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1. Introduction

It was shown in [1] that every compact symplectic 4-manifold (X,ω)
can be realized as an approximately holomorphic branched covering of CP

2

whose branch curve is a symplectic curve in CP
2 with cusps and nodes as

only singularities (however the nodes may have reversed orientation). Such
a covering is obtained by constructing a suitable triple of sections of the line
bundle L⊗k, where L is a line bundle obtained from the symplectic form
(its Chern class is given by c1(L) = 1

2π [ω] when this class is integral), and
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where k is a large enough integer. Moreover, it was shown in [5] that the
braid monodromy techniques introduced by Moishezon and Teicher in alge-
braic geometry (see e.g. [10, 12, 17]) can be used in this situation to derive,
for each large enough value of the degree k, monodromy invariants which
completely describe the symplectic 4-manifold (X,ω) up to symplectomor-
phism. These invariants are also related to those constructed by Donaldson
and arising from the monodromy of symplectic Lefschetz pencils [8], which
also are defined only for large values of k.

The monodromy invariants arising from branched coverings or symplectic
Lefschetz pencils give, in principle at least, complete information about the
topology of a symplectic manifold ; for example, it is expected that they can
be used to symplectically tell apart certain pairs of mutually homeomorphic
algebraic surfaces of general type, such as the Horikawa manifolds, which
no other currently available symplectic invariant can distinguish. However,
their practical usefulness is immensely limited by the difficulties involved in
their calculation, even though the computations by Moishezon, Teicher and
Robb of the braid monodromies for certain simple types of algebraic surfaces
(CP

2, CP
1×CP

1, complete intersections) [17] give some reason to be hopeful
(see also [4] for other examples); moreover, the difficulty of comparing two
braid group or mapping class group factorizations up to Hurwitz equivalence
is a major obstacle.

One of the main technical problems arising in this program is that the
monodromy only becomes a symplectic invariant when the degree is large
enough, which makes it necessary to handle whole sequences of braid fac-
torizations. Even when the entire sequence can be obtained directly out of
Moishezon-Teicher style calculations [17, 4], it is very difficult to understand
how to extract meaningful information out of the monodromy data, due to
the lack of a clear relationship between the monodromies arising for different
values of the twisting parameter k.

The aim of this paper is to describe an explicit formula relating the braid
monodromy invariants obtained for a given degree k to those obtained for
the degree 2k. The interest of such a formula is obvious from the above
considerations, especially as direct computations of braid monodromy often
become intractable for large degrees. We also give a similar formula for the
monodromy of symplectic Lefschetz pencils; this formula, which may have
even more applications than that for braid monodromies, answers a question
first considered by Donaldson and for which a partial (non-explicit) result
has been obtained by Smith [16]. Although the formula for pencils is much
simpler than that for branched coverings, the currently available technology
for monodromy calculations seems insufficient to allow a direct proof.

The techniques introduced in this paper suggest a wide range of applica-
tions. First of all, calculations similar to those in this paper appear in any
situation involving iterated branched coverings ; for example, the invariants
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defined by Moishezon and Teicher should become effectively computable for
a much larger class of algebraic surfaces (see e.g. §7 of [4]).

An obvious class of applications is to study the properties of high-degree
branched coverings or Lefschetz pencils. For example, Smith has shown
using a degree doubling argument that any compact symplectic 4-manifold
admits a symplectic Lefschetz pencil without reducible singular fibers [16].
Although this specific result can be obtained just from the universality prop-
erty of degree doubling rather than from the actual formula, other applica-
tions require a more detailed understanding of the degree doubling process.

More importantly, the degree doubling formula provides precise informa-
tion on the behavior of various monodromy-related invariants as the param-
eter k increases. For example, it is in principle possible to describe how the
fundamental group of the complement of the branch curve, or more gen-
erally any other invariant directly related to the monodromy group of the
branched covering or Lefschetz pencil, depends on the parameter k. It is
likely that the conjectures formulated in [4] can be approached from this
perspective.

In a similar direction, it is reasonable to expect the degree doubling for-
mula to yield a stability result for the “directed Fukaya categories” intro-
duced by Seidel as invariants of Lefschetz pencils [15]. Unlike the direct
calculation methods following Moishezon and Teicher, our formula makes
it immediately apparent how Lagrangian spheres lying in standard position
inside the degree k pencil automatically lie inside the degree 2k pencil; the
explicit description of the additional vanishing cycles makes it possible to
hope that, under certain assumptions, the degree 2k pencil can be shown to
contain no other such spheres.

Yet another question to which our result may give an answer is that of
whether every branched covering over CP

2 (or every symplectic Lefschetz
pencil) is “of Donaldson type” (see the remark at the end of §1.2).

Finally, extensions to higher-dimensional settings of the stabilization pro-
cedure described here are theoretically possible, even though it remains un-
certain whether it is actually possible to carry out the calculations.

The remainder of this section is devoted to an overview of braid mon-
odromy invariants (§1.1), followed by a sketch of our approach to the degree
doubling process and a statement of the main results (§1.2 and §1.3).

1.1. Braid monodromy invariants. We start by recalling the notations
and results (see [5] or [2] for details). Let f : X → CP

2 be an approximately
holomorphic branched covering map as in [1] and [5] : its topology is mostly
described by that of the branch curve D ⊂ CP

2, which is symplectic and
approximately holomorphic. The only singularities of D are double points
(with either orientation) and cusps (with the complex orientation only) ; the
branching is of order 2 at every smooth point of D. Fix a generic projection
π : CP

2−{pt} → CP
1 whose pole does not belong to D. We can assume that
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D is transverse to the fibers of π everywhere except at a finite set of non-
degenerate tangency points, where a local model is x2 = y with projection to
the x component ; moreover, we can also assume that all the special points
of D (tangencies and singular points) lie in distinct fibers of π, and that
none of them lies in the fiber above the point at infinity in CP

1.
The idea introduced by Moishezon in the case of a complex curve is that,

restricting oneself to the preimage of the affine subset C ⊂ CP
1, the mon-

odromy of π|D around its critical levels can be used to define a map from
π1(C − crit) with values in the braid group Bd on d = degD strings, called
braid monodromy (see e.g. [10]) ; this monodromy is encoded by a fac-
torization of the central element ∆2

d of the braid group Bd. Namely, the

monodromy around the point at infinity in CP
1, which is given by the cen-

tral braid ∆2
d, decomposes as the product of the monodromies around the

critical levels of the projection to CP
1, each of these being conjugate to a

power of a half-twist. This construction naturally depends on the choice of
an ordered set of generating loops for the free group π1(C − crit).

The same techniques extend almost immediately to the symplectic setting,
and the resulting braid factorizations are of the form

∆2
d =

∏

j

(Q−1
j X

rj

1 Qj),

where X1 is the first standard generator of Bd (a positive half-twist), Qj are
arbitrary braids and rj ∈ {−2, 1, 2, 3}.

The case rj = 1 corresponds to a tangency point, where the curve D
is smooth and tangent to the fiber of the projection π ; the case rj = 2
corresponds to a nodal point of D ; the case rj = −2 is the mirror image of
the previous one, and corresponds to a negative self-intersection of D (this
is the only type of point which does not occur in the algebraic case) ; and
finally the case rj = 3 corresponds to a cusp singularity of D.

The above-described braid factorization completely determines the topol-
ogy of the curve D. However it is well-defined only up to the following two
algebraic operations. A Hurwitz move is the replacement of two consecu-
tive factors A and B by ABA−1 and A respectively (we will say that the
factor A has been “moved to the right”; the opposite move, which amounts
to replacing A and B by B and B−1AB respectively, will be referred to
as “moving B to the left”). Another possibility is global conjugation, i.e.
conjugating all factors simultaneously by a given braid. A Hurwitz move
amounts to an elementary change in the choice of generating loops for the
free group π1(C − crit), while a global conjugation amounts to a change of
trivialization of the reference fiber of π|D. Two factorizations represent the
same curve D if and only if they are Hurwitz and conjugation equivalent.

