tame. Then, for all large
enough values of k, the maps fi, = Psg are ex-holomorphic singular branched
coverings, for some constants €, = O(k~1/2).

Therefore, in order to prove Theorems 1 and 2 it is sufficient to construct
~y-generic and O-tame sections (resp. one-parameter families of sections) of
C?® @ L*. Even better, we have the following uniqueness result for these
particular singular branched coverings :

Theorem 4. Let sqj, and sy, be sections of C3 ® LF, asymptotically holo-
morphic with respect to w-compatible almost-complex structures Jy and Jq
respectively. Assume that s and s1 are y-generic and O-tame. Then
there exist almost-complex structures (Jt)te[(),l] interpolating between Jy and
J1, and a constant n > 0, with the following property : for all large enough k,
there exist sections (St,k)te[o,l},k>>0 of C3® LF interpolating between S0,k and
s1,k, depending continuously on t, which are, for allt € [0, 1], asymptotically
Ji-holomorphic, n-generic and O-tame with respect to J.

In particular, for large k the approzimately holomorphic singular branched
coverings Psqoj, and Psyy are isotopic among approximately holomorphic
stngular branched coverings.

Therefore, there exists for all large k£ a canonical isotopy class of singular
branched coverings X — CP?, which could potentially be used to define
symplectic invariants of X.

The remainder of this article is organized as follows : §2 describes the
process of perturbing asymptotically holomorphic sections of bundles of rank
greater than 2 to make sure that they remain away from zero. §3 deals with
further perturbation in order to obtain ~-genericity. §4 describes a way of
achieving O-tameness, and therefore completes the proofs of Theorems 1, 2
and 4. Finally, Theorem 3 is proved in §5, and §6 deals with various related
remarks.

Acknowledgments. The author wishes to thank Misha Gromov for
valuable suggestions and comments, and Christophe Margerin for helpful
discussions.

2. NOWHERE VANISHING SECTIONS

2.1. Non-vanishing of s;. Our strategy to prove Theorem 1 is to start
with given asymptotically holomorphic sections s (for example s = 0)
and perturb them in order to obtain the required properties ; the proof of
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Theorem 2 then relies on the same arguments, with the added difficulty that
all statements must apply to 1-parameter families of sections.

The first step is to ensure that the three components 32, 3,1C and si do
not vanish simultaneously, and more precisely that, for some constant n > 0
independent of k, the sections s are n-transverse to 0, i.e. |sx| > n over all
of X. Therefore, the first ingredient in the proof of Theorems 1 and 2 is the
following result :

Proposition 1. Let (si)iso be asymptotically holomorphic sections of
C? ® L*, and fix a constant € > 0. Then there exists a constant n > 0
such that, for all large enough values of k, there exist asymptotically holo-
morphic sections oy, of C}®@ L¥ such that |0, — si|cs 4, < € and that |oi| > 1
at every point of X. Moreover, the same statement holds for families of
sections indexed by a parameter t € [0, 1].

Proposition 1 is a direct consequence of the main theorem in [1], where
it is proved that, given any complex vector bundle E, asymptotically holo-
morphic sections of £® L¥ (or 1-parameter families of such sections) can be
made transverse to 0 by small perturbations : Proposition 1 follows simply
by considering the case where FE is the trivial bundle of rank 3. However,
for the sake of completeness and in order to introduce tools which will also
be used in later parts of the proof, we give here a shorter argument dealing
with the specific case at hand.

There are three ingredients in the proof of Proposition 1. The first one is
the existence of many localized asymptotically holomorphic sections of the
line bundle L* for sufficiently large k.

Definition 8. A section s of a vector bundle Fy has Gaussian decay in
C" norm away from a point x € X if there exists a polynomial P and a
constant A > 0 such that for all y € X, [s(y)], [Vs¥)lges -+ [V 8(¥)lg,
are all bounded by P(d(z,y))exp(—=Xd(z,y)?), where d(.,.) is the distance
nduced by gp.

The decay properties of a family of sections are said to be uniform if there
exist P and A such that the above bounds hold for all sections of the family,
independently of k and of the point x at which decay occurs for a given
section.

Lemma 2 ([2],[1]). Given any point x € X, for all large enough k, there

exist asymptotically holomorphic sections szei of L* over X satisfying the

following bounds : \s};ei] > ¢ at every point of the ball of gr.-radius 1 centered

at z, for some universal constant cs > 0 ; and the sections szei have uniform
k)

Gaussian decay away from x in C® norm.

Moreover, given a one-parameter family of w-compatible almost-complex
structures (Ji)ic(o,1), there exist one-parameter families of sections siekfx
which are asymptotically Ji-holomorphic for all t, depend continuously on t

and satisfy the same bounds.

The first part of this statement is Proposition 11 of [2], while the extension
to one-parameter families is carried out in Lemma 3 of [1]. Note that here we
require decay with respect to the C® norm instead of C°, but the bounds on
all derivatives follow immediately from the construction of these sections :
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indeed, they are modelled on f(z) = exp(—|z|?/4) in a local approximately
holomorphic Darboux coordinate chart for kw at x and in a suitable lo-
cal trivialization of L* where the connection 1-form is 1 Y (z;dz; — z;dz;).
Therefore, it is sufficient to notice that the model function has Gaussian
decay and that all derivatives of the coordinate map are uniformly bounded
because of the compactness of X.

More precisely, the result of existence of local approximately holomorphic
Darboux coordinate charts needed for Lemma 2 (and throughout the proofs
of the main theorems as well) is the following (see also [2]) :

Lemma 3. Near any point x € X, for any integer k, there exist local
complex Darbouz coordinates (z},z3) : (X,z) — (C%,0) for the symplectic
structure kw (i.e. such that the pullback of the standard symplectic struc-
ture of C? is kw) such that, denoting by v, : (C?,0) — (X,z) the in-
verse of the coordinate map, the following bounds hold uniformly in x and
ko |zi(y)| + |22(y)| = O(distg, (z,y)) on a ball of fired radius around x ;
IV lg, = O(1) for all v > 1 on a ball of fized radius around 0 ; and, with
respect to the almost-complex structure J on X and the canonical complex
structure Jo on C2, |0x(2)|g, = O(k™V?|2|) and V7|, = O(k~/2) for
all 7 > 1 on a ball of fixed radius around 0.

Moreover, given a continuous 1-parameter family of w-compatible almost-
complex structures (Ji)ieo,1) and a continuous family of points (Tt)ic(o,1);
one can find for all t coordinate maps near x; satisfying the same estimates
and depending continuously on t.

Proof. By Darboux’s theorem, there exists a local symplectomorphism ¢
from a neighborhood of 0 in C? with its standard symplectic structure to a
neighborhood of x in (X,w). It is well-known that the space of symplectic
R-linear endomorphisms of C? which intertwine the complex structures Jo
and ¢*J(x) is non-empty (and actually isomorphic to U(2)). So, choosing
such a linear map ¥ and defining ¢ = ¢ o ¥, one gets a local symplectomor-
phism such that 9¢(0) = 0. Moreover, because of the compactness of X, it
is possible to carry out the construction in such a way that, with respect to
the metric g, all derivatives of 1) are bounded over a neighborhood of x by
uniform constants which do not depend on x. Therefore, over a neighbor-
hood of z one can assume that |V (1 1)|; = O(1), as well as |V, = O(1)
and |V"O|, = O(1) ¥r > 1.

Define 9, (z) = (k= /22), and switch to the metric g : then dvy(0) = 0,
and at every point near z, |V(i; ') = [V(® )|, = O(1). Moreover,
IV Yklg, = O(K1™/2) = O(1) and |V"OYylg, = O(k™/2) = O(k~1/2) for
all » > 1. Finally, since |VOyi|, = O(k/2) and 9¢y(0) = 0 we have
|0vk(2)|g, = O(k~2|2]), so that all expected estimates hold. Because of
the compactness of X, the estimates are uniform in z, and because the maps
iy, for different values of k differ only by a rescaling, the estimates are also
uniform in k.

In the case of a one-parameter family of almost-complex structures, there
is only one thing to check in order to carry out the same construction for ev-
ery value of t € [0, 1] while ensuring continuity in ¢ : given a one-parameter
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family of local Darboux maps ¢; near z; (the existence of such maps de-
pending continuously on ¢ is trivial), one must check the existence of a
continuous one-parameter family of R-linear symplectic endomorphisms W,
of C? intertwining the complex structures Jo and ¢;J;(z;) on C2. To prove
this, remark that for every t the set of these endomorphisms of C? can be
identified with the group U(2). Therefore, what we are looking for is a con-
tinuous section (Wy)yeo,1) of a principal U(2)-bundle over [0, 1]. Since [0, 1] is
contractible, this bundle is necessarily trivial and therefore has a continuous
section. This proves the existence of the required maps ¥;, so one can define
e = ¢y o Uy, and set iy p(2) = Yi(k~1/22) as above. The expected bounds
follow naturally ; the estimates are uniform in ¢ because of the compactness
of [0,1]. O

The second tool we need for Proposition 1 is the following local transver-
sality result, which involves ideas similar to those in [2] and in §2 of [1] but
applies to maps from C” to C™ with m > n rather than m =1 :

Proposition 2. Let f be a function defined over the ball BT of radius %
in C™ with values in C™, with m > n. Let 0 be a constant with 0 < § < %,
and let n = §1og(6=1)™P where p is a suitable fized integer depending only
on the dimension n. Assume that f satisfies the following bounds over BT :

If1<1,  |0fl<n,  |VOfl <.

Then, there exists w € C™, with |w| < §, such that |f —w| > n over the
interior ball B of radius 1.

Moreover, if one considers a one-parameter family of functions (ft)iec(o,1)
satisfying the same bounds, then one can find for all t elements w, € C™
depending continuously on t such that |w¢| <6 and |f; —wi| > n over B.

This statement is proved in §2.3. The last, and most crucial, ingredient
of the proof of Proposition 1 is a globalization principle due to Donaldson
[2] which we state here in a general form.

Definition 9. A family of properties P(e, x)zcx >0 of sections of bundles
over X is local and C"-open if, given a section s satisfying P(e,x), any
section o such that |o(z) — s(z)|, |Vo(x) — Vs(z)|, ..., |[V'o(x) — V"s(z)]
are smaller than n satisfies P(e—Cn, x), where C is a constant (independent
of x and €).

For example, the property |s(z)| > € is local and C°-open ; e-transversality
to 0 of s at x is local and C'-open.

Proposition 3 ([2]). Let P(e,x)zex,e>0 be a local and C"-open family of
properties of sections of vector bundles Ey, over X. Assume that there exist
constants ¢, ¢ and p such that, given any v € X, any small enough § > 0,
and asymptotically holomorphic sections s of Ey, there exist, for all large
enough k, asymptotically holomorphic sections Ty, of Ej, with the following
properties : (a) |Tkz|crg, <8, (b) the sections 37y, have uniform Gaussian
decay away from x in C"-norm, and (c) the sections sy + Ty, satisfy the
property P(n,y) for all y € By, (x,c), with n = c/§log(§~1)7P.

Then, given any « > 0 and asymptotically holomorphic sections sy of Ey,
there exist, for all large enough k, asymptotically holomorphic sections oy, of
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E}, such that |sy — ok|cr.g, < o and the sections oy, satisfy P(e,x) Vo € X
for some € > 0 independent of k.

Moreover the same result holds for one-parameter families of sections,
provided the existence of sections Ty 5 satisfying properties (a), (b), (c) and
depending continuously on t € [0, 1].

This result is a general formulation of the argument contained in §3 of
[2] (see also [1], §3.3 and 3.5). For the sake of completeness, let us recall
just a brief outline of the construction. To achieve property P over all of
X, the idea is to proceed iteratively : in step j, one starts from sections s\
satisfying P(d;, ) for all z in a certain (possibly empty) subset U,Ej )X ,
and perturbs them by less than %5]- (where C' is the same constant as in

(3+1)

Definition 9) to get sections s satisfying P(d;41,2) over certain balls

of gi-radius ¢, with §;41 = c’(zd—é,) log((g—é)*l)*p. Because the property P

is open, s,gj D also satisfies P(6j41,) over U,gj ), therefore allowing one to

obtain P everywhere after a certain number N of steps.

The catch is that, since the value of d; decreases after each step and
we want P(e,x) with e independent of k, the number of steps needs to
be bounded independently of k. However, the size of X for the metric g
increases as k increases, and the number of balls of radius ¢ needed to cover
X therefore also increases. The key observation due to Donaldson [2] is
that, because of the Gaussian decay of the perturbations, if one chooses a
sufficiently large constant D, one can in a single step carry out perturbations
centered at as many points as one wants, provided that any two of these
points are distant of at least D with respect to gi : the idea is that each
of the perturbations becomes sufficiently small in the vicinity of the other
perturbations in order to have no influence on property P there (up to
a slight decrease of d;41). Therefore the construction is possible with a
bounded number of steps N and yields property P(e,z) for all z € X and
for all large enough k, with ¢ = d independent of k. O

We now show how to derive Proposition 1 from Lemma 2 and Propositions
2 and 3, following the ideas contained in [2]. Proposition 1 follows directly
from Proposition 3 by considering the property P defined as follows : say
that a section s of C® ® L¥ satisfies P (e, x) if |si(z)| > €. This property is
local and open in C%-sense, and therefore also in C3-sense. So it is sufficient
to check that the assumptions of Proposition 3 hold for P.

Let x € X, 0<d < %, and consider asymptotically holomorphic sections
sp of C*® L* (or 1-parameter families of sections st k). Recall that Lemma 2
provides asymptotically holomorphic sections sffi of L* which have Gauss-
ian decay away from z and remain larger than a constant ¢, over By, (x,1).

Therefore, dividing s by srk,ei yields asymptotically holomorphic functions

up on By, (x,1) with values in C3. Next, one uses a local approximately
holomorphic coordinate chart as given by Lemma 3 to obtain, after com-
posing with a fixed dilation of C? if necessary, functions v, defined on the
ball B* C C?, with values in C3, and satisfying the estimates |vz| = O(1),
|0vg| = O(k~Y/2) and |Vug| = O(k~1/?).
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Let Cp be a constant bounding ’326,2‘03,%’ and let o = Cio log((cio)*l)*p.

Provided that k is large enough, Proposition 2 yields constants wy € C3,
with wg| < C%, such that [vg—w| > a over the unit ball in C2. Equivalently,
one has |uy —wy| > a over By, (z,c) for some constant c¢. Multiplying by
sfi again, one gets that |s; — wg sfi| > csa over By, (z,¢).

The assumptions of Proposition 3 are therefore satisfied if one chooses
n = csa (larger than ¢/dlog(61) ™ for a suitable constant ¢’ > 0) and 73, , =

—Wg srkefc. Moreover, the same argument applies to one-parameter families
of sections s;;, (one similarly constructs perturbations 74 5, = —wy sie,f, )

So Proposition 3 applies, which ends the proof of Proposition 1.

2.2. Non-vanishing of Jf;. We have constructed asymptotically holomor-
phic sections s = (s, s1,52) of C3® LF for all large enough k which remain
away from zero. Therefore, the maps f, = Ps; from X to CP? are well de-
fined, and they are asymptotically holomorphic, because the lower bound on
|sx| implies that the derivatives of f; are O(1) and that 0f; and its deriva-
tives are O(k~1/?) (taking the metric gx on X and the standard metric on
(CIF’2). Our next step is to ensure, by further perturbation of the sections sg,
that Jf; vanishes nowhere and remains far from zero :

Proposition 4. Let § and v be two constants such that 0 < § < I, and
let (sp)ks0 be asymptotically holomorphic sections of C* @ LF such that
|sk| > v at every point of X and for all k. Then there exists a constant
n > 0 such that, for all large enough values of k, there exist asymptotically
holomorphic sections o), of C3® L* such that |o — Sklcs.g, <0 and that the
maps fi, = Poy, satisfy the bound |0 fy|g, > 1 at every point of X. Moreover,
the same statement holds for families of sections indexed by a parameter

t €0,1].

