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Symplectic maps to projective spaces and symplectic

invariants

Denis Auroux

Abstract. After reviewing recent results on symplectic Lefschetz pencils and sym-

plectic branched covers of CP2, we describe a new construction of maps from sym-

plectic manifolds of any dimension to CP2 and the associated monodromy invariants.

We also show that a dimensional induction process makes it possible to describe any
compact symplectic manifold by a series of words in braid groups and a word in a
symmetric group.

1. Introduction

Let (X2n, ω) be a compact symplectic manifold. We will throughout this text assume
that the cohomology class 1

2π [ω] ∈ H
2(X,R) is integral. This assumption makes it possible

to define a complex line bundle L over X such that c1(L) =
1
2π [ω]. We also endow X with

a compatible almost-complex structure J , and endow L with a Hermitian metric and a
Hermitian connection of curvature −iω.

The line bundle L should be thought of as a symplectic version of an ample line bundle
over a complex manifold. Indeed, although the lack of integrability of J prevents the
existence of holomorphic sections, it was observed by Donaldson in [8] that, for large k,
the line bundles L⊗k admit many approximately holomorphic sections.

Observe that all results actually apply as well to the case where 1
2π [ω] is not integral,

with the only difference that the choice of the line bundle L is less natural : the idea
is to perturb ω into a symplectic form ω′ whose cohomology class is rational, and then
work with a suitable multiple of ω′. One chooses an almost-complex structure J ′ which
simultaneously is compatible with ω′ and satisfies the positivity property ω(v, J ′v) > 0
for all tangent vectors. All the objects that we construct are then approximately J ′-
holomorphic, and therefore symplectic with respect to not only ω′ but also ω.

Donaldson was the first to show in [8] that, among the many approximately holo-
morphic sections of L⊗k for k À 0, there is enough flexibility in order to obtain nice
transversality properties ; this makes it possible to imitate various classical topological
constructions from complex algebraic geometry in the symplectic category. Let us men-
tion in particular the construction of smooth symplectic submanifolds ([8], see also [2]
and [15]), symplectic Lefschetz pencils ([10], see also [9]), branched covering maps to CP2

([3],[5]), Grassmannian embeddings and determinantal submanifolds ([15]).
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Intuitively, the main reason why the approximately holomorphic framework is suitable
to imitate results from algebraic geometry is that, for large values of k, the increasing
curvature of L⊗k provides access to the geometry of X at very small scale ; as one zooms
into X, the geometry becomes closer and closer to a standard complex model, and the
lack of integrability of J becomes negligible.

The introduction of approximately holomorphic sections was motivated in the first
place by the observation that, if suitable transversality properties are satisfied, then every
geometric object that can be defined from these sections automatically becomes symplec-
tic. Therefore, in order to perform a given construction using such sections, the strategy
is always more or less the same : starting with a sequence of approximately holomorphic
sections of L⊗k for all k À 0, the goal is to perturb them in order to ensure uniform
transversality properties that will guarantee the desired topological features.

For example, the required step in order to construct symplectic submanifolds is to
obtain bounds of the type |∇sk|gk

> η along the zero set of sk for a fixed constant
η > 0 independent of k, while approximate holomorphicity implies a bound of the type
|∂̄sk|gk

= O(k−1/2) everywhere (see §3.1). Here gk = kg is a rescaled metric which dilates

everything by a factor of k1/2 in order to adapt to the decreasing “characteristic scale”
imposed by the increasing curvature−ikω of the line bundles L⊗k. The desired topological
picture, similar to the complex algebraic case, emerges for large k as an inequality of the
form |∂̄sk| ¿ |∂sk| becomes satisfied at every point of the zero set : this can easily be
shown to imply that the zero set of sk is smooth, approximately pseudo-holomorphic,
and symplectic. Indeed, the surjectivity of ∇sk implies the smoothness of the zero set,
while the fact that |∂̄sk| ¿ |∂sk| implies that the tangent space to the zero set, given by
the kernel of ∇sk = ∂sk + ∂̄sk, is very close to the complex subspace Ker(∂sk), hence its
symplecticity (see also [8]).

The starting points for the construction, in all cases, are the existence of very localized
approximately holomorphic sections of L⊗k concentrated near any given point x ∈ X, and
an effective transversality result for approximately holomorphic functions defined over a
ball in Cn with values in Cr due to Donaldson (see [8] for the case r = 1 and [10] for
the general case). These two ingredients imply that a small localized perturbation can be
used to ensure uniform transversality over a small ball. Combining this local result with a
globalization argument ([8], see also [3] and [15]), one obtains transversality everywhere.

The interpretation of the construction of submanifolds as an effective transversality
result for sections extends verbatim to the more sophisticated constructions (Lefschetz
pencils, branched coverings) : in these cases the transversality properties also concern the
covariant derivatives of the sections, and this can be thought of as an effective analogue
in the approximately holomorphic category of the standard generalized transversality
theorem for jets.

This is especially clear when looking at the arguments in [15], [10] or [3] : the pertur-
bative argument is now used to obtain uniform transversality of the holomorphic parts
of the 1-jets or 2-jets of the sections with respect to certain closed submanifolds in the
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space of holomorphic jets. Successive perturbations are used to obtain transversality to
the various strata describing the possible singular models ; one uses that each stratum is
smooth away from lower dimensional strata, and that transversality to these lower dimen-
sional strata is enough to imply transversality to the higher dimensional stratum near its
singularities.

An extra step is necessary in the constructions : recall that desired topological prop-
erties only hold when the antiholomorphic parts of the derivatives are much smaller than
the holomorphic parts. In spite of approximate holomorphicity, this can be a problem
when the holomorphic part of the jet becomes singular. Therefore, a small perturbation is
needed to kill the antiholomorphic part of the jet near the singularities ; this perturbation
is in practice easy to construct. The reader is referred to [10] and [3] for details.

Although no general statement has yet been formulated and proved, it is completely
clear that a very general result of uniform transversality for jets holds in the approximately
holomorphic category. Therefore, the observed phenomenon for Lefschetz pencils and
maps to CP2, namely the fact that near every point x ∈ X the constructed maps are given
in approximately holomorphic coordinates by one of the standard local models for generic
holomorphic maps, should hold in all generality, independently of the dimensions of the
source and target spaces. This approach will be developed in a forthcoming paper [4].

In the remainder of this paper we focus on the topological monodromy invariants that
can be derived from the various available constructions. In Section 2 we study symplectic
Lefschetz pencils and their monodromy, following the results of Donaldson [10] and Seidel
[16]. In Section 3 we describe symplectic branched covers of CP2 and their monodromy
invariants, following [3] and [5] ; we also discuss the connection with 4-dimensional Lef-
schetz pencils. In Section 4 we extend this framework to the higher dimensional case, and
investigate a new type of monodromy invariants arising from symplectic maps to CP2.
We finally show in Section 5 that a dimensional induction process makes it possible to
describe a compact symplectic manifold of any dimension by a series of words in braid
groups and a word in a symmetric group.

Acknowledgement. The author wishes to thank Ludmil Katzarkov, Paul Seidel and
Bob Gompf for stimulating discussions, as well as Simon Donaldson for his interest in this
work.

2. Symplectic Lefschetz pencils

Let (X2n, ω) be a compact symplectic manifold as above, and let s0, s1 be suitably
chosen approximately holomorphic sections of L⊗k. Then X is endowed with a structure
of symplectic Lefschetz pencil, which can be described as follows.

For any α ∈ CP1 = C ∪ {∞}, define Σα = {x ∈ X, s0 + αs1 = 0}. Then the
submanifolds Σα are symplectic hypersurfaces, smooth except for finitely many values
of the parameter α ; for these parameter values Σα contains a singular point (a normal
crossing when dimX = 4). Moreover, the submanifolds Σα fill all of X, and they intersect
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transversely along a codimension 4 symplectic submanifold Z = {x ∈ X, s0 = s1 = 0},
called the set of base points of the pencil.

Define the projective map f = (s0 : s1) : X − Z → CP1, whose level sets are precisely
the hypersurfaces Σα. Then f is required to be a complex Morse function, i.e. its critical
points are isolated and non-degenerate, with local model f(z1, . . . , zn) = z21 + · · ·+ z2n in
approximately holomorphic coordinates.

The following result due to Donaldson holds :

Theorem 2.1 (Donaldson [10]). For k À 0, two suitably chosen approximately holomor-
phic sections of L⊗k endow X with a structure of symplectic Lefschetz pencil, canonical
up to isotopy.

This result is proved by obtaining uniform transversality with respect to the strata
s0 = s1 = 0 (of complex codimension 2) and ∂f = 0 (of complex codimension n) in
the space of holomorphic 1-jets of sections of C2 ⊗ L⊗k, by means of the techniques
described in the introduction. A small additional perturbation ensures the compatibility
requirement that ∂̄f vanishes at the points where ∂f = 0. These properties are sufficient
to ensure that the structure is that of a symplectic Lefschetz pencil. For details, the
reader is referred to [10].

The statement that the constructed pencils are canonical up to isotopy for k À 0 is to
be interpreted as follows. Consider two sequences (s0k)kÀ0 and (s1k)kÀ0 of approximately
holomorphic sections of C2 ⊗ L⊗k for increasing values of k. Assume that they satisfy
the three above-described transversality and compatibility properties and hence define
symplectic Lefschetz pencils. Then, for large enough k (how large exactly depends on
the estimates on the given sections), there exists an interpolating family (stk)t∈[0,1] of ap-
proximately holomorphic sections, depending continuously on the parameter t, such that
for all values of t the sections stk satisfy the transversality and compatibility properties.
In particular, for large enough k the symplectic Lefschetz pencils defined by s0k and s1k
are isotopic to each other. Moreover, the same result remains true if the almost-complex
structures J0 and J1 with respect to which s0k and s1k are approximately holomorphic
differ, so the topology of the constructed pencils depends only on the topology of the
symplectic manifold X (and on k of course). However, because isotopy holds only for
large values of k, this is only a weak (asymptotic) uniqueness result.

A convenient way to study the topology of a Lefschetz pencil is to blow up X along the
submanifold Z. The resulting symplectic manifold X̂ is the total space of a symplectic

Lefschetz fibration f̂ : X̂ → CP1. Although in the following description we work on the
blown up manifold X̂, it is actually preferrable to work directly on X ; verifying that the
discussion applies to X itself is a simple task left to the reader.

The fibers of f̂ can be identified with the submanifolds Σα, made mutually disjoint by

the blow-up process. It is then possible to study the monodromy of the fibration f̂ around
its singular fibers.

One easily checks that this monodromy consists of symplectic automorphisms of the
fiber Σα. Moreover, the exceptional divisor obtained by blowing up the set of base
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points Z is a subfibration of f̂ , with fiber Z, which is unaffected by the monodromy ;
after restricting to an affine slice, the normal bundle to the exceptional divisor can be

trivialized, so that it becomes natural to consider that the monodromy of f̂ takes values
in the symplectic mapping class group Mapω(Σ, Z) = π0({φ ∈ Symp(Σ, ω), φ|U(Z) = Id}),
i.e. the set of isotopy classes of symplectomorphisms of the generic fiber Σ which coincide
with the identity near Z.

In the four-dimensional case, Z consists of a finite number n of points, and Σ is a
compact surface with a certain genus g (note that Σ is always connected because it satisfies
a Lefschetz hyperplane type property) ; Mapω(Σ, Z) is then the classical mapping class
group Mapg,n of a genus g surface with n boundary components.

In fact, the image of the monodromy map is contained in the subgroup of exact sym-
plectomorphisms in Mapω(Σ, Z) : the connection on L⊗k induces over Σ − Z a 1-form
α such that dα = ω. This endows Σ − Z with a structure of exact symplectic manifold.
Monodromy transformations are then exact symplectomorphisms in the sense that they
preserve not only ω but also the 1-form α : every monodromy transformation f satisfies
f∗α− α = dh for some function h vanishing near Z (see [17] for details).

It is well-known (see e.g. [16], [17]) that the singular fibers of a Lefschetz fibration are
obtained from the generic fiber by collapsing a vanishing cycle to a point. The vanishing
cycle is an embedded closed loop in Σ in the four-dimensional case ; more generally, it is

an embedded Lagrangian sphere Sn−1 ⊂ Σ. Then, the monodromy of f̂ around one of
its singular fibers consists in a generalized Dehn twist in the positive direction along the
vanishing cycle.

The picture is the following :

monodromy =
(generalized) Dehn twist

¾
CP1

X̂rγi

r
Because the normal bundle to the exceptional divisor is not trivial, the monodromy

map cannot be defined over all of CP1, and we need to restrict ourselves to the preimage of
an affine subset C (the fiber at infinity can be assumed regular). The monodromy around

the fiber at infinity of f̂ is given by a mapping class group element δZ corresponding
to a twist around Z. In the four-dimensional case Z consists of n points, and δZ is the
product of positive Dehn twists along n loops each encircling one of the base points ; in
the higher-dimensional case δZ is a positive Dehn twist along the unit sphere bundle in
the normal bundle of Z in Σ (i.e. it restricts to each fiber of the normal bundle as a Dehn
twist around the origin).
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It follows from the above observations that the monodromy of the Lefschetz fibration

f̂ with critical levels p1, . . . , pd is given by a group homomorphism

ψ : π1(C− {p1, . . . , pd})→ Mapω(Σ2n−2, Z) (1)

which maps the geometric generators of π1(C−{p1, . . . , pd}), i.e. loops going around one
of the points pi, to Dehn twists.

Alternately, choosing a system of generating loops in C− {p1, . . . , pd}, we can express
the monodromy by a factorization of δZ in the mapping class group :

δZ =

d
∏

i=1

τγi
, (2)

where γi is the image in a chosen reference fiber of the vanishing cycle of the singular fiber
above pi and τγi

is the corresponding positive Dehn twist. The identity (2) in Mapω(Σ, Z)

expresses the fact that the monodromy of the fibration around the point at infinity in CP1

decomposes as the product of the elementary monodromies around each of the singular
fibers.

The monodromy morphism (1), or equivalently the mapping class group factorization

(2), completely characterizes the topology of the Lefschetz fibration X̂. However, they are
not entirely canonical, because two choices have been implicitly made in order to define
them.

First, a base point in C − {p1, . . . , pd} and an identification symplectomorphism be-

tween Σ and the chosen reference fiber of f̂ are needed in order to view the monodromy
transformations as elements in the mapping class group of Σ. The choice of a different
identification affects the monodromy morphism ψ by conjugation by a certain elemen-
t g ∈ Mapω(Σ, Z). The corresponding operation on the mapping class group factor-
ization (2) is a simultaneous conjugation of all factors : each factor τγi

is replaced by
τg(γi) = g−1τγi

g.
Secondly, a system of generating loops has to be chosen in order to define a factorization

of δZ . Different choices of generating systems differ by a sequence of Hurwitz operations,
i.e. moves in which two consecutive generating loops are exchanged, one of them being
conjugated by the other in order to preserve the counterclockwise ordering. On the
level of the factorization, this amounts to replacing two consecutive factors τ1 and τ2 by
respectively τ2 and τ−12 τ1τ2 (or, by the reverse operation, τ1τ2τ

−1
1 and τ1).

It is quite easy to see that any two factorizations of δZ describing the Lefschetz fi-

bration f̂ differ by a sequence of these two operations (simultaneous conjugation and
Hurwitz moves). Therefore, Donaldson’s uniqueness statement implies that, for large e-
nough values of k, the mapping class group factorizations associated to the symplectic
Lefschetz pencil structures obtained in Theorem 2.1 are, up to simultaneous conjugation
and Hurwitz moves, symplectic invariants of the manifold (X,ω).