To recover a map X → CP
2 from the monodromy invariants we also need

a geometric monodromy representation. Let D ⊂ CP
2 be a curve of degree

d with cusps and nodes (possibly negative), and let C ⊂ CP
2 be a fiber of
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the projection π : CP
2 −{pt} → CP

1 which intersects D in d distinct points
q1, . . . , qd. Then, the inclusion of C − {q1, . . . , qd} into CP

2 − D induces a
surjective homomorphism on the fundamental groups. Small loops γ1, . . . , γd

around q1, . . . , qd in C generate π1(CP
2 − D), with relations coming from

the cusps, nodes and tangency points of D. These d loops will be called
geometric generators of π1(CP

2 −D).
Recall that there exists a natural right action of Bd on the free group

Fd = π1(C − {q1, . . . , qd}) ; denote this action by ∗, and recall the following
definition [12] :

Definition 1. A geometric monodromy representation associated to a curve
D ⊂ CP

2 is a surjective group homomorphism θ from the free group Fd =
π1(C − {q1, . . . , qd}) to the symmetric group Sn of order n, such that the
θ(γi) are transpositions (thus also the θ(γi ∗Qj)) and

θ(γ1 . . . γd) = 1,
θ(γ1 ∗Qj) = θ(γ2 ∗Qj) if rj = 1,
θ(γ1 ∗Qj) and θ(γ2 ∗Qj) are distinct and commute if rj = ±2,
θ(γ1 ∗Qj) and θ(γ2 ∗Qj) do not commute if rj = 3.

In this definition, n corresponds to the number of sheets of the covering
X → CP

2 ; the various conditions imposed on θ(γi ∗Qj) express the natural
requirements that the map θ : Fd → Sn should factor through the group
π1(CP

2 − D) and that the branching phenomena should occur in disjoint
sheets of the covering for a node and in adjacent sheets for a cusp. The
surjectivity of θ corresponds to the connectedness of the 4-manifold X; more
precisely, the image of θ is a subgroup of Sn generated by transpositions and
acting transitively on {1, . . . , n}, which implies surjectivity.

Operations such as Hurwitz moves and global conjugations should be
considered simultaneously on the level of braid factorizations and on that
of the corresponding geometric monodromy representations : a Hurwitz
move does not affect the geometric monodromy representation, but when
performing a global conjugation by a braid Q it is necessary to compose θ
with the automorphism of Fd induced by Q.

In the symplectic case the curve D can have negative nodes, and as a con-
sequence the uniqueness result obtained in [1] only holds up to cancellation
of pairs of nodes. An additional possibility is therefore a pair cancellation
move in the braid factorization, where two consecutive factors which are the
exact inverse of each other are removed from the factorization. The converse
move (a pair creation) is also allowed, but only when it is compatible with
the geometric monodromy representation : adding (Q−1X−2

1 Q).(Q−1X2
1 Q)

somewhere in the braid factorization is only legal if θ(γ1 ∗Q) and θ(γ2 ∗Q)
are commuting disjoint transpositions.

Definition 2. Two braid factorizations (and the corresponding geometric
monodromy representations) are m-equivalent if there exists a sequence of
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operations which turn one into the other, each operation being either a global
conjugation, a Hurwitz move, or a pair cancellation or creation.

We now summarize the main results of [5] :

Theorem 1 ([5]). The compact symplectic 4-manifold X is uniquely char-
acterized by the sequence of braid factorizations and geometric monodromy
representations corresponding to the approximately holomorphic coverings
of CP

2 canonically obtained from sections of L⊗k for k � 0, up to m-
equivalence.

It was also shown in [5] that conversely, given a (cuspidal negative) braid
factorization and a geometric monodromy representation, one can recover
in a canonical way a symplectic 4-manifold (up to symplectomorphism).

1.2. The degree doubling process. We now turn to the topic at hand,
namely the phenomena that occur when the degree k is changed to 2k.

In all the following, we will assume that k is large enough for the unique-
ness properties of Theorem 1 to hold (if the considered coverings happen
to be algebraic this assumption is unnecessary). This makes it possible to
choose the most convenient process for constructing the branch curve for
degree 2k while ensuring that the resulting branch curve is indeed equiva-
lent to the canonical one. As observed in [5], one especially interesting way
to obtain the covering map f2k : X → CP

2 is to start with the covering map
fk : X → CP

2 and compose it with the Veronese covering V2 : CP
2 → CP

2

given by three generic homogeneous polynomials of degree 2 (this is a 4:1
covering whose branch curve has degree 6, see below). The map V2 ◦ fk is
clearly an approximately holomorphic covering given by sections of L⊗2k,
and its branch curve is the union of the image by V2 of the branch curve Dk

of fk and n = deg fk copies of the branch curve C2 of V2 (the branch curve
C2 is present with multiplicity n because branching occurs at every preim-
age by fk of a branch point of V2). However at every point where V2(Dk)
intersects C2 the map V2 ◦ fk presents a non-generic singular behavior :
e.g., composing the branched coverings (x, y) 7→ (x2, y) and (x, y) 7→ (x, y2)
yields the singular map (x, y) 7→ (x2, y2), which needs to be perturbed in
order to obtain a generic behavior. Further small perturbations are required
in order to separate the multiple copies of C2 ; nevertheless, f2k is obtained
as a small perturbation of V2 ◦ fk and its branch curve D2k is obtained as a
small perturbation of V2(Dk) ∪ nC2.

For all large enough values of k, the approximate holomorphicity and
transversality properties of the above-described perturbation of V2◦fk make
it subject to the uniqueness results in [1] and [5] : the coverings constructed
directly and those obtained by composition with V2 and perturbation there-
fore become isotopic. So, for all large values of k we can indeed hope to
compute the braid factorization of f2k by this method.

Also observe that a generic isotopy (1-parameter deformation family) of
the curve Dk behaves “nicely” with respect to the chosen Veronese covering



A DEGREE DOUBLING FORMULA 7

V2, and therefore yields a generic isotopy of the curve V2(Dk). Since generic
isotopies do not modify braid factorizations (up to Hurwitz and conjuga-
tion equivalences in the algebraic category, or up to m-equivalence in the
symplectic category), we are allowed to perform a generic isotopy on the
curve Dk to place it in the most convenient position with respect to the
ramification curve of V2, and this will not affect the end result.

An important consequence of this observation is that the k → 2k formula
we are looking for is universal in the sense that it does not depend on the
branch curve Dk itself but only on its degree d and on the degree n of the
covering fk. Indeed, an isotopy can be used to make sure that all the special
points of Dk (cusps, nodes and tangencies) lie in a small ball B ⊂ CP

2

located far away from V −1
2 (C2), and that Dk looks like a union of d lines

outside of the ball B. For example, we can take V2 to be a small perturbation
of the non-generic quadratic map V 0

2 : (x : y : z) 7→ (x2 : y2 : z2), for
which the ramification curve consists of three lines (the coordinate axes),
and we can use a linear transformation to contract all the special points of
D (tangencies, nodes, cusps) into an arbitrarily small ball B centered at the
point (1 : 1 : 1).

With this setup, the contribution of D2k∩V2(B) to the braid monodromy
is the same as that of Dk ∩ B, and the braid monodromy coming from
D2k∩(CP

2−V2(B)) does not depend on the curve Dk but only on its degree
and on the geometric monodromy representation θ. The braid factorization
corresponding to f2k is therefore of the form

Fk · Ud,n,θ,

where Fk is the braid factorization for fk (after a suitable embedding of Bd

into the larger braid group Bd̄ corresponding to D2k) and Ud,n,θ is a word
in Bd̄ depending only on d, n and θ (d̄ = 2d+ 6n = degD2k).

From the above considerations, the strategy for obtaining the formula
giving the braid factorization for D2k in terms of the braid factorization for
Dk is the following. First one needs to understand the braid factorizations
corresponding to the two curves V2(Dk) and C2 taken separately. More
specifically, the braid factorization for V2(Dk) is obtained from that for Dk

via a “folding” formula describing the effect of the quadratic map V2; the
braid factorization for C2 (and consequently for n copies of C2) is obtained by
degenerating it to the branch curve of the map V 0

2 , which consists of three
lines forming a triangle, giving rise to three similar-looking contributions
from their mutual intersections. Next, one has to study the phenomena that
arise near the intersections of C2 with V2(Dk) ; these again give rise to three
similar contributions (one for each line in the branch curve of V 0

2 ). Finally
more calculations are required in order to combine these ingredients into a
formula for D2k. The main result is the following (see §3 for notations):

Theorem 2. Let fk : (X4, ω) → CP
2 be an approximately holomorphic

branched covering given by three sections of L⊗k. Denote by Dk the branch
curve of fk, and let d = degDk and n = deg fk. Denote by Fk the braid
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factorization corresponding to Dk, and assume that d ≤ n(n − 1). Then,
with the notations of §3, the braid factorization corresponding to the branch
curve D2k of f2k is given up to m-equivalence by a formula of the following
type, provided that k is large enough:

(1) ∆2
2d+6n = Td · ι(Fk) · I

α
d,n,θ · I

β
d,n,θ · V

αβ
n · Vαγ

n · Vβγ
n · Iγ

d,n,θ.