Proposition 4 is proved in the same manner as Proposition 1 and uses
the same three ingredients, namely Lemma 2 and Propositions 2 and 3.
Proposition 4 follows directly from Proposition 3 by considering the following
property : say that a section s of C* @ L* of norm everywhere larger than
3 satisfies P(n, ) if the map f = Ps satisfies [0 f(x)|g, > 7. This property
is local and open in C'-sense, and therefore also in C3-sense, because the
lower bound on |s| makes f depend nicely on s (by the way, note that the
bound |s| > I is always satisfied in our setting since one considers only
sections differing from s, by less than 7). So one only needs to check that
the assumptions of Proposition 3 hold for this property P.

Therefore, let z € X, 0 < § < %, and consider nonvanishing asymp-
totically holomorphic sections sj of C®> @ L* and the corresponding maps
fr = Ps,. Without loss of generality, composing with a rotation in C3
(constant over X), one can assume that si(x) is directed along the first
component in C?, ie. that si(z) = si(z) = 0 and therefore |s)(z)| > 3.
Because one has a uniform bound on |Vsg/|, there exists a constant r > 0
(independent of k) such that |s)| > 3 over By, (z,r). Therefore, over this

ball one can define a map to C? by

hi(y) = (hi(y), Wi (y))

Il
/N
©»
ES]
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<
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It is quite easy to see that, at any point y € By, (x,r), the ratio between
|Oh(y)| and |0fx(y)| is bounded by a uniform constant. Therefore, what
one actually needs to prove is that, for large enough k, a perturbation of
s, with Gaussian decay and smaller than § can make |Ohy| larger than
n=cd(logd~1)P over a ball By, (z,c), for some constants ¢, ¢’ and p.
Recall that Lemma 2 provides asymptotically holomorphic sections szefv

of L¥ which have Gaussian decay away from x and remain larger than a
constant cs over By, (x,1). Moreover, consider a local approximately holo-
morphic coordinate chart (as given by Lemma 3) on a neighborhood of z,
and call z,i and zi the two complex coordinate functions. Define the two
1-forms

1 ref 2  ref
1_p “kSka d 2—0 2 Sk
pe=0(—7—) and pp=0(—5"),
Sk Sk

and notice that at x they are both of norm larger than a fixed constant
(which can be expressed as a function of ¢s and the uniform C° bound
on si), and mutually orthogonal. Moreover H}C, ,uz and their derivatives

are uniformly bounded because of the bounds on srkei, on 32 and on the

coordinate map ; these bounds are independent of k. Finally, ,uk and ui are
asymptotically holomorphic because all the ingredients in their definition
are asymptotically holomorphic and |52| is bounded from below.

If follows that, for some constant 7/, one can express Oh; on the ball
By, (z,7') as (OhL,0h3) = (uilpt + ui?p2, uitpl + ui?p?), thus defining a
function uy, on By, (x,r') with values in C*. The properties of ,ui; described
above imply that the ratio between |0hy| and |ug| is bounded between two
constants which do not depend on & (because of the bounds on ,u,/,lf and u%,
and of their orthogonality at x), and that the map wy is asymptotically
holomorphic (because of the asymptotic holomorphicity of ut).

Next, one uses the local approximately holomorphic coordinate chart to
obtain from uy, after composing with a fixed dilation of C? if necessary,
functions vy, defined on the ball BT C C?, with values in C*, and satisfying
the estimates |vx| = O(1), |dvg| = O(k~Y2) and |Vov| = O(k~Y/?). Let
Co be a constant larger than |z}%s§§§|6~37gk, and let a = ﬁ. 10g((ﬁ)_1)_p.
Then, by Proposition 2, for all large enough k there exist constants wy =
(wit, wi?, wit, wi?) € C, with wy| < ﬁ, such that |vg —wg| > « over the
unit ball in C2.

Equivalently, one has |uy — wg| > a over By, (z,c) for some constant c.

c
)
Multiplying by pé, one therefore gets that, over By, (z,¢),

1 ref 2 .ref 1 ref 2 ref
11 T 12 T 2 21 R 22 T
1 25k x5k K5k 2k5k o
ol h ol h
Wy —o  ~ Wk —ao ) E— Wy —g T Wy Ty Z A
s, sy sp sy C

where C'is a fixed constant determined by the bounds on ui;. In other terms,
letting
0o 1 _2 11,1 122 .ref 211 222y  ref
(Thow> Thzs Thw) = (0, = (w25 + wg"28) Sk gy — (Wi 2 + Wi 25) Skea)
and defining iLk similarly to hy, starting with s; 47y, instead of s, the above
formula can be rewritten as [0hy| > &. Therefore, one has managed to make
|Ohy| larger than n = & over By, (r, c) by adding to sy the perturbation 7y ..
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Moreover, |7 .| < S |w?|.|zistf| < §, and the sections 2% s have uniform
s | Tk,x k k°k.x ) k°k,x

Gaussian decay away from x.

As remarked above, setting f, = P(sk + Tk z), the bound ‘8iLk| > 7 im-
plies that |0 fk\ is larger than some 7’ differing from 7 by at most a con-
stant factor. The assumptions of Proposition 3 are therefore satisfied, since
one has 7 > ¢/dlog(671)7P for a suitable constant ¢ > 0. Moreover, the
whole argument also applies to one-parameter families of sections s; 5, as well
(considering one-parameter families of coordinate charts, reference sections

ref

5% »» and constants wy ;). So Proposition 3 applies. This ends the proof of
Proposition 4.

2.3. Proof of Proposition 2. The proof of Proposition 2 goes along the
same lines as that of the local transversality result introduced in [2] and
extended to one-parameter families in [1] (see Proposition 6 below). To
start with, notice that it is sufficient to prove the result in the case where
m = n + 1. Indeed, given a map f = (f',...,f™) : Bt — C™ with
m > n + 1 satisfying the hypotheses of Proposition 2, one can define f’ =
(fY,..., Y . BT — C"*!, and notice that f’ also satisfies the required
bounds. Therefore, if it is possible to find w’ = (w!,... ,w"*) € C*"*! of
norm at most & such that |f" — w’| > n over the unit ball B, then setting
w= (w,..., w1 0,...,0) € C™ one gets |w| = [w'| < § and |f —w| >
|f" —w'| > n at all points of B, which is the desired result. The same
argument applies to one-parameter families (f);e(o,1)-

So we are now reduced to the case m = n + 1. Let us start with the
case of a single map f, before moving on to the case of one-parameter
families. The first step in the proof is to replace f by a complex polynomial
g approximating f. For this, one approximates each of the n+1 components
f* by a polynomial ¢, in such a way that ¢ differs from f by at most a fixed
multiple of 1 over the unit ball B and that the degree d of g is less than a
constant times log(n~!). The process is the same as the one described in
[2] for asymptotically holomorphic maps to C, so we skip the details. To
obtain polynomial functions, one first constructs holomorphic functions f’
differing from f? by at most a fixed multiple of 7, using the given bounds on
Jf%. The polynomials g° are then obtained by truncating the Taylor series
expansion of f’ to a given degree. It can be shown that by this method
one can obtain polynomial functions ¢* of degree less than a constant times
log(n~—!) and differing from f# by at most a constant times 7 (see Lemmas
27 and 28 of [2]). The approximation process does not hold on the whole
ball where f is defined ; this is why one needs f to be defined on BT to get
a result over the slightly smaller ball B.

Therefore, we now have a polynomial map g of degree d = O(log(n™!))
such that |f — g| < ¢n for some constant ¢. In particular, if one finds
w € C"! with |w| < & such that |g — w| > (c + 1)y over the ball B,
then it follows immediately that |f — w| > n everywhere, which is the de-
sired result. The key observation for finding such a w is that the image
g(B) c C"*! is contained in an algebraic hypersurface H in C"*! of degree
at most D = (n + 1)d". Indeed, if such were not the case, then for every
nonzero polynomial P of degree at most D in n+1 variables, P(g*, ... ,g"*!)
would be a non identically zero polynomial function of degree at most dD
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in n variables ; since the space of polynomials of degree at most D in n + 1

variables is of dimension (D :ffl) while the space of polynomials of degree
at most dD in n variables is of dimension (dD +”), the injectivity of the map
P P(g',...,¢g"™") from the first space to the second would imply that

(D+”+1) < (an+”). However since D = (n + 1)d"™ one has

n+1
(ADFmy n+1 dD+n dD+1 "~ ’

which gives a contradiction. So g(B) C H for a certain hypersurface H C
C"*! of degree at most D = (n + 1)d®. Therefore the following classical
result of algebraic geometry (see e.g. [4], pp. 11-15) can be used to provide
control on the size of H inside any ball in C**+! :

Lemma 4. Let H C C""! be a complex algebraic hypersurface of degree D.
Then, given any r > 0 and any x € C™1, the 2n-dimensional volume of
H N B(z,r) is at most DVyr?", where Vy is the volume of the unit ball of
dimension 2n. Moreover, if x € H, then one also has vola,(H N B(x,r)) >
‘/07,271'

In particular, we are interested in the intersection of H with the ball
B of radius § centered at the origin. Lemma 4 implies that the volume
of this intersection is bounded by (n + 1)Vpd"6?". Cover B by a finite
number of balls B(z;,n), in such a way that no point is contained in more
than a fixed constant number (depending only on n) of the balls B(x;, 2n).
Then, for every i such that B(z;,n) N H is non-empty, B(z;,2n) contains
a ball of radius n centered at a point of H, so by Lemma 4 the volume of
B(x;,2n) N H is at least Vo n?". Summing the volumes of these intersections
and comparing with the total volume of H N B , one gets that the number of
balls B(x;,n) which meet H is bounded by N = Cd"5%"n~2", where C is a
constant depending only on n. Therefore, H N B is contained in the union
of N balls of radius 7.

Since our goal is to find w € B at distance more than (c+1)n of g(B) C H,
the set Z of values which we want to avoid is contained in a set Z which
is the union of N = Cd"§*'n=2" balls of radius (¢ + 2)n. The volume of
Z* is bounded by C’d"§?"n? for some constant C’ depending only on n.
Therefore, there exists a constant C” such that, if one assumes § to be
larger than C”d"/?n), the volume of Bis strictly larger than that of ZT, and
so B—Z* is not empty. Calling w any element of B— Z7, one has |w| < 6,
and |g — w| > (¢ + 1)n at every point of B, and therefore |f —w| > n at
every point of B, which is the desired result.

Since d is bounded by a constant times log(n~!), it is not hard to see
that there exists an integer p such that, for all 0 < § < %, the relation
n = 6log(6~1)~P implies that § > C”d"™?y. This is the value of p which we
choose in the statement of the proposition, thus ensuring that B—Z% isnot
empty and therefore that there exists w with |w| < 6 such that |f —w| >n
at every point of B.

We now consider the case of a one-parameter family of functions (f;):co,1]-
The first part of the above argument also applies to this case, so there exist
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polynomial maps g; of degree d = O(log(n~!)), depending continuously on
t, such that |f; — g;| < ¢n for some constant ¢ and for all ¢. In particular,
if one finds w; € C"*! with |w;| < § and depending continuously on ¢ such
that |g¢ — w¢| > (¢ + 1)n over the ball B, then it follows immediately that
| f — we| > n everywhere, which is the desired result.

As before, g;(B) is contained in a hypersurface of degree at most (n+1)d"
in C"*!, and the same argument as above implies that the set Z; of values
which we want to avoid for w; (i.e. all the points of B at distance less
than (c + 1)n from g;(B)) is contained in a set Z;” which is the union of
N = Cd"6*n~2" balls of radius (c + 2)n. The rest of the proof is now a
higher-dimensional analogue of the ‘argument used in [1] : the crucial point is
to show that, if ¢ is large enough, B- ZtJr splits into several small connected
components and only one large component, because the boundary Y; = 07,
is much smaller than a (2n + 1)-ball of radius ¢ and therefore cannot split
B into components of comparable sizes.

Each component of B — Z," is delimited by a subset of the sphere OB and
by a union of components of Y;. Each component Y;; of Y; is a real hyper-
surface in B (with corners at the points where the boundaries of the various
balls of Z;" intersect) whose boundary is contained in dB, and therefore
splits B into two components C! and C!. So each component of B-2z'i
an intersection of components CZ’ or C! Where i ranges over a certain subset
of the set of components of Y;. Let us now state the following isoperimetric
inequality :

Lemma 5. Let Y be a connected (singular) submanifold of real codimen-
sion 1 in the unit ball of dimension 2n + 2, with (possibly empty) boundary
contained in the boundary of the ball. Let A be the (2n+1)-dimensional area
of Y. Then the volume V of the smallest of the two components delimited
by Y in the ball satisfies the bound V < K A@+2)/@n+1) “where K is a fized
constant depending only on the dimension.

Proof. The stereographic projection maps the unit ball quasi-isometrically
onto a half-sphere. Therefore, up to a change in the constant, it is sufficient
to prove the result on the half-sphere. By doubling Y along its intersec-
tion with the boundary of the half-sphere, which doubles both the volume
delimited by Y and its area, one reduces to the case of a closed connected
(singular) real hypersurface in the sphere S22 (if Y does not meet the
boundary, then it is not necessary to consider the double). Next, one no-
tices that the singular hypersurfaces we consider can be smoothed in such a
way that the area of Y and the volume it delimits are changed by less than
any fixed constant ; therefore, Lemma 5 follows from the classical spherical
isoperimetric inequality (see e.g. [6]). O

It follows that, letting A; be the (2n + 1)-dimensional area of Y;;, the
smallest of the two components delimited by Y ;, e.g. C7, has volume V; <
K A§2n+2)/ (2n+1) Therefore, the volume of the set |J; C/ is bounded by
Ky, A§2n+2)/(2n+1) < K (X, A)@r2/Cn41) - However, S, A; is the to-
tal area of the boundary Y; of Z;", so it is less than the total area of the
boundaries of the balls composing Z;", which is at most a fixed constant
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times Cd"5%"n~2"((c+2)n)*" !, i.e. at most a fixed constant times d"6"1.
Therefore, one has

! r{ mT % 2n+2
Vol(LiJ ) <K (d g) 5
for some constant K’ depending only on n. So there exists a constant K”
depending only on n such that, iff5 > K"d"n, then vol(|J,; C}) < 1—10\/01(3),
and therefore vol((), CY) > S vol(B).

Since d is bounded by a constant times log(n~!), it is not hard to see
that there exists an integer p such that, for all 0 < § < %, the relation
n = §log(6~1)7P implies that § > K”d"y. This is the value of p which we
choose in the statement of the proposition, thus ensuring that the above
volume bounds on |J; C/ and (), C} hold.

Now, recall that every component of B-— Zt+ is an intersection of sets C
and C! for certain values of i. Therefore, every component of B- Z," either
is contained in U, C! or contains [, C’” However, because |J; C! is much
smaller than the ball B, one cannot have B — 7" c |J; C!. Therefore, there
exists a component in B — Z;" containing U; CY. Since its volume is at least
%VO](E), this large component is necessarily unique.

Let U(t) be the connected component of B — Z; which contains the large
component of B - Z} . it is the only large component of B — Z;. We now
follow the same argument as in [1]. Since ¢;(B) depends continuously on
t, so does its (¢ + 1)n-neighborhood Z;, and the set | J,{t} x Z; is therefore
a closed subset of [0,1] x B. Let U~ (t,€) be the set of all points of U(t)
at distance more than e from Z; U OB. Then, given any ¢ and any small
e > 0, for all 7 close to ¢, U(T) contains U~ (¢,e). To see this, we first
notice that, for all 7 close to ¢, U~ (t,e) N Z; = (). Indeed, if such were not
the case, one could take a sequence of points of Z, N U™ (t,¢€) for 7 — ¢,

and extract a convergent subsequence whose limit belongs to U (t,¢€) and
therefore lies outside of Z, in contradiction with the fact that (J,{t} x Z; is
closed. So U~ (t,€) C B— Z, for all T close enough to t. Making € smaller if
necessary, one may assume that U~ (¢, €) is connected, so that for all 7 close
to t, U (t,€) is necessarily contained in the large component of B - Z,,
namely U(7).