Conversely, given any factorization of δZ in Mapω(Σ, Z) as a product of positive Dehn
twists, it is possible to construct a symplectic Lefschetz fibration with the given mon-
odromy. It follows from a result of Gompf that the total space of such a fibration is
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always a symplectic manifold. In fact, because the monodromy preserves the symplectic
submanifold Z ⊂ Σ, it is also possible to reconstruct the blown down manifold X. More
precisely, the following result holds :

Theorem 2.2 (Gompf). Let (Σ, ωΣ) be a compact symplectic manifold, and Z ⊂ Σ a
codimension 2 symplectic submanifold such that [Z] = PD([ωΣ]). Consider a factorization
of δZ as a product of positive Dehn twists in Mapω(Σ, Z). In the case dim(Σ) = 2,
assume moreover that all the Dehn twists in the factorization are along loops that are not
homologically trivial in Σ− Z.

Then the total space X of the corresponding Lefschetz pencil carries a symplectic form
ωX such that, given a generic fiber Σ0 of the pencil, [ωX ] is Poincaré dual to [Σ0], and
(Σ0, ωX|Σ0

) is symplectomorphic to (Σ, ωΣ). This symplectic structure on X is canonical
up to symplectic isotopy.

The strategy of proof is to first construct a symplectic structure in the correct cohomol-
ogy class on a neighborhood of any fiber of the pencil, which is easily done as Σ already
carries a symplectic structure and the monodromy lies in the exact symplectomorphis-
m group. More precisely, the symplectic structure on Σ − Z is exact, and Dehn twists
along exact Lagrangian spheres are exact symplectomorphisms [17]. When dimΣ ≥ 4,
the exactness condition is always trivially satisfied, while in the case dimΣ = 2 it can
be ensured by suitably choosing the vanishing loop in its homotopy class provided that
it does not separate Σ into connected components without base points. With this un-
derstood, it is possible to define local symplectic structures over neighborhoods of the
singular fibers, coinciding with a fixed standard symplectic form near Z, and to com-
bine them into a globally defined symplectic form, singular near the base locus Z. Since
the total monodromy is δZ , the structure of X near Z is completely standard, and so a
non-singular symplectic form on X can be recovered (this process can also be viewed as
a symplectic blow-down along the exceptional hypersurface CP1 × Z in the total space
of the corresponding Lefschetz fibration). This operation changes the cohomology class
of the symplectic form on X, but one easily checks that the resulting class is a nonzero
multiple of the Poincaré dual to a fiber ; scaling the symplectic form by a suitable factor
then yields ωX . The proof that this process is canonical up to symplectic isotopy is a di-
rect application of Moser’s stability theorem. The reader is referred to [11] and references
therein for details.

In conclusion, the study of the monodromy of symplectic Lefschetz pencils makes it
possible to define invariants of compact symplectic manifolds, which in principle provide
a complete description of the topology. However, the complexity of mapping class groups
and the difficulties in computing the invariants in concrete situations greatly decrease
their usefulness in practice. This motivates the introduction of other similar topological
constructions which may lead to more usable invariants.

7



Denis Auroux

3. Branched covers of CP2 and invariants of symplectic 4-manifolds

Throughout §3, we assume that (X,ω) is a compact symplectic 4-manifold. In that
case, three generic approximately holomorphic sections s0, s1 and s2 of L

⊗k never vanish
simultaneously, and so they define a projective map f = (s0 : s1 : s2) : X → CP2. It was
shown in [3] that, if the sections are suitably chosen, this map is a branched covering,
whose branch curve R ⊂ X is a smooth connected symplectic submanifold in X.

There are two possible local models in approximately holomorphic coordinates for the
map f near the branch curve. The first one, corresponding to a generic point of R, is the
map (x, y) 7→ (x2, y) ; locally, both the branch curve R and its image by f are smooth.
The other local model corresponds to the isolated points where f does not restrict to R
as an immersion. The model map is then (x, y) 7→ (x3 − xy, y), and the image of the
smooth branch curve R : 3x2− y = 0 has equation f(R) : 27z21 = 4z32 and presents a cusp
singularity. These two local models are the same as in the complex algebraic setting.

It is easy to see by considering the two model maps that R is a smooth approximately
holomorphic (and therefore symplectic) curve in X, and that f(R) is an approximately
holomorphic symplectic curve in CP2, immersed away from its cusps. After a generic
perturbation, we can moreover require that the branch curve D = f(R) satisfies a self-
transversality property, i.e. that its only singular points besides the cusps are transverse
double points (“nodes”). Even though D is approximately holomorphic, it is not immedi-
ately possible to require that all of its double points correspond to a positive intersection
number with respect to the standard orientation of CP2 ; the presence of (necessarily
badly transverse) negative double points is a priori possible.

It was also shown in [3] that the branched coverings obtained from sections of L⊗k

are, for large values of k, canonical up to isotopy (this weak uniqueness statement holds
in the same sense as that of Theorem 2.1). Therefore, the topology of the branch curve
D = f(R) can be used to define symplectic invariants, provided that one takes into account
the possibility of cancellations or creations of pairs of nodes with opposite orientations in
isotopies of branched coverings.

Most of the results cited below were obtained in a joint work with L. Katzarkov [5].

3.1. Quasiholomorphic maps to CP2

In order to study the topology of the singular plane curve D, it is natural to try
to adapt the braid group techniques previously used by Moishezon and Teicher in the
algebraic case (see e.g. [13], [14], [18]). However, in order to apply this method it is
necessary to ensure that the branch curve satisfies suitable transversality properties with
respect to a generic projection map from CP2 to CP1. This leads naturally to the notion
of quasiholomorphic covering introduced in [5], which we now describe carefully.

We slightly rephrase the conditions listed in [5] in such a way that they extend naturally
to the higher dimensional case ; the same definitions will be used again in §4. It is
important to be aware that these concepts only apply to sequences of objects obtained
for increasing values of the degree k ; the general strategy is always to work simultaneously
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with a whole family of sections indexed by the parameter k, in order to ultimately ensure
the desired properties for large values of k. We start with the following terminology :

Definition 3.1. A sequence of sections sk of complex vector bundles Ek over X (en-
dowed with Hermitian metrics and connections) is asymptotically holomorphic if there
exist constants Cj independent of k such that |∇jsk|gk

≤ Cj and |∇
j−1∂̄sk|gk

≤ Cjk
−1/2

for all j, all norms being evaluated with respect to the rescaled metric gk = kg on X.
The sections sk are uniformly transverse to 0 if there exists a constant γ > 0 such that,

at every point x ∈ X where |sk(x)| ≤ γ, the covariant derivative ∇sk(x) is surjective and
has a right inverse of norm less than γ−1 w.r.t. gk (we then say that sk is γ-transverse
to 0).

In the case where the rank of the bundle Ek is greater than the dimension of X, the
surjectivity condition imposed by transversality is never satisfied ; γ-transversality to 0
then means that the norm of the section is greater than γ at every point of X.

As mentioned in the introduction, it is easy to check that, if sections are asymptotically
holomorphic and uniformly transverse to 0, then for large k their zero sets are smooth
approximately holomorphic symplectic submanifolds. This principle, which plays a key
role in Donaldson’s construction of symplectic submanifolds [8], can also be applied to
the Jacobian of the maps defined below and now implies the symplecticity of their branch
curves.

Definition 3.2. A sequence of projective maps fk : X → CP2 determined by asymptot-
ically holomorphic sections sk = (s0k, s

1
k, s

2
k) of C3 ⊗L⊗k for k À 0 is quasiholomorphic if

there exist constants Cj , γ, δ independent of k, almost-complex structures J̃k on X, and

finite sets Ck, Tk, Ik ⊂ X such that the following properties hold (using J̃k to define the
∂̄ operator) :

(0) |∇j(J̃k − J)|gk
≤ Cjk

−1/2 for every j ≥ 0 ; J̃k = J outside of the 2δ-neighborhood

of Ck ∪ Tk ∪ Ik ; J̃k is integrable in the δ-neighborhood of Ck ∪ Tk ∪ Ik ;
(1) the section sk of C3 ⊗ L⊗k is γ-transverse to 0 ;
(2) |∇fk(x)|gk

≥ γ at every point x ∈ X ;

(3) the (2, 0)-Jacobian Jac(fk) =
∧2

∂fk is γ-transverse to 0 ; in particular it vanishes
transversely along a smooth symplectic curve Rk ⊂ X (the branch curve).

(3′) the restriction of ∂̄fk to Ker ∂fk vanishes at every point of Rk ;
(4) the quantity ∂(fk|Rk

), which can be seen as a section of a line bundle over Rk, is
γ-transverse to 0 and vanishes at the finite set Ck (the cusp points of fk) ; in particular
fk(Rk) = Dk is an immersed symplectic curve away from the image of Ck ;

(4′) fk is J̃k-holomorphic over the δ-neighborhood of Ck ;
(5) the section (s0k, s

1
k) of C2⊗L⊗k is γ-transverse to 0 ; as a consequence Dk remains

away from the point (0 : 0 : 1) ;
(6) let π : CP2 − {(0 : 0 : 1)} → CP1 be the map defined by π(x : y : z) = (x : y), and

let φk = π ◦ fk. Then the quantity ∂(φk|Rk
) is γ-transverse to 0 over Rk, and it vanishes
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over the union of Ck with the finite set Tk (the tangency points of the branch curve Dk

with respect to the projection π) ;

(6′) fk is J̃k-holomorphic over the δ-neighborhood of Tk ;
(7) the projection fk : Rk → Dk is injective outside of the singular points of Dk, and

the self-intersections of Dk are transverse double points. Moreover, all special points of
Dk (cusps, nodes, tangencies) lie in different fibers of the projection π, and none of them
lies in π−1(0 :1) ;

(8) the section s0k of L⊗k is γ-transverse to 0 ;

(8′) Rk intersects the zero set of s0k at the points of Ik ; fk is J̃k-holomorphic over the
δ-neighborhood of Ik.

Remark 3.1. Definition 3.2 is slightly stronger than the definition given in [5]. Most
notably, property (8), which ensures that the fiber of π ◦ fk above (0 : 1) enjoys suitable
genericity properties, has been added for our purposes. Similarly, condition (6′) is sig-
nificantly stronger than in [5], where it was only required that ∂̄fk vanish at the points
of Tk. These extra conditions only require minor modifications of the arguments, while
allowing the inductive construction described in §5 to be largely simplified.

Observe that, because of property (0), the notions of asymptotic holomorphicity with

respect to J or J̃k coincide. Moreover, even though J̃k is used implicitly thoughout
the definition, the choice of J or J̃k is irrelevant as far as transversality properties are
concerned since they differ by O(k−1/2).

Property (1) means that sk is everywhere bounded from below by γ ; this implies
that the projective map fk is well-defined, and that |∇jfk|gk

= O(1) and |∇j−1∂̄fk|gk
=

O(k−1/2) for all j. The second property can be interpreted in terms of transversality to the
codimension 4 submanifold in the space of 1-jets given by the equation ∂f = 0. Properties
(3) and (3′) yield the correct structure near generic points of the branch curve : the
transverse vanishing of Jac(fk) implies that the branching order is 2, and the compatibility
property (3′) ensures that ∂̄fk remains much smaller than ∂fk in all directions, which is
needed to obtain the correct local model.

Properties (4) and (4′) determine the structure of the covering near the cusp points.
More precisely, observe that along Rk the tangent plane field TRk and the plane field
Ker ∂fk coincide exactly at the cusp points ; condition (4) expresses that these two plane
fields are transverse to each other (in [3] and [5] this condition was formulated in terms of
a more complicated quantity; the two formulations are easily seen to be equivalent). This
implies that cusp points are isolated and non-degenerate. The compatibility condition
(4′) then ensures that the expected local model indeed holds.

The remaining conditions are used to ensure the compatibility of the branch curve
Dk = fk(Rk) with the projection π to CP1. In particular, the transversality condition
(6) and the corresponding compatibility condition (6′) imply that the points where the
branch curve Dk fails to be transverse to the fibers of π are isolated non-degenerate
tangency points. Moreover, property (7) states that the curve Dk is transverse to itself.
This implies that Dk is a braided curve in the following sense :

10
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Definition 3.3. A real 2-dimensional singular submanifold D ⊂ CP2 is a braided curve
if it satisfies the following properties : (1) the only singular points of D are cusps (with
positive orientation) and transverse double points (with either orientation) ; (2) the point
(0 : 0 : 1) does not belong to D ; (3) the fibers of the projection π : (x : y : z) 7→ (x : y)
are everywhere transverse to D, except at a finite set of nondegenerate tangency points
where a local model for D in orientation-preserving coordinates is z22 = z1 ; (4) the cusps,
nodes and tangency points are all distinct and lie in different fibers of π.

We will see in §3.2 that these properties are precisely those needed in order to apply
the braid monodromy techniques of Moishezon-Teicher to the branch curve Dk.

The main result of [5] can be formulated as follows :

Theorem 3.1 ([3],[5]). For k À 0, it is possible to find asymptotically holomorphic sec-
tions of C3 ⊗ L⊗k such that the corresponding projective maps fk : X → CP2 are quasi-
holomorphic branched coverings. Moreover, for large k these coverings are canonical up
to isotopy and up to cancellations of pairs of nodes in the branch curves Dk.

The uniqueness statement is to be understood in the same weak sense as for Theorem
2.1 : given two sequences of quasiholomorphic branched coverings (possibly for different
choices of almost-complex structures on X), for large k it is possible to find an interpo-
lating one-parameter family of quasiholomorphic coverings, the only possible non-trivial
phenomenon being the cancellation or creation of pairs of nodes in the branch curve for
certain parameter values.

The proof of Theorem 3.1 follows a standard pattern : in order to construct quasiholo-
morphic coverings, one starts with any sequence of asymptotically holomorphic sections
of C3 ⊗ L⊗k and proceeds by successive perturbations in order to obtain all the required
properties, starting with uniform transversality. Since transversality is an open condition,
it is preserved by the subsequent perturbations.

So the first part of the proof consists in obtaining, by successive perturbation argu-
ments, the transversality properties (1), (2), (3) and (4) of Definition 3.2 as in [3], (5)
and (6) as in [5], and also (8) by a direct application of the result of [8]. The argument
is notably more technical in the case of (4) and (6) because the transversality conditions
involve derivatives along the branch curve, but these can actually all be thought of as
immediate applications of the general transversality principle mentioned in the Introduc-
tion.

The second part of the proof, which is comparatively easier, deals with the compatibility
conditions. The idea is to ensure these properties by perturbing the sections sk by quanti-
ties bounded by O(k−1/2), which clearly affects neither holomorphicity nor transversality

properties. One first chooses suitable almost-complex structures J̃k differing from J by
O(k−1/2) and integrable near the finite set Ck ∪ Tk ∪ Ik. It is then possible to perturb fk
near these points in order to obtain conditions (4′), (6′) and (8′), by the same argument as
in §4.1 of [3]. Next, a generic small perturbation yields the self-transversality of D (prop-
erty (7)). Finally, a suitable perturbation yields property (3′) along the branch curve
without modifying Rk and Dk and without affecting the other compatibility properties.

11
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The uniqueness statement is obtained by showing that, provided that k is large enough,
all the arguments extend verbatim to one-parameter families of sections. Therefore, given
two sequences of quasiholomorphic coverings, one starts with a one-parameter family of
sections interpolating between them in a trivial way and perturbs it in such a way that
the required properties hold for all parameter values (with the exception of (7) when a
node cancellation occurs). Since this construction can be performed in such a way that
the two end points of the one-parameter family are not affected by the perturbation, the
isotopy result follows immediately.