In this formula, Fk is viewed as a factorization in B2d+6n using a cer-
tain natural embedding ι : Bd ↪→ B2d+6n. The other terms correspond to
universal contributions (depending only on d, n and θ): more precisely, Td

arises from the folding of Dk by the quadratic map V2, while V
αβ
n , V

αγ
n ,

V
βγ
n arise from the braid monodromy of n parallel copies of the curve C2,

and Iα
d,n,θ, I

β
d,n,θ, I

γ
d,n,θ correspond to the intersections of V2(Dk) with C2.

The individual factors in each of these expressions are described in §3.6.
The proof of Theorem 2 is carried out in Sections 2 and 3 of this paper: the

strategy of proof outlined above is carefully justified in §2 (cf. in particular
Propositions 1 and 2); general properties of the braid group and notations
are introduced in §3.1 ; §3.2 describes the folding formula which gives the
braid factorization for V2(Dk) ; the braid factorization of the branch curve C2

of V2 is computed in §3.3 ; the local perturbation procedure to be performed
near the intersections of C2 with V2(Dk) is described in §3.4 ; §3.5 deals with
the assembling procedure that yields the braid factorization for D2k from
the previous ingredients ; finally, the calculation is completed in §3.6.

Remark. More generally, this procedure applies to any situation in-
volving iterated branched coverings : given two approximately holomorphic
branched covering maps f and g, the composed map h = g ◦ f has a non-
generic behavior at each of the intersection points of the branch curves of f
and g ; however, the perturbation procedure described in §3.4 also applies
to this situation, and calculations similar to those of Section 3 can be used
to compute the braid monodromy of a “generic” perturbation h̃ of h.

Also observe that, in the case of complex surfaces, the manner in which we
perturb iterated coverings, even though it is not holomorphic, is very similar
and in a sense equivalent to the corresponding construction in complex ge-
ometry. In particular, even though our computations are always performed
up to m-equivalence (allowing cancellations of pairs of nodes), in the case
of complex manifolds a formula very similar to (1) holds up to Hurwitz
and conjugation equivalence (without node cancellations). The only issue
requiring particular attention is the manner in which the multiple copies of
the curve C2 are perturbed away from each other (see §3.6), where the most
natural choice in the approximately holomorphic context may be slightly
different from a holomorphic perturbation; still, evidence suggests that in
practice Theorem 2 does hold up to Hurwitz and conjugation equivalence
for most complex surfaces (see the end of §3.6).

Remark. The branched coverings constructed in [5] and the symplectic
Lefschetz pencils constructed by Donaldson enjoy transversality properties
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which intuitively ought to make their topology very special among all pos-
sible coverings or pencils. It is therefore interesting to ask for criteria indi-
cating whether a given covering map (or Leschetz pencil) is “of Donaldson
type”; more precisely, the question is to decide whether, after stabilizing by
repeatedly applying the degree doubling formula, the monodromy data of
the given covering map X → CP

2 eventually coincides with the invariants of
X given by Theorem 1. This question can be reformulated in two equivalent
ways (similar statements about Lefschetz pencils can also be considered) :

1. Given two sets of monodromy invariants representing branched cover-
ings of CP

2 with the same total space up to symplectomorphism, do they
always become m-equivalent to each other by repeatedly applying the degree
doubling formula ?

2. Is the set of all compact symplectic 4-manifolds with integral symplectic
class up to scaling of the symplectic form in bijection with the set of all
possible braid factorizations and geometric monodromy representations up
to m-equivalence and stabilization by degree doubling ?

1.3. Degree doubling for symplectic Lefschetz pencils. A direct ap-
plication of the degree doubling formula for braid monodromies is a similar
formula for the monodromy of the symplectic Lefschetz pencils constructed
by Donaldson [9]. Indeed, recall from [9] that every compact symplectic 4-
manifold admits a structure of Lefschetz pencil determined by two sections
of L⊗k for large enough k. The monodromy of such a Lefschetz pencil is
described by a word in the mapping class group of a Riemann surface. As
explained in [5], Lefschetz pencils and branched coverings are very closely
related to each other, and the monodromy of the Lefschetz pencil can be
computed explicitly from the braid factorization and the geometric mon-
odromy representation describing the covering.

More precisely, the geometric monodromy representation θ determines a
group homomorphism θ∗ from a subgroup B0

d(θ) of Bd to the mapping class
group Mg of a Riemann surface of genus g = 1 − n + (d/2) ; the braid
monodromy is contained in B0

d(θ), and the monodromy of the Lefschetz
pencil is obtained by composing the braid monodromy with θ∗. It was shown
in §5 of [5] that the nodes and cusps of the branch curve do not contribute
to the monodromy of the Lefschetz pencil (the corresponding braids lie in
the kernel of θ∗), while the half-twists corresponding to the tangency points
of the branch curve yield Dehn twists in Mg.

Using this description, we derive in Section 4 a degree doubling formula
for Lefschetz pencils. The relation between braid groups and mapping class
groups of Riemann surfaces with boundary components is described in more
detail in §4.1, and the degree doubling formula is obtained in §4.2.

Acknowledgements. We are very grateful to S. Donaldson and M. Gromov
for their constant attention to this work. The second author would also like
to thank IHES for the extremely pleasant working conditions.
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2. Stably quasiholomorphic coverings

2.1. Quasiholomorphic coverings and braided curves. We now de-
scribe in more detail the geometric properties of the covering maps and
branch curves that we will be considering.

Definition 3. A real 2-dimensional singular submanifold D ⊂ CP
2 is a

braided curve if it satisfies the following properties : (1) the only singular
points of D are cusps (with positive orientation) and transverse double points
(with either orientation) ; (2) the point (0 : 0 : 1) does not belong to D ; (3)
the fibers of the projection π : (x : y : z) 7→ (x : y) are everywhere transverse
to D, except at a finite set of nondegenerate tangency points where a local
model for D in orientation-preserving coordinates is z2

2 = z1 ; (4) the cusps,
nodes and tangency points are all distinct and lie in different fibers of π.

This notion is a topological analogue of the notion of quasiholomorphic
curve as described in [5]. In fact, a singular curve in CP

2 can be described
by a braid factorization with factors of degree 1, ±2, and 3 if and only if it is
braided. As observed in [5], every braided curve is isotopic to a symplectic
curve, as follows immediately from applying the transformation (x : y : z) 7→
(x : y : εz), with ε sufficiently small. However, the branch curves obtained
from asymptotically holomorphic families of branched coverings satisfy much
more restrictive geometric assumptions.

More precisely, recall that the notion of quasiholomorphicity only makes
sense for a sequence of branch curves obtained for increasing values of the de-
gree k, and that the resulting geometric estimates improve when k increases.
The geometric properties that follow immediately from the definitions and
arguments in [1] and [5] are the following. Recall that (X,ω) is endowed
with a compatible almost-complex structure J and the corresponding metric
g, and that we rescale this metric to work with the metric gk = k g.

Definition 4. A sequence of sections sk of complex vector bundles Ek

over X (endowed with Hermitian metrics and connections) is asymptoti-
cally holomorphic if there exist constants Cj independent of k such that

|∇jsk|gk
≤ Cj and |∇j−1∂̄sk|gk

≤ Cjk
−1/2 for all j.

The sections sk are uniformly transverse to 0 if there exists a constant
γ > 0 such that, at every point x ∈ X where |sk(x)| ≤ γ, the covariant
derivative ∇sk(x) is surjective and has a right inverse of norm less than
γ−1 w.r.t. gk (we then say that sk is γ-transverse to 0).

If the sections sk are asymptotically holomorphic and uniformly transverse
to 0 then for large k their zero sets are smooth asymptotically holomorphic
symplectic submanifolds.

Definition 5. A sequence of branched covering maps fk : X → CP
2 deter-

mined by asymptotically holomorphic sections sk = (s0k, s
1
k, s

2
k) of C3 ⊗ L⊗k

for k � 0 is quasiholomorphic if there exist constants Cj, γ, δ independent

of k, almost-complex structures J̃k on X, and finite subsets Fk ⊂ X, such
that the following properties hold (using J̃k to define the ∂̄ operator) :
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(0) |∇j(J̃k − J)|gk
≤ Cjk

−1/2 for every j ≥ 0 ; J̃k = J outside of the

2δ-neighborhood of Fk ; J̃k is integrable over the δ-neighborhood of Fk ;
(1) the norm of sk is everywhere bounded from below by γ ; as a conse-

quence, |∇jfk|gk
≤ Cj and |∇j−1∂̄fk|gk

≤ Cjk
−1/2 for all j ;

(2) |∇fk(x)|gk
≥ γ at every point x ∈ X ;

(3) the (2, 0)-Jacobian Jac(fk) = det ∂fk is γ-transverse to 0 ; in partic-
ular it vanishes transversely along a smooth symplectic curve Rk ⊂ X (the
ramification curve).