It follows that U = |J,{t} x U(t) is an open connected subset of [0, 1] x B,
and is therefore path-connected. So we get a path s — (¢(s),w(s)) joining
(0,w(0)) to (1,w(1)) inside U, for any given w(0) and w(1) in U(0) and
U(1). We then only have to make sure that s — t(s) is strictly increasing
in order to define wy,) = w(s).

Getting the ¢ component to increase strictly is not hard. Indeed, one
first gets it to be weakly increasing, by considering values s; < s9 of the
parameter such that t(s;) = t(s2) = t and replacing the portion of the path
between s; and sy by a path joining w(s1) to w(s2) in the connected set
U(t). Then, we slightly shift the path, using the fact that U is open, to get
the ¢ component to increase slightly over the parts where it was constant.
Thus we can define wy,) = w(s) and end the proof of Proposition 2.
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3. TRANSVERSALITY OF DERIVATIVES

3.1. Transversality to 0 of Jac(fx). At this point in the proofs of Theo-
rems 1 and 2, we have constructed for all large k asymptotically holomorphic
sections s of C* ® L* (or families of sections), bounded away from 0, and
such that the holomorphic derivative of the map f; = Ps; is bounded away
from 0. The next property we wish to ensure by perturbing the sections
sk is the transversality to 0 of the (2,0)-Jacobian Jac(fi) = det(dfx). The
main result of this section is :

Proposition 5. Let § and v be two constants such that 0 < 0 < 7,

let (sp)ks0 be asymptotically holomorphic sections of C* @ LF such that
|sk| > v and |0(Psy)|g, > 7 at every point of X. Then there exists a constant
n > 0 such that, for all large enough values of k, there exist asymptotically
holomorphic sections oy, of C3®L* such that |0y, — sg|cs 4, < 6 and Jac(Poy,)
is n-transverse to 0. Moreover, the same statement holds for families of
sections indexed by a parameter t € [0, 1].

and

The proof of Proposition 5 uses once more the same techniques and glob-
alization argument as Propositions 1 and 4. The local transversality result
one uses in conjunction with Proposition 3 is now the following statement
for complex valued functions :

Proposition 6 ([2],[1]). Let f be a function defined over the ball BT of
radius % i C™ with values in C. Let 6 be a constant such that 0 < § < %,
and let n = §1log(6~1)™P where p is a suitable fived integer depending only
on the dimension n. Assume that f satisfies the following bounds over B :

Ifl<1,  |0fl<m,  |VOfl <.

Then there exists w € C, with |w| <6, such that f —w is n-transverse to 0
over the interior ball B of radius 1, i.e. f —w has derivative larger than 7
at any point of B where |f — w| < .

Moreover, the same statement remains true for a one-parameter family
of functions (fi)iejo) satisfying the same bounds, i.e. for allt one can find
elements wy € C depending continuously on t such that |w| < 6 and fr —wy
s n-transverse to 0 over B.

The first part of this statement is exactly Theorem 20 of [2], and the
version for one-parameter families is Proposition 3 of [1]. O

Proposition 5 is proved by applying Proposition 3 to the following prop-
erty : say that a section s of C?® L¥ everywhere larger than 3 and such that
|OPs| > 7 everywhere satisfies P(n, ) if Jac(Ps) is n-transverse to 0 at ,
i.e. either |Jac(Ps)(xz)| > n or |[VJac(Ps)(x)| > n. This property is local and
C?-open, and therefore also C3-open, because the lower bound on s makes
Jac(Ps) depend nicely on s. Note that, since one considers only sections
differing from s, by less than § in C® norm, decreasing § if necessary, one
can safely assume that the two hypotheses |s| > 3 and |0(Ps)| > 3 are
satisfied everywhere by all the sections appearing in the construction of oy.
So one only needs to check that the assumptions of Proposition 3 hold for
the property P defined above.
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Therefore, let € X,0 < § < 7, and consider asymptotically holomorphic
sections s of C® ® L* and the corresponding maps f, = Psj, such that
|sk| > 3 and [0fi| > § everywhere. The setup is similar to that of §2.2.
Without loss of generality, composing with a rotation in C* (constant over
X), one can assume that si(z) is directed along the first component in C3,
ie. that si(z) = si(z) = 0 and therefore |s)(z)| > 3. Because of the
uniform bound on |Vsg|, there exists 7 > 0 (independent of k) such that
|sP] > 3, |sp] < 3 and |s7| < % over the ball By, (2,r). Therefore, over this

ball one can define the map

1 2 _ 3119(3/) si(y))
hie(y) = (hk(y). B3 () (S(’g W) )

Note that fj is the composition of hy with the map ¢ : (z1,22) —
[1: 2 : 2] from C? to CP? which is a quasi-isometry over the unit ball
in C2. Therefore, at any point y € By, (z,r), the bound |0fk(y)| > 3
implies that |0hg(y)| > 7 for some constant ' > 0. Moreover, the (2,0)-
Jacobians Jac(fi) = det(dfx) and Jac(hy) = det(0hy) are related to each
other : Jac(fx)(y) = ¢(y)Jac(hk)(y), where ¢(y) is the Jacobian of ¢ at
hi(y). In particular, |¢| is bounded between two universal constants over
By, (x,7), and V¢ is also bounded.

Since VJac(hy) = ¢ 1VJac(fx) — ¢ 2Jac(fx)Ve, it follows from the
bounds on ¢ that, if Jac(fy) fails to be a-transverse to 0 at y for some
a, ie. if [Jac(fx)(y)| < o and [VJac(fx)(y)| < «, then |Jac(hy)(y)| < Ca
and |VJac(hg)(y)] < Ca for some constant C' independent of k£ and a.
This means that, if Jac(hy) is Ca-transverse to 0 at y, then Jac(fy) is a-
transverse to 0 at yy. Therefore, what one actually needs to prove is that, for
large enough k, a perturbation of s with Gaussian decay and smaller than §
allows one to obtain the n-transversality to 0 of Jac(hy) over a ball By, (z, ¢),
with n = ¢6 (log 6~1) 7P, for some constants ¢, ¢ and p ; the J-transversality
to 0 of Jac(fy) then follows by the above remark.

Since |0hg(z)| > «/, one can assume, after composing with a rotation in
C? (constant over X) acting onlthe two components (s}, s?) or equivalently
on (hj,h}), that [0hi(z)] > L. As in §2.2, consider the asymptotically

holomorphic sections sffi of L* with Gaussian decay away from z given

by Lemma 2, and the complex coordinate functions zé and zi of a local
approximately holomorphic Darboux coordinate chart on a neighborhood of
x. Recall that the two asymptotically holomorphic 1-forms

1 ref 2 .ref

1_ 5 Sk x d 12—0 2kSk.x
My = 0 and  fip = 0
Sk Sk

are, at x, both of norm larger than a fixed constant and mutually orthogonal,
and that ,ullw M% and their derivatives are uniformly bounded independently
of k.

Because () and pi(z) define an orthogonal frame in A0 X, there
exist complex numbers ay and by such that OhZ(z) = agui(x) + brui(z).
Let A\, = (l_)kz,i — szzg)s};‘fg. The properties of A; , of importance to us are
the following : the sections Ay, are asymptotically holomorphic because the
coordinates z,i are asymptotically holomorphic ; they are uniformly bounded
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in C? norm by a constant Cj, because of the bounds on sfi, on the coor-

dinate chart and on 0h:(z) ; they have uniform Gaussian decay away from
x ; and, letting
A
Oka = a( ’“(f) A Oh},
Sk

one has [Op.0()] = |(beich () — apid (@) A (anpih () + by ()] > 2" for
some constant 7" > 0, because of the lower bounds on |ut (z)| and |0h2(x)|.

Because VO, is uniformly bounded and |0 ,(x)| > ~”, there exists a
constant ' > 0 independent of k such that |©y ;| remains larger than ”’7”
over the ball By, (v,7'). Define on By, (z,7’) the function u, = ©; ! Jac(hy)
with values in C : because O, , is bounded from above and below and has
bounded derivative, the transversality to 0 of uj is equivalent to that of
Jac(hy). Moreover, for any wy € C, adding wiAx, to si is equivalent to
adding wg Oy, to Jac(hg) = Ohi A Ohi, i.e. adding wy, to ug. Therefore, to
prove Proposition 5 we only need to find wy € C with |wg| < Cio such that
the functions u;, — wy, are transverse to 0.

Using the local approximately holomorphic coordinate chart, one can ob-
tain from uy, after composing with a fixed dilation of C? if necessary, func-
tions vy, defined on the ball BT C C2?, with values in C, and satisfying the
estimates |v,| = O(1), |Ovg| = O(k~'/2) and |Vdvi| = O(k~/2). One can
then apply Proposition 6, provided that k is large enough, to obtain con-
stants wy € C, with |wg| < Cio’ such that vy, — wy, is a-transverse to 0 over
the unit ball in C?, where o = % log((c%)_l)_p. Therefore, uj, — wy, is G-
transverse to 0 over By, (z,c) for some constants ¢ and C’. Multiplying by
Oz, one finally gets that, over By, (z,c), Jac(hy) — wyOp 5 is n-transverse
to 0, where n = &7 for some constant C”.

In other terms, let (7',8736,7',%’36,7',3’1) = (0, —wr Ak 2, 0), and define hy sim-
ilarly to hj starting with s; + 71, instead of s, : then the above dis-
cussion shows that Jac(hy) is 7-transverse to 0 over By, (x,c). Moreover,
|k z|lcs = |wk||Agzlcs < 0, and the sections 73, have uniform Gaussian
decay away from x. As remarked above, the n-transversality to 0 of Jac(fzk)
implies that Jac(P(sy+7k,)) is n'-transverse to 0 for some 7’ differing from 7
by at most a constant factor. The assumptions of Proposition 3 are therefore
satisfied, since > ¢/§log(6~1)~P for a suitable constant ¢’ > 0.

Moreover, the whole argument also applies to one-parameter families of
sections s as well. The only nontrivial point to check, in order to apply the
above construction for each ¢t € [0, 1] in such a way that everything depends
continuously on ¢, is the existence of a continuous family of rotations of
C? acting on (h},h?) allowing one to assume that |8h?k(x)| > 77/ for all ¢.
For this, observe that, for every ¢, such rotations in SU(2) are in one-to-
one correspondence with pairs (o, 3) € C? such that |a? + |32 = 1 and
laOn ) () + ﬁ(’?hik(ac)\ > %l The set I'; of such pairs («, 3) is non-empty
because |0hy i (x)| >+ ; let us now prove that it is connected.
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First, notice that I'; is invariant under the diagonal S' action on CZ2.
Therefore, it is sufficient to prove that the set of (o : ) € CP! such that

a0k (x) + BORE L (2)*  (y)?

T PwBP

is connected. For this, consider a critical point of ¢ over CP!. Composing
with a rotation in CP', one may assume that this critical point is (1 : 0).
Then it follows from the property %(ﬁ(l : B)jp=0 = 0O that 8h§7k(x) and
8h§k (x) must necessarily be orthogonal to each other. Therefore, one has
1Ok (@) + BP0 ()

B) = FRTE ,

and it follows that either ¢ is constant over CP! (if \8h%k(:c)| = |8hfk(x)]),
or the critical point is nondegenerate of index 0 (if \ﬁh%k($)| < |8ht2k(m)|),

¢(a

or it is nondegenerate of index 2 (if [0h{,(x)| > [0hF,()]). As a conse-
quence, since ¢ has no critical point of index 1, all nonempty sets of the
form {(a: B) € CP', ¢(a, B3) > constant} are connected.

Lifting back from CP! to the unit sphere in C2, it follows that I'; is
connected. Therefore, for each ¢ the open set I';y C SU(2) of admissible
rotations of C? is connected. Since ht . depends continuously on ¢, the sets
I'; also depend continuously on ¢ (with respect to nearly every conceivable
topology), and therefore | J,{t} x I'; is connected. The same argument as
in the end of §2.3 then implies the existence of a continuous section of
U {t} x I’y over [0, 1], i.e. the existence of a continuous one-parameter family

of rotations of C? which allows one to ensure that ](‘)hfk(a:ﬂ > 77/ for all ¢.
Therefore, the argument described in this section also applies to the case of
one-parameter families, and the assumptions of Proposition 3 are satisfied
by the property P even in the case of one-parameter families of sections.
Proposition 5 follows immediately.

3.2. Nondegeneracy of cusps. At this point in the proof, we have ob-
tained sections satisfying the transversality property P3(7). The only miss-
ing property in order to obtain 7-genericity for some 1 > 0 is the transver-
sality to 0 of 7 (si) over R(sg). The main result of this section is therefore
the following :

Proposition 7. Let § and v be two constants such that 0 < 6 < F, and let
(sk)k>0 be asymptotically holomorphic sections of C3 ® L¥* satisfying P3(7)
for all k. Then there exists a constant n > 0 such that, for all large enough
values of k, there exist asymptotically holomorphic sections o, of C3 ® L*
such that |0y, — sg|cs 4, < 6 and that the restrictions to R(oy) of the sections
T (o1,) are n-transverse to 0 over R(oy). Moreover, the same statement holds

for families of sections indexed by a parameter t € [0,1].

Note that, decreasing ¢ if necessary in the statement of Proposition 7, it
is safe to assume that all sections lying within ¢ of s; in C® norm, and in
particular the sections oy, satisfy P3(3).

For technical reasons that will be clear below, we need to extend the
definition of the quantity 7 (sx) to a neighborhood of R(sy). As suggested
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in the introduction, this can be done by extending to a neighborhood of
R(sg) the rank 1 subbundle £(sy) of ffTCP? over which the quantity 0fj
is projected. Recall from the introduction that £(sy) has been defined over
R(sk) to be the line bundle Im 0 f, and denote again by L(sg) its extension
over a neighborhood of R(sj) as a subbundle of fiT CP?, constructed by
radial parallel transport along directions normal to R(sy). Finally define,
over the same neighborhood of R(sy) and as in the introduction, 7 (s;) =
m(0fx) A dJac(fy), where 7 : fy TCP? — L(s},) is the orthogonal projection.

There are several ways of obtaining transversality to 0 of certain sections
restricted to asymptotically holomorphic symplectic submanifolds : for ex-
ample, one such technique is described in the main argument of [1]. However
in our case, the perturbations we will add to s in order to get the transver-
sality to 0 of 7 (sj) have the side effect of moving the submanifolds R(sy)
along which the transversality conditions have to hold, which makes things
slightly more complicated. Therefore, we choose to use the equivalence be-
tween two different transversality properties :

Lemma 6. Let o, and o}, be asymptotically holomorphic sections of vector
bundles Ey, and Ej, respectively over X . Assume that o), is y-transverse to 0
over X for some y > 0, and let ¥}, be its (smooth) zero set. Fiz a constant
r >0 and a point x € X. Then :

(1) There exists a constant ¢ > 0, depending only on r, v and the bounds
on the sections, such that, if the restriction of o, to ¥} is n-transverse to 0
over By, (z,7) N X} for some n < vy, then oy, & o}, is cn-transverse to 0 at x
as a section of Ej, ® Ej_.

(2) If ok & o), is n-transverse to 0 at x and = belongs to ¥, then the
restriction of o, to X is n-transverse to 0 at x.

Proof. We start with (1), whose proof follows the ideas of §3.6 of [1] with
improved estimates. Let Cj be a constant bounding |Voy| everywhere, and
let Cy be a constant bounding |VVoy| and |[VVoy| everywhere. Fix two
constants 0 < ¢ < ¢ < %, such that the following inequalities hold : ¢ < r,
c < iyvOrt ¢ < (2+4971C)7Y and (2Coy7! + 1)e < . Clearly, these
constants depend only on r, v, Cy and Cs.

Assume that |0y ()| and |0} ()| are both smaller than c¢n. Because of
the ~-transversality to 0 of o, and because |0} (z)| < ¢n < 7, the covariant
derivative of o}, is surjective at x, and admits a right inverse (E} ), — T»X
of norm less than v~!. Since the connection is unitary, applying this right
inverse to o} itself one can follow the downward gradient flow of |0} |, and
since one remains in the region where |0} | < 7 this gradient flow converges
to a point y where o) vanishes, at a distance d from the starting point =
no larger than v ten. In particular, d < ¢ < r, so y € By, (z,7) N X}, and
therefore the restriction of oy, to X}, is n-transverse to 0 at y.