The reader is referred to [3] and [5] for more details (incorporating requirement (8) in
the arguments is a trivial task).

3.2. Braid monodromy invariants

We now describe the monodromy invariants that naturally arise from the quasiholo-
morphic coverings described in the previous section. This is a relatively direct extension
to the symplectic framework of the braid group techniques studied by Moishezon and
Teicher in the algebraic case (see [13], [14], [18]).

Recall that the braid group on d strings is the fundamental group Bd = π1(Xd) of
the space Xd of unordered configurations of d distinct points in the plane R2. A braid
can therefore be thought as a motion of d points in the plane. An alternate description
involves compactly supported orientation-preserving diffeomorphisms of R2 which globally
preserve a set of d given points : Bd = π0(Diff+c (R

2, {q1, . . . , qd})). The group Bd is
generated by half-twists, i.e. braids in which two of the d points rotate around each other
by 180 degrees while the other points are preserved. For more details see [6].

Consider a braided curve D ⊂ CP2 (see Definition 3.3) of fixed degree d, for example
the branch curve of a quasiholomorphic covering as given by Theorem 3.1. Projecting
to CP1 via the map π makes D a singular branched covering of CP1. The picture is the
following :

?π : (x :y :z) 7→ (x :y)
CP1

CP2 − {∞} D

q q q

q q q

Let p1, . . . , pr be the images by π of the special points of D (nodes, cusps and tangen-
cies). Observing that the fibers of π are complex lines (or equivalently real planes) which
generically intersect D in d points, we easily get that the monodromy of the map π|D
around the fibers above p1, . . . , pr takes values in the braid group Bd.

12
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The monodromy around one of the points p1, . . . , pr is as follows. In the case of a
tangency point, a local model for the curve D is y2 = x (with projection to the x factor),
so one easily checks that the monodromy is a half-twist exchanging two sheets of π|D.
Since all half-twists in Bd are conjugate, it is possible to write this monodromy in the form
Q−1X1Q, where Q ∈ Bd is any braid and X1 is a fixed half-twist (aligning the points
q1, . . . , qd in that order along the real axis, X1 is the half-twist exchanging the points
q1 and q2 along a straight line segment). In the case of a transverse double point with
positive intersection, the local model y2 = x2 implies that the monodromy is the square
of a half-twist, which can be written in the form Q−1X2

1Q. The monodromy around a
double point with negative intersection is the mirror image of the previous case, and can
therefore be written as Q−1X−21 Q. Finally, the monodromy around a cusp (local model
y2 = x3) is the cube of a half-twist and can be expressed as Q−1X3

1Q.
However, in order to describe the monodromy automorphisms as braids, one needs to

identify up to compactly supported diffeomorphisms the fibers of π with a reference plane
R2. This implicitly requires a trivialization of the fibration π, which is not available over
all of CP1. Therefore, as in the case of Lefschetz pencils, it is necessary to restrict oneself
to the preimage of an affine subset C ⊂ CP1, by removing the fiber above the point at
infinity (which may easily be assumed to be regular). So the monodromy map is only
defined as a group homomorphism

ρ : π1(C− {p1, . . . , pr})→ Bd. (3)

Since the fibration π defines a line bundle of degree 1 over CP1, the monodromy around
the fiber at infinity is given by the full twist ∆2, i.e. the braid which corresponds to a
rotation of all points by 360 degrees (∆2 generates the center of Bd).

Therefore, choosing as in §2 a system of generating loops in C − {p1, . . . , pr}, we can
express the monodromy by a factorization of ∆2 in the braid group :

∆2 =

r
∏

j=1

Q−1j X
rj

1 Qj , (4)

where the elements Qj ∈ Bd are arbitrary braids and the degrees rj ∈ {1,±2, 3} depend
on the types of the special points lying above pj .

As in the case of Lefschetz pencils, this braid factorization, which completely character-
izes the braided curve D up to isotopy, is only well-defined up to two algebraic operations:
simultaneous conjugation of all factors by a given braid in Bd, and Hurwitz moves. As
previously, simultaneous conjugation reflects the different possible choices of an identifi-
cation diffeomorphism between the fiber of π above the base point and the standard plane
(C, {q1, . . . , qd}), while Hurwitz moves arise from changes in the choice of a generating
system of loops in C− {p1, . . . , pr}.

Starting with any braid factorization of the form (4), it is possible to reconstruct
a braided curve D in a canonical way up to isotopy (see [5]; similar statements were
also obtained by Moishezon, Teicher and Catanese). Moreover, one easily checks that
factorizations which differ only by global conjugations and Hurwitz moves lead to isotopic
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braided curves (each such operation amounts to a diffeomorphism isotopic to the identity,
obtained in the case of a Hurwitz move by lifting by π a diffeomorphism of CP1, and in
the case of a global conjugation by a diffeomorphism in each of the fibers of π).

Moreover, it is important to observe that every braided curveD can be made symplectic
by a suitable isotopy. In fact, it is sufficient to perform a radial contraction in all the
fibers of π, which brings the given curve into an arbitrarily small neighborhood of the
zero section of π (the complex line {z = 0} in CP2). The tangent space to D is then very
close to that of the complex line (and therefore symplectic) everywhere except near the
tangency points; verifying that the property also holds near tangencies by means of the
local model, one obtains that D is symplectic.

We now briefly describe the structure of the fundamental group π1(CP2 − D). Con-
sider a generic fiber of π, intersecting D in d points q1, . . . , qd. Then the inclusion map
i : C − {q1, . . . , qd} → CP2 − D induces a surjective homomorphism on fundamental
groups. Therefore, a generating system of loops γ1, . . . , γd in C − {q1, . . . , qd} provides
a set of generators for π1(CP2 − D) (geometric generators). Because the fiber of π can
be compactified by adding the pole of the projection, an obvious relation is γ1 . . . γd = 1.
Moreover, each special point of the curve D, or equivalently every term in the braid
factorization, determines a relation in π1(CP2 −D) in a very explicit way.

Namely, recall that there exists a natural right action of Bd on the free group Fd =
π1(C − {q1, . . . , qd}), that we shall denote by ∗, and consider a factor Q−1j X

rj

1 Qj in (4).

Then, if rj = 1, the tangency point above pj yields the relation γ1 ∗ Qj = γ2 ∗ Qj (the
two elements γ1 ∗Qj and γ2 ∗Qj correspond to small loops going around the two sheets
of π|D that merge at the tangency point). Similarly, in the case of a node (rj = ±2),
the relation is [γ1 ∗Qj , γ2 ∗Qj ] = 1. Finally, in the case of a cusp (rj = 3), the relation

becomes (γ1γ2γ1)∗Qj = (γ2γ1γ2)∗Qj . It is a classical result that π1(CP2−D) is exactly
the quotient of Fd = 〈γ1, . . . , γd〉 by the above-listed relations.

Given a branched covering map f : X → CP2 with branch curve D, it is easy to see
that the topology of X is determined by a group homomorphism from π1(CP2−D) to the
symmetric group Sn of order n = deg f . Considering a generic fiber of π which intersects
D in d points q1, . . . , qd, the restriction of f to its preimage Σ is a n-sheeted branched
covering map from Σ to C with branch points q1, . . . , qd. This covering is naturally
described by a monodromy representation

θ : π1(C− {q1, . . . , qd})→ Sn. (5)

Because the branching index is 2 at a generic point of the branch curve of f , the group
homomorphism θ maps geometric generators to transpositions. Also, θ necessarily factors
through the surjective homomorphism i∗ : π1(C− {q1, . . . , qd})→ π1(CP2 −D), because
the covering f is defined everywhere, and the resulting map from π1(CP2 − D) to Sn
is exactly what is needed to recover the 4-manifold X from the branch curve D. The
properties of θ are summarized in the following definition due to Moishezon :
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Definition 3.4. A geometric monodromy representation associated to a braided curve
D ⊂ CP2 is a surjective group homomorphism θ from the free group π1(C−{q1, . . . , qd}) =
Fd to the symmetric group Sn of order n, mapping the geometric generators γi (and thus
also the γi ∗Qj) to transpositions, and such that

θ(γ1 . . . γd) = 1,
θ(γ1 ∗Qj) = θ(γ2 ∗Qj) if rj = 1,
θ(γ1 ∗Qj) and θ(γ2 ∗Qj) are distinct and commute if rj = ±2,
θ(γ1 ∗Qj) and θ(γ2 ∗Qj) do not commute if rj = 3.

Observe that, when the braid factorization defining D is affected by a Hurwitz move,
θ remains unchanged and the compatibility conditions are preserved. On the contrary,
when the braid factorization is modified by simultaneously conjugating all factors by a
certain braid Q ∈ Bd, the system of geometric generators γ1, . . . , γd changes accordingly,
and so the geometric monodromy representation θ should be replaced by θ ◦ Q∗, where
Q∗ is the automorphism of Fd induced by the braid Q.

One easily checks that, given a braided curve D ⊂ CP2 and a compatible monodromy
representation θ : Fd → Sn, it is possible to recover a compact 4-manifold X and a
branched covering map f : X → CP2 in a canonical way. Moreover, as observed above
we can assume that the curve D is symplectic; in that case, the branched covering map
makes it possible to endow X with a symplectic structure, canonically up to symplectic
isotopy (see [3],[5] ; a similar result has also been obtained by Catanese).

The above discussion leads naturally to the definition of symplectic invariants arising
from the quasiholomorphic coverings constructed in Theorem 3.1. However, things are
complicated by the fact that the branch curves of these coverings are only canonical up
to cancellations of double points.

On the level of the braid factorization, a pair cancellation amounts to removing t-
wo consecutive factors which are the inverse of each other (necessarily one must have
degree 2 and the other degree −2); the geometric monodromy representation is not af-
fected. The opposite operation is the creation of a pair of nodes, in which two factors
(Q−1X−21 Q).(Q−1X2

1Q) are added anywhere in the factorization ; it is allowed only if
the new factorization remains compatible with the monodromy representation θ, i.e. if
θ(γ1 ∗Q) and θ(γ2 ∗Q) are commuting disjoint transpositions.

Definition 3.5. Two braid factorizations (along with the corresponding geometric mon-
odromy representations) are m-equivalent if there exists a sequence of operations which
turns one into the other, each operation being either a global conjugation, a Hurwitz
move, or a pair cancellation or creation.

In conclusion, we get the following result :

Theorem 3.2 ([5]). The braid factorizations and geometric monodromy representations
associated to the quasiholomorphic coverings obtained in Theorem 3.1 are, for k À 0,
canonical up to m-equivalence, and define symplectic invariants of (X4, ω).
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Conversely, the data consisting of a braid factorization and a geometric monodromy
representation, or a m-equivalence class of such data, determines a symplectic 4-manifold
in a canonical way up to symplectomorphism.

3.3. The braid group and the mapping class group

Let f : X → CP2 be a branched covering map, and let D ⊂ CP2 be its branch curve.
It is a simple observation that, if D is braided, then the map π ◦ f with values in CP1

obtained by forgetting one of the components of f topologically defines a Lefschetz pencil.
This pencil is obtained by lifting via the covering f the pencil of lines on CP2 defined by
π, and its base points are the preimages by f of the pole of the projection π.

Moreover, if one starts with the quasiholomorphic coverings given by Theorem 3.1, then
the corresponding Lefschetz pencils coincide for k À 0 with those obtained by Donaldson
in [10] and described in §2.

As a consequence, in the case of a 4-manifold, the invariants described in §3.2 (braid
factorization and geometric monodromy representation) completely determine those de-
scribed in §2 (factorizations in mapping class groups). It is therefore natural to look
for a more explicit description of the relation between branched coverings and Lefschetz
pencils. This description involves the group of liftable braids, which has been studied in
a special case by Birman and Wajnryb in [7]. We recall the following construction from
§5 of [5].

Let Cn(q1, . . . , qd) be the (finite) set of all surjective group homomorphisms Fd → Sn
which map each of the geometric generators γ1, . . . , γd of Fd to a transposition and map
their product γ1 · · · γd to the identity element in Sn. Each element of Cn(q1, . . . , qd)
determines a simple n-fold covering of CP1 branched at q1, . . . , qd.

Let Xd be the space of configurations of d distinct points in the plane. The set of all
simple n-fold coverings of CP1 with d branch points and such that no branching occurs
above the point at infinity can be thought of as a covering X̃d,n above Xd, in which
the fiber above the configuration {q1, . . . , qd} identifies with Cn(q1, . . . , qd). Therefore,
the braid group Bd = π1(Xd) acts on the fiber Cn(q1, . . . , qd) by deck transformations of

the covering X̃d,n. In fact, the action of a braid Q ∈ Bd on Cn(q1, . . . , qd) is given by
θ 7→ θ ◦Q∗, where Q∗ ∈ Aut(Fd) is the automorphism induced by Q on the fundamental
group of C− {q1, . . . , qd}.

Fix a base point {q1, . . . , qd} in Xd, and consider an element θ of Cn(q1, . . . , qd) (i.e., a
monodromy representation θ : Fd → Sn). Let pθ be the corresponding point in X̃d,n.

Definition 3.6. The subgroup B0d(θ) of liftable braids is the set of all the loops in Xd
whose lift at the point pθ is a closed loop in X̃d,n. Equivalently, B0d(θ) is the set of all
braids which act on Fd = π1(C− {q1, . . . , qd}) in a manner compatible with the covering
structure defined by θ.

In other words, B0d(θ) is the set of all braids Q such that θ ◦Q∗ = θ, i.e. the stabilizer
of θ with respect to the action of Bd on Cn(q1, . . . , qd).
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There exists a natural bundle Yd,n over X̃d,n (the universal curve) whose fiber is a
Riemann surface of genus g = 1−n+(d/2) with n marked points. Each of these Riemann
surfaces naturally carries a structure of branched covering of CP1, and the marked points
are the preimages of the point at infinity.

Given an element Q of B0d(θ) ⊂ Bd, it can be lifted to X̃d,n as a loop based at the point
pθ, and the monodromy of the fibration Yd,n along this loop defines an element of Mapg,n
(the mapping class group of a Riemann surface of genus g with n boundary components),
which we call θ∗(Q). This defines a group homomorphism θ∗ : B

0
d(θ)→ Mapg,n.

More geometrically, viewing Q as a compactly supported diffeomorphism of the plane
preserving {q1, . . . , qd}, the fact that Q belongs to B0d(θ) means that it can be lifted via

the covering map Σg → CP1 to a diffeomorphism of Σg ; the corresponding element in
the mapping class group is θ∗(Q).

It is easy to check that, when the given monodromy representation θ is compatible
with a braided curve D ⊂ CP2, the image of the braid monodromy homomorphism
ρ : π1(C−{p1, . . . , pr})→ Bd describing D is entirely contained in B0d(θ) : this is because

the geometric monodromy representation θ factors through π1(CP2 − D), on which the
braids in Im ρ act trivially. Therefore, we can take the image of the braid factorization
describing D by θ∗ and obtain a factorization in the mapping class group Mapg,n. One

easily checks that θ∗(∆
2) is, as expected, the twist δZ around the n marked points.

As observed in [5], all the factors of degree ±2 or 3 in the braid factorization lie in the
kernel of θ∗ ; therefore, the only terms whose contribution to the mapping class group
factorization is non-trivial are those arising from the tangency points of the branch curve
D, and each of these is a Dehn twist. More precisely, the image in Mapg,n of a half-twist

Q ∈ B0d(θ) can be constructed as follows. Call γ the path joining two of the branch points
naturally associated to the half-twist Q (i.e. the path along which the twisting occurs).
Among the n lifts of γ to Σg, only two hit the branch points of the covering ; these two
lifts have common end points, and together they define a loop δ in Σg. Then the element
θ∗(Q) in Mapg,n is the positive Dehn twist along the loop δ (see Proposition 4 of [5]).