(3′) the restriction of ∂̄fk to Ker ∂fk vanishes at every point of Rk ;
(4) the quantity ∂(fk|Rk

), which can be seen as a section of a line bundle
over Rk, is γ-transverse to 0 and vanishes at a finite subset Ck ⊂ Fk (the
cusp points of fk) ; in particular fk(Rk) = Dk is an immersed symplectic
curve away from the image of Ck ;

(5) fk is J̃k-holomorphic over the δ-neighborhood of Fk ;
(6) the section (s0k, s

1
k) of C2⊗L⊗k is γ-transverse to 0 ; as a consequence

Dk remains away from the point (0 :0 :1) ;
(7) letting φk = π ◦ fk : Rk → CP

1, the quantity ∂(φk|Rk
) is γ-transverse

to 0 over Rk, and it vanishes over the union of Ck with a finite set Tk (the
tangency points of Dk) ; moreover, ∂̄fk = 0 at every point of Tk ;

(8) the projection fk : Rk → Dk is injective outside the singular points of
Dk, and the branch curve Dk is braided.

The main result of [5] is the existence, for large enough values of k,
of quasiholomorphic covering maps X → CP

2 determined by sections of
C3 ⊗ L⊗k, canonical up to isotopy. The braid monodromy invariants corre-
sponding to these coverings are those mentioned in Theorem 1.

2.2. Stably quasiholomorphic coverings. We wish to construct and study
branched covering maps which, in addition to being quasiholomorphic, be-
have nicely when composed with a quadratic holomorphic map from CP

2 to
itself. For this purpose, we extend in the following way the notions defined
in the previous sections :

Definition 6. We say that the image D ⊂ CP
2 of a smooth curve R by

a map f is locally braided if there exists a finite number of open subsets
Uj ⊂ R, whose union is R, such that for all j the image f(Uj) ⊂ D is a

braided curve in CP
2.

In other words, a locally braided curve is similar to a braided curve except
that it is merely immersed outside its cusps, without any self-transversality
property ; although the cusps and tangencies of a locally braided curve
are still nondegenerate and well-defined, phenomena such as self-tangencies
might occur. For example, if the definition of a quasiholomorphic covering
is relaxed by removing condition (8), the branch curve Dk is only locally
braided.

Although a locally braided branch curve does not have a well-defined braid
monodromy, an arbitrarily small perturbation ensures self-transversality and
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yields a braided curve ; it is easy to check that the braid monodromies of all
possible resulting curves are m-equivalent, as the only phenomenon which
can occur in a generic 1-parameter family is the cancellation of pairs of
double points.

Definition 7. A sequence of branched covering maps fk : X → CP
2 deter-

mined by asymptotically holomorphic sections sk = (s0k, s
1
k, s

2
k) of C3 ⊗ L⊗k

for k � 0 is stably quasiholomorphic if, with the same notations as in
Definition 5, the following properties hold :

(1) the covering maps fk are quasiholomorphic ;
(2) the sections s0k, s

1
k and s2k of L⊗k are γ-transverse to 0 ;

(3) the sections (s0k, s
1
k), (s0k, s

2
k) and (s1k, s

2
k) of C2⊗L⊗k are γ-transverse

to 0 ;
(4) let π0, π1 and π2 be the projections (x : y : z) 7→ (y : z), (x : y : z) 7→

(x : z) and (x : y : z) 7→ (x : y) respectively, and define φi
k = πi ◦ fk ; the

quantity ∂((φi
k)|(si

k
)−1(0)) is γ-transverse to 0 over (si

k)
−1(0) for i = 0, 1, 2 ;

(5) the quantity |∂φi
k|gk

is bounded from below by γ over (si
k)

−1(0) ;
(6) Fk = Ck ∪ Tk ∪ Ik, where Tk is the set of tangency points and Ik is

the set of points of Rk where one of the three sections si
k vanishes.

We have the following extension of the main results of [1] and [5], which
will be proved in §2.3 :

Proposition 1. For all large values of k, there exist asymptotically holo-
morphic sections sk of C3⊗L⊗k such that the corresponding projective maps
fk : X → CP

2 are stably quasiholomorphic coverings. Moreover, for large k
the topology of these covering maps is canonical up to isotopy and cancella-
tions of pairs of nodes in the branch curve.

More precisely, the uniqueness statement means that, given two sequences
of stably quasiholomorphic coverings, it is possible for large k to find an in-
terpolating 1-parameter family of covering maps, all of which are stably
quasiholomorphic, except for finitely many parameter values where a can-
cellation or creation of a pair of nodes occurs in the branch curve.

The following result will be used in §3.2 to compute the braid monodromy
of the folded branch curve V ′

2(Dk):

Lemma 1. Consider the two maps V 0
2 : (x : y : z) 7→ (x2 : y2 : z2) and

ψa : (x : y : z) 7→ (x : ay + (1 − a)x : az + (1 − a)x) from CP
2 to itself, and

let fk be a sequence of stably quasiholomorphic covering maps with branch
curves Dk ⊂ CP

2. Then the curves V 0
2 (Dk) are locally braided. Moreover,

if we assume that (0 : 1 : 1) 6∈ Dk and that none of the nodes of Dk lies on
the line L0 = {(0 : y : z)}, then for all sufficiently small non-zero values
of a ∈ C the curves V 0

2 (ψa(Dk)) are locally braided and isotopic to V 0
2 (Dk)

through locally braided curves.
Furthermore, these properties remain true if V 0

2 is replaced by any generic
holomorphic quadratic map V ′

2 from CP
2 to itself which differs from V 0

2 by
less than γ′, for some constant γ ′ independent of k.
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Proof. The ramification curve of V 0
2 consists of three lines L0 = {(0 : y : z)},

L1 = {(x : 0 : z)} and L2 = {(x : y : 0)}. Moreover, V 0
2 maps each fiber of π

to a fiber of π. Therefore, let C ⊂ CP
2 be a locally braided curve satisfying

the following properties: (a) C is transverse to the lines L0, L1, L2 and avoids
their intersection points; (b) the cusps and tangency points of C lie away
from L0, L1, L2; (c) at any point p ∈ C ∩Li, the curve C is transverse to the
fiber of the projection πi through p; (d) the curve C is holomorphic near its
tangency points and near its intersections with L0 ∪ L1. Then we conclude
that V 0

2 (C) is locally braided and holomorphic near its tangency points.
Indeed, conditions (a) − (c) imply that the restriction of V 0

2 to C is an
immersion, because V 0

2 is a local diffeomorphism away from Li, and C is
transverse to the kernel of the differential of V 0

2 at its intersection points
with Li. Moreover, (a) also implies that V 0

2 (C) avoids the point (0 : 0 : 1).
The cusps of V 0

2 (C) are exactly the images of those of C, while the tangency
points of V 0

2 (C) are of two types: on one hand, the images of the tangency
points of C, and on the other hand, the images of the intersection points
of C with either L0 or L1. Property (d) implies that V 0

2 (C) is holomorphic
near its tangency points, and because C is locally braided and transverse to
L0 ∪ L1, these tangencies are non-degenerate, which implies that V 0

2 (C) is
locally braided.