Since ¢ < 37 C; !, the norm of oy, (y) differs from that of oy () by at most
Cid < 3, and so |oy(y)| < n. Since y € By, (x,7) N X}, we therefore know
that Vo) is surjective at y and vanishes in all directions tangential to X},
while Vo, restricted to T, X, is surjective and larger than 7. It follows that
V(oi@oy,) is surjective at y. Let p : (Eg)y — TyX} and p’ : (E})y — Ty X be
the right inverses of Vyo'k‘g;c and Vo). given by the transversality properties
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of ks and 0. We now construct a right inverse p : (Ej @ E})y — T, X of
Vy (oK & o},) with bounded norm.

Considering any element u € (E}),, the vector & = p(u) € T,X} has
norm at most 1~ !|u| and satisfies Vo (@) = u. Clearly Vo, (4) = 0 because
@ is tangent to X7, so we define p(u) = 4. Now consider an element v
of (E})y, and let & = p/(v) : we have |8| < y"!v| and Vo (0) = v. Let
W = p(Vor(0)) : then Vop(w) = Vog(0) and Vo () = 0, while || <
n1Cy|8] < n~ly71Ci|v|. Therefore V(o @ 0},)(d — W) = v, and we define
pv) =0 — b,

Therefore V(o) @ 0},) admits at y a right inverse p of norm bounded by
7ty by < 2447100t < ()7t Finally, note that
Vu(ok @ of,) differs from V(o) @ o},) by at most 2C2d < 2Cyy len <
(¢ — ¢)n. Therefore, V (o} & 0},) is also surjective, and is larger than
(dn) — ((¢ —¢)n) = en. In other terms, we have shown that oy & oy, is
cn-transverse to 0 at z, which is what we sought to prove.

The proof of (2) is much easier : we know that « € ¥}, i.e. o) (z) =0,
and let us assume that |og(z)| < n. Then |ox(z) & o) (z)| = |ow(z)| < n,
and the 7-transversality to 0 of o @ o), at x implies that V(o @ o0},) has
a right inverse p of norm less than n~!. Choose any u € (Ej);, and let
p(u) = p(u @ 0). One has Vo (p(u)) = 0, therefore p(u) lies in T3, and
Vor(p(u)) = u by construction. So (fok)\m; is surjective and admits p as
a right inverse. Moreover, |p(u)| = |p(u @ 0)] < n~1|u|, so the norm of p is
less than 7', which shows that Ok|yy 18 7)-transverse to 0 at x. OJ

It follows from assertion (2) of Lemma 6 that, in order to obtain the
transversality to 0 of 7 (o) |r(s,), it is sufficient to make 7 (oy,) © Jac(Poy)
transverse to 0 over a neighborhood of R(oj). Therefore, we can use once
more the globalization principle of Proposition 3 to prove Proposition 7.
Indeed, consider a section s of C* @ LF satisfying P3(3), a point z € X and
a constant 7 > 0, and say that s satisfies the property P(n, z) if either z is
at distance more than n of R(s), or x lies close to R(s) and 7 (s) & Jac(PPs)
is n-transverse to 0 at x (i.e. one of the two quantities |(7 (s) ® Jac(Ps))(x)|
and |V (7 (s) @ Jac(Ps))(x)| is larger than n). Since Jac(Ps)® 7 (s) is, under
the assumption P3(3), a smooth function of s and its first two derivatives,
and since R(s) depends nicely on s, it is easy to show that the property
P is local and C3-open. So one only needs to check that P satisfies the
assumptions of Proposition 3. Our next remark is :

Lemma 7. There exists a constant rj, > 0 (independent of k) with the
following property : choose x € X and r' < r(, and let s be asymptotically
holomorphic sections of C3 @ L* satisfying P3(3). Assume that Bg, (z,r’)
intersects R(sy). Then there exists an approzimately holomorphic map Oy, »
from the disc D of radius 15 in C to R(sy) such that : (i) the image by
Ok.e of the unit disc D contains By, (x,r") N R(sg) ; (ii) |VOz|cr 4, = O(1)
and |00 z|c1 4, = O(k=Y2) ; (iii) Oy (D%) is contained in a ball of radius
O(r') centered at x.

Moreover the same statement holds for one-parameter families of sec-
tions : given sections (Stk)icjo,1] depending continuously on t, satisfying
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P3(3) and such that By, (x,r") intersects R(s,y) for allt, there exist approx-
imately Jg-holomorphic maps 0y ., depending continuously on t and with the
same properties as above.

Proof. We work directly with the case of one-parameter families (the re-
sult for isolated sections follows trivially) and let j;, = Jac(Ps;y). First
note that R(s;y) is the zero set of j;j, which is %-transverse to 0 and has
uniformly bounded second derivative. So, given any point y € R(s:p),
|Vijik(y)| > 3, and therefore there exists ¢ > 0, depending only on + and
the bound on VVjy 1, such that Vj; ;. varies by a factor of at most %0 in the
ball of radius ¢ centered at y. It follows that By, (y,¢) N R(s; ) is diffeomor-
phic to a ball (in other words, R(s; ) is “trivial at small scale”).

Assume first that 3r' < ¢. For all ¢, choose a point y; ) (not neces-
sarily depending continuously on ¢) in By, (z,7') N R(stx) # 0. The in-
tersection By, (yik,3r") N R(sy ) is diffeomorphic to a ball and therefore
connected, and contains By, (z,7’) N R(s; ) which is nonempty and depends
continuously on ¢. Therefore, the set |J,{t} x By, (y1.%,3r") N R(sy ) is con-
nected, which implies the existence of points x; € By, (Yt 3r") VR(s k) C
By, (z,4r") N R(sy ) which depend continuously on ¢.

Consider local approximately Ji-holomorphic coordinate charts over a
neighborhood of z;j, depending continuously on ¢, as given by Lemma 3,
and call ¢ 1 : (C2,0) — (X, z4) the inverse of the coordinate map. Because
of asymptotic holomorphicity, the tangent space to R(s; ) at x4 lies within
O(k~1/2) of the complex subspace Txt’kR(SM) = Ker 9j; (k) of Ty, X.
Composing v with a rotation in C?, one can get maps 1/12,19 satisfying the
same bounds as v and such that the differential of %,k at 0 maps C x {0}
to Ty, , R(st.k)-

The estimates of Lemma 3 imply that there exists a constant A = O(r’)
such that 1} ;. (Be2(0,A)) D By, (z,7"). Define Yin(z) = Yy p(A2) ¢ if
is sufficiently small, this map is well-defined over the ball Bg2(0,2). Over
Be2(0,2) the estimates of Lemma 3 imply that |51;t,k:|cl,gk = O(\E~1/?)
and ]Viﬂukbl’gk = O()\). Moreover, because A = O(r') the image by v 4 of
Be2(0,2) is contained in a ball of radius O(r’) around z.

Assuming r’ to be sufficiently small, one can also require that the image
of Be2(0,2) by v, has diameter less than ¢. The submanifolds R(s; ) are
then trivial over the considered balls, so it follows from the implicit function
theorem that R(s: ) N zﬂuk(D"r X D) can be parametrized in the chosen
coordinates as the set of points of the form 1&,57;{(2, 71.1(2)) for z € Dt, where
Tex : DY — D7 satisfies 7, ,(0) = 0 and V7, 1,(0) = O(k~1/?).

The derivatives of 7, can be easily computed, since they are characterized
by the equation jt,k(v,lzt,k(z,ﬁ,k(z))) = 0. Notice that, if 7’ is small enough,
it follows from the transversality to 0 of j;j that |V o d@t,k(v)] is larger
than a constant times A|v| for all v € {0} x C and at any point of D x D™
Combining this estimate with the bounds on the derivatives of j; ; given by
asymptotic holomorphicity and the above bounds on the derivatives of 1/~Jt,k,
one gets that |V7x|c1 = O(1) and |07 1|c1 = O(k™'/?) over D*.
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One then defines 0;1(z) = ¢y x(2, 7x(2)) over D, which satisfies all
the required properties : the image 6;(D™) is contained in R(s;) and in
a ball of radius O(r’) centered at z ; 6;;(D) contains the intersection of
R(s¢ ) with ¢y (D x D¥) D ¥; 1 (Be2(0,A)) D By, (z,7') ; and the required
bounds on derivatives follow directly from those on derivatives of 7 and
@t,k. Therefore, Lemma 7 is proved under the assumption that »’ is small
enough. We set r{ in the statement of the lemma to be the bound on 7’/
which ensures that all the assumptions we have made on 7’ are satisfied. [J

We now prove that the assumptions of Proposition 3 hold for property
P in the case of single sections s; (the case of one-parameter families is
discussed later). Let z € X, 0 < 0 < 7, and consider asymptotically
holomorphic sections s of C* ® L* satisfying P3(3) and the corresponding
maps fr = Ps;. We have to show that, for large enough k, a perturbation of
s;, with Gaussian decay and smaller than ¢ in C® norm can make property
P hold over a ball centered at x. Because of assertion (1) of Lemma 6, it is
actually sufficient to show that there exist constants ¢, ¢’ and p independent
of k and ¢ such that, if x lies within distance ¢ of R(sy), then s, can be
perturbed to make the restriction of 7 (sy) to R(sy) n-transverse to 0 over the
intersection of R(sy) with a ball By, (,c), where n = ¢/§ (log 6~1)7P. Such a
result is then sufficient to imply the transversality to 0 of 7 (si)@®Jac(fy) over
the ball By, (z,5), with a transversality constant decreased by a bounded
factor.

As in previous sections, composing with a rotation in C? (constant over
X), one can assume that s(z) is directed along the first component in C3,
ie. that sj(z) = si(xz) = 0 and therefore |s)(x)| > 3. Because of the
uniform bound on |Vsyg|, there exists 7 > 0 (independent of k) such that
Ish] > 3, |si| < 3 and |s| < I over the ball By, (z,r). Therefore, over this
ball one can define the map

1

S sz
) = ) 1) = (240 )

The map fy is the composition of hy with the map ¢ : (21, 22) +— [1: 21 : 29]
from C2 to CP?, which is a quasi-isometry over the unit ball in C2. Therefore,
at any point y € By, (z,7), the bound |0 fx(y)| > 4 implies that [0hy(y)| > o/
for some constant 4’ > 0. Moreover, one has Jac(fy) = ¢ Jac(hg), where
¢(y) is the Jacobian of ¢ at hx(y). In particular, Jac(hy) vanishes at exactly
the same points of By, (z,r) as Jac(fy). Since |¢| is bounded between two
universal constants over By, (z,7) and V¢ is bounded too, it follows from
the I-transversality to 0 of Jac(f)) that, decreasing +' if necessary, Jac(hy)
is v/-transverse to 0 over By, (z,T).

Since |Ohg(z)| > v/, after composing with a rotation in C? (constant over
X) acting on the two components (s}, s7) one can assume that |9k (z)| > %l
Since VVhy, is uniformly bounded, decreasing r if necessary one can ensure
that |Oh?| remains larger than 'YZI at every point of By, (x,7).

Let us now show that, over R, (sy) = By, (z,7) N R(sy,), the transversality
to 0 of 7 (sy) follows from that of 7 (s;) = Ohi A 8Jac(hy).
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It follows from the identity Jac(fi) = ¢ Jac(hy) and the vanishing of
Jac(hy) over Ry(sg) that dJac(fy) = ¢8Jac(hy) over Ry(sg). Moreover
the two (1,0)-forms Of; and Ohj have complex rank one at any point of
R.(s;) and are related by 8f; = du(dhy), so they have the same kernel
(in some sense they are “colinear”). Because |0h%| is bounded from below
over By, (z,7), the ratio between |0hy| and |0hZ] is bounded. Because the
line bundle L£(s;) on which one projects Ofy coincides with Im 9fy over
R(sy), we have |w(0fx)| = |0fk| over R(sg). Since ¢ is a quasi-isometry
over the unit ball, it follows that the ratio between |m(0f;)| and |0h}| is
bounded from above and below over Rx(sk) Moreover, the two 1-forms
7(0f;) and Oh2 have same kernel, so one can write m(9fx) = ¢ Ohi over
Ry (s1), with 9 bounded from above and below. Because of the uniform
bounds on derivatives of s; and therefore f and hg, it is easy to check that
the derivatives of ¥ are bounded.

So 7 (si) = ¢ j'(sk) over Rm(sk) Therefore, assume that j—(sk)|R(sk) is
n-transverse to 0 at a given point y € Rx(sk), and let C' > 1 be a constant
such that & < |¢¢| < C and |V(¢9)| < C over Ro(s). If | T (s)(y)| < 503
then |7 (sx)(y)] < 5= <, and therefore 10(T (s1))(y)| > 1, so at y one has

0(T (s8))] = [0 AT (s1))] = 1T (s)(PY)| > ¢ — 5¢=C = 56 > 5¢s- In

other terms, the restriction to R(sy) of T (sy) is 5is-transverse to 0 at y.
Therefore, we only need to show that there exists a constant ¢ > 0 such

that, if By, (x,c) N R(s) # 0, then by perturbing sj, it is possible to ensure

that j’(sk)‘R( is transverse to 0 over By, (x,c) N R(sy).

sk)

By Lemma 7, given any sufficiently small constant ¢ > 0 and assuming
that By, (z,c) N R(sg) # 0, there exists an approximately holomorphic map
0 : DT — R(sg) such that 0;(D) contains By, (x,¢) N R(sy) and satisfying
bounds |V6|c1,, = O(1) and |00k|c1 4, = O(k~1/2). We call ¢ = O(c) the
size of the ball such that 8x(D™) C By, (z,¢), and assume that ¢ is small
enough to have ¢ < r.

From now on, we assume that By, (z,c) N R(sy) # 0.

Let s};e’i be the asymptotically holomorphic sections of L* with Gaussian
decay away from x given by Lemma 2, and let z,i and z,% be the complex
coordinate functions of a local approximately holomorphic Darboux coordi-
nate chart on a neighborhood of z. There exist two complex numbers a and
b such that Ohi(z) = adz(x) + bz (x). Composing the coordinate chart

(21, 22) with the rotation
1 b —a
ja? + [p?| \a b )"

we can actually write OhZ(z) = X9z (x), with |A| bounded from below
independently of £ and . We now define Qj , = (0, (zi)Qszei, 0) and study

the behavior of T(sk + wQy o) for small w € C.

First we look at how adding wQy, , to s, affects the submanifold R(sy) :
for small enough w, R(s +wQk ) is a small deformation of R(s;) and can
therefore be seen as a section of T'X|p(,, ). Because the derivative of Jac(hy)
is uniformly bounded and By, (x, c) N R(sy) is not empty, if ¢ is small enough
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then |Jac(hy)| remains less than o' over By, (x,¢). Recall that Jac(hy) is /-
transverse to 0 over By, (x,r) : therefore, at every point y € By, (z,¢),
VJac(hy) admits a right inverse p : AQ’OT;X — T, X of norm less than %
Adding wQy, » to sy increases Jac(hy) by wAy, 5, where
1)\2 ref
Ao = a(%) A OB,
Sk

Therefore, R(s +wQ ) is obtained by shifting R(sy) by an amount equal
to —p(wAkz) + O(JwAg|?). It follows immediately that the value of
’j'(sk + wQy, ) at a point of R(sy + wQy ) differs from the value of ’j'(sk)
at the corresponding point of R(sy) by an amount

Opx(w) = wdhi AL — V(T (51)).p(wAy) + O(w?).

Our aim is therefore to show that, if ¢ is small enough, for a suitable value
of w the quantity 7 (si) + Oy, (w) is transverse to 0 over R(sy) N By, (z, ¢).

Notice that the quantities 7 (s;) and Jac(hy) are asymptotically holo-
morphic, so that V(7 (sg)) and p are approximately complex linear. There-
fore, V(7 (s1.))-p(wAkz) = wV (T (s1.))-p(Ak.) + O(k~/2). Tt follows that

Opa(w) = w0 . + O(w?) + O(k~'/?), where
O, = O A O — V(T (51)).p(Dk ).