In conclusion, the following result holds :

Proposition 3.3. Let f : X → CP2 be a branched covering, and assume that its branch
curve D is braided. Let ρ : π1(C − {p1, . . . , pr}) → B0d(θ) and θ : Fd → Sn be the cor-
responding braid monodromy and geometric monodromy representation. Then the mon-
odromy map ψ : π1(C − {p1, . . . , pr}) → Mapg,n of the Lefschetz pencil π ◦ f is given by
the identity ψ = θ∗ ◦ ρ.

In particular, for k À 0 the symplectic invariants obtained from Theorem 2.1 are
obtained in this manner from those given by Theorem 3.2.

Remark 3.2. It is a basic fact that for n ≥ 3 the group homomorphism θ∗ : B
0
d(θ) →

Mapg,n is surjective, and that for n ≥ 4 every Dehn twist is the image by θ∗ of a half-
twist. This makes it natural to ask whether every factorization of δZ in Mapg,n as a

product of Dehn twists is the image by θ∗ of a factorization of ∆2 in B0d(θ) compatible
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with θ. This can be reformulated in more geometric terms as the classical problem of
determining whether every Lefschetz pencil is topologically a covering of CP2 branched
along a curve with node and cusp singularities (a similar question replacing pencils by
Lefschetz fibrations and CP2 by ruled surfaces also holds ; presently the answer is only
known in the hyperelliptic case, thanks to the results of Fuller, Siebert and Tian).

A natural approach to these problems is to understand the kernel of θ∗. For example,
if one can show that this kernel is generated by squares and cubes of half-twists (factors
of degree 2 and 3 compatible with θ), then the solution naturally follows : given a decom-
position of δZ as a product of Dehn twists in Mapg,n, any lift of this word to B0d(θ) as a

product of half-twists differs from ∆2 by a product of factors of degree 2 and 3 and their
inverses. Adding these factors as needed, one obtains a decomposition of ∆2 into factors
of degrees 1, ±2 and ±3 ; the branch curve constructed in this way may have nodes and
cusps with reversed orientation, but it can still be made symplectic.

Even if the kernel of θ∗ is not generated by factors of degree 2 and 3, it remains likely
that the result still holds and can be obtained by starting from a suitable lift to B0d(θ) of
the word in Mapg,n. A better understanding of the structure of Ker θ∗ would be extremely
useful for this purpose.

4. The higher dimensional case

In this section we extend the results of §3 to the case of higher dimensional symplectic
manifolds. In §4.1 we prove the existence of quasiholomorphic maps X → CP2 given by
triples of sections of L⊗k for k À 0. The topological invariants arising from these maps
are studied in §4.2 and §4.3, and the relation with Lefschetz pencils is described in §4.4.

4.1. Quasiholomorphic maps to CP2

Let (X2n, ω) be a compact symplectic manifold, endowed with a compatible almost-
complex structure J . Let L be the same line bundle as previously (if 1

2π [ω] is not integral
one works with a perturbed symplectic form as explained in the introduction). Consider
three approximately holomorphic sections of L⊗k, or equivalently a section of C3 ⊗ L⊗k.
Then the following result states that exactly the same transversality and compatibility
properties can be expected as in the four-dimensional case :

Theorem 4.1. For k À 0, it is possible to find asymptotically holomorphic sections of
C3⊗L⊗k such that the corresponding CP2 valued projective maps fk are quasiholomorphic
(cf. Definition 3.2). Moreover, for large k these projective maps are canonical up to
isotopy and up to cancellations of pairs of nodes in the critical curves Dk.

Before sketching a proof of Theorem 4.1, we briefly describe the behavior of quasiholo-
morphic maps, which will clarify some of the requirements of Definition 3.2.

Condition (1) in Definition 3.2 implies that the set Zk of points where the three sections
s0k, s

1
k, s

2
k vanish simultaneously is a smooth codimension 6 symplectic (approximately

holomorphic) submanifold. The projective map fk = (s0k : s
1
k : s

2
k) with values in CP2 is

only defined over the complement of Zk. The behavior near the set of base points is similar
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to what happens for Lefschetz pencils : in suitable local approximately holomorphic
coordinates, Zk is given by the equation z1 = z2 = z3 = 0, and fk behaves like the model
map (z1, . . . , zn) 7→ (z1 : z2 : z3). In fact, a map defined everywhere can be obtained by
blowing up X along the submanifold Zk. The behavior near Zk being completely specified
by condition (1), it is implicit that all the other conditions on fk are only to be imposed
outside of a small neighborhood of Zk.

The correct statement of condition (3) of Definition 3.2 in the case of a manifold of

dimension greater than 4 is a bit tricky. Indeed, Jac(fk) =
∧2

∂fk is a priori a section of
the vector bundle Λ2,0T ∗X ⊗ f∗k (Λ

2,0TCP2) of rank n(n− 1)/2. However, transversality
to 0 in this sense is impossible to obtain, as the expected complex codimension of Rk is
n − 1 instead of n(n − 1)/2. Indeed, the section Jac(fk) takes values in the non-linear

subbundle Im(
∧2

), whose fibers are of dimension n − 1 at their smooth points (away
from the origin). However, transversality to 0 does not have any natural definition in this
subbundle, because it is singular along the zero section. The problem is very similar to
what happens in the construction of determinantal submanifolds performed in [15].

In our case, a precise meaning can be given to condition (3) by the following obser-
vation. Near any point x ∈ X, property (2) implies that it is possible to find local
approximately holomorphic coordinates on X and local complex coordinates on CP2 in
which the differential at x of the first component of fk can be written ∂f1k (x) = λ dz1, with

|λ| > γ/2. This implies that, near x, the projection of
∧2

∂fk to its components along
dz1∧dz2, . . . , dz1∧dzn is a quasi-isometric isomorphism. In other words, the transversality
to 0 of Jac(fk) is to be understood as the transversality to 0 of its orthogonal projection
to the linear subbundle of rank n− 1 generated by dz1 ∧ dz2, . . . , dz1 ∧ dzn.

Another equivalent approach is to consider the (non-linear) bundle J 1(X,CP2) of
holomorphic 1-jets of maps fromX to CP2. Inside this bundle, the 1-jets whose differential
is not surjective define a subbundle Σ of codimension n−1, smooth away from the stratum
{∂f = 0}. Since this last stratum is avoided by the 1-jet of fk (because of condition
(2)), the transversality to 0 of Jac(fk) can be naturally rephrased in terms of estimated
transversality to Σ in the bundle of jets (this approach will be developed in [4]).

With this understood, conditions (3) and (3′) imply, as in the four-dimensional case,
that the set Rk of points where the differential of fk fails to be surjective is a smooth
symplectic curve Rk ⊂ X, disjoint from Zk, and that the differential of fk has rank 2 at
every point of Rk. Also, as before, conditions (4) and (4′) imply that fk(Rk) = Dk is a
symplectic curve in CP2, immersed outside of the cusp points.

We now describe the proof of Theorem 4.1 ; most of the argument is identical to the
4-dimensional case, and the reader is referred to [3] and [5] for notations and details.

Proof of Theorem 4.1. The strategy of proof is the same as in the 4-dimensional case. One
starts with an arbitrary sequence of asymptotically holomorphic sections of C3⊗L⊗k over
X, and perturbs it first to obtain the transversality properties. Provided that k is large
enough, each transversality property can be obtained over a ball by a small localized
perturbation, using the local transversality result of Donaldson (Theorem 12 in [10]). A
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globalization argument then makes it possible to combine these local perturbations into
a global perturbation that ensures transversality everywhere (Proposition 3 of [3]). Since
transversality properties are open, successive perturbations can be used to obtain all the
required properties : once a transversality property is obtained, subsequent perturbations
only affect it by at most decreasing the transversality estimate.
Step 1. One first obtains the transversality statements in parts (1), (5) and (8) of

Definition 3.2 ; as in the 4-dimensional case, these properties are obtained e.g. simply by
applying the main result of [2]. Observe that all required properties now hold near the
base locus Zk of sk, so we can assume in the rest of the argument that the points of X
being considered lie away from Zk, and therefore that fk is locally well-defined.

One next ensures condition (2), for which the argument is an immediate adaptation of
that in §2.2 of [3], the only difference being the larger number of coordinate functions.
Step 2. The next property we want to get is condition (3). Here a significant gen-

eralization of the argument in §3.1 of [3] is needed. The problem reduces, as usual, to
showing that the uniform transversality to 0 of Jac(fk) can be ensured over a small bal-
l centered at a given point x ∈ X by a suitable localized perturbation. As in [3] one
can assume that sk(x) is of the form (s0k(x), 0, 0) and therefore locally trivialize CP2 via
the quasi-isometric map (x : y : z) 7→ (y/x, z/x) ; this reduces the problem to the study
of a C2-valued map hk. Because |∂fk| is bounded from below, we can assume (after a
suitable rotation) that |∂h1k(x)| is greater than some fixed constant. Also, fixing suitable
approximately holomorphic Darboux coordinates z1k, . . . , z

n
k (using Lemma 3 of [3], which

trivially extends to dimensions larger than 4), we can after a rotation assume that ∂h1k(x)
is of the form λ dz1k, where the complex number λ is bounded from below.

By Lemma 2 of [3], there exist asymptotically holomorphic sections srefk,x of L⊗k with

exponential decay away from x. Define the asymptotically holomorphic 2-forms µjk =

∂h1k ∧ ∂(z
j
ks
ref
k,x/s

0
k) for 2 ≤ j ≤ n. At x, the 2-form µjk is proportional to dz1k ∧ dz

j
k ;

therefore, over a small neighborhood of x, the transversality to 0 of Jac(fk) in the sense
explained above is equivalent to the transversality to 0 of the projection of Jac(hk) onto

the subspace generated by µ2k, . . . , µ
n
k . In terms of 1-jets, the 2-forms µjk define a local

frame in the normal bundle to the stratum of non-regular maps at J 1(fk). Now, express
Jac(hk) in the form u2kµ

2
k+ · · ·+u

n
kµ

n
k+αk over a neighborhood of x, where u2k, . . . , u

n
k are

complex-valued functions and αk has no component along dz1k. Then, the transversality
to 0 of Jac(fk) is equivalent to that of the Cn−1-valued function uk = (u2k, . . . , u

n
k ).

Since the functions uk are asymptotically holomorphic, using suitable Darboux co-
ordinates at x we can use Theorem 12 of [10] to obtain, for large enough k, the ex-
istence of constants w2k, . . . , w

n
k smaller than any given bound δ > 0 and such that

(u2k − w2k, . . . , u
n
k − wnk ) is η-transverse to 0 over a small ball centered at x, where

η = δ(log δ−1)−p (p is a fixed constant). Letting s̃k = (s0k, s
1
k, s

2
k −

∑

wjkz
j
ks
ref
k,x) and

calling f̃k and h̃k the projective map defined by s̃k and the corresponding local C2-valued
map, we get that Jac(h̃k) = Jac(hk) −

∑

wjkµ
j
k, and therefore that Jac(f̃k) is transverse
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to 0 near x. Since the perturbation of sk has exponential decay away from x, we can
apply the standard globalization argument to obtain property (3) everywhere.
Step 3. The next properties that we want to get are (4) and (6). It is possible to

extend the arguments of [3] and [5] to the higher dimensional case ; however this yields a
very technical and lengthy argument, so we outline here a more efficient strategy following
the ideas of [4]. Thanks to the previously obtained transversality properties (1) and (5),
both fk and φk are well-defined over a neighborhood of Rk, so the statements of (4) and
(6) are well-defined. Moreover, observe that property (6) implies property (4), because
at any point where ∂(fk|Rk

) vanishes, ∂(φk|Rk
) necessarily vanishes as well, and if it does

so transversely then the same is true for ∂(fk|Rk
) as well. So we only focus on (6).

This property can be rephrased in terms of transversality to the codimension n stratum
S : {∂(φ|R) = 0} in the bundle J 2(X,CP2) of holomorphic 2-jets of maps from X to CP2.
However this stratum is singular, even away from the substratum Snt corresponding to
the non-transverse vanishing of Jac(f) ; in fact it is reducible and comes as a union S1∪S2,
where S1 : {Jac(f) = 0, ∂(f|R) = 0} is the stratum corresponding to non-immersed points
of the branch curve, and S2 : {∂φ = 0} is the stratum corresponding to tangency points
of the branch curve. Therefore, one first needs to ensure transversality with respect to
S0 = S1 ∩ S2 : {∂φ = 0, ∂(f|R) = 0}, which is a smooth codimension n + 1 stratum
(“vertical cusp points of the branch curve”) away from Snt.
Step 3a. We first show that a small perturbation can be used to make sure that the

quantity (∂φk, ∂(fk|Rk
)) remains bounded from below, i.e. that given any point x ∈ X,

either ∂φk(x) is larger than a fixed constant, or x lies at more than a fixed distance
from Rk, or x lies close to a point of Rk where ∂(fk|Rk

)) is larger than a fixed constant.
Since this transversality property is local and open, we can obtain it by successive small
localized perturbations, as for the previous properties.

Fix a point x ∈ X, and assume that ∂φk(x) is small (otherwise no perturbation is
needed). By property (5), we know that necessarily (s0k, s

1
k) is bounded away from zero

at x ; a rotation in the first two coordinates makes it possible to assume that s1k(x) = 0
and s0k is bounded from below near x. As above, we replace fk by the C2-valued map
hk = (h1k, h

2
k), where h

i
k = sik/s

0
k. By assumption, we get that ∂h1k(x) is small. This

implies in particular that Jac(fk) is small at x, and therefore property (3) gives a lower
bound on its covariant derivative. Moreover, by property (2) we also have a lower bound
on ∂h2k(x), which after a suitable rotation can be assumed equal to λ dz1k for some λ 6= 0.

So, as above we can express
∧2

∂fk by looking at its components along dz1k ∧ dz
j
k for

2 ≤ j ≤ n ; we again define the 2-forms µjk = ∂h2k ∧ ∂(z
j
ks
ref
k,x/s

0
k), and the functions

u2, . . . , un are defined as previously. Define a (n, 0)-form θ over a neighborhood of x by
θ = ∂u2 ∧ · · · ∧ ∂un ∧ ∂h

2
k : at points of Rk, the vanishing of θ is equivalent to that of

∂h2k|Rk
, or equivalently to that of ∂fk|Rk

. So our aim is to show that the quantity (∂h1k, θ),

which is a section of a rank n+1 bundle E0 near x, can be made bounded from below by
a small perturbation.
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For this purpose, we first show the existence of complex-valued polynomials (P 1j , P
2
j )

and local sections εj of E0, 1 ≤ j ≤ n+ 1, such that :
(a) for any coefficients wj ∈ C, replacing the given sections of L⊗k by (s0k, s

1
k +

∑

wjP
1
j s
ref
k,x, s

2
k +

∑

wjP
2
j s
ref
k,x) affects (∂h

1
k, θ) by the addition of

∑

wjεj +O(w2j ) ;

(b) the sections εj define a local frame in E0, and ε1∧ · · ·∧ εn+1 is bounded from below
by a universal constant.