We now check that, as a consequence of Definition 7, the curves Dk sat-
isfy properties (a) − (d). Indeed, property (3) of Definition 7 implies that
fk is a local diffeomorphism wherever two of the components of sk are very
small; therefore Dk avoids the intersection points of L0, L1, L2. Moreover,
property (2) of Definition 7 implies that (si

k)
−1(0) is smooth and Dk is trans-

verse to Li for i = 0, 1, 2; so condition (a) is satisfied. This transversality
requirement also implies that the tangency points of Dk do not lie on L0 or
L1; in the case of L2 we appeal to property (5) of Definition 7 to reach the
same conclusion (recall that by definition ∂φ2

k vanishes at tangency points).
Furthermore, property (4) of Definition 7 means that the restriction of φi

k

to (si
k)

−1(0) has non-degenerate critical points, which implies that the in-
tersection multiplicity of Rk with (si

k)
−1(0) at such a point is always 1 and

prevents a cusp of Dk from lying on Li. Therefore (b) holds.
Condition (c) is a direct consequence of property (5) of Definition 7, ob-

serving that the points where Dk is tangent to the fiber of πi are precisely
the critical points of φi

k. Finally, condition (d) follows immediately from
property (6) of Definition 7. Therefore Dk satisfies (a) − (d), which implies
that V 0

2 (Dk) is locally braided and holomorphic near its tangency points.
We now consider the curve V 0

2 (ψa(Dk)). Observe that, when a → 0, the
linear map ψa fixes the points of L0 and collapses all other points towards
p0 = (1 : 1 : 1). Moreover, ψa maps each fiber of π to a fiber of π. If we
assume that the nodes of Dk don’t lie on L0, then for sufficiently small values
of a the curve ψa(Dk) becomes arbitrarily close to a union of d = degDk

lines, each joining a point of Dk ∩L0 to p0. The requirement (0 : 1 : 1) 6∈ Dk
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ensures that none of these lines is a fiber of the projection π0. The cusps
and tangency points of ψa(Dk) are the images of those of Dk and hence all
lie in a small ball centered at p0; moreover the holomorphicity of Dk near
the points of Dk ∩L0 implies that ψa(Dk) is holomorphic outside of a small
ball centered at p0. Therefore ψa(Dk) satisfies the conditions (a)− (d) listed
above, and V 0

2 (ψa(Dk)) is locally braided and holomorphic near its tangency
points for all sufficiently small values of a.

Observing that properties (a)− (c) are open conditions, one easily checks
that, if the behavior of the curve Dk is generic (which can be ensured by a
small perturbation), then the curves ψa(Dk) (or small perturbations thereof)
satisfy (a)− (c) for all but a discrete set of values of a. Therefore, observing
that ψ1 = Id and choosing a suitable path a(t), there exists an isotopy be-
tween Dk and ψa(Dk) through braided curves satisfying conditions (a)−(c).
Although the possible lack of holomorphicity of ψa(t)(Dk) near its intersec-
tions with L1 may prevent (d) from holding, this specific requirement is
actually not needed to ensure that V 0

2 (ψa(t)(Dk)) is locally braided. There-

fore, V 0
2 (ψa(Dk)) is isotopic to V 0

2 (Dk) through locally braided curves.
Finally, we consider a holomorphic quadratic map V ′

2 sufficiently close
to V 0

2 . Our main observation is that the curves V ′
2(Dk) and V 0

2 (Dk) are
C1-close to each other. Therefore, because V 0

2 (Dk) is locally braided and
holomorphic near its tangency points (which are all non-degenerate), the
curve V ′

2(Dk) is also locally braided; indeed, if V ′
2 is sufficiently close to

V 0
2 then every point where V ′

2(Dk) fails to be transverse to the fibers of π
necessarily lies close to a tangency point of V 0

2 (Dk). Furthermore, choosing
a continuous deformation of V 0

2 into V ′
2 , it is clear that V 0

2 (Dk) and V ′
2(Dk)

are isotopic to each other among locally braided curves.
The reason why we can obtain a uniform estimate γ ′ on the maximum

admissible value of ‖V ′
2 −V

0
2 ‖C1 is the existence of uniform estimates on the

geometry of Dk. Indeed, by carefully keeping track of the uniform estimates
given by Definitions 5 and 7, it is possible to derive uniform lower bounds
for all geometrically relevant quantities, such as the distance from Dk to the
intersection points of the lines Li, the transversality angle at the intersections
of Dk with Li, the distance between Li and the cusps and tangency points of
Dk, the second derivative of π|Dk

at the tangency points of Dk and its first
derivative away from these points, ... This yields uniform estimates on the
geometry of V 0

2 (Dk) near its tangency points and implies that the property
of being locally braided remains valid up to a certain size of perturbation of
V 0

2 which can be estimated explicitly in terms of the various bounds.
Moreover, recalling from above the behavior of ψa for small values of

a, we can similarly show that if a is sufficiently small then V ′
2(ψa(Dk)) is

locally braided and isotopic to V 0
2 (ψa(Dk)) through locally braided curves;

one simply needs to choose V ′
2 generic in order to ensure that the images by

V ′
2 of the lines joining p0 to the points of Dk ∩ L0 are smooth conics.
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We conclude in particular that the images by V 0
2 and V ′

2 of Dk and ψa(Dk)
are all mutually isotopic among locally braided curves, and their braid mon-
odromies are m-equivalent to each other. �

The following observation plays a crucial role in our strategy to prove
Theorem 2: given a generic holomorphic quadratic map V ′

2 close to V 0
2 , the

composed maps V ′
2 ◦ fk already satisfy most of the properties expected of

quasiholomorphic coverings except at the points where the branch curve of
fk intersects that of V ′

2 .

Proposition 2. Let fk be a family of stably quasiholomorphic coverings,
and let V ′

2 be a generic holomorphic quadratic map close to V 0
2 . Then, given

any fixed constant d0 > 0, there exist constants Cj, γ, δ independent of k
(but depending on V ′

2 and on d0) such that the composed maps f ′2k = V ′
2 ◦ fk

satisfy all the properties of Definition 5, except for properties (3′) and (8),
at every point of X whose gk-distance to I ′

k = Rk ∩ f−1
k (R′

2) is larger than
d0 (Rk and R′

2 are the ramification curves of fk and V ′
2 respectively).

Proof. The projective map f ′2k = V ′
2 ◦ fk is defined by a section Q(sk) of

C3⊗L⊗2k, each of its three components being a quadratic expression Qi(sk)
(0 ≤ i ≤ 2) in the three sections defining fk. It is therefore easy to show
that the sections Q(sk) are asymptotically holomorphic.

Because the projective map V ′
2 induced by the polynomials Qi is well-

defined, the inequality |Q(s)| ≥ c |s|2 holds for some constant c > 0. There-
fore, the existence of a uniform lower bound on |sk| at every point of X
implies that of a uniform lower bound on |Q(sk)|, and so property (1) of
Definition 5 is satisfied everywhere.

As observed above, by property (2) of Definition 7 the branch curve of fk

is uniformly transverse to the ramification curve of V 0
2 and hence to that of

V ′
2 . Therefore, if a point x ∈ X lies close both to Rk and to f−1

k (R′
2) then

it always lies close to a point of I ′
k.

Property (2) of quasiholomorphic coverings follows from the observation
that, since the differentials of fk and V ′

2 both have complex rank at least
1 everywhere, ∇f ′2k(x) can only be small if the Jacobians of fk at x and
of V ′

2 at fk(x) are both small. These quantities vanish transversely (fk is
quasiholomorphic and V ′

2 is generic), so x must lie close to both branch
curves, and hence, by the above observation, close to I ′

k (closer than d0 if
|∇f ′2k(x)| is assumed small enough). In fact, |∇f ′2k| remains bounded away
from 0 even near I ′

k, because, as observed in the proof of Lemma 1, property
(5) of Definition 7 implies that V 0

2 (and hence also V ′
2) restricts to the branch

curve of fk as an immersion.
We now turn to the third property. The (2, 0)-Jacobian of f ′

2k is given
by Jac(f ′2k) = Jac(fk) · f

∗
kJac(V ′

2). It can only be small when one of the
two terms in the product is small, i.e. near one of the two branch curves.
Moreover, f∗kJac(V ′

2) is bounded away from zero everywhere except near

f−1
k (R′

2), so the transverse vanishing of Jac(fk) implies that of Jac(f ′2k) at
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these points. Similarly Jac(fk) is bounded from below everywhere except
near Rk, so the transverse vanishing of f ∗kJac(V ′

2) implies the desired prop-
erty at these points. As a consequence the transversality to 0 of Jac(f ′

2k)
holds everywhere except near I ′

k (note that the obtained transversality es-
timate has to be decreased when d0 becomes smaller).

We now look at property (4). Away from I ′
k the branch curve of f ′2k con-

sists of two separate components, Rk and f−1
k (R′

2), so we work separately
on each component. On Rk −I ′

k, we know that ∂(fk|Rk
) is uniformly trans-

verse to 0, and because I ′
k has been removed the complex linear map ∇V ′

2

is an isomorphism at every point of the image, with norm bounded from
below (the constant depends on d0). Composing ∂(fk|Rk

) with ∇V ′
2 , we ob-

tain that ∂(f ′2k|Rk
) is also uniformly transverse to 0 at all points of Rk at

distance more than d0 from I ′
k (again, the constant depends on d0). The ar-

gument works similarly on f−1
k (R′

2)−I ′
k : ∂fk is an isomorphism with norm

bounded from below (the constant depends on d0), and because V ′
2 has been

chosen generic the quantity ∇(V ′
2|R′

2

) vanishes transversely, so ∂(f ′
2k|f−1

k
(R′

2
)
)

is uniformly transverse to 0 at all points of f−1
k (R′

2) at distance more than
d0 from I ′

k.
Observe by the way that all cusp points of fk and of V ′

2 lie away from I ′
k.