We start by computing the value of 92796 at x, using the fact that 8h% (z) =
A 0z2(z) while 2} (z) = 0 and therefore Ay ,(x) = 0. Because of the identity

ref
Apg = 2z 223021 A OhZ + O(|zL|?), an easy calculation yields that
k

’ S

Sref
Do = 25" (02} A ON}) Dz} + O(2i])
k
and therefore
sref T
Q) (z) = —2)\? k(’)w( ) (&z,i(x) A 82,%(@)2.
' sk(x)

The important point is that there exists a constant 4" > 0 independent of
k and x such that |69 (z)| >~".

Since the derivatives of ©F  are uniformly bounded, |©? | remains larger

than 77” at every point of By, (z, ¢) if ¢ is small enough. It follows that, over
R(s1) N By, (, ¢), the transversality to 0 of 7 (sg) 4+ Op,.(w) is equivalent to
that of (7 (sx) + Ok (w))/OY . The value of ¢ we finally choose to use in
Lemma 7 for the construction of 0 is one small enough to ensure that all
the above statements hold (but still independent of k, x and §). Now define,
over the disc Dt C C, the function

Uk(Z) _ T(Sk‘)(ek‘('z))

0} (0k(2))
with values in C. Because ©9  is bounded from below over By, (z,¢) and

because of the bounds on the derivatives of 0 given by Lemma 7, the func-
tions v, : DT — C satisfy the hypotheses of Proposition 6 for all large
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enough k. Therefore, if Cy is a constant larger than |Qq|cs g, , and if k

is large enough, there exists wy € C, with |wg| < C%, such that vy + wy, is
a-transverse to 0 over the unit disc D in C, where o = Cio log((cio)*l)*p.

Multiplying again by @2735 and recalling that 6, maps diffeomorphically D
to a subset of R(sy) containing R(sy) N By, (x,c), we get that the restriction
to R(sy) of ’j'(sk)+wk@27x is o/ -transverse to 0 over R(si)NBy, (2, ¢) for some
o' differing from « by at most a constant factor. Recall that Oy ,(wy) =
wk@g,m + O(|wg|?) + O(k~1/?), and note that |wy|? is at most of the order of
62, while o is of the order of dlog(d~1)~P : so, if § is small enough, one can
assume that |wy|? is much smaller than o/. If k is large enough, k~1/2 is also
much smaller than o, so that 7 (sz) + O (wy) differs from 7 (sg) + wk@%x
by less than %/, and is therefore O‘%—transve]rse to 0 over R(s) N By, (x,c).

Next, recall that R(sy + wrQk.) is obtained by shifting R(s;) by an

amount —p(wrAg ;) + O(|wpAg.2|?) = O(|wg|) (because |A ;| is uniformly
bounded, or more generally because the perturbation of sy is O(|wy|) in C3
norm). So, if ¢ is small enough, one can safely assume that the distance
by which one shifts the points of R(s;) is less than §. Therefore, given
any point in R(sy + wiQp) N By, (2, 5), the corresponding point in R(sy)
belongs to By, (z, ¢).
We have seen above that the value of 7 (s, + wiQk,z) at a point of
sk + wi Qg ) differs from the value of T (sx) at the corresponding point of
sk) by O z(wy) ; therefore it follows from the transversality properties of
k) + O z(wy) that the restriction to R(sy +wrQp ) of ’j'(sk +w Q. z) is
o'-transverse to 0 over R(sy, +wipQp ) N By, (z, §) for some o’ > 0 differing
from o' by at most a constant factor.

By the remarks above, this transversality property implies transversality
to 0 of the restriction of 7T (sj, + wrQk,.) over R(sy + wpQr) N By, (z,5) ;
therefore, by Lemma 6, 7 (s, +wi Q. ») ®Jac(P(sy +wiQ ) is n-transverse
to 0 over By, (z,§), with a transversality constant n differing from o by
at most a constant factor. So, if § is small enough and k large enough,
in the case where By, (x,c) N R(sg) # 0, we have constructed wy such
that s; + wipQr, satisfies the required property P(n,y) at every point
y € By, (x, 7). By construction, |wiQp.z|cs g, < J, the asymptotically holo-
morphic sections Q. , have uniform Gaussian decay away from z, and 7 is
larger than ¢/§1og(6~1) 77 for some constant ¢’ > 0, so all required properties
hold in this case.

Moreover, in the case where By, (x, ¢) does not intersect R(sy), the section
s already satisfies the property P(%c, y) at every point y of By, (z, §) and
no perturbation is necessary. Therefore, the property P under consideration
satisfies the hypotheses of Proposition 3 whether By, (z,c) intersects R(sy)
or not. This ends the proof of Proposition 7 for isolated sections sg.

R(
R(
T

!

In the case of one-parameter families of sections, the argument still works
similarly : we are now given sections s;; depending continuously on a pa-
rameter ¢ € [0, 1], and try to perform the same construction as above for
each value of ¢, in such a way that everything depends continuously on t.
As previously, we have to show that one can perturb s, in order to ensure
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that, for all ¢ such that x lies in a neighborhood of R(s ), T(St,k)\R(sm) is
transverse to 0 over the intersection of R(s; ) with a ball centered at .

As before, a continuous family of rotations of C? can be used to ensure
that si (x) and st%k (x) vanish for all ¢, allowing one to define h, for all t.
Moreover the argument at the end of §3.1 proves the existence of a continu-
ous one-parameter family of rotations of C? acting on the two components
(s%,k,sf’k) allowing one to assume that |8h?k(sc)| > 77/ for all t. Therefore,
as in the case of isolated sections, the problem is reduced to that of per-
turbing s; ; when z lies in a neighborhood of R(s; ) in order to obtain the
transversality to 0 of T(St,k)m(
ball centered at .

Because Lemma 7 and Proposition 6 also apply in the case of 1-parameter
families of sections, the argument used above to obtain the expected transver-
sality result for isolated sections also works here for all ¢ such that z lies in
the neighborhood of R(s;j). However, the ball By, (x,c) intersects R(s¢ )
only for certain values of ¢ € [0, 1], which makes it necessary to work more
carefully.

s.») Over the intersection of R(syy) with a

Define Q;, C [0,1] as the set of all ¢ for which By, (z,c) N R(s¢r) # 0.
For all large enough k and for all ¢ € Qf, Lemma 7 allows one to define
maps 6,5 : DT — R(s; ) depending continuously on ¢ and with the same

properties as in the case of isolated sections. Using local coordinates zi i

depending continuously on ¢ given by Lemma 3 and sections sge,ﬁ . given

by Lemma 2, the quantities Q¢ k2, At gz Orkz(w), G(t)km and v can be
defined for all t € Q) by the same formulae as above and d’ef)end continuously
on t.

Proposition 6 then gives, for all large k£ and for all ¢ € Qf, complex
numbers wy ;, of norm at most Cio and depending continuously on ¢, such
that the functions v + wy, are transverse to 0 over D. As in the case
of isolated sections, this implies that s;j + wy Q4 k., satisfies the required
transversality property over By, (z, ).

Our problem is to define asymptotically holomorphic sections 7, of
C3® L* for all values of t € [0, 1], of C3-norm less than § and with Gaussian
decay away from z, in such a way that the sections s;j + 71, depend
continuously on ¢ € [0, 1] and satisfy the property P over By, (z, §) for all ¢.
For this, let 8 : Ry — [0, 1] be a continuous cut-off function equal to 1 over
[0, 3¢] and to 0 over [c,+00). Define, for all ¢ € €y,

Tt,k,x = /B(dZStgk (ﬂf, R(St,k)))wt,th,k,xy

and 11, = 0 for all ¢t & Q. It is clear that, for all ¢ € [0, 1], the sections
Tt ke are asymptotically holomorphic, have Gaussian decay away from z,
depend continuously on t and are smaller than § in C® norm. Moreover,
for all ¢ such that distg, (z, R(sk)) < %, one has 7y » = W Q¢ ka, SO the
sections sy + 7y k.. satisfy property P over By, (, §) for all such values of ¢.

For the remaining values of ¢, namely those such that z is at distance more
than % from R(s: ), the argument is the following : since the perturbation
Tt ko is smaller than 0, every point of R(sy + T¢ k) lies within distance
O(6) of R(st). Therefore, decreasing the maximum allowable value of § in
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Proposition 3 if necessary, one can safely assume that this distance is less
than §. It follows that x is at distance more than § of R(s;x + Ty 4), and
so that the property P({,y) holds at every point y € By, (z, {).

Therefore, for all large enough k and for all ¢ € [0,1], the perturbed
sections sy + Ty k. satisfy property P over the ball By, (z, §). It follows
that the assumptions of Proposition 3 also hold for P in the case of one-

parameter families, and so Proposition 7 is proved.

4. DEALING WITH THE ANTIHOLOMORPHIC PART

4.1. Holomorphicity in the neighborhood of cusp points. At this
point in the proof, we have constructed asymptotically holomorphic sections
of C3® L* satisfying all the required transversality properties. We now need
to show that, by further perturbation, one can obtain J-tameness. We first
handle the case of cusp points :

Proposition 8. Let (s;)rso be y-generic asymptotically J-holomorphic sec-
tions of C3@LF. Then there exist constants (Cp)pen and ¢ > 0 such that, for
all large k, there exist w-compatible almost-complex structures Jy, on X and
asymptotically J-holomorphic sections oy, of C2®@ LF with the following prop-
erties : at any point whose gi-distance to Cjk (o) is less than ¢, the almost-

complex structure Jy, is integrable and the map Poy, is J,-holomorphic ; and
for allp € N, |jk —Jler g, < Cpk_1/2 and |o — sk|or,g, < Cpk_l/z.

Furthermore, the result also applies to one-parameter families of y-generic
asymptotically Ji-holomorphic sections (sik)iepo,1),k>0 © for all large k there
exist almost-complex structures jt,k and asymptotically Jy-holomorphic sec-
tions o), depending continuously on t and such that the above properties
hold for all values of t. Moreover, if so and s1y already satisfy the re-
quired properties, and if one assumes that, for some € > 0, J; and sy ), are
respectively equal to Jo and s, for all t € [0,€] and to Ji and sy for all
t € [1 —¢,1], then it is possible to ensure that oo = sok and o1 = S1 k-

The proof of this result relies on the following analysis lemma, which states
that any approximately holomorphic complex-valued function defined over
the ball BT of radius % in C? can be approximated over the interior ball B
of unit radius by a holomorphic function :

Lemma 8. There exist an operator P : C*°(B*,C) — C*>(B,C) and con-
stants (Kp)pen such that, given any function f € C*°(B™T,C), the function
f = P(f) is holomorphic over the unit ball B and satisfies |f — f|cp(B) <
Ky |0f|co(p+) for every p € N.

Proof. (see also [2]). This is a standard fact which can be proved e.g. using
the Hormander theory of weighted L? spaces. Using a suitable weighted
L? norm on Bt which compares uniformly with the standard norm on the
interior ball B’ of radius 1+ 55 (B C B’ C B"), one obtains a bounded
solution to the Cauchy-Riemann equation : for any O-closed (0,1)-form p
on BT there exists a function T'(p) such that 9T (p) = p and T (p)| 2By <
Clpl2(p+) for some constant C.

Take p = df and let h = T(p) : since dh = p = A, the function f = f—h
is holomorphic (in other words, we set P = Id —Td). Moreover the L? norm
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of h and the C? norm of Oh = Of over B’ are bounded by multiples of
|0f|cp(+) ; therefore, by standard elliptic theory, the same is true for the
CP norm of h over the interior ball B, which gives the desired result. O

We first prove Proposition 8 in the case when there is no parameter,
where the argument is fairly easy. Because s is -generic, the set of points
of R(s;) where 7 (si) vanishes, i.e. Cs(sy), is finite. Moreover V7T (s)|r(s,)
is larger than ~ at all cusp points and VV7 (sg) is uniformly bounded, so
there exists a constant » > 0 such that the gi-distance between any two
points of Cj(sy) is larger than 4r.

Let x be a point of Cj(sg), and consider a local approximately J-holo-
morphic Darboux map 1y, : (C2,0) — (X, z) as given by Lemma 3. Because
of the bounds on 0, the w-compatible almost-complex structure J ;. on the
ball By, (x,2r) defined by pulling back the standard complex structure of
C? satisfies bounds of the type |J} — J|cv g, = O(k™1/2) over By, (z,2r) for
all p e N.

Recall that the set of w-skew-symmetric endomorphisms of square —1
of the tangent bundle T'X (i.e. w-compatible almost-complex structures) is
a subbundle of End(7'X) whose fibers are contractible. Therefore, there
exists a one-parameter family (J]);¢(o,1) of w-compatible almost-complex
structures over By, (z,2r) depending smoothly on 7 and such that J,g =J
and J! = J;. Also, let 7, : By, (x,2r) — [0,1] be a smooth cut-off function
with bounded derivatives such that 7, = 1 over By, (z,r) and 7, = 0 outside
of By, (z,37).

Then, define Jj; to be the almost-complex structure which equals J out-

side of the 2r-neighborhood of C;(sk), and which at any point y of a ball
()

to check that Ji is integrable over the r—neighborhgod of Cj(sk) where it
coincides with J/, and satisfies bounds of the type |.Jx — J|cn g, = O(k™1/?)
Vp € N.

By, (z,2r) centered at x € Cy(sx) coincides with J;"*¥ : it is quite easy

Let us now return to a neighborhood of x € C;(sy), where we need to per-
turb s; to make the corresponding projective map locally Jy-holomorphic.
First notice that, by composing with a rotation of C3 (constant over X),
one can safely assume that si(z) = si(z) = 0. Therefore, |s?(z)| > v, and
decreasing r if necessary one can assume that |52| remains larger than % at
every point of By, (x,r). The Jy-holomorphicity of Psj, over a neighborhood
of x is then equivalent to that of the map h; with values in C? defined by

Sl 82
(o) = () ) = (502, 200,

Because of the properties of the map 1 given by Lemma 3, there exist

constants A > 0 and r’ > 0, independent of k, such that ¢ (Bc2(0, %A))

is contained in By, (z,7) while ¢y(Bg2(0, 3A)) contains By, (z,7'). We now
define the two complex-valued functions f}(z) = hi(¢r(\z)) and f2(z) =

h2(1x(A2)) over the ball BY C C% By definition of Jj, the map vy in-
tertwines the almost-complex structure Jy over By, (x,r) and the standard
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complex structure of C?, so our goal is to make the functions f} and f7
holomorphic in the usual sense over a ball in C2.

_ This is where we use Lemma 8. Remark that, because of the estimates on
0y given by Lemma 3 and those on djhj coming from asymptotic holo-
morphicity, we have ‘5f]’é|cz)(3+) = O(k~1/?) for every p € N and i € {1,2}.
Therefore, by Lemma 8 there exist two holomorphic functions f,}: and f,?,
defined over the unit ball B C C?, such that |f] — f]i|Cp(B) = O(k~1/?) for
every p € N and 7 € {1,2}.

Let # : [0,1] — [0,1] be a smooth cut-off function such that § = 1
over |0, %] and 8 = 0 over [%, 1], and define, for all z € B and i € {1,2},
fé(z) = B(12])fi(z) + (1 = B(|2])) fi(2). By construction, the functions f,@
are holomorphic over the ball of radius % and differ from f} by O(k=1/?).

Going back through the coordinate map, let B}c be the functions on the

neighborhood U, = 1y, (Be2(0, \)) of & which satisfy h(x(\2)) = fi(z) for
every z € B. Define 5% = 52, 5, = B,lvsg and 53 = ﬁisg over U,, and let oy
be the global section of C*> ® L* which Va € C;(sy) equals 8 over U, and
which coincides with s away from C(s).

Because f,i = f,i near the boundary of B, §; coincides with s; near the
boundary of U,, and oy is therefore a smooth section of C* @ L*. For
every p € N, it follows from the bound |f}; — fli’Cp(B) = O(k~/?) that
lok — sklorg, = O(k/2). Moreover, the functions fff are holomorphic
over B¢z2(0,%) where they coincide with fi, so the functions ﬁ}c are Jj-
holomorphic over ¢y (Bgz2(0,5X)) D Bg,(z,7’), and it follows that Poy, is
Jx-holomorphic over By, (x,r").