First observe that, by property (3), ∂u2 ∧ · · · ∧ ∂un is bounded from below near x,
whereas we may assume that θ = ∂u2∧· · ·∧∂un∧∂h

2
k is small (otherwise no perturbation

is needed). Therefore, ∂h2k (which at x is colinear to dz1k) lies close to the span of the
∂uj . In particular, after a suitable rotation in the n − 1 last coordinates on X, we can
assume that ∂u2 ∧ ∂h

2
k is small at x. On the other hand, we know that there exists

j0 6= 1 such that dzj0k lies far from the span of the ∂uj(x). We then define P 1n+1 = z2kz
j0
k

and P 2n+1 = 0. Adding to s1k a quantity of the form w z2kz
j0
k srefk,x does not affect ∂hk(x),

but affects ∂u2(x) by the addition of a non-trivial multiple of dzj0k , and similarly affects
∂uj0(x) by the addition of a non-trivial multiple of dz2k. The other ∂uj(x) are not affected.
Therefore, θ(x) changes by an amount of

cw dzj0k ∧ ∂u3 ∧ · · · ∧ ∂un ∧ ∂h
2
k + c′w ∂u2 ∧ · · · ∧ dz

2
k ∧ · · · ∧ ∂un ∧ ∂h

2
k +O(w2),

where the constants c and c′ are bounded from above and below. The first term is bounded
from below by construction, while the second term is only present if j0 6= 2 (this requires
n ≥ 3), and in that case it is small because ∂u2∧∂h

2
k is small. Therefore, the local section

εn+1 of E0 naturally corresponding to such a perturbation is of the form (0, ε′n+1) at x,
where ε′n+1 is bounded from below.

Next, for 1 ≤ j ≤ n we define P 1j = zjk and P 2j = 0, and observe that adding w zjk s
ref
k,x

to s1k affects ∂h1k(x) by adding a nontrivial multiple of dzjk. Therefore, the local section

of E0 corresponding to this perturbation is at x of the form εj(x) = (c′′dzjk, ε
′
j), where c

′′

is a constant bounded from below.
It follows from this argument that the chosen perturbations P 1j and P 2j for 1 ≤ j ≤ n+1,

and the corresponding local sections εj of E0, satisfy the conditions (a) and (b) expressed
above. Observe that, because εj define a local frame at x and ε1 ∧ · · · ∧ εn+1 is bounded
from below at x, the same properties remain true over a ball of fixed radius around x.

Now that a local approximately holomorphic frame in E0 is given, we can write (∂h1k, θ)
in the form

∑

ζjεj for some complex-valued functions ζj ; it is easy to check that these
functions are asymptotically holomorphic. Therefore, we can again use Theorem 12 of
[10] to obtain, if k is large enough, the existence of constants w1, . . . , wn+1 smaller than
any given bound δ > 0 and such that (ζ1 − w1, . . . , ζn+1 − wn+1) is bounded from below
by η = δ(log δ−1)−p (p is a fixed constant) over a small ball centered at x. Letting

s̃k = (s0k, s
1
k−

∑

wjP
1
j s
ref
k,x, s

2
k−

∑

wjP
2
j s
ref
k,x) and calling f̃k, h̃k and θ̃ the projective map

defined by s̃k and the corresponding local maps, we get that (∂h̃1k, θ̃) is by construction
bounded from below by c0η, for a fixed constant c0 ; indeed, observe that the non-linear
term O(w2) in the perturbation formula does not play any significant role, as it is at most
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of the order of δ2 ¿ η. Since the perturbation of sk has exponential decay away from
x, we can apply the standard globalization argument to obtain uniform transversality to
the stratum S0 ⊂ J

2(X,CP2) everywhere.
Step 3b. We now obtain uniform transversality to the stratum S : {Jac(f) =

0, ∂(φ|R) = 0}. The strategy and notations are the same as above. We again fix a
point x ∈ X, and assume that x lies close to a point of Rk where ∂(φk|Rk

) is small (oth-

erwise, no perturbation is needed). As above, we can assume that s0k(x) is bounded from
below and define a C2-valued map hk. Two cases can occur : either ∂h1k(x) is bounded
away from zero, or it is small and in that case by Step 3a we know that ∂(h2k|Rk

) is

bounded from below near x.
We start with the case where ∂h1k is bounded from below; in other words, we are not

dealing with tangency points but only with cusps. In that case, we can use an argument
similar to Step 3a, except that the roles of the two components of hk are reversed. Namely,
after a rotation we assume that ∂h1k(x) = λdz1k for some nonzero constant λ, and we define
components u2, . . . , un of Jac(fk) as previously (using ∂h1k rather than ∂h2k to define the

µjk). Let θ = ∂u2 ∧ · · · ∧ ∂un ∧ ∂h
1
k : along Rk, the ratio between θ and ∂(h1k|Rk

), or

equivalently ∂(φk|Rk
), is bounded between two fixed constants, so the transverse vanishing

of θ is what we are trying to obtain. More precisely, our aim is to show that the quantity
(u2, . . . , un, θ), which is a section of a rank n bundle E near x, can be made uniformly
transverse to 0 by a small perturbation.

For this purpose, we first show the existence of complex-valued polynomials (P 1j , P
2
j )

and local sections εj of E , 2 ≤ j ≤ n+ 1, such that :
(a) for any coefficients wj ∈ C, replacing the given sections of L⊗k by (s0k, s

1
k +

∑

wjP
1
j s
ref
k,x, s

2
k+

∑

wjP
2
j s
ref
k,x) affects (u2, . . . , un, θ) by the addition of

∑

wjεj +O(w2j ) ;

(b) the sections εj define a local frame in E , and ε2 ∧ · · · ∧ εn+1 is bounded from below
by a universal constant.

By the same argument as in Step 3a, we find after a suitable rotation an index j0 6= 1
such that, letting P 1n+1 = 0 and P 2n+1 = z2kz

j0
k , the corresponding local section εn+1 of E

is, at x, of the form (0, . . . , 0, ε′n+1), with ε
′
n+1 bounded from below by a fixed constant.

Moreover, adding w zjks
ref
k,x to s2k amounts to adding w to uj and does not affect the

other ui’s, by the argument in Step 2. So, letting P 1j = 0 and P 2j = zjk, we get that
the corresponding local sections of E are of the form εj = (0, . . . , 1, . . . , 0, ε′j), where the
coefficient 1 is in j-th position.

So it is easy to check that both conditions (a) and (b) are satisfied by these perturba-
tions. The rest of the argument is as in Step 3a : expressing (u2, . . . , un, θ) as a linear
combination of ε2, . . . , εn+1, one uses Theorem 12 of [10] to obtain transversality to 0 over
a small ball centered at x.

We now consider the second possibility, namely the case where ∂h1k(x) is small, which
corresponds to tangency points. By property (2) we know that ∂h2k(x) is bounded from
below, and we can assume that it is colinear to dz1k. We then define components u2, . . . , un
of Jac(fk) as usual (as in Step 3a and unlike the previous case, the µjk are defined using
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∂h2k rather than ∂h1k). Letting θ = ∂u2 ∧ · · · ∧ ∂un ∧ ∂h
1
k, we want as before to obtain

the transversality to 0 of the quantity (u2, . . . , un, θ), which is a local section of a rank
n bundle E near x. For this purpose, as usual we look for polynomials P 1j , P

2
j and local

sections εj satisfying the same properties (a) and (b) as above.
In order to construct P i

n+1, observe that, by the result of Step 3a, the quantity ∂u2 ∧
· · ·∧∂un∧∂h

2
k is bounded from below at x. So, adding to s1k a small multiple of s2k does not

affect the uj ’s, but it affects θ non-trivially. However, this perturbation is not localized,
so it is not suitable for our purposes (we can’t apply the globalization argument). Instead,

let P 1n+1 be a polynomial of degree 2 in the coordinates zjk and their complex conjugates,

such that P 1n+1s
ref
k,x coincides with s2k up to order two at x. Note that the coefficients of

P 1n+1 are bounded by uniform constants, and that its antiholomorphic part is at most

of the order O(k−1/2) (because s2k and srefk,x are asymptotically holomorphic); therefore,

P 1n+1s
ref
k,x is an admissible localized asymptotically holomorphic perturbation. Also, define

P 2n+1 = 0. Then one easily checks that the local section εn+1 of E corresponding to P 1n+1
and P 2n+1 is, at x, of the form (0, . . . , 0, ε′n+1), where ε

′
n+1 is bounded from below.

Moreover, let P 1j = zjk and P 2j = 0 : as above, this perturbation affects uj and not
the other ui’s, and we get that the corresponding local sections of E are of the form
εj = (0, . . . , 1, . . . , 0, ε′j), where the coefficient 1 is in j-th position.

Once again, these perturbations satisfy both conditions (a) and (b). Therefore, ex-
pressing (u2, . . . , un, θ) as a linear combination of ε2, . . . , εn+1, Theorem 12 of [10] yields
transversality to 0 over a small ball centered at x by the usual argument. Now that both
possible cases have been handled, we can apply the standard globalization argument to
obtain uniform transversality to the stratum S ⊂ J 2(X,CP2). This gives properties (4)
and (6) of Definition 3.2.
Step 4. Now that all required transversality properties have been obtained, we perform

further perturbations in order to achieve the other conditions in Definition 3.2. These new
perturbations are bounded by a fixed multiple of k−1/2, so the transversality properties
are not affected. The argument is almost the same as in the case of 4-manifolds (see §4
of [3] and §3.1 of [5]); the adaptation to the higher-dimensional case is very easy.

One first defines a suitable almost-complex structure J̃k, by the same argument as in
§4.1 of [3] (except that one also considers the points of Tk and Ik besides the cusps).
As explained in §4.1 of [3], a suitable perturbation makes it possible to obtain the local
holomorphicity of fk near these points, which yields conditions (4′), (6′) and (8′) ; the
argument is the same in all three cases. Next, a generically chosen small perturbation
yields the self-transversality of D (property (7)). Finally, as described in §4.2 of [3], a
suitable perturbation yields property (3′) along the branch curve without modifying Rk

and Dk and without affecting the other compatibility properties. This completes the
proof of the existence statement in Theorem 4.1.
Uniqueness. The uniqueness statement is obtained by showing that, provided that k

is large enough, the whole argument extends to the case of families of sections depending
continuously on a parameter t ∈ [0, 1]. Then, given two sequences of quasiholomorphic
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maps, one can start with a one-parameter family of sections interpolating between them
in a trivial way and perturb it in such a way that the required properties hold for all
parameter values (with the exception of (7) when a node cancellation occurs). If one
moreover checks that the construction can be performed in such a way that the two end
points of the one-parameter family are not affected by the perturbation, the isotopy result
becomes an immediate corollary. Observe that, in the one-parameter construction, the
almost-complex structure is allowed to depend on t.

Most of the above argument extends to 1-parameter families in a straightforward man-
ner, exactly as in the four-dimensional case ; the key observation is that all the standard
building blocks (existence of approximately holomorphic Darboux coordinates zjk and of

localized approximately holomorphic sections srefk,x, local transversality result, globaliza-

tion principle, ...) remain valid in the parametric case, even when the almost-complex
structure depends on t. The only places where the argument differs from the case of
4-manifolds are properties (3), (4) and (6), obtained in Steps 2 and 3 above.

For property (3), one easily checks that it is still possible in the parametric case to
assume, after composing with suitable rotations depending continuously on the parameter
t, that s1k(x) = s2k(x) = 0 and that ∂h1k(x) is bounded from below and directed along

dz1k. This makes it possible to define µjk and ujk as in the non-parametric case, and
the parametric version of Theorem 12 of [10] yields a suitable perturbation depending
continuously on t.

The argument of Step 3a also extends to the parametric case, using the following
observation. Fix a point x ∈ X, and let ρk(t) = |∂φk,t(x)|. For all values of t such
that ρk(t) is small enough (smaller than a fixed constant α > 0), we can perform the
construction as in the non-parametric case, defining uj,t and θt. If ρ

′
k(t) = |θt(x)| is small

enough (smaller than α), then we can apply the same argument as in the non-parametric
case to define polynomials (P 1j,t, P

2
j,t) and local sections εj,t of E0. However the definition

of P 1n+1 needs to be modified as follows. Although it is still possible after a suitable
rotation depending continuously on t to assume that ∂u2 ∧ ∂h

2
k(x) is small, the choice

of an index j0 6= 1 such that dzj0k lies far from the span of the ∂uj(x) may depend on
t. Instead, we define νk,t as a unit vector in Cn−1 depending continuously on t and such

that
∑n

j=2 ν
j
k,t dz

j
k lies far from the span of ∂uj(x), and let P 1n+1,t =

∑n
j=2 ν

j
k,tz

2
kz

j
k. Then

the required properties are satisfied, and we can proceed with the argument. So, provided
that ρk(t) and ρ

′
k(t) are both smaller than α, we can use Theorem 12 of [10] to obtain a

localized perturbation τk,t depending continuously on t and such that sk,t + τk,t satisfies
the desired transversality property near x.

In order to obtain a well-defined perturbation for all values of t, we introduce a contin-
uous cut-off function β : R+ → [0, 1] which equals 1 over [0, α/2] and vanishes outside of
[0, α]. Then, we set τ̃k,t = β(ρk(t))β(ρ

′
k(t))τk,t, which is well-defined for all t and depends

continuously on t. Since sk,t + τ̃k,t coincides with sk,t + τk,t when ρk(t) and ρ′k(t) are
smaller than α/2, the required transversality holds for these values of t ; moreover, for
the other values of t we know that the 2-jet of sk,t already lies at distance more than α/2
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from the stratum S0, and we can safely assume that τ̃k,t is much smaller than α/2, so
the perturbation does not affect transversality. Therefore we obtain a well-defined local
perturbation for all t ∈ [0, 1], and the one-parameter version of the result of Step 3a
follows by the standard globalization argument.

The argument of Step 3b is extended to one-parameter families in the same way : given
a point x ∈ X, the same ideas as for Step 3a yield, for all values of the parameter t such
that the 2-jet of sk,t at x lies close to the stratum S, small localized perturbations τk,t
depending continuously on t and such that sk,t + τk,t satisfies the desired property over
a small ball centered at x. As seen above, two different types of formulas for τk,t arise
depending on which component of the stratum S is being hit; however, the result of Step
3a implies that, in any interval of parameter values such that the jet of sk,t remains close
to S, only one of the two components of S has to be considered, so τk,t indeed depends
continuously on t. The same type of cut-off argument as for Step 3a then makes it possible
to extend the definition of τk,t to all parameter values and complete the proof.

4.2. The topology of quasiholomorphic maps

We now describe the topological features of quasiholomorphic maps and the local
models which characterize them near the critical points.

Proposition 4.2. Let fk : X−Zk → CP2 be a sequence of quasiholomorphic maps. Then
the fibers of fk are codimension 4 symplectic submanifolds, intersecting at the set of base
points Zk, and smooth away from the critical curve Rk ⊂ X. The submanifolds Rk and
Zk of X are smooth and symplectic, and the image fk(Rk) = Dk is a symplectic braided
curve in CP2.

Moreover, given any point x ∈ Rk, there exist local approximately holomorphic coordi-
nates on X near x and on CP2 near fk(x) in which fk is topologically conjugate to one
of the two following models :

(i) (z1, . . . , zn) 7→ (z21 + · · ·+ z2n−1, zn) (points where fk|Rk
is an immersion) ;

(ii) (z1, . . . , zn) 7→ (z31 + z1zn + z22 + · · ·+ z2n−1, zn) (near the cusp points).