Indeed, for the cusp points of fk it follows from property (4) in Definition
7 that they lie away from the branch curve of V 0

2 and hence from that of
V ′

2 , as observed in the proof of Lemma 1. On the other hand, is easy to see
that the cusp points of V ′

2 all lie close to one the three singular points of
V 0

2 , while property (3) in Definition 7 implies that the branch curve of fk

remains far away from these points.
Property (5) is easy to check: since compatible almost-complex structures

on X are sections of a bundle with contractible fiber, it is sufficient to work
locally near a cusp point. The points we have to consider are either cusp
points of fk or the preimages by fk of those of V ′

2 . In the first case, it is

sufficient to choose the same almost-complex structure J̃k as for fk, because
V ′

2 is holomorphic. In the second case, consider the pull-back f ∗k J0 of the

standard complex structure of CP
2 via the map fk. Since all cusp points

of V ′
2 lie far from the branch curve of fk, the differential of fk is locally an

isomorphism and satisfies a uniform lower bound. Therefore the asymptotic
holomorphicity of the sections defining sk is enough to ensure that f ∗k J0

differs from J by at most O(k−1/2) in any Cr norm. A standard argument
involving a smooth cut-off function can be used in order to define a smooth
almost-complex structure which coincides with f ∗k J0 near the cusp point and
with J outside a small ball.

We now turn to property (6). Consider a point x ∈ X where the first
two sections defining f ′2k, namely Q0(sk) and Q1(sk), are both very small.
Because the quadratic map V ′

2 is close to V 0
2 , and because the only preimage

of (0 : 0 : 1) by V 0
2 is (0 : 0 : 1) itself, the quantities s0k(x) and s1k(x) are
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also small. So, if we assume that |V ′
2 − V 0

2 | is sufficiently small, the uniform
transversality property of (s0k, s

1
k) provides a lower bound on Jac(fk)(x).

On the other hand, if V ′
2 is chosen generic, then its branch curve avoids

the point (1 : 0 : 0) by a certain distance ρ > 0. Therefore, if Q0(sk)
and Q1(sk) are sufficiently small, then f ′2k(x) lies at distance at least ρ/2
from the branch curve of V ′

2 . and we can obtain a uniform lower bound
(depending on ρ only) on the Jacobian of V ′

2 at fk(x). It follows that
Jac(f ′2k)(x) = Jac(fk)(x) Jac(V ′

2)(fk(x)) is bounded from below by a fixed
constant independently of k. Because of the C1 bounds on Qi(sk), we con-
clude that the covariant derivative of (Q0(sk), Q1(sk)) at x is surjective and
bounded from below by a uniform constant. So property (6) holds.

We finally look at property (7), which actually is equivalent to the re-
quirement that the branch curve be locally braided. Most of the work has
already been done in the proof of Lemma 1. More precisely, after removing
the intersection I ′

k, the branch curve of f ′2k splits into the two components

Rk and f−1
k (R′

2), and we consider them separately. The critical points of
ψ0

k = (π ◦ V 0
2 ◦ fk)|Rk

and ψ′
k = (π ◦ f ′2k)|Rk

correspond to the cusps and

tangency points of V 0
2 (Dk) and V ′

2(Dk), respectively. Therefore, we have
seen in the proof of Lemma 1 that all the critical points of ψ0

k, and hence
those of ψ′

k, are non-degenerate, with a uniform estimate; moreover, they
all lie in a neighborhood of Ck ∪ Tk ∪ Ik, which implies that fk is locally
holomorphic with respect to a suitable almost-complex structure.

We now look at the component f−1
k (R′

2) away from the points of I ′
k :

since fk is a local diffeomorphism at all such points, the expected uniform
transversality of ∂(π ◦ f ′2k) is equivalent to the same property for ∂(π ◦ V ′

2)
restricted to R′

2. However it is easy to check that such a transversality
property holds as soon as V ′

2 is chosen generic (actually, as soon as V ′
2(R

′
2)

is locally braided). Of course the transversality estimate on ∂(π ◦ f ′
2k) de-

pends on the distance d0, because a lower bound on ∂fk is used when lifting
the transversality property from π ◦ V ′

2 to π ◦ f ′2k. Also observe that the
holomorphicity of V ′

2 implies that the differential of π ◦ V ′
2|R′

2

vanishes com-

pletely at the tangency points of the branch curve of V ′
2 (these are genuine

tangencies); this clearly implies the same property for π◦f ′
2k at the tangency

points coming from f−1
k (R′

2). This concludes the proof. �

Proposition 2 implies that we can proceed in the following way to con-
struct quasiholomorphic coverings given by sections of L⊗2k for large k : first
construct stably quasiholomorphic coverings fk as given by Proposition 1 ;
then, define f ′2k = V ′

2 ◦ fk for a generic perturbation V ′
2 of V 0

2 ; and finally
perturb f ′2k in order to get quasiholomorphic coverings.

Following the arguments in [1] and [5] (see also [2] and the argument in
§2.3 below), we can make the following observations concerning the process
by which the maps f ′2k are perturbed and made quasiholomorphic. The first
step of the construction of quasiholomorphic coverings is to ensure that all
the required uniform transversality properties are satisfied over all of X.
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This process is a purely local iterative construction, so that when one starts
with f ′2k it is sufficient to perturb the given sections of L⊗2k near the points
of I ′

k, or equivalently near the points of Ik ; the required perturbation can
be chosen smaller than any fixed given constant (independent of k), so that
it does not significantly affect the topology of f ′2k away from the points of I ′

k.
The next step in order to construct quasiholomorphic coverings is to ensure
property (5) of Definition 5 at the cusp points as well as the last requirement
of property (7) at the tangency points ; since the necessary perturbation is

bounded by a fixed multiple of k−1/2, it has no effect whatsoever on braid
monodromy outside of a fixed small neighborhood of I ′

k.
At this point in the construction, the branch curves are already locally

braided and therefore have well-defined braid monodromies up to m-equi-
valence ; ensuring the remaining conditions (3′) and (8) has no effect on
the monodromy data. More precisely, the self-transversality of the branch
curves (condition (8)) is obtained by an arbitrarily small perturbation, which
is precisely how one defines the braid factorization associated to a locally
braided curve. Meanwhile, condition (3′) is obtained by a perturbation
process which does not affect the branch curve (see [5]). Finally, notice that,
once the covering maps f ′2k are perturbed and made quasiholomorphic, the
braid monodromy invariants associated to them must coincide with those
associated to f2k, at least provided that k is large enough : this is a direct
consequence of the uniqueness result of [5].

As a consequence of these observations, by computing the braid factor-
ization corresponding to the branch curve of f ′2k (very singular, with com-
ponents of large multiplicity), a great step towards computing the braid
factorization for f2k is already accomplished : the only remaining task is to
understand the effect on braid factorizations of the perturbation performed
near the points of I ′

k. This justifies the strategy of proof used in §3.

2.3. Proof of Proposition 1. Proposition 1 can be proved using the same
techniques as in [1] and [5] (see also [2]) ; however, the result of [3] can be
used to greatly simplify the argument. Observe that the properties expected
of sk are of two types : on one hand, uniform transversality properties,
which are open conditions on the holomorphic part of the jet of sk, and on
the other hand, compatibility properties, involving the vanishing of certain
antiholomorphic derivatives along the branch curve. The proof therefore
consists of two parts. In the first part, successive perturbations of sk are
performed in order to achieve the various required transversality properties ;
each perturbation is chosen small enough in order to preserve the previously
obtained transversality properties. In the second part, sk is perturbed along
the curve Rk by at most a fixed multiple of k−1/2 in order to obtain the
compatibility conditions.