Therefore, the almost-complex structures J; and the sections oy satisfy
all the required properties, except that the integrability of Jj, and the holo-
morphicity of Poy, are proved to hold on the r’-neighborhood of C;(sy) rather
than on a neighborhood of Cj (o).

However, the C? bounds |J;, — Ji,| = O(k~'/2) and |0}, — sp| = O(k~1/?)
imply that [Jacj (Poy) — Jac;(Psy)| = O(k~'/2) and 75, (o) — Ty (sk)| =
O(k~1'/2). Therefore it follows from the transversality properties of s; that
the points of Cj (o) lie within gj-distance O(k~1/2) of Cj(sy,). In particular,
if k is large enough, the %—neighborhood of Cj, (o) is contained in the 7'-

neighborhood of C(s), which ends the proof of Proposition 8 in the case
of isolated sections.

In the case of one-parameter families of sections, the argument is similar.
One first notices that, because of y-genericity, there exists r > 0 such that,
for every t € [0,1], the set Cj,(s¢)) consists of finitely many points, any
two of which are mutually distant of at least 4r. Therefore, the points of
Cy, (st ) depend continuously on t, and their number remains constant.

Consider a continuous family (zt).c[0,1) of points of Cj,(syx) : Lemma 3
provides approximately Ji-holomorphic Darboux maps v depending con-
tinuously on t on a neighborhood of z;. By pulling back the standard
complex structure of C2, one obtains integrable almost-complex structures
JAk over By, (x¢,2r), depending continuously on ¢ and differing from J; by
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O(kfl/ 2). As previously, because the set of w-compatible almost-complex
structures is contractible, one can define a continuous family of almost-
complex structures J;k on X by gluing together J; with the almost-complex
structures JAk defined over By, (x4,2r), using a cut-off function at distance
r from Cj, (st ). By construction, the almost-complex structures jt,k are in-
tegrable over the r-neighborhood of Cj, (s ), and \jtk —Jilcr g, = O(k=1/2)
for all p € N.

Next, we perturb s;; near z; € Cj,(s¢) in order to make the corre-
sponding projective map locally jt,k—holomorphic. As before, composing
with a rotation of C® (constant over X and depending continuously on t)
and decreasing r if necessary, we can assume that s%’k(xt) = sik(mt) =0

2
holomorphicity of Ps; , over By, (x¢,r) is then equivalent to that of the map
ht ), with values in C? defined as above.
As previously, there exist constants A and ' such that ¢ (Bc2 (0, %)\))
is contained in By, (z¢,7) and vy (Bez2(0, 3A)) D By, (z4,7') ; once again,

our goal is to make the functions ftzk, : BT — C defined by ftlk(z) =

and therefore that |sgk\ remains larger than 2 over By, (;,7). The J; -

h;k(wtk()\z)) holomorphic in the usual sense.

Because of the estimates on 5tht7k and 5Jtht7k, we have |5fti,k|0p(3+) =
O(k~Y?) ¥p € N, so Lemma 8 provides holomorphic functions fti,k over
B which differ from ffyk by O(k~1/2). By the same cut-off procedure as
above, we can thus define functions ftl ,, which are holomorphic over Bz (0, 1)
and coincide with ffﬁk near the boundary of B. Going back through the
coordinate maps, we define as previously functions fzé . and sections &
over the neighborhood Uy, = 945 (Bc2(0,)) of 4. Since 5¢ 1 coincides
with s near the boundary of Uy ,,, we can obtain smooth sections oy j of
C? ® LF by gluing st together with the various sections §; ) defined near
the points of Cj, (s¢ k).

As previously, the maps Poy ; are jt,k—holomorphic over the r’-neighbor-
hood of Cy,(s¢x) and satisfy |0y, — Stk|lov,g, = O(k~1/2) ; therefore the de-
sired result follows from the observation that, for large enough &, C Jin (oek)
lies within distance %/ of Cj,(stk)-

We now consider the special case where sg; already satisfies the re-
quired conditions, i.e. there exists an almost-complex structure jo,k within
O(k:_l/2) of Jo, integrable near Cj , (sox), and such that Psqy is Jo k-
holomorphic near C jo,k(s()’k). Althoﬁgh this is actually not necessary for
the result to hold, we also assume, as in the statement of Proposition 8,
that s, = sor and J; = Jy for every t < ¢, for some € > 0. We want to
prove that one can take ogj = s in the above construction.

We first show that one can assume that jo,k coincides with jng over
a small neighborhood of Cj,(sox). For this, remark that Cj,(sox) lies
within O(k~1/2) of CJy,.(S0k); so there exists a constant § such that, for

large enough k, J—O,k is integrable and Psq is joﬁk—holomorphic over the
d-neighborhood of C,(sok)-
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Fix points (¢)se(0,1) in C,(s¢,x), and consider, for all ¢ > ¢, the approx-
imately Ji-holomorphic Darboux coordinates (ztl s ztz ;) on a neighborhood
of x; and the inverse map 1 given by Lemma 3 and which are used to
define the almost-complex structures J;k and JNM near r;. We want to show
that one can extend the family 1, to all ¢ € [0, 1] in such a way that the
map g ) is jo,k—holomorphic. The hypothesis that J; and s; , are the same
for all t € [0, €] makes things easier to handle because J. = Jy and x, = xy.

Since jo,k is integrable over By, (x¢,d) and w-compatible, there exist
local complex Darboux coordinates Z; = (Z,i,Z,f) at xg which are j07k—
holomorphic. It follows from the approximate Jy-holomorphicity of the
coordinates zej = (zelyk,zzyk) and from the bound |Jo — Jox| = O(k~/2)
that, composing with a linear endomorphism of C? if necessary, one can
assume that the differentials at xg of the two coordinate maps, namely
VaoZer and Vg, Zy, lie within O(k:_l/Q) of each other. For all ¢t € [0, €],
ik = %Ze,k +(1- E)Zk defines local coordinates on a neighborhood of zg ;
however, for t € (0, ¢) this map fails to be symplectic by an amount which is
O(k~'/2). So we apply Moser’s argument to Z ) in order to get local Dar-
boux coordinates z;j over a neighborhood of z¢ which interpolate between
Zy, and zc 1, and which differ from Z; ;, by O(k=/?). 1t is easy to check that,
if £ is large enough, then the coordinates z;j are well-defined over the ball
By, (x¢,2r). Since 0o Zr and 5J02’e,k are O(k:_l/z), and because z;, differs
from Z; 5 by O(k‘_l/ 2), the coordinates defined by 2t are approximately
Jo-holomorphic (in the sense of Lemma 3) for all ¢ € [0, €].

Defining 1 ;, as the inverse of the map z;j for every t € [0, €], it follows
immediately that the maps v\, which depend continuously on ¢, are ap-
proximately Ji-holomorphic over a neighborhood of 0 for every t € [0,1],
and that gy, is j(),k—holomorphic.

We can then define J; ; as previously on By, (24, 2r), and notice that Jg ,
coincides with j07k. Therefore, the corresponding almost-complex structures
jt,k over X, in addition to all the properties described previously, also satisfy
the equality J~07k = Jo over the r-neighborhood of C,(so k).

It follows that, constructing the sections oy from s, as previously, we
have oo = so . Indeed, since Psgy is already jo,k—holomorphic over the
r-neighborhood of C, (s0.%), we get that, in the above construction, h(l)Jg and
h%,k are joyk—holomorphic, and so f&k and fak are holomorphic. Therefore,
by definition of the operator P of Lemma 8, we have f&k = fol,k and fgk =
fg > Which clearly implies that g = so.

The same argument applies near ¢ = 1 to show that, if s1 ;, already satisfies

the expected properties and if J; and s;j are the same for all ¢ € [1 — ¢, 1],
then one can take oy ; = s1 . This ends the proof of Proposition 8.

4.2. Holomorphicity at generic branch points. Our last step in order
to obtain d-tame sections is to ensure, by further perturbation, the vanishing
of j (Psy) over the kernel of 9 (Psy) at every branch point.

Proposition 9. Let (s;)rso be y-generic asymptotically J-holomorphic sec-
tions of C3®LF. Assume that there exist w-compatible almost-complex struc-
tures Jy, such that |y — J|co.g, = O(k™Y/2) for all p € N and such that, for
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some constant ¢ > 0, fr = Psy, is Jy-holomorphic over the c-neighborhood of
Cjk(sk). Then, for all large k, there exist sections oy, such that the following
properties hold : |0 — sg|cw.g, = O(k=Y2) for all p € N ; o}, coincides with
s over the §-neighborhood of Cjk(ak) = Cjk(sk) ; and, at every point of
Rj (0k), 5jk (Poy) vanishes over the kernel of 05 (Poy).

Moreover, the same result holds for one-parameter families of asymptoti-
cally Ji-holomorphic sections (St,k)te[o,l],k>>0 satisfying the above properties.
Furthermore, if sop and s1 already satisfy the properties required of og
and o1, then one can take oo = So and o1 = S1 k.

The role of the almost-complex structure J in the statement of this result
may seem ambiguous, as the sections sj are also asymptotically holomorphic
and generic with respect to the almost-complex structures j’f; The point
is that, by requiring that all the almost-complex structures .J; lie within
O(k~'/2) of a fixed almost-complex structure, one ensures the existence of
uniform bounds on the geometry of .J; independently of k.

We now prove Proposition 9 in the case of isolated sections. In all the
following, we use the almost complex structure Jj implicitly. Consider a
point € R(sy) at distance more than 3¢ from C(sy), and let K, be the
one-dimensional complex subspace Ker 0fi(x) of T, X. Because « & C(sy),
we have T, X = T,R(si) ® K,. Therefore, there exists a unique 1-form
O, eTrX® Tfk(m)(CIP’2 such that the restriction of 6, to T, R(sy) is zero and
the restriction of 6, to K, is equal to 5fk(33)|1{z-

Because the restriction of 7 (sx) to R(sg) is transverse to 0 and because x
is at distance more than 3¢ from C(sy,), the quantity |7 (sy)(x)| is bounded
from below by a uniform constant, and therefore the angle between T R(sx)
and K, is also bounded from below. So there exists a constant C' indepen-
dent of k and x such that |0,| < Ck~/2. Moreover, because 0f; vanishes
over the c-neighborhood of C(sy), the 1-form 6, vanishes at all points z close
to C(sk) ; therefore we can extend 6 into a section of T*X ® f;TCP? over
R(sy) which vanishes over the c-neighborhood of C(sy), and which satisfies
bounds of the type |0|c» g, = O(k~4/2) for all p € N.

Next, use the exponential map of the metric g to identify a tubular neigh-
borhood of R(sy) with a neighborhood of the zero section in the normal bun-
dle NR(sj). Given 0 > 0 sufficiently small, we define a section x of fiT CP?
over the d-tubular neighborhood of R(sy) by the following identity : given
any point x € R(sy) and any vector £ € N, R(sy) of norm less than 4,

x(exp,(§)) = B(I€]) 0=(S),

where the fibers of f} TCP? at  and at exp, (€) are implicitly identified using
radial parallel transport, and (3 : [0,d] — [0, 1] is a smooth cut-off function
equal to 1 over [0, 2] and 0 over [24,8]. Since x vanishes near the boundary
of the chosen tubular neighborhood, we can extend it into a smooth section
over all of X which vanishes at distance more than § from R(sy).

Decreasing ¢ if necessary, we can assume that § < 5 : it then follows from
the vanishing of 6 over the c-neighborhood of C(sy) that y vanishes over
the £-neighborhood of C(sy,). Moreover, because |0]cr 4, = O(k~Y/?) for all
p € N and because the cut-off function § is smooth, x also satisfies bounds
IX|cr g, = O(k~Y/2) for all p € N.
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Fix a point « € R(sy) : x is identically zero over R(sy) by construction,
so Vx(x) vanishes over T, R(sy) ; and, because 3 = 1 near the origin and
by definition of the exponential map, VX()|n,R(sy) = Oz|N,R(sy)- Since
T, R(si) and N,R(s) generate T, X, we conclude that Vy(z) = 6,. In
particular, restricting to K, we get that Vx(v)x, = Ozx, = 5fk(1')\Km~
Equivalently, since K, is a complex subspace of T, X, we have 6x(x)| K, =
Ofk(2) k, and Ox(2)|k, = 0 = Of(2)|K, -

Recall that, for all z € X, the tangent space to CP? at fi(z) = Psy(x)
canonically identifies with the space of complex linear maps from Csy(x) to
(Csp(x))t € C* @ LE. This allows us to define o () = si(x) — x().51(z).

It follows from the properties of x described above that o coincides with
sg over the §-neighborhood of C(sy) and that |og — sk|cr,g, = O(k=1/2) for
all p € N. Because of the transversality properties of si, we get that the
points of C(oy) lie within distance O(k~'/2) of C(s;), and therefore if k is
large enough that C(o) = C(s).

Let fi = Poy, and consider a point z € R(s;) : since x(x) = 0 and
therefore fi.(x) = fi(z), it is easy to check that V fi(z) = V fi(x) — Vx(z)
inTrX ® Tfk(m)(CPQ. Therefore, setting K, = Ker df(x) as above, we get
that 0 fy(x) = 8 fi(z)—dx(x) and dfy,(x) = dfx(x) —x(x) both vanish over
K,. A first consequence is that 8 f(x) also has rank one, i.e. z € R(0y)
therefore R(s;) C R(o). However, because oy, differs from s by O(k~1/?),
it follows from the transversality properties of s; that, for large enough k,
R(oy) is contained in a small neighborhood of R(sy), and so R(oy) = R(sk).

Furthermore, recall that at every point = of R(oy) = R(sk) one has
éfk(a:)‘Kz = afk(x)% = 0. Therefore df,(x) vanishes over the kernel

of 0 fk (), and so the sections o}, satisfy all the required properties.

To handle the case of one-parameter families, remark that the above con-
struction consists of explicit formulae, so it is easy to check that 8, x and oy,
depend continuously on s; and Jj,. Therefore, starting from one-parameter
families s;; and jt,k, the above construction yields for all ¢ € [0, 1] sections
ot which satisfy the required properties and depend continuously on ¢.

Moreover, if 50 already satisfies the required properties, i.e. if 0 for(?) K,
vanishes at any point = € R(sg ), then the above definitions give # = 0, and
therefore x = 0 and og = so ; similarly for ¢ = 1, which ends the proof of
Proposition 9.

4.3. Proof of the main theorems. Assuming that Theorem 3 holds, The-
orems 1 and 2 follow directly from the results we have proved so far : com-
bining Propositions 1, 4, 5 and 7, one gets, for all large k, asymptotically
holomorphic sections of C3® L* which are y-generic for some constant v > 0 ;
Propositions 8 and 9 imply that these sections can be made J-tame by per-
turbing them by O(k~'/2) (which preserves the genericity properties if k is
large enough) ; and Theorem 3 implies that the corresponding projective
maps are then approximately holomorphic singular branched coverings.

Let us now prove Theorem 4. We are given two sequences sg and sy
of sections of C? ® LF which are asymptotically holomorphic, v-generic and
O-tame with respect to almost-complex structures Jy and Jy, and want to
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show the existence of a one-parameter family of almost-complex structures
J; interpolating between J and J; and of generic and 0-tame asymptotically
Ji-holomorphic sections interpolating between sg j and sq .

One starts by defining sections s; ;, and compatible almost-complex struc-
tures J; interpolating between (sg x, Jo) and (s, J1) in the following way :
for t € |0, %], let sy = sox and Jy = Jy ; for t € [7, 7] let sp, = (3 —Tt)so
and J; = Jy ; for ¢t € [?, 7] let s¢;, = 0 and take J; to be a path of w-
compatible almost-complex structures from Jy to J; (recall that the space
of compatible almost-complex structures is connected) ; for t € [%, %], let
s = (Tt —4)s1, and Jy = Jp ; and for t € [%,1], let s, = s1; and
Ji = Ji1. Clearly, J; and s;; depend continuously on ¢, and the sections s
are asymptotically J;-holomorphic for all ¢ € [0, 1].