Proof. The smoothness and symplecticity properties of the various submanifolds appear-
ing in the statement follow from the observation made by Donaldson in [8] that the zero
sets of approximately holomorphic sections satisfying a uniform transversality property
are smooth and approximately J-holomorphic, and therefore symplectic. In particular,
the smoothness and symplecticity of the fibers of fk away from Rk follow immediately
from Definition 3.2 : since Jac(fk) is bounded from below away from Rk (because it
satisfies a uniform transversality property), and since the sections sk are asymptotically
holomorphic, it is easy to check that the level sets of fk are, away from Rk, smooth sym-
plectic submanifolds. Symplecticity near the singular points is an immediate consequence
of the local models (i) and (ii) that we will obtain later in the proof.

The corresponding properties of Zk and Rk are obtained by the same argument : Zk
and Rk are the zero sets of asymptotically holomorphic sections, both satisfying a uniform
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transversality property (by conditions (1) and (3) of Definition 3.2, respectively), so they
are smooth and symplectic.

We now study the local models at critical points of fk. We start with the case of a
cusp point x ∈ X. By property (2) of Definition 3.2, ∂fk has complex rank 1 at x, so
we can find local complex coordinates (Z1, Z2) on CP2 near fk(x) such that Im ∂fk(x)

is the Z2 axis. Pulling back Z2 via the map fk, we obtain, using property (4′), a J̃k-
holomorphic function whose differential does not vanish near x ; therefore, we can find a
J̃k-holomorphic coordinate chart (z1, . . . , zn) on X at x such that zn = Z2 ◦ fk. In the
chosen coordinates, we get fk(z1, . . . , zn) = (g(z1, . . . , zn), zn), where g is holomorphic
and ∂g(0) = 0.

Since x is by assumption a cusp point, the tangent direction to Rk at x lies in the kernel
of ∂fk(0), i.e. in the span of the n− 1 first coordinate axes ; after a suitable rotation we
may assume that TxRk is the z1 axis. Near the origin, Jac(fk) is characterized by its
n − 1 components (∂g/∂z1, . . . , ∂g/∂zn−1), and the critical curve Rk is the set of points
where these quantities vanish. Therefore, at the origin, ∂2g/∂z21 = ∂2g/∂z1∂z2 = · · · =
∂2g/∂z1∂zn−1 = 0. Nevertheless, Jac(fk) vanishes transversely to 0 at the origin, so the
matrix of second derivatives M = (∂2g/∂zi∂zj(0)), 2 ≤ i ≤ n, 1 ≤ j ≤ n − 1, is non-
degenerate (invertible) at the origin. In particular, the first column of M (corresponding
to j = 1) is non-zero, and therefore ∂2g/∂z1∂zn(0) is necessarily non-zero ; after a suitable
rescaling of the coordinates we may assume that this coefficient is equal to 1. Moreover,
the invertibility of M implies that the submatrix M ′ = (∂2g/∂zi∂zj(0)), 2 ≤ i, j ≤ n− 1
is also invertible, i.e. it represents a non-degenerate quadratic form.

Diagonalizing this quadratic form, we can assume after a suitable linear change of
coordinates that the diagonal coefficients of M ′ are equal to 2 and the others are zero.
Therefore g is of the form g(z1, . . . , zn) = z1zn+

∑n−1
j=2 z

2
j +

∑n−1
j=2 αjzjzn+O(z3). Chang-

ing coordinates on X to replace zj by zj +
1
2αjzn for all 2 ≤ j ≤ n − 1, and on CP2 to

replace Z1 by Z1+
1
4

∑

α2jZ
2
2 , we can ensure that g(z1, . . . , zn) = z1zn+

∑n−1
j=2 z

2
j +O(z3).

Observe that Rk is described near the origin by expressing the coordinates z2, . . . , zn
as functions of z1. By assumption the expressions of z2, . . . , zn are all of the form O(z21).
Substituting into the formula for Jac(fk), and letting gijk = ∂3g/∂zi∂zj∂zk(0), we get
that local equations of Rk near the origin are zj = −

3
2gj11z

2
1 + O(z31) for 2 ≤ j ≤ n− 1,

and zn = −3g111z
2
1 + O(z31). It follows that fk|Rk

is locally given in terms of z1 by the

map z1 7→ (−2g111z
3
1 + O(z41),−3g111z

2
1 + O(z31)). Therefore, the transverse vanishing of

∂(fk|Rk
) at the origin implies that g111 6= 0, so after a suitable rescaling we may assume

that the coefficient of z31 in the power series expansion of g is equal to one.
On the other hand, suitable coordinate changes can be used to kill all other degree 3

terms in the expansion of g : if 2 ≤ i ≤ n − 1 the coefficient of zizjzk can be made zero
by replacing zi by zi +

c
2zjzk ; similarly for z3n (replace Z1 by Z1 + cZ32 ), z1z

2
n and z21zn

(replace z1 by z1 + cz2n + c′z1zn). So we get that fk(z1, . . . , zn) = (z31 + z1zn + z22 + · · ·+
z2n−1 +O(z4), zn). It is then a standard result of singularity theory that the higher order
terms can be absorbed by suitable coordinate changes (see e.g. [1]).
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We now turn to the case of where x is a point of Rk which does not lie close to any
of the cusp points. Conditions (2) and (3′) imply that the differential of fk at x has
real rank 2 and that its image lies close to a complex line in the tangent plane to CP2

at fk(x). Therefore, there exist local approximately holomorphic coordinates (Z1, Z2) on
CP2 such that Im∇fk(x) is the Z2 axis. Moreover, because Z2 ◦ fk is an approximately
holomorphic function whose derivative at x satisfies a uniform lower bound, it remains
possible to find local approximately holomorphic coordinates z1, . . . , zn on X such that
zn = Z2 ◦ fk. As before, we can write fk(z1, . . . , zn) = (g(z1, . . . , zn), zn), where g is an
approximately holomorphic function such that ∇g(0) = 0.

By assumption fk restricts to Rk as an immersion at x, so the projection to the zn axis
of TxRk is non-trivial. In fact, property (4) implies that, if ∂(fk|Rk

) is very small at x,
then a cusp point lies nearby ; so we can assume that the zn component of TxRk is larger
than some fixed constant. As a consequence, one can show that Rk is locally given by
equations of the form zj = hj(zn), where the functions hj are approximately holomorphic
and have bounded derivatives. Therefore, a suitable change of coordinates on X makes
it possible to assume that Rk is locally given by the equations z1 = · · · = zn−1 = 0.
Similarly, a suitable approximately holomorphic change of coordinates on CP2 makes it
possible to assume that fk(Rk) is locally given by the equation Z1 = 0.

As a consequence, we have that g|Rk
= 0 and, since the image of ∇fk at a point

of Rk coincides with the tangent space to fk(Rk), ∇g vanishes at all points of Rk. In
particular this implies that ∂2g/∂zj∂zn(0) = 0 for all 1 ≤ j ≤ n. Moreover, property
(3) implies that Jac(fk) vanishes transversely at the origin, and therefore that the matrix
(∂2g/∂zi∂zj(0)), 1 ≤ i, j ≤ n−1 is invertible, i.e. it represents a non-degenerate quadratic
form. This quadratic form can be diagonalized by a suitable change of coordinates ;
because the transversality property (3) is uniform, the coefficients are bounded between
fixed constants. After a suitable rescaling, we can therefore assume that ∂2g/∂zi∂zj(0)
is equal to 2 if i = j and 0 otherwise.

In conclusion, we get that g(z1, . . . , zn) = z21 + · · · + z2n−1 + h(z1, . . . , zn), where h is
the sum of a holomorphic function which vanishes up to order 3 at the origin and of a
non-holomorphic function which vanishes up to order 2 at the origin and has derivatives
bounded by O(k−1/2).

Let z be the column vector (z1, . . . , zn−1), and denote by z the vector (z1, . . . , zn).
Using the fact that g vanishes up to order 2 along Rk, we conclude that there exist
matrix-valued functions α, β and γ with the following properties :

(a) g(z) = tzα(z)z + tz̄β(z)z + tz̄γ(z)z̄ ; (α and γ are symmetric) ;
(b) α is approximately holomorphic and has uniformly bounded derivatives ; α(0) = I ;
(c) β and γ and their derivatives are bounded by fixed multiples of k−1/2.

The implicit function theorem then makes it possible to construct a C∞ approximately
holomorphic change of coordinates of the form z 7→ λ(z)z + µ(z)z̄ (with λ(0) orthogonal,
λ approximately holomorphic, µ = O(k−1/2)), such that g becomes of the form g(z) =
tzz + tz̄γ̃(z)z̄.
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Unfortunately, smooth coordinate changes are not sufficient to further simplify this
expression; instead, in order to obtain the desired local model one must use as coordinate
change an “approximately holomorphic homeomorphism”, which is smooth away from Rk

but admits only directional derivatives at the points of Rk. More precisely, starting from
g = tzz + h and using that h/|z|2 is bounded by O(k−1/2) +O(z), we can write

g(z) =

n−1
∑

j=1

z̃2j , z̃j = zj

(

1 +
z̄j
zj

h(z)

|z|2

)1/2

.

This gives the desired local model and ends the proof.

Remark 4.1. The local model at points of Rk only holds topologically (up to an ap-
proximately holomorphic homeomorphism), which is not fully satisfactory. However, by
replacing (3′) by a stronger condition, it is possible to obtain the same result in smooth
approximately holomorphic coordinates. This new condition can be formulated as follows.
Away from the cusp points, the complex lines (Im ∂fk)

⊥ define a line bundle V ⊂ TCP2|Dk
,

everywhere transverse to TDk. A neighborhood of the zero section in V can be sent via
the exponential map of the Fubini-Study metric onto a neighborhood of Dk (away from
the cusps), in such a way that each fiber Vx is mapped holomorphically to a subset Vx
contained in a complex line in CP2.

Lifting back to a neighborhood of Rk in X, we can define slices Wx = f−1k (Vfk(x)) for
all x ∈ Rk lying away from Ck. It is then possible to identify a neighborhood of Rk (away
from Ck) with a neighborhood of the zero section in the vector bundle W whose fiber at
x ∈ Rk is Ker ∂fk(x), in such a way that each fiber Wx gets mapped to Wx. Observe

moreover that, sinceWx is a complex subspace in (TxX, J̃k),W is endowed with a natural

complex structure induced by J̃k. It is then possible to ensure that the “exponential map”
from Wx to Wx is approximately J̃k-holomorphic for every x, and, using condition (4′),
holomorphic when x lies at distance less than δ/2 from a cusp point.

With this setup understood, and composing on both sides with the exponential maps,
fk induces a fiber-preserving map ψk between the bundles W and V ; this map is ap-
proximately holomorphic everywhere, and holomorphic at distance less than δ/2 from Ck.
The condition which we impose as a replacement of (3′) is that ψk should be fiberwise
holomorphic over a neighborhood of the zero section in W .

The proof of existence of quasiholomorphic maps satisfying this strengthened condition
follows a standard argument : trivializing locally V and W for each value of k, and given
asymptotically holomorphic maps ψk, Lemma 8 of [3] (see also [8]) implies the existence

of a fiberwise holomorphic map ψ̃k differing from ψk by O(k−1/2) over a neighborhood

of the zero section. It is moreover easy to check that ψ̃k = ψk near the cusp points. So,
in order to obtained the desired property, we introduce a smooth cut-off function and

define a map ψ̂k which equals ψ̃k near the zero section and coincides with ψk beyond a

certain distance. Going back through the exponential maps, we obtain a map f̂k which
differs from fk by O(k−1/2) and coincides with fk outside a small neighborhood of Rk and
near the cusp points. The corresponding perturbations of the asymptotically holomorphic
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sections sk ∈ Γ(C3 ⊗ L⊗k) are easy to construct. Moreover, we can always assume that

ψ̃k and ψk coincide at order 1 along the zero section, i.e. that f̂k and fk coincide up to

order 1 along the branch curve ; therefore, the branch curve of f̂k and its image are the

same as for fk, and so all properties of Definition 3.2 hold for f̂k.
Once this condition is satisfied, getting the correct local model at a point x ∈ Rk in

smooth approximately holomorphic coordinates is an easy task. Namely, we can define,
near fk(x), local approximately holomorphic coordinates Z2 on Dk and Z1 on the fibers
of V (Z1 is a complex linear function on each fiber, depending approximately holomor-
phically on Z2). Using the exponential map, we can use (Z1, Z2) as local coordinates

on CP2. Lifting Z2 via f̂k yields a local coordinate zn on Rk near x. Moreover, we
can locally define complex linear coordinates z1, . . . , zn−1 in the fibers of W , depend-
ing approximately holomorphically on zn. Using again the exponential map, (z1, . . . , zn)
define local approximately holomorphic coordinates on X. Then, by construction, lo-
cal equations are z1 = · · · = zn−1 = 0 for Rk and Z1 = 0 for Dk, and fk is given by
fk(z1, . . . , zn) = (ψk(z1, . . . , zn), zn). Moreover, we know that ψk is, for each value of zn,
a holomorphic function of z1, . . . , zn−1, vanishing up to order 2 at the origin. We can
then use the argument in the proof of Proposition 4.2 to obtain the expected local model
in smooth approximately holomorphic coordinates.

4.3. Monodromy invariants of quasiholomorphic maps

We now look at the monodromy invariants naturally arising from quasiholomorphic
maps to CP2. Let f : X − Z → CP2 be one of the maps constructed in Theorem 3.1 for
large enough k. The fibers of f are singular along the smooth symplectic curve R ⊂ X,
whose image in CP2 is a symplectic braided curve. Therefore, we obtain a first interesting
invariant by considering the critical curve D ⊂ CP2.

As in the four-dimensional case, using the projection π : CP2 − {(0 : 0 : 1)} → CP1 we
can describe the topology of D by a braid monodromy map

ρn : π1(C− {p1, . . . , pr})→ Bd, (6)

where p1, . . . , pr are the images by π of the cusps, nodes and tangency points of D, and
d = degD. Alternately, we can also express this monodromy as a braid group factorization

∆2 =
r
∏

j=1

Q−1j X
rj

1 Qj . (7)

Like in the four-dimensional case, this braid factorization completely characterizes the
curve D up to isotopy, but it is only well-defined up to simultaneous conjugation and
Hurwitz equivalence.

We now turn to the second part of the problem, namely describing the topology of the
map f : X−Z → CP2 itself. As in the case of Lefschetz pencils, we blow up X along Z in

order to obtain a well-defined map f̂ : X̂ → CP2. The fibers of f̂ are naturally identified
with those of f , made mutually disjoint by the blow-up process.
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Denote by Σ2n−4 the generic fiber, i.e. the fiber above a point of CP2 − D. The

structure of the singular fibers of f̂ can be easily understood by looking at the local
models obtained in Proposition 4.2. The easiest case is that of the fiber above a smooth
point of D. This fiber intersects R transversely in one point, where the local model is
(z1, . . . , zn) 7→ (z21+ · · ·+z

2
n−1, zn), which can be thought of as a one-parameter version of

the model map for the singularities of a Lefschetz pencil in dimension 2n− 2. Therefore,
as in that case, the singular fiber is obtained by collapsing a vanishing cycle, namely a

Lagrangian sphere Sn−2, in the generic fiber Σ, and the monodromy of f̂ maps a small
loop around D to a positive Dehn twist along the vanishing cycle.

The fiber of f̂ above a nodal point of D intersects R transversely in two points, and
is similarly obtained from Σ by collapsing two disjoint Lagrangian spheres. In fact, the
nodal point does not give rise to any specific local model in X, as it simply corresponds
to the situation where two points of R happen to lie in the same fiber.

Finally, in the case of a cusp point of D, the local model (z1, . . . , zn) 7→ (z31 + z1zn +
z22+· · ·+z

2
n−1, zn) can be used to show that the singular fiber is a “fishtail” fiber, obtained

by collapsing two Lagrangian spheres which intersect transversely in one point.