The first part of the argument can be either carried out as in [1] and [5],
or more efficiently by using the result of [3] in the following manner.
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Let Ek = C3 ⊗ L⊗k, and consider the holomorphic jet bundles J 2Ek =
Ek ⊕ T ∗X(1,0) ⊗ Ek ⊕ (T ∗X(1,0))⊗2

sym ⊗ Ek. We define the holomorphic 2-jet

j2s of a section s ∈ Γ(Ek) as (s, ∂s, ∂(∂s)sym), discarding the antiholomor-
phic terms or the antisymmetric part of ∂∂s (these terms are bounded by

O(k−1/2) for asymptotically holomorphic sections). Recall from [3] the no-
tion of finite Whitney quasi-stratification of a jet bundle :

Definition 8. Let (A,≺) be a finite set carrying a binary relation without
cycles (i.e., a1 ≺ · · · ≺ ap ⇒ ap 6≺ a1). A finite Whitney quasi-stratification
of J 2Ek indexed by A is a collection (Sa)a∈A of smooth submanifolds of
J 2Ek, transverse to the fibers, not necessarily mutually disjoint, with the
following properties : (1) ∂Sa = Sa − Sa ⊆

⋃

b≺a S
b ; (2) given any point

p ∈ ∂Sa, there exists b ≺ a such that p ∈ Sb and such that either Sb ⊂ ∂Sa

and the Whitney regularity condition is satisfied at all points of Sb, or p 6∈
ΘSb, where ΘSb ⊂ Sb is the set of points where the 2-jet of a section of Ek can
intersect Sb transversely (in particular ΘSb = ∅ whenever codimC S

b > 2).

As in [3], say that a sequence of finite Whitney quasi-stratifications Sk

of J 2Ek is asymptotically holomorphic if all the strata are approximately
holomorphic submanifolds of J 2Ek, with uniform bounds on the curvature
of the strata and on their transversality to the fibers of J 2Ek.

It was shown in [3] that, given asymptotically holomorphic finite Whitney
quasi-stratifications Sk of J 2Ek, it is always possible for large enough k
to construct asymptotically holomorphic sections of Ek whose 2-jets are
uniformly transverse to the strata of Sk ; moreover, these sections can be
chosen arbitrarily close to any given asymptotically holomorphic sections
of Ek. The result also holds for one-parameter families of sections, which
implies that the constructed sections are, for large k, canonical up to isotopy.

Using local approximately holomorphic sections of L⊗k and coordinates
over X, the fibers of J 2Ek can be identified with the space J 2

2,3 of jets of

holomorphic maps from C2 to C3. It was observed in [3] that, if a sequence
of finite Whitney quasi-stratifications of J 2Ek is such that by this process
the restrictions of Sk to the fibers of J 2Ek are all identified with a fixed
given finite Whitney quasi-stratification of J 2

2,3 by complex submanifolds,
then the quasi-stratifications Sk are asymptotically holomorphic.

We define finite Whitney quasi-stratifications of J 2Ek in the following
way. Consider the symmetric holomorphic part j2s(x) of the 2-jet of a
section s = (s0, s1, s2) ∈ Γ(Ek) at a point x ∈ X ; if s(x) 6= 0, denote by f
the corresponding CP

2-valued map, and by φi (i ∈ {0, 1, 2}) its projections
to CP

1 along coordinate axes if they are well-defined. Finally, if Jac f(x) =
∧2∂f(x) = 0 and ∂Jac f(x)sym = (∂∂f(x))sym ∧ ∂f(x) 6= 0, call Rx the
kernel of the (1, 0)-form ∂Jac f(x)sym ; one easily checks that Rx is well
defined in terms of j2s only and that it differs from the tangent space at x
to the ramification curve of f by at most O(k−1/2). We define the following
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submanifolds of J 2Ek (in the last two definitions, {i, j, k} = {0, 1, 2}) :

Z ={j2s(x), s(x) = 0} (codim. 3)

Zij ={j2s(x), si(x) = sj(x) = 0} (codim. 2)

Zi ={j2s(x), si(x) = 0} (codim. 1)

Σ2 ={j2s(x), s(x) 6= 0, ∂f(x) = 0} (codim. 4)

Σ1 ={j2s(x) 6∈ Z, ∂f(x) 6= 0, Jac f(x) = 0} (codim. 1)

Σ1
s ={j2s(x) ∈ Σ1, ∂Jac f(x)sym = 0} (codim. 3)

Σ1,1 ={j2s(x) ∈ Σ1 − Σ1
s, ∂f(x)|Rx

= 0} (codim. 2)

Σ1
t ={j2s(x) ∈ Σ1 − Z01, ∂φ

2(x) = 0} (codim. 2)

Σ1,1
t =Σ1,1 ∩ Σ1

t (codim. 3)

Si ={j2s(x) ∈ Zi − Zjk, ∂φ
i(x) = 0} (codim. 3)

S′
i ={j2s(x) ∈ Zi − Zjk, ∂s

i(x) 6= 0, ∂φi(x)|Ker ∂si(x) = 0} (codim. 2)

One easily checks that all these subsets are smooth submanifolds of J 2Ek.
Moreover, Z, Zi and Zij are closed ; ∂Σ2 ⊆ Z ; ∂Σ1 and ∂Σ1

s are contained

in Σ2 ∪ Z ; ∂Σ1,1 ⊆ Σ1
s ∪ Σ2 ∪ Z ; ∂Σ1

t ⊆ Σ2 ∪ Z ∪ (Z01 − ΘZ01
) ; ∂Σ1,1

t ⊆
Σ1

s ∪ Σ2 ∪ Z ∪ (Z01 − ΘZ01
) ; ∂Si ⊆ (Zjk − ΘZjk

) ; ∂S′
i ⊆ (Zjk − ΘZjk

) ∪
(Zi − ΘZi

). Therefore, these submanifolds define quasi-stratifications Sk of
J 2Ek. Note that, because Σ1

s = Σ1 − ΘΣ1 , the stratum Σ1
s can in fact be

eliminated from this description. Moreover, if one uses local approximately
holomorphic coordinates and asymptotically holomorphic sections of L⊗k to
trivialize J 2Ek, it is easy to see that the resulting picture is the same above
every point of X : the submanifolds in Sk are identified with holomorphic
submanifolds of J 2

2,3 defined by the same equations. Therefore, by [3] the
quasi-stratifications Sk are asymptotically holomorphic.

It is easy to see that conditions (1), (2), (3), (4) and (6) of Definition 5 are
equivalent to the uniform transversality of j2sk to Z, Σ2, Σ1, Σ1,1 and Z01,
respectively. Similarly, conditions (2) and (3) of Definition 7 correspond to
the uniform transversality of j2sk to Zi and Zij respectively. Observing that
∂(φk|Rk

) can only vanish at a point x ∈ Rk if either ∂φk(x) = 0 or ∂(fk|Rk
)

vanishes at x, we can rephrase condition (7) of Definition 5 in terms of
uniform transversality to the singular submanifold of J 2Ek consisting of
the union of Σ1,1 (cusp points) and Σ1

t (tangencies), intersecting regularly

along Σ1,1
t (“vertical” cusp points). Therefore, it is equivalent to the uniform

transversality of j2sk to Σ1,1, Σ1
t , and Σ1,1

t . Finally, conditions (4) and (5)
of Definition 7 correspond to the uniform transversality of j2sk to S′

i and Si

respectively.
So, the uniform transversality of j2sk to the quasi-stratifications Sk, as

given by the main result of [3] provided that k is large enough, is equiva-
lent to the various transversality requirements listed in Definitions 5 and 7.
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Moreover, the sections of C3⊗L⊗k constructed in this manner are canonical
up to isotopy, as follows from Theorem 3.2 of [3] : given any two sequences of
such sections, it is possible for large enough k to find one-parameter families
of sections of C3 ⊗ L⊗k interpolating between them and enjoying the same
uniform transversality properties for all parameter values.

We now turn to the second part of the argument, namely obtaining the
other required properties by perturbing the sections sk by at most O(k−1/2),
which clearly affects neither holomorphicity nor transversality properties.
The argument is exactly the same as in [5] ; the only difference is that the
set Fk of points where the map fk must made holomorphic with respect to
a slightly perturbed almost-complex structure is now slightly larger : one
now sets Fk = Ck ∪ Tk ∪ Ik instead of Fk = Ck.

As in [1] and [5], one first chooses suitable almost-complex structures J̃k

differing from J by O(k−1/2) and integrable near the finite set Fk. It is
then possible to perturb fk near these points in order to obtain condition
(5) of Definition 5, by the same argument as in §4.1 of [1]. Next, a generic
small perturbation yields the self-transversality of Dk (property (8) of Def-
inition 5). Finally, a suitable perturbation of fk, supported near Rk and
vanishing near the points of Fk, yields property (3′) of Definition 5 along
the branch curve, without modifying Rk and Dk, and therefore without af-
fecting the previously obtained compatibility properties. As shown in [5]
these various constructions can be performed in one-parameter families, ex-
cept for property (8) of Definition 5 where cancellations of pairs of nodes
must be allowed ; this yields the desired result of uniqueness up to isotopy,
and completes the proof of Proposition 1.