Since y-genericity is a local and C3-open property, there exists a > 0 such
that any section differing from sg ;. by less than a in C3 norm is %—generic7
and similarly for sj ;. Applying Propositions 1, 4, 5 and 7, we get for all
large k asymptotically Ji;-holomorphic sections o, which are n-generic for
some 1 > 0, and such that |0y — st,k|03’gk < « for all t € [0,1].

We now set s; ;. = so, for t € [0, 11 Spp = (2= T)sop + (7t — 1)0'%7/,C for
teld 2, Spp = ok for t € (2,5 ; Spp = (Tt =5)s1 + (6 — 7t)a%,k for
te[2,8; and Spp = sk for t € [$,1]. By construction, the sections Stk
are asymptotically Jy- holomorphic for all t € [O 1] and depend continuously
on t. Moreover, they are 3-generic for ¢ € [0, ] because st ;; then lies within

a in C3 norm of sq , and snmlarly for t € [2,1] because 8} then lies within
« in C3 norm of sy ;. They are also n-generic for ¢t € [7, 7] because s, k18
then equal to oy ). Therefore the sections s}, are n’-generic for all ¢ € [0 1],
where 7 = min(n, 7).

Next, we apply Proposition 8 to the sections sék . since S6,k = Sok
and Sll,k = 51 are already O-tame, and since the families sg i and J; are
constant over [0, 1] and [£,1], one can require of the sections s/, given by
Proposition 8 that 50 = SO,k = 50, and st = st = 51k Fmally, we apply
Proposition 9 to the sections s}, to obtain sections o}, which simultaneously
have genericity and O-tameness properties. Since s&k and Slll,k; are already
O-tame, one can require that a(’)’k = sgk = 5o and Ui’k = s’l’k, = S1k-
The sections o}, interpolating between sq j and s; j therefore satisfy all the
required propertles, which ends the proof of Theorem 4.

5. GENERIC TAME MAPS AND BRANCHED COVERINGS

5.1. Structure near cusp points. In order to prove Theorem 3, we need
to check that, given any generic and d-tame asymptotically holomorphic sec-
tions s; of C*® L*, the corresponding projective maps fi = Ps; : X — CP?
are, at any point of X, locally approximately holomorphically modelled on
one of the three model maps of Definition 2. We start with the case of the
neighborhood of a cusp point.

Let g € X be a cusp point of fi, i.e. an element of Cjk(sk), where Jj, is

the almost-complex structure involved in the definition of O-tameness. By
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definition, J; differs from J by O(k~'/2?) and is integrable over a neighbor-
hood of zg, and f, is Jj-holomorphic over a neighborhood of zy. Therefore,
choose Ji-holomorphic local complex coordinates on X mnear zg, and local
complex coordinates on CP? near fj(zo) : the map h corresponding to f in
these coordinate charts is, locally, holomorphic. Because the coordinate map
on X is within O(k~1/2) of being J-holomorphic, we can restrict ourselves
to the study of the holomorphic map h = (hqy, hy) defined over a neighbor-
hood of 0 in C? with values in C2, which satisfies transversality properties
following from the genericity of s;. We need to show that, composing h with
holomorphic local diffeomorphisms of the source space C? or of the target
space C%, we can get h to be of the form (z1,22) > (23 — 2122, 22) over a
neighborhood of 0.

This statement is a standard result in singularity theory and was first
proven by Whitney in [7] (§16-19). Due to a differently formulated definition
of cusp points and for the sake of completeness, we provide here the first
part of Whitney’s argument.

First, because |0fy| is bounded from below and xg is a cusp point, the
derivative Oh(0) does not vanish and has rank one. Therefore, composing
with a rotation of the target space C? if necessary, we can assume that its
image is directed along the second coordinate, i.e. Im (0h(0)) = {0} x C.

Calling Z; and Z, the two coordinates on the target space C2?, it fol-
lows immediately that the function zo = h*Z5 over the source space has a
non-vanishing differential at 0, and can therefore be considered as a local
coordinate function on the source space. Choose z; to be any linear function
whose differential at the origin is linearly independent with dz5(0), so that
(21, 22) define holomorphic local coordinates on a neighborhood of 0 in C2,
In these coordinates, h is of the form (z1,22) — (h1(z1, 22), 22) where hy is
a holomorphic function such that h1(0) = 0 and 0h;(0) = 0.

Next, notice that, because Jac(fy) vanishes transversely at xg, the quan-
tity Jac(h) = det(Oh) = Oh1/0z1 vanishes transversely at the origin, i.e.

2 2
O (),
073 021079

©) # 0.0

Moreover, an argument similar to that of §3.2 shows that locally, because
we have arranged for |0hs| to be bounded from below, the ratio between the
quantities 7 (sg) and 7 = dhg A dJac(h) is bounded from above and below.
In particular, the fact that zo € Cj,_ (sg) implies that the restriction of T to
the set of branch points vanishes transversely at the origin.

In our case, 7 = dZQAZ?(g—Z) = —(0%h1/023) dz1 Ndzo. Therefore, the van-
ishing of 7°(0) implies that 82h1 /022 (0) = 0. It follows that 02hy /21922 (0)
must be non-zero ; rescaling the coordinate z; by a constant factor if neces-
sary, this derivative can be assumed to be equal to —1. Therefore, the map
h can be written as

h(z1,22) = (—z122+ )\zg + O(|Z|3)7 22)
= (—z122 + A2 + a2} + Bzizo + y2125 + 625 + O(|2[1), 22)

where A, a;, 3, v and 0 are complex coefficients.
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We now consider the following coordinate changes : on the target space
C2?, define (21, Z2) = (Z1 — \Z3 — 073, Z3), and on the source space C2,
define ¢(21, 22) = (21 + B22 + v2122, 22). Clearly, these two maps are local
diffeomorphisms near the origin. Therefore, one can replace h by ¥ o h o ¢,
which has the effect of killing most terms of the above expansion : this
allows us to consider that h is of the form

h(z1,22) = (—z122 + azi)’ + O(|z|4), 29).

Next, recall that the set of branch points is, in our local setting, the set of
points where Jac(h) = Ohy/02z1 = —z3 +3az? + O(]z|?) vanishes. Therefore,
the tangent direction to the set of branch points at the origin is the z; axis,
and the transverse vanishing of 7 at the origin implies that 8%1’?(0) £ 0.

Using the above formula for 7, we conclude that 03h1/023 £ 0, ie. a#0.
Rescaling the two coordinates z; and Z; by a constant factor, we can

assume that « is equal to 1. Therefore, we have used all the transversality

properties of h to show that, on a neighborhood of xg, it is of the form

h(z1,22) = (—z122 + zi)’ + O(|z|4), 29).

The uniform bounds and transversality estimates on s; can be used to show
that all the rescalings and transformations we have used are “nice”, i.e. they
have bounded derivatives and their inverses have bounded derivatives.

It then remains to show that further coordinate changes can kill the higher
order terms still present in the expression of h. The idea of Whitney’s
argument is to use successive coordinate changes in order to reduce to the
case where the perturbation term vanishes up to order at least 2 over the
parabola zy = 327, which makes it possible to kill all higher order terms
by composing h with a well-chosen diffeomorphism of the source space C2.
Details can be found in §16-19 of [7]. One eventually gets that, setting
ho(z1, 22) = (—2122+ 23, 22), there exist holomorphic diffeomorphisms ® and
U of C? near the origin such that ¥ o hgo ® = h over a small neighborhood
of 0 in C2, which is what we wanted to prove.

Moreover, because of the uniform transversality estimates and bounds on
the derivatives of si, the derivatives of h are uniformly bounded. It follows
easily, by going over the argument, that the neighborhood of g over which
the map f;, has been shown to be O(k~/?)-approximately holomorphically
modelled on the map hy can be assumed to contain a ball of fixed radius
(depending on the bounds and transversality estimates, but independent of
xo and k).

5.2. Structure near generic branch points. We now consider a branch
point xg € R jk<8k)’ which we assume to be at distance more than a fixed
constant ¢ from the set of cusp points C 7 (sx). We want to show that, over
a neighborhood of xg, fi = Psy is approximately holomorphically modelled
on the map (21, 22) (22, 22).

From now on, we implicitly use the almost-complex structure Jj, and write
R for the intersection of R (si) with the ball B, (o, %) First note that,
since R remains at distance more than % from the cusp points, the tangent
space to R remains everywhere away from the kernel of 0 fy. Therefore, the

restriction of fi to R is a local diffeomorphism over a neighborhood of x,
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and so fx(R) is locally a smooth approximately holomorphic submanifold
in CP2. Tt follows that there exist approximately holomorphic coordinates
(Z1, Z3) on a neighborhood of fy(zo) in CP? such that fj,(R) is locally defined
by the equation Z; = 0.

Define the approximately holomorphic function z3 = f;;Z> over a neigh-
borhood of xg, and notice that its differential dzo = dZsodf}, does not vanish,
because by construction Zs is a coordinate on fi(R). Therefore, zo can be
considered as a local complex coordinate function on a neighborhood of x.
In particular, the level sets of zo are smooth and intersect R transversely at
a single point.

Take z; to be an approximately holomorphic function on a neighborhood
of x¢ which vanishes at xy and whose differential at x is linearly independent
with that of z9 (e.g. take the two differentials to be mutually orthogonal),
so that (z1, 22) define approximately holomorphic coordinates on a neigh-
borhood of . From now on we use the local coordinates (21, 22) on X and

(Z1, Z3) on CP?2.

Because dzorr remains away from 0, R has locally an equation of the
form z; = p(z2) for some approximately holomorphic function p (satisfying
p(0) = 0 since oy € R). Therefore, shifting the coordinates on X in order to
replace z1 by z1 — p(z2), one can assume that z; = 0 is a local equation of R.
In the chosen local coordinates, f is therefore modelled on an approximately
holomorphic map A from a neighborhood of 0 in C? with values in C?, of
the form (z1, z2) — (h1(21, 22), 22), with the following properties.

First, because R = {z; = 0} is mapped to fx(R) = {Z1 = 0}, we have
h1(0,22) = 0 for all z9. Next, recall that the differential of f; has real rank
2 at any point of R (because dfj has complex rank 1 and df; vanishes over
the kernel of 0fy), so its image is exactly the tangent space to fr(R). It
follows that Vh; = 0 at every point (0, 22) € R.

Finally, because the chosen coordinates are approximately holomorphic
the quantity Jac(f;) is within O(k~1/2) of det(dh) = (Oh1/dz1) Dz Az by
O(kfl/ 2). Therefore, the transversality to 0 of Jac(f) implies that, along R,
the norm of (9%hy /023, 0%h1/921022) remains larger than a fixed constant.
However 0%h1 /02102 vanishes at any point of R because dhy/0z1 (0,22) =0
for all z. Therefore the quantity 9?hy/dz% remains bounded away from 0
on R.

The above properties imply that A can be written as

h(Zl, 22) = (Oé(ZQ)Z% + ﬁ(ZQ)lel + ’7(22)2% + 6(21, Z2), 22) ,

where « is approximately holomorphic and bounded away from 0, while ¢
and 7 are O(k~1/2) (because of asymptotic holomorphicity), and e(z1, zp) =
O(|z1]?) is approximately holomorphic. Moreover, composing with the co-
ordinate change (Z1, Zo) — (a(Z2)~'Z1, Z3) (which is approximately holo-
morphic and has bounded derivatives because « is bounded away from 0),
one reduces to the case where « is identically equal to 1.

We now want to reduce further the problem by removing the 4 and ~
terms in the above expression : for this, we first remark that, given any
small enough complex numbers § and -y, there exists a complex number A,
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of norm less than |3| 4 || and depending smoothly on [ and , such that

3
2
Indeed, if |8| + || < % the right hand side of this equation is a contracting
map of the unit disc to itself, so the existence of a solution X in the unit disc
follows immediately from the fixed point theorem. Furthermore, using the
bound |A| < 1 in the right hand side, one gets that |A| < |3] + |y|. Finally,
the smooth dependence of A upon 3 and ~ follows from the implicit function
theorem.
Assuming again that |3| + |y| < & and defining A as above, let

1= 5\27 v — A2
G 1— A4
The complex numbers A and B are also smooth functions of 8 and ~, and

it is clear that |[A — 1| = O(|8| + |v|) and |B| = O(|3| + |y|). Moreover, one
easily checks that, in the ring of polynomials in z and Z,

A=A+ 1+ AP).

and B =

Az+ X2+ B(E+ M) =22 + 2{\%&@&5 + 722 = 2% + B2z + 772
Therefore, if one assumes k to be large enough, recalling that the quanti-
ties 3(z2) and 7y(z2) which appear in the above expression of h are bounded
by O(k~1/2), there exist A(z2), A(22) and B(z3), depending smoothly on 2o,
such that [A(z2) — 1| = O(k~'/2), |B(22)| = O(k~'/?), |A\(22)| = O(k~/?)
and
A(z2)(z1 + Mz2)21)? + B(22) (21 + A(22)71)? = 21 + B(z2) 2121 + 7(22) 71
So, let hg be the map (21, z2) — (2%, 22), and let ® and ¥ be the two ap-

proximately holomorphic local diffeomorphisms of C* defined by ®(z1, 22) =
(21 + )\(22)21, Z2) and \I’(Zl, Zg) = (A(Zg)Zl + B(Zg)Zl, Zg) : then

h(zl, ZQ) =Wohgo (I)(Zl, 22) + (E(Zl, 22), 0).

It follows immediately that U ~oho® (21, 20) = (22 4+ 0O(|21]3), 22). There-
fore, this new coordinate change allows us to consider only the case where
h is of the form (z1,22) +— (22 + &(21, 22), 22), Where &(z1, z2) = O(|21]3).

Because (21, 22) = O(|z1]3), the bound |é(z1, 22)| < 3|21/ holds over a
neighborhood of the origin whose size can be bounded from below indepen-
dently of £ and x¢ by using the uniform estimates on all derivatives. Over
this neighborhood, define

d(z1,22) = 214 /1 + M
21
for z; # 0, where the square root is determined without ambiguity by the
condition that v/1 = 1. Setting ¢(0,22) = 0, it follows from the bound
|p(21, 22) — 21| = O(|21|?) that the function ¢ is C!. In general ¢ is not C?,
because € may contain terms involving 22z or z}.

Because ¢(21,22) = 21 + O(|z1]?), the map O : (21, 22) — (¢(21,22), 22)
is a C! local diffeomorphism of C? over a neighborhood of the origin. As
previously, the uniform bounds on all derivatives imply that the size of
this neighborhood can be bounded from below independently of k£ and xy.
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Moreover, it follows from the asymptotic holomorphicity of sj that € has
antiholomorphic derivatives bounded by O(k~'/2), and so |d¢| = O(k~'/?).
Therefore O is O(k:_l/ 2)-approximately holomorphic, and we have

ho 0 ©O(z1, 2z2) = h(z1, 22),
which finally gives the desired result.

5.3. Proof of Theorem 3. Theorem 3 follows readily from the above argu-
ments : indeed, consider vy-generic and O-tame asymptotically holomorphic
sections sy, of C®® L*, and let J;, be the almost-complex structures involved
in the definition of O-tameness. We need to show that, at any point = € X,
the maps fr = Ps; are approximately holomorphically modelled on one of
the three maps of Definition 2.

First consider the case where x lies close to a point y € Cj (sx). The
argument of §5.1 implies the existence of a constant § > 0 independent of k
and y such that, over the ball By, (y,26), the map fj is Jy-holomorphically
modelled on the cusp covering map (z1, 22) +— (23 — 2129, 22). If z lies within
distance 0 of y, By, (y,26) is a neighborhood of z ; therefore the expected
result follows at every point within distance § of C 5, (si) from the observation

that, because |J, — J| = O(k~/?), the relevant coordinate chart on X is
O(k~'/?)-approximately J-holomorphic.