With this understood, the topology of f̂ is described by its monodromy around the
singular fibers. As in the case of Lefschetz fibrations, the monodromy consists of sym-
plectic automorphisms of Σ preserving the submanifold Z. However, as in §2, defining a
monodromy map with values in Mapω(Σ, Z) requires a trivialization of the normal bundle

of Z, which is only possible over an affine subset C2 ⊂ CP2. So, the monodromy of f̂ is
described by a group homomorphism

ψn : π1(C
2 −D)→ Mapω(Σ, Z). (8)

A simpler description can be obtained by restricting oneself to a generic line L ⊂ CP2

which intersects D transversely in d points q1, . . . , qd. In fact, Definition 3.2 implies
that we can use the fiber of π above (0 : 1) for this purpose. As in §3.2, the inclusion
i : C−{q1, . . . , qd} → C2−D induces a surjective homomorphism on fundamental groups.
The relations between the geometric generators γ1, . . . , γd of π1(C2 −D) are again given
by the braid factorization (one relation for each factor) in the same manner as in §3.2.
Note that the relation γ1 . . . γd = 1 only holds in π1(CP2 −D), not in π1(C2 −D).

It follows from these observations that the monodromy of f̂ can be described by the
monodromy morphism

θn−1 : π1(C− {q1, . . . , qd})→ Mapω(Σ, Z) (9)

defined by θn−1 = ψn ◦ i∗. We know from the above discussion on the structure of f̂
near its critical points that θn−1 maps the geometric generators of π1(C − {q1, . . . , qd})
to positive Dehn twists. Moreover, by considering the normal bundle to the exceptional
divisor in X̂ one easily checks that the monodromy around infinity is again a twist along
Z in Σ, i.e. θn−1(γ1 . . . γd) = δZ .

These properties of θn−1 are strikingly similar to those of the monodromy of a sym-
plectic Lefschetz pencil. In fact, let W = f−1(L) be the preimage of a complex line
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L = CP1 ⊂ CP2 intersecting D transversely. Then the restriction of f to the smooth
symplectic hypersurfaceW ⊂ X endows it with a structure of symplectic Lefschetz pencil
with generic fiber Σ and base set Z ; for example, if one chooses L = π−1(0 :1), then W
is the zero set of s0k and the restricted pencil f|W : W − Z → CP1 is defined by the two

sections s1k and s2k. The monodromy of the restricted pencil is, by construction, given by
the map θn−1.

The situation is summarized in the following picture :
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Remark 4.2. If a cusp point of D happens to lie close to the chosen line L, then two
singular points of the restricted pencil f|W lie close to each other. This is not a problem
here, but in general if we want to avoid this situation we need to impose one additional
transversality condition on f . Namely, we must require the uniform transversality to 0 of
∂(f|W ), which is easily obtained by imitating Donaldson’s argument from [10]. Another
situation in which this property naturally becomes satisfied is the one described in §5.

Given a braided curve D ⊂ CP2 of degree d described by a braid factorization as in
(7), and given a monodromy map θn−1 as in (9), certain compatibility conditions need
to hold between them in order to ensure the existence of a CP2-valued map with critical
curve D and monodromy θn−1. Namely, θn−1 must factor through π1(C2 −D), and the
fibration must behave in accordance with the expected models near the special points of
D. We introduce the following definition summarizing these compatibility properties :

Definition 4.1. A geometric (n− 1)-dimensional monodromy representation associated
to a braided curve D ⊂ CP2 is a surjective group homomorphism θn−1 from the free group
π1(C − {q1, . . . , qd}) = Fd to a symplectic mapping class group Mapω(Σ2n−4, Z2n−6),
mapping the geometric generators γi (and thus also the γi ∗Qj) to positive Dehn twists
and such that

θn−1(γ1 . . . γd) = δZ ,
θn−1(γ1 ∗Qj) = θn−1(γ2 ∗Qj) if rj = 1,
θn−1(γ1∗Qj) and θn−1(γ2∗Qj) are twists along disjoint Lagrangian spheres if rj = ±2,
θn−1(γ1 ∗ Qj) and θn−1(γ2 ∗ Qj) are twists along Lagrangian spheres transversely in-

tersecting in one point if rj = 3.
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As in the four-dimensional case, θn−1 remains unchanged and the compatibility condi-
tions are preserved when the braid factorization defining D is affected by a Hurwitz move.
However, when all factors in the braid factorization are simultaneously conjugated by a
certain braid Q ∈ Bd, the system of geometric generators γ1, . . . , γd changes accordingly,
and so the geometric monodromy representation θn−1 should be replaced by θn−1 ◦ Q∗,
where Q∗ is the automorphism of Fd induced by the braid Q. For example, conjugating
the braid factorization by one of the generating half-twists in Bd affects the monodromy
θn−1 of the restricted pencil by a Hurwitz move.

One easily checks that, given a symplectic braided curve D ⊂ CP2 and a compatible
monodromy representation θn−1 : Fd → Mapω(Σ, Z), it is possible to recover a compact
2n-manifold X and a map f : X − Z → CP2 in a canonical way up to smooth isotopy.
Moreover, it is actually possible to endow X with a symplectic structure, canonically up
to symplectic isotopy. Indeed, by first applying Theorem 2.2 to the monodromy map θn−1
we can recover a canonical symplectic structure on the total space W of the restricted
Lefschetz pencil ; furthermore, as will be shown in §4.4 below, the braid monodromy
of D and the compatible monodromy representation θn−1 determine on X a structure of
Lefschetz pencil with generic fiberW and base set Σ, which implies by a second application
of Theorem 2.2 that X carries a canonical symplectic structure. The same result can also
be obtained more directly, by adapting the statement and proof of Theorem 2.2 to the
case of CP2-valued maps.

As in the four-dimensional case, we can naturally define symplectic invariants arising
from the quasiholomorphic maps constructed in Theorem 4.1. However, we again need to
take into account the possible presence of negative self-intersections in the critical curves
of these maps. Therefore, the braid factorizations we obtain are only canonical up to
global conjugation, Hurwitz equivalence, and pair cancellations or creations. As in the
four-dimensional case, a pair creation operation (inserting two mutually inverse factors
anywhere in the braid factorization) is only allowed if the new factorization remains com-
patible with the monodromy representation θn−1, i.e. if θn−1 maps the two corresponding
geometric generators to Dehn twists along disjoint Lagrangian spheres.

With this understood, we can introduce a notion of m-equivalence as in Definition 3.5.
The following result then holds :

Theorem 4.3. The braid factorizations and geometric monodromy representations as-
sociated to the quasiholomorphic maps to CP2 obtained in Theorem 4.1 are, for k À 0,
canonical up to m-equivalence (up to a choice of line bundle L when the cohomology class
[ω] is not integral), and define symplectic invariants of (X2n, ω).

Conversely, the data consisting of a braid factorization and a geometric (n − 1)-
dimensional monodromy representation, or a m-equivalence class of such data, determines
a symplectic 2n-manifold in a canonical way up to symplectomorphism.

Remark 4.3. The invariants studied in this section are a very natural generalization of
those defined in §3.2 for 4-manifolds. Namely, when dimX = 4, we naturally get that
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Z = ∅ and dimΣ = 0, i.e. the generic fiber Σ consists of a finite number of points, as
expected for a branched covering map. In particular, the mapping class group Map(Σ) of
the 0-manifold Σ is in fact the symmetric group of order card(Σ). Finally, a Lagrangian
0-sphere in Σ is just a pair of points of Σ, and the associated Dehn twist is simply the
corresponding transposition. With this correspondence, the results of §3 are the exact
four-dimensional counterparts of those described here.

4.4. Quasiholomorphic maps and symplectic Lefschetz pencils

Consider again a symplectic manifold (X2n, ω) and let f : X−Z → CP2 be a map with
the same topological properties as those obtained by Theorem 4.1 from sections of L⊗k

for k large enough. As in the four-dimensional case, the CP1-valued map π ◦ f defines a
Lefschetz pencil structure on X, obtained by lifting via f a pencil of lines on CP2. The
base set of this pencil is the fiber of f above the pole (0 :0 :1) of the projection π.

In fact, starting from the quasiholomorphic maps fk given by Theorem 4.1, the sym-
plectic Lefschetz pencils π ◦ fk coincide for k À 0 with those obtained by Donaldson in
[10] and described in §2 ; calling s0k, s

1
k, s

2
k the sections of L⊗k defining fk, the Lefschetz

pencil π ◦ fk is the one induced by the sections s0k and s1k.
Therefore, as in the case of a 4-manifold, the invariants described in §4.3 (braid factor-

ization and (n− 1)-dimensional geometric monodromy representation) completely deter-
mine those discussed in §2 (factorizations in mapping class groups). Once again, the topo-
logical description of the relation between quasiholomorphic maps and Lefschetz pencils
involves a subgroup of θn−1-liftable braids in the braid group, and a group homomorphism
from this subgroup to a mapping class group.

Consider a symplectic braided curve D ⊂ CP2, described by its braid monodromy
ρn : π1(C−{p1, . . . , pr})→ Bd, and a compatible (n− 1)-dimensional monodromy repre-
sentation θn−1 : Fd = π1(C − {q1, . . . , qd}) → Mapω(Σ2n−4, Z2n−6). Then we can make
the following definition :

Definition 4.2. The subgroup B0d(θn−1) of liftable braids is the set of all braids Q ∈ Bd

such that θn−1 ◦ Q∗ = θn−1, where Q∗ ∈ Aut(Fd) is the automorphism induced by the
braid Q on π1(C− {q1, . . . , qd}).

A topological definition of B0d(θn−1) can also be given in terms of universal fibrations
and coverings of configuration spaces, similarly to the description in §3.3.

More importantly, denote by W the total space of the symplectic Lefschetz pencil
LP (θn−1) with generic fiber Σ and monodromy θn−1. For example, if ρn and θn−1 are the
monodromy morphisms associated to a quasiholomorphic map given by sections s0k, s

1
k, s

2
k

of L⊗k over X, thenW is the smooth symplectic hypersurface in X given by the equation
s0k = 0 ; indeed, as seen in §4.3, this hypersurface carries a Lefschetz pencil structure with
generic fiber Σ, induced by s1k and s2k, and the monodromy of this restricted pencil is
precisely θn−1. A braid Q ∈ Bd can be viewed as a motion of the critical set {q1, . . . , qd}
of the Lefschetz pencil LP (θn−1) ; after this motion we obtain a new Lefschetz pencil
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with monodromy θn−1 ◦Q∗. So the subgroup B0d(θn−1) precisely consists of those braids
which preserve the monodromy of the Lefschetz pencil LP (θn−1).

Viewing braids as compactly supported symplectomorphisms of the plane preserving
{q1, . . . , qd}, the fact that Q belongs to B0d(θn−1) means that it can be lifted via the

Lefschetz pencil mapW−Z → CP1 to a symplectomorphism ofW . Since the monodromy
of the pencil LP (θn−1) preserves a neighborhood of the base set Z, the lift to W of the
braid Q coincides with the identity over a neighborhood of Z. Even better, because Q
is compactly supported, its lift to W coincides with Id near the fiber above the point
at infinity in CP1, which can be identified with Σ. Therefore, the lift of Q to W is a
well-defined element of the mapping class group Mapω(W,Σ), which we call (θn−1)∗(Q).
This construction defines a group homomorphism

(θn−1)∗ : B
0
d(θn−1)→ Mapω(W 2n−2,Σ2n−4).

Since the geometric monodromy representation θn−1 is compatible with the braid-
ed curve D ⊂ CP2, the image of the braid monodromy homomorphism ρn : π1(C −
{p1, . . . , pr}) → Bd describing D is entirely contained in B0d(θn−1). Indeed, it follows
from Definition 4.1 that θn−1 factors through π1(C2 −D), on which the braids of Im ρn
act trivially. As a consequence, we can use the group homomorphism (θn−1)∗ in order to
obtain, from the braid monodromy ρn, a group homomorphism

θn = (θn−1)∗ ◦ ρn : π1(C− {p1, . . . , pr})→ Mapω(W,Σ).

If ρn and θn−1 describe the monodromy of a CP2-valued map f , then θn is by construction
the monodromy of the corresponding Lefschetz pencil π◦f . Therefore, the following result
holds :

Proposition 4.4. Let f : X−Z → CP2 be one of the quasiholomorphic maps of Theorem
4.1. Let D ⊂ CP2 be its critical curve, and denote by ρn : π1(C−{p1, . . . , pr})→ B0d(θn−1)
and θ : Fd → Mapω(Σ, Z) be the corresponding monodromies. Then the monodromy map
θn : π1(C − {p1, . . . , pr}) → Mapω(W,Σ) of the Lefschetz pencil π ◦ f is given by the
identity θn = (θn−1)∗ ◦ ρn.

In particular, for k À 0 the symplectic invariants given by Theorem 2.1 are obtained
in this manner from those defined in Theorem 4.3.

As in the four-dimensional case, all the factors of degree ±2 or 3 in the braid mon-
odromy (corresponding to the cusps and nodes of D) lie in the kernel of (θn−1)∗ ; the only
terms which contribute non-trivially to the pencil monodromy θn are those arising from
the tangency points of the branch curve D, and each of these contributions is a Dehn
twist.

More precisely, the image in Mapω(W,Σ) of a half-twist Q ∈ B0d(θn−1) arising as the
braid monodromy around a tangency point of D can be constructed as follows. Consider
the Lefschetz pencil LP (θn−1) with total spaceW , generic fiber Σ, critical levels q1, . . . , qd
and monodromy θn−1. Call γ the path joining two of the points q1, . . . , qd (e.g., qi1 and qi2)
and naturally associated to the half-twist Q (the path along which the twisting occurs).
By Definition 4.1, the monodromies of LP (θn−1) around the two end points qi1 and qi2
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are the same Dehn twists (using γ to identify the two singular fibers). Even better, in
this context one easily shows that the vanishing cycles at the two end points of γ are
isotopic Lagrangian spheres in Σ. Then it follows from the work of Donaldson and Seidel
that, above the path γ, one can find a Lagrangian sphere L = Sn−1 ⊂ W , joining the
singular points of the fibers above qi1 and qi2 , and intersecting each fiber inbetween in a
Lagrangian sphere Sn−2 (there is in fact a hidden subtlety in the argument, but working
on pencils rather than fibrations it can be seen that the isotopy of the two vanishing
cycles is sufficient). The element (θn−1)∗(Q) in Mapω(W,Σ) is the positive Dehn twist
along the Lagrangian sphere L.

Remark 4.4. Let (X2n, ω) be a compact symplectic manifold, and consider the sym-
plectic Lefschetz pencils given by Donaldson’s result (Theorem 2.1) from pairs of sections
of L⊗k for k À 0 ; the monodromy of these Lefschetz pencils consists of generalized
Dehn twists around Lagrangian (n − 1)-spheres in the generic fiber Wk. It follows from
Proposition 4.4 that these Lagrangian spheres are not arbitrary. Indeed, they can all be
obtained by endowing Wk with a structure of symplectic Lefschetz pencil induced by two
sections of L⊗k (the existence of such a structure follows from the results of this section),
and by looking for Lagrangian (n−1)-spheres which join two mutually isotopic vanishing
cycles of this pencil above a path in the base.

As observed by Seidel, this remarkable structure of vanishing cycles makes it possible
to hope for a purely combinatorial description of Lagrangian Floer homology, at least
for Lagrangian spheres : one can try to use the structure of vanishing cycles in a 2n-
dimensional Lefschetz pencil to reduce things first to the 2n − 2-dimensional case, and
then by induction eventually to the case of 0-manifolds, in which the calculations are
purely combinatorial.