Next, consider the case where x lies close to a point y of R g (sx) which
is itself at distance more than ¢ from Cj (sk). The argument of §5.2 then
implies the existence of a constant 8’ > 0 independent of k and y such that,
over the ball By, (y,24), the map f}, is, in O(k~'/?)-approximately holomor-
phic C' coordinate charts, locally modelled on the branched covering map
(21,22) — (22, 22). Therefore, if one assumes the distance between z and y
to be less than ', the given ball is a neighborhood of x, and the expected
result follows.

So we are left only with the case where x is at distance more than ¢’
from R Jk(sk’)‘ Assuming k to be large enough, it then follows from the
bound |.J; — J| = O(k~'/2) that x is at distance more than 0" from R (sg).
Therefore, the y-transversality to 0 of Jac(f) implies that |Jac(f)(x)| is
larger than o = min(%&’y,’y) (otherwise, the downward gradient flow of
|Jac(fx)| would reach a point of R;(s)) at distance less than 34’ from z).

Recalling that |0f;| = O(k~'/2), one gets that f, is a O(k~/?)-approx-
imately holomorphic local diffeomorphism over a neighborhood of x. There-
fore, choose holomorphic complex coordinates on CP? near fi(z) and pull
them back by f; to obtain O(k~'/2)-approximately holomorphic local coor-
dinates over a neighborhood of z : in these coordinates, the map f; becomes
the identity map, which ends the proof of Theorem 3.

6. FURTHER REMARKS

6.1. Branched coverings of CP?. A natural question to ask about the
results obtained in this paper is whether the property of being a (singular)
branched covering of CP?, i.e. the existence of a map to CP? which is locally
modelled at every point on one of the three maps of Definition 2, strongly
restricts the topology of a general compact 4-manifold. Since the notion of



42 DENIS AUROUX

approximately holomorphic coordinate chart on X no longer has a mean-
ing in this case, we relax Definition 2 by only requiring the existence of a
local identification of the covering map with one of the model maps in a
smooth local coordinate chart on X. However we keep requiring that the
corresponding local coordinate chart on CP? be approximately holomorphic,
so that the branch locus in CP? remains an immersed symplectic curve with
cusps. Call such a map a topological singular branched covering of CP2,
Then the following holds :

Proposition 10. Let X be a compact 4-manifold and consider a topological
singular covering f : X — CP? branched along a submanifold R C X. Then
X carries a symplectic structure arbitrarily close to f*wg, where wqg is the
standard symplectic structure of CP2.

Proof. The closed 2-form f*wy on X defines a symplectic structure on X — R
which degenerates along R. Therefore, one needs to perturb it by adding
a small multiple of a closed 2-form with support in a neighborhood of R in
order to make it nondegenerate. This perturbation can be constructed as
follows.

Call C' the set of cusp points, i.e. the points of R where the tangent space
to R lies in the kernel of the differential of f, or equivalently the points
around which f is modelled on the map (21, z2) — (2§ — 2129, 22). Consider
a point € C, and work in local coordinates such that f identifies with
the model map. In these coordinates, a local equation of R is zo = 327,
and the kernel K of the differential of f coincides at every point of R with
the subspace C x {0} of the tangent space ; this complex identification
determines a natural orientation of K. Fix a constant p, > 0 such that
Be(0,2p,)x Be(0,2p2) is contained in the local coordinate patch, and choose
cut-off functions y; and xo over C in such a way that y; equals 1 over
Bc(0, p;) and vanishes outside of Bc(0,2p,), and that x2 equals 1 over
Be(0, p2) and vanishes outside of B¢(0,2p2). Then, let v, be the 2-form
which equals d(x1(21) x2(22) z1 dy1) over the local coordinate patch, where
x1 and y; are the real and imaginary parts of z1, and which vanishes over the
remainder of X : the 2-form 1, coincides with dx; Ady; over a neighborhood
of x. More importantly, it follows from the choice of the cut-off functions
that the restriction of 1, to K = C x {0} is non-negative at every point of
R, and positive non-degenerate at every point of R which lies sufficiently
close to z.

Similarly, consider a point x € R away from C and local coordinates
such that f identifies with the model map (21,22) +— (22,22). In these
coordinates, R identifies with {0} x C, and the kernel K of the differential
of f coincides at every point of R with the subspace C x {0} of the tangent
space. Fix a constant p, > 0 such that B¢ (0,2p,) X Be(0,2p,) is contained
in the local coordinate patch, and choose a cut-off function y over C which
equals 1 over Bc(0,p;) and 0 outside of Bc(0,2p;). Then, let ¢, be the
2-form which equals d(x(z1) x(22) z1 dy1) over the local coordinate patch,
where z1 and y; are the real and imaginary parts of z1, and which vanishes
over the remainder of X : as previously, the restriction of ¢, to K = Cx {0}
is non-negative at every point of R, and positive non-degenerate at every
point of R which lies sufficiently close to x.
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Choose a finite collection of points z; of R (including all the cusp points) in
such a way that the neighborhoods of z; over which the 2-forms v, restrict
positively to K cover all of R, and define « as the sum of all the 2-forms
1z, Then it follows from the above definitions that the 2-form « is exact,
and that at any point of R its restriction to the kernel of the differential of f
is positive and non-degenerate. Therefore, the 4-form f*wg A « is a positive
volume form at every point of R.

Now choose any metric on a neighborhood of R, and let d be the distance
function to R. It follows from the compactness of X and R and from the
general properties of the map f that, using the orientation induced by f
and the chosen metric to implicitly identify 4-forms with functions, there
exist positive constants K, C, ¢/ and M such that the following bounds
hold over a neighborhood of R : f*wg A f*wy > Kdg, ffwoAa > C —C'dg,
and |a A a| < M. Therefore, for all € > 0 one gets over a neighborhood of
R the bound

(f*wo +ea) A (ffwg+ea) > (2¢C — M) + (K — 2¢C")dg.

If € is chosen sufficiently small, the coefficients 2¢ C — e?M and K —2¢ C' are
both positive, which implies that the closed 2-form f*wg+ € « is everywhere
nondegenerate, and therefore symplectic. O

Another interesting point is the compatibility of our approximately holo-
morphic singular branched coverings with respect to the symplectic struc-
tures w on X and wq in CP? (as opposed to the compatibility with the
almost-complex structures, which has been a major preoccupation through-
out the previous sections).

It is easy to check that given a covering map f : X — CP? defined by
a section of C3 ® LF, the number of preimages of a generic point is equal
to ﬁsz(wQ.[X]), while the homology class of the preimage of a generic
line CP! C CP? is Poincaré dual to 5k[w]. If we normalize the standard
symplectic structure wy on CP? in such a way that the symplectic area of a
line CP! ¢ CP? is equal to 2, it follows that the cohomology class of f*wy
is [f*wo] = k[w].

As we have said above, the pull-back f*wg of the standard symplectic
form of CP? by the covering map degenerates along the set of branch points,
so there is no chance of (X, f*wp) being symplectic and symplectomorphic
to (X, kw). However, one can prove the following result which is nearly as
good :

Proposition 11. The 2-forms &, = tf*wo + (1 — t)kw on X are symplectic
for all t € [0,1). Moreover, for t € [0,1) the manifolds (X,&) are all
symplectomorphic to (X, kw).

This means that f*wg is, in some sense, a degenerate limit of the sym-
plectic structure defined by kw : therefore the covering map f behaves quite
reasonably with respect to the symplectic structures.

Proof. The 2-forms @; are all closed and lie in the same cohomology class.
We have to show that they are non-degenerate for t < 1. For this, let x be
any point of X and let v be a nonzero tangent vector at x. It is sufficient
to prove that there exists a vector w € T,X such that w(v,w) > 0 and



44 DENIS AUROUX

ffwo(v,w) > 0 : then @y(v,w) > 0 for all ¢ < 1, which implies the non-
degeneracy of @;.

Recall that, by definition, there exist local approximately holomorphic
coordinate maps ¢ over a neighborhood of x and ¢ over a neighborhood of
f(x) such that locally f = ~! o go¢ where g is a holomorphic map from a
subset of C? to C2. Define w = ¢ 'Jo¢,v, where Jg is the standard complex
structure on C2 : then we have w = (¢*Jo)v and, because g is holomorphic,
few = (¥*Jo) fiv.

Because the coordinate maps are O(k~'/2)-approximately holomorphic,
we have |w — Jv| < Ck™2|v| and |fow — Jofuv| < Ck~Y/?|fv|, where
C is a constant and Jy is the standard complex structure on CP2. It
follows that w(v,w) > |v|> — Ck~/2|v|?> > 0, and that wo(fev, faw) >
|fev]? — Ck~12|f,v|? > 0. Therefore, &y(v,w) > 0 for all t € [0,1) ; since
the existence of such a w holds for every nonzero vector v, this proves that
the closed 2-forms @; are non-degenerate, and therefore symplectic.

Moreover, these symplectic forms all lie in the cohomology class [kw],
so it follows from Moser’s stability theorem that the symplectic structures
defined on X by @, for ¢ € [0,1) are all symplectomorphic. O

6.2. Symplectic Lefschetz pencils. The techniques used in this paper
can also be applied to the construction of sections of C2 ® LF (i.e. pairs of
sections of L*) satisfying appropriate transversality properties : this is the
existence result for Lefschetz pencil structures (and uniqueness up to isotopy
for a given value of k) obtained by Donaldson [3].

For the sake of completeness, we give here an overview of a proof of
Donaldson’s theorem using the techniques described in the above sections.
Let (X,w) be a compact symplectic manifold (of arbitrary dimension 2n)
such that %[w] is integral, and as before consider a compatible almost-
complex structure J, the corresponding metric g, and the line bundle L
whose first Chern class is %[w], endowed with a Hermitian connection of
curvature —iw. The required properties of the sections we wish to construct
are determined by the following statement :

Proposition 12. Let s, = (s9,s}) be asymptotically holomorphic sections
of C2 ® L* over X for all large k, which we assume to be n-transverse to
0 for somen > 0. Let F, = 5;1(0) (it is a real codimension 4 symplectic
submanifold of X ), and define the map fr = Psg = (s} : s}) from X — Fy,
to CP'. Assume furthermore that dfy is n-transverse to 0, and that Ofy
vanishes at every point where 0 fx = 0. Then, for all large k, the section s
and the map fi define a structure of symplectic Lefschetz pencil on X.

Indeed, F} corresponds to the set of base points of the pencil, while the
hypersurfaces (X ),ccpt forming the pencil are X, = f,;l(u) U Fy, ie.
Yk, is the set of all points where (82, 3}6) belongs to the complex line in C?
determined by u. The transversality to 0 of si gives the expected pencil
structure near the base points, and the asymptotic holomorphicity implies
that, near any point of X — Fj where 9 f is not too small, the hypersurfaces
Y are smooth and symplectic (and even approximately J-holomorphic).

Moreover, the transversality to 0 of dfy implies that 0f; becomes small

only in the neighborhood of finitely many points where it vanishes, and that
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at these points the holomorphic Hessian 00 f; is large enough and nonde-
generate. Because Of), also vanishes at these points, an argument similar to
that of §5.2 shows that, near its critical points, fi behaves like a complex
Morse function, i.e. it is locally approximately holomorphically modelled on
the map (21,...,2,) — Y. 22 from C" to C.

The approximate holomorphicity of fi and its structure at the critical
points can be easily shown to imply that the hypersurfaces X, are all
symplectic, and that only finitely many of them have isolated singular points,
which correspond to the critical points of f;, and whose structure is therefore
completely determined.

Therefore, the construction of a Lefschetz pencil structure on X can be
carried out in three steps. The first step is to obtain for all large k sections
sy, of C2® L which are asymptotically holomorphic and transverse to 0 : for
example, the existence of such sections follows immediately from the main
result of [1]. As a consequence, the required properties are satisfied on a
neighborhood of Fj, = s; ' (0).

The second step is to perturb si, away from F}, in order to obtain the
transversality to 0 of df;. For this purpose, one uses an argument similar to
that of §2.2, but where Proposition 2 has to be replaced by a similar result for
approximately holomorphic functions defined over a ball of C™ with values in
C™ which has been announced by Donaldson (see [3]). Over a neighborhood
of any given point € X — F},, composing with a rotation of C? in order to
ensure the nonvanishing of 32 over a ball centered at = and defining h, =
(82)_13%;, one remarks that the transversality to 0 of 9}, is locally equivalent
to that of dhy. Choosing local approximately holomorphic coordinates zli,
it is possible to write Ohy, as a linear combination » " ; U?g/ii; of the 1-forms
pe = 9(zk.(s))7Lstel). The existence of wy, € C" of norm less than a given
d ensuring the traﬁsversality to 0 of up — wy over a neighborhood of x is
then given by the suitable local transversality result, and it follows easily
that the section (s, st — Zw}ngvsfi) satisfies the required transversality
property over a ball around z. The global result over the complement in X
of a small neighborhood of Fj, then follows by applying Proposition 3.

An alternate strategy allows one to proceed without proving the local
transversality result for functions with values in C”, if one assumes 52 and
s} to be linear combinations of sections with uniform Gaussian decay (this
is not too restrictive since the iterative process described in [1] uses precisely
the sections srkei as building blocks). In that case, it is possible to locally
trivialize the cotangent bundle T X, and therefore work component by com-
ponent to get the desired transversality result ; in a manner similar to the
argument of [1], one uses Lemma 6 to reduce the problem to the transver-
sality of sections of line bundles over submanifolds of X, and Proposition
6 as local transversality result. The assumption on sj is used to prove the
existence of asymptotically holomorphic sections which approximate s very
well over a neighborhood of a given point x € X and have Gaussian decay
away from x : this makes it possible to find perturbations with Gaussian
decay which at the same time behave nicely with respect to the trivializa-
tion of T*X. This way of obtaining the transversality to 0 of 0f is very
technical, so we don’t describe the details.
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The last step in the proof of Donaldson’s theorem is to ensure that Of
vanishes at the points where df), vanishes, by perturbing s;, by O(k~1/2) over
a neighborhood of these points. The argument is a much simpler version
of §4.2 : on a neighborhood of a point  where Jf; vanishes, one defines
a section y of f{TCP! by x(exp,(£)) = B(|§\)5fk(x)(§), where (3 is a cut-
off function, and one uses y as a perturbation of s; in order to cancel the
antiholomorphic derivative at z.

6.3. Symplectic ampleness. We have seen that similar techniques apply
in various situations involving very positive bundles over a compact sym-
plectic manifold, such as constructing symplectic submanifolds ([2],[1]), Lef-
schetz pencils [3], or covering maps to CP2. In all these cases, the result is
the exact approximately holomorphic analogue of a classical result of com-
plex projective geometry. Therefore, it is natural to wonder if there exists
a symplectic analogue of the notion of ampleness : for example, the line
bundle L endowed with a connection of curvature —iw, when raised to a
sufficiently large power, admits many approximately holomorphic sections,
and so it turns out that some of these sections behave like generic sections
of a very ample bundle over a complex projective manifold.

Let (X,w) be a compact 2n-dimensional symplectic manifold endowed
with a compatible almost-complex structure, and fix an integer r : it seems
likely that any sufficiently positive line bundle over X admits r 4+ 1 approx-
imately holomorphic sections whose behavior is similar to that of generic
sections of a very ample line bundle over a complex projective manifold of
dimension n. For example, the zero set of a suitable section is a smooth ap-
proximately holomorphic submanifold of X ; two well-chosen sections define
a Lefschetz pencil ; for r = n, one expects that n 4+ 1 well-chosen sections
determine an approximately holomorphic singular covering X — CP™ (this
is what we just proved for n = 2) ; for r = 2n, it should be possible to con-
struct an approximately holomorphic immersion X — CP?", and for r > 2n
a projective embedding. Moreover, in all known cases, the space of “good”
sections is connected when the line bundle is sufficiently positive, so that
the structures thus defined are in some sense canonical up to isotopy.

However, the constructions tend to become more and more technical when
one gets to the more sophisticated cases, and the development of a general
theory of symplectic ampleness seems to be a necessary step before the re-
lations between the approximately holomorphic geometry of compact sym-
plectic manifolds and the ordinary complex projective geometry can be fully
understood.
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