5. Complete linear systems and dimensional induction

We now show how the results of §4 can be used in order to reduce in principle the
classification of compact symplectic manifolds to a purely combinatorial problem.

The idea behind this approach is to consider a linear system of rank greater than 3,
using partial monodromy data to define invariants which allow a dimensional reduction
process. This strategy is somewhat complementary to the result obtained by Gompf in
[11], showing that the total space of a “hyperpencil” (a rank n− 1 linear system) carries
a canonical symplectic structure.

Definition 5.1. Let (X2n, ω) be a compact symplectic manifold. We say that asymp-
totically holomorphic (n + 1)-tuples of sections of L⊗k define braiding complete linear
systems on X if, for large values of k, these sections s0, . . . , sn ∈ Γ(L⊗k) satisfy the
following properties :

(a) for 0 ≤ r ≤ n − 1, the section (sr+1, . . . , sn) of Cn−r ⊗ L⊗k satisfies a uniform
transverslity property, and its zero set Σr = {sr+1 = · · · = sn = 0} is a smooth symplectic
submanifold of dimension 2r in X. We also define Σn = X and Σ−1 = ∅ ;
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(b) for 1 ≤ r ≤ n, the pair of sections (sr, sr−1) ∈ Γ(C2 ⊗ L⊗k) defines a structure of
symplectic Lefschetz pencil on Σr, with generic fiber Σr−1 and base set Σr−2 ;

(c) for 2 ≤ r ≤ n, the triple of sections (sr, sr−1, sr−2) ∈ Γ(C3 ⊗ L⊗k) defines a
quasiholomorphic map from Σr to CP2, with generic fiber Σr−2 and base set Σr−3.

One can think of a braiding complete linear system in the following way. First, the
two sections sn and sn−1 define a Lefschetz pencil structure on X. By adding the section
sn−2, this structure is refined into a quasiholomorphic map to CP2. As observed in §4,
by restricting to the hypersurface Σn−1 we get a symplectic Lefschetz pencil defined by
sn−1 and sn−2. This structure is in turn refined into a quasiholomorphic map by adding
the section sn−3 ; and so on.

Note that, except for the case r = 1, part (b) of Definition 5.1 is actually an immediate
consequence of part (c), because by composing CP2-valued quasiholomorphic maps with
the projection π : CP2−{(0 :0 :1)} → CP1 one always obtains Lefschetz pencils. Also note
that, in order to make sense out of these properties, one implicitly needs to endow the
submanifolds Σr with ω-compatible almost-complex structures ; these restricted almost-
complex structures can be chosen to differ from the almost-complex structure J on X
by O(k−1/2), so that asymptotic holomorphicity and transversality properties are not
affected by this choice.

Theorem 5.1. Let (X2n, ω) be a compact symplectic manifold. Then for all large enough
values of k it is possible to find asymptotically holomorphic sections of Cn+1 ⊗ L⊗k de-
termining braiding complete linear systems on X. Moreover, for large k these structures
are canonical up to isotopy and up to cancellations of pairs of nodes in the critical curves
of the quasiholomorphic CP2-valued maps.

Proof. We only give a sketch of the proof of Theorem 5.1. As usual, we need to obtain
two types of properties : uniform transversality conditions, which we ensure in the first
part of the argument, and compatibility conditions, which are obtained by a subsequent
perturbation. As in previous arguments, the various uniform transversality properties are
obtained successively, using the fact that, because transversality is an open condition, it
is preserved by any sufficiently small subsequent perturbations.

The first transversality properties to be obtained are those appearing in part (a) of
Definition 5.1, i.e. the transversality to 0 of (sr+1, . . . , sn) for all 0 ≤ r ≤ n− 1 ; this easy
case is e.g. covered by the main result of [2].

One next turns to the transversality conditions arising from the requirement that the
three sections (sn, sn−1, sn−2) define quasiholomorphic maps from X to CP2 : it follows
immediately from the proof of Theorem 4.1 that these properties can be obtained by
suitable small perturbations.

Next, we try to modify sn−1, sn−2 and sn−3 in order to ensure that the restrictions to
Σn−1 = s−1n (0) of these three sections satisfy the transversality properties of Definition
3.2. A general strategy to handle this kind of situation is to use the following remark
(Lemma 6 of [3]) : if φ is a section of a vector bundle F over X, satisfying a uniform
transversality property, and if W = φ−1(0), then the uniform transversality to 0 over W
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of a section ξ of a vector bundle E is equivalent to the uniform transversality to 0 over X
of the section ξ ⊕ φ of E ⊕ F , up to a change in transversality estimates. This makes it
possible to replace all transversality properties to be satisfied over submanifolds of X by
transversality properties to be satisfied over X itself ; each property can then be ensured
by the standard type of argument, using the globalization principle to combine suitably
chosen local perturbations (see [4] for more details).

However, in our case the situation is significantly simplified by the fact that, no matter
how we perturb the sections sn−1, sn−2 and sn−3, the submanifold Σn−1 itself is not
affected. Moreover, the geometry of Σn−1 is controlled by the transversality properties
obtained on sn ; for example, a suitable choice of the constant ρ > 0 (independent of k)
ensures that the intersection of Σn−1 with any ball of gk-radius ρ centered at one of its
points is topologically a ball (see e.g. Lemma 4 of [2]). Therefore, we can actually imitate
all steps of the argument used to prove Theorem 4.1, working with sections of L⊗k over
Σn−1. The localized reference sections of L⊗k over Σn−1 that we use in the arguments
are now chosen to be the restrictions to Σn−1 of the localized sections srefk,x of L⊗k over
X ; similarly, the approximately holomorphic local coordinates over Σn−1 in which we
work are obtained as the restrictions to Σn−1 of local coordinate functions on X. With
these two differences understood, we can still construct localized perturbations by the
same algorithms as in §4.1 and, using the standard globalization argument, achieve the
desired transversality properties over Σn−1. Moreover, all these local perturbations are
obtained as products of the localized reference sections by polynomial functions of the local
coordinates. Therefore, they naturally arise as restrictions to Σn−1 of localized sections
of L⊗k over X, and so we actually obtain well-defined perturbations of the sections sn−1,
sn−2 and sn−3 over X which yield the desired transversality properties over Σn−1.

We can continue similarly by induction on the dimension, until we obtain the transver-
sality properties required of s2, s1 and s0 over Σ2, and finally the transversality properties
required of s1 and s0 over Σ1. Observe that, even though the perturbations performed
over each Σr result in modifications of the submanifolds Σj (j < r) lying inside them,
these perturbations preserve the transversality properties of (sj+1, . . . , sn), and so the
submanifolds Σj retain their smoothness and symplecticity properties.

We now turn to the second part of the argument, i.e. obtaining the desired compatibility
conditions. First observe that the proof of Theorem 4.1 shows how, by a perturbation of
sn, sn−1 and sn−2 smaller than O(k−1/2), we can ensure that the various compatibility
properties of Definition 3.2 are satisfied by the CP2-valued map fn defined by these three
sections.

Next, we proceed to perturb fn−1 = (sn−1 : sn−2 : sn−3) over a neighborhood of its
ramification curve Rn−1 ⊂ Σn−1, in order to obtain the required compatibility proper-
ties for fn−1, but without losing those previously achieved for fn near its ramification
curve Rn ⊂ X. For this purpose, we first show that the curve Rn satisfies a uniform
transversality property with respect to the hypersurface Σn−1 in X.

The only way in which Rn can fail to be uniformly transverse to Σn−1 is if ∂(π ◦fn|Rn
)

becomes small at a point of Rn near Σn−1. Because fn satisfies property (6) in Definition
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3.2, this can only happen if a cusp point or a tangency point of fn lies close to Σn−1.
However, property (7) of Definition 3.2 implies that this point cannot belong to Σn−1.
Therefore, two of the intersection points of Rn with Σn−1 must lie close to each other.
Observe that the points of Rn ∩ Σn−1 are precisely the critical points of the Lefschetz
pencil induced on Σn−1 by sn−1 and sn−2, i.e. the tangency points of the map fn−1.
The transversality properties already obtained for fn−1 imply that two tangency points
cannot lie close to each other ; we get a contradiction, so the cusps and tangencies of fn
must lie far away from Σn−1, and Rn and Σn−1 are mutually transverse.

This implies in particular that a small perturbation of sn−1, sn−2 and sn−3 localized
near Σn−1 cannot affect properties (4

′) and (6′) for fn, and also that the only place where
perturbing fn−1 might affect fn is near the tangency points of fn−1.

We now consider the set Cn−1∪Tn−1∪In−1 of points where we need to ensure properties
(4′), (6′) and (8′) for fn−1. The first step is as usual to perturb J into an almost-complex
structure which is integrable near these points ; once this is done, we perturb fn−1 to
make it locally holomorphic with respect to this almost-complex structure.

We start by considering a point x ∈ Cn−1∪In−1, where the issue of preserving properties
of fn does not arise. We follow the argument in §4.1 of [3]. First, it is possible to perturb
the almost-complex structure J over a neighborhood of x in X in order to obtain an
almost-complex structure J̃ which differs from J by O(k−1/2) and is integrable over a

small ball centered at x. Recall from [3] that J̃ is obtained by choosing approximately
holomorphic coordinates onX and using them to pull back the standard complex structure
of Cn ; a cut-off function is used to splice J with this locally defined integrable structure.
Since we can choose the local coordinates in such a way that a local equation of Σn−1 is

zn = 0, we can easily ensure that Σn−1 is, over a small neighborhood of x, a J̃-holomorphic
submanifold of X. Next, we can perturb the sections sn−1, sn−2, sn−3 of L

⊗k by O(k−1/2)

in order to make the projective map defined by them J̃-holomorphic over a neighborhood
of x in X (see [3]). This holomorphicity property remains true for the restrictions to the

locally J̃-holomorphic submanifold Σn−1. So, we have obtained the desired compatibility
property near x.

We now consider the case of a point x ∈ Tn−1, where we need to obtain property (6′)
for fn−1 while preserving property (8′) for fn. We first observe that, by the construc-
tion of the previous step (getting property (8′) for fn at x), we have a readily available

almost-complex structure J̃ integrable over a neighborhood of x in X. In particular, by
construction fn is locally J̃-holomorphic and Σn−1 is locally a J̃-holomorphic submanifold
of X. We next try to make the projective map fn−1 holomorphic over a neighborhood of
x, using once again the argument of [3]. The key observation here is that, because one
of the sections sn−1 and sn−2 is bounded from below at x, we can reduce to a C2-valued
map whose first component is already holomorphic. Therefore, the perturbation process
described in [3] only affects sn−3, while the two other sections are preserved. This means

that we can ensure the local J̃-holomorphicity of fn−1 without affecting fn.
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It is easy to combine the various localized perturbations performed near each point of
Cn−1 ∪ Tn−1 ∪ In−1 ; this yields properties (4′), (6′) and (8′) of Definition 3.2 for fn−1.

We now use a generically chosen small perturbation of sn−1, sn−2 and sn−3 in order
to ensure property (7), i.e. the self-transversality of the critical curve of fn−1. It is
important to observe that, because fn satisfies property (7), the images by the projective
map (sn−1 : sn−2) of the points of Rn ∩ Σn−1 = In = Tn−1 are all distinct from each
other, and because fn satisfies property (5) they are also distinct from (0:1). Therefore,
we can choose a perturbation which vanishes identically over a neighborhood of Tn−1 ;
this makes it possible to obtain property (7) for fn−1 without losing any property of fn.

Finally, by the process described in §4.2 of [3] we construct a perturbation yielding
property (3′) along the critical curve of fn−1 ; this perturbation is originally defined only
for the restrictions to Σn−1 but it can easily be extended outside of Σn−1 by using a cut-
off function. The two important properties of this perturbation are the following : first,
it vanishes identically near the points where fn−1 has already been made J̃-holomorphic,
and in particular near the points of Tn−1 ; therefore, none of the properties of fn are
affected, and properties (4′), (6′) and (8′) of fn−1 are not affected either. Secondly, this
perturbation does not modify the critical curve of fn−1 nor its image, so property (7) is
preserved. We have therefore obtained all desired properties for fn−1.

We can continue similarly by induction on the dimension, until all required compati-
bility properties are satisfied. Observe that, because the ramification curve of fr remains
away from its fiber at infinity Σr−2, we do not need to worry about the possible effects
on fr of perturbations of fr−2. Therefore, the argument remains the same at each step,
and we can complete the proof of the existence statement in Theorem 5.1 in this way.

The proof of the uniqueness statement relies, as usual, on the extension of the whole
construction to one-parameter families ; this is easily done by following the same ideas as
in previous arguments.

The structures of braiding complete linear systems given by Theorem 5.1 are extremely
rich, and lead to interesting invariants of compact symplectic manifolds. Indeed, recall
from Definition 5.1 that, for 1 ≤ r ≤ n, the sections sr and sr−1 define a symplectic Lef-
schetz pencil structure on Σr, with generic fiber Σr−1 and base set Σr−2. The monodromy
of this pencil is given by a group homomorphism

θr : π1(C− {p1, . . . , pdr
})→ Mapω(Σr−1,Σr−2). (10)

Moreover, for 2 ≤ r ≤ n, the sections sr, sr−1 and sr−2 define a quasiholomorphic
map from Σr − Σr−3 to CP2, with generic fiber Σr−2. Denote by Dr ⊂ CP2 the critical
curve of this map, and let dr−1 = degDr. As shown in §4.3, we obtain two monodromy
morphisms : on one hand, the braid monodromy homomorphism characterizing Dr,

ρr : π1(C− {p1, . . . , psr
})→ Bdr−1

, (11)

and on the other hand, a compatible (r − 1)-dimensional monodromy representation,
which was shown in §4.3 to be none other than

θr−1 : π1(C− {p1, . . . , pdr−1
})→ Mapω(Σr−2,Σr−3).
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Finally, it was shown in §4.4 that Im(ρr) ⊆ B0dr−1
(θr−1), and that the various mon-

odromies are related to each other by the identity

θr = (θr−1)∗ ◦ ρr. (12)

In particular, the manifold X is completely characterized by the braid monodromies
ρ2, . . . , ρn and by the map θ1 with values in Mapω(Σ0, ∅), which is a symmetric group ;
this data is sufficient to successively reconstruct all morphisms θr and all submanifolds
Σr by inductively using equation (12).

In other words, a symplectic 2n-manifold is characterized by n− 2 braid factorizations
and a word in a symmetric group ; or, stopping at θ2, we can also consider n − 3 braid
factorizations and a word in the mapping class group of a Riemann surface.

These results can be summarized by the following theorem :

Theorem 5.2. The braid monodromies ρ2, . . . , ρn and the symmetric group representa-
tion θ1 associated to the braiding complete linear systems obtained in Theorem 5.1 are,
for k À 0, canonical up to m-equivalence, and define symplectic invariants of (X2n, ω).

Conversely, the data consisting of several braid factorizations and a symmetric group
representation satisfying suitable compatibility conditions, or a m-equivalence class of such
data, determines a symplectic 2n-manifold in a canonical way up to symplectomorphism.

In principle, this result reduces the study of compact symplectic manifolds to purely
combinatorial questions about braid groups and symmetric groups ; however, the in-
variants it introduces are probably quite difficult to compute as soon as one considers
examples which are not complex algebraic. Nevertheless, it seems that this construction
should be very helpful in improving our understanding of the topology of Lefschetz pencils
in dimensions greater than 4.
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