3. The degree doubling formula for braid monodromies

3.1. Generalities about the braid group. We begin by recalling general
definitions and notations concerning the braid group on d strings. Con-
sider a set P = {p1, . . . , pd} of d points in the plane, and recall that
Bd = π0 Diff+

c (R2, P ) is by definition the group of equivalence classes of
compactly supported orientation-preserving diffeomorphisms of the plane
which leave invariant the set P , where two diffeomorphisms are equivalent
if and only if they induce the same automorphism of π1(R

2 − P ). Equiva-
lently Bd can be considered as the fundamental group of the configuration
space of d points in the plane : a braid corresponds to a motion of the
points p1, . . . , pd such that they remain distinct at all times and eventually
return to their original positions (but possibly in a different order) up to
homotopy. An important subgroup of Bd is the group of pure braids Pd (the
braids which preserve each of the points p1, . . . , pd individually) ; it is clear
that Bd/Pd is the symmetric group Sd.

We will place the points p1, . . . , pd in that order on the real axis, and de-
note by Xi the positive (counterclockwise) half-twist along the line segment
joining pi to pi+1, for each 1 ≤ i ≤ d − 1. It is a classical fact that Bd is
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generated by the d− 1 half-twists Xi, and that the relations between them
are XiXj = XjXi whenever |i− j| > 1 and XiXi+1Xi = Xi+1XiXi+1. The

center of the braid group is generated by the element ∆2
d = (X1 . . .Xd−1)

d,
which corresponds to rotating everything by 2π.

We will be especially interested in the half-twists

Zij = Xj−1 · . . . ·Xi+1 ·Xi ·X
−1
i+1 · . . . ·X

−1
j−1 (1 ≤ i < j ≤ d).

The braid Zij is a positive half-twist along a path joining the points pi and
pj and passing above all the points inbetween :

q q q q q qp p p p p p
1 i j d

Zij

Note in particular that Zi,i+1 = Xi and that Zij commutes with Zkl

whenever i < j < k < l or i < k < l < j. Other useful relations are
ZijZik = ZikZjk = ZjkZij whenever i < j < k (these three expressions
differ by a Hurwitz move).

The following factorization of ∆2 as a product of half-twists corresponds
to the braid monodromy of a smooth curve of degree d in CP

2 (see [10]) :

∆2
d = (X1 . . .Xd−1)

d.

Another important factorization is

(2) ∆2
d =

d−1
∏

i=1

d
∏

j=i+1

Z2
ij =

d
∏

i=2

i−1
∏

j=1

Z2
ji

(these two expressions are clearly Hurwitz equivalent). This factorization
corresponds to the braid monodromy of a union of d lines in generic position
(see [10]).

We now turn to geometric monodromy representations. Consider the
branch curve D of an n-sheeted branched covering over CP

2, and fix geo-
metric generators γ1, . . . , γd of π1(CP

2 −D) (small loops going around the
d = degD intersection points of D with a given generic fiber of the projec-
tion π). It is then possible to define as in §1.1 the geometric monodromy
representation θ : Fd → Sn associated to the covering. As observed in
§1.1, the fact that the product γ1 · · · · · γd is trivial in π1(CP

2 −D) implies
that the product of the d transpositions θ(γ1), . . . , θ(γd) in Sn is also trivial,
and the connectedness of the considered covering of CP

2 implies that these
transpositions act transitively on {1, . . . , n} and hence generate Sn.

It is a well-known fact that any two factorizations of the identity element
in Sn as a product of the same number of transpositions generating Sn

are equivalent by a succession of Hurwitz moves (this can be seen e.g. by
comparing the two corresponding n-sheeted simple branched covers of CP

1).
Therefore, after a suitable reordering of the sheets of the covering π : D →
CP

1 (which amounts to a global conjugation of the braid factorization),
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one may freely assume that the permutations θ(γi) are equal to certain
predetermined transpositions. Our choice of transpositions in the case of
the branch curve of fk will be made explicit in §3.6.

3.2. The folding process. We now compute the braid monodromy of the
curve V ′

2(Dk), where Dk is the branch curve of one of the stably quasiholo-
morphic maps fk given by Proposition 1 and V ′

2 is a generic perturbation
of V 0

2 as in §2.2. The idea is to use Lemma 1 to reduce oneself to the easy
case where Dk is a union of d = degDk lines through a point in CP

2. In
that case, V ′

2(Dk) becomes a union of d conics through a point, and its braid
monodromy can be computed explicitly. The result is the following:

Proposition 3. The braid factorization corresponding to the curve V ′
2(Dk)

is given by the formula

(3) ∆2
2d =

(

d−1
∏

i=1

d
∏

j=i+1

Z2
i′j′

)

·
d
∏

i=1

Zii′ · Fk ·
(

d−1
∏

i=1

d
∏

j=i+1

Z2
i′j′

)2
·

d
∏

i=1

Zii′ ,

or equivalently

(4) ∆2
2d =

d
∏

i=1

Ẑii′ · Fk ·
(

d−1
∏

i=1

d
∏

j=i+1

Z2
i′j′

)3
·

d
∏

i=1

Zii′ ,

where Fk is the image of the braid factorization for Dk via the embedding
of the braid group Bd in B2d obtained by considering a ball containing only
the first d points, and Ẑii′ is a half-twist along the following path :

q q q q q qp p p p p p p p p p p p p p p p p p p p p p p p
1 i d 1′ i′ d′

Equation (4) is an identity in the braid group B2d acting on 2d points
labelled 1, . . . , d, 1′, . . . , d′ (each pair i, i′ corresponds to one of the d conics).

Consider as in Lemma 1 the linear contraction map ψa : (x : y : z) 7→
(x : ay + (1 − a)x : az + (1 − a)x). When a converges to 0, the images of
all the points outside of the line L0 : {x = 0} converge towards the point
p0 = (1:1 :1). Since ψa maps fibers of π to fibers of π, the curves ψa(Dk) are
braided for all values of a. Moreover, ψa restricts to the line L0 : {x = 0}
as the identity, and when a → 0 the image of any line intersecting L0

transversely at a point p = (0:y :z) converges to the line through p and p0.
By an arbitrarily small perturbation, and without losing the other prop-

erties of Dk, we can easily assume that the point (0 : 1 : 1) does not belong
to Dk, and that none of the nodes of Dk lies on L0. Therefore, by Lemma 1
the curve V 0

2 (ψa(Dk)) is locally braided for sufficiently small a 6= 0, and
isotopic to V ′

2(Dk) through locally braided curves. This implies that the
braid factorizations for V 0

2 (ψa(Dk)) and for V ′
2(Dk) are m-equivalent (in

fact, when Dk is a complex curve the isotopy can be carried out inside the
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complex category, so in that case the braid factorizations are even Hurwitz
and conjugation equivalent).

When a is sufficiently close to 0, outside of a small ball centered at p0 the
curve ψa(Dk) is arbitrarily close to the union of d = degDk lines joining the
points of Dk ∩L0 with p0, and by construction the images by V 0

2 of these d
lines are distinct non-degenerate conics in CP

2. Moreover, the restriction of
V 0

2 to a neighborhood of p0 is a diffeomorphism mapping fibers of π to fibers
of π. Therefore, the braid factorization of V 0

2 (ψa(Dk)), or equivalently that
of V ′

2(Dk) can be obtained by plugging the braid factorization of Dk into the
formula for the braid monodromy of a union of d conics passing through the
point p0, i.e. by deleting a neighborhood of p0 from this configuration and
replacing it with a braided curve isotopic to the affine part of Dk (suitably
rescaled into a small ball).

As a first step, we therefore need to compute the braid monodromy of
a union of d conics passing through p0. Observe that any configuration
of d non-degenerate conics in CP

2 intersecting each other transversely at
p0 gives rise to a well-defined braid factorization as soon as none of the
conics passes through the pole of the projection π : any such configuration
is a locally braided curve, and can be perturbed into a braided curve (a
union of conics in general position) by an arbitrarily small perturbation.
The connectedness of the space of configurations of conics implies that, up
to Hurwitz and conjugation equivalence, it does not actually matter which
conics are used for the computation of the braid monodromy.

Following Moishezon, the calculation can be carried out by simultaneously
“degenerating” all the conics to pairs of lines, i.e. by considering a limit
configuration where each of the conics is very close to a union of two lines
[12]. However, for the purpose of proving Theorem 2 it is more efficient
to perform a direct calculation using a specific configuration of conics. We
consider d conics with real coefficients, intersecting at the point p0, and with
their other mutual intersections lying close to three given points p1, p2, p3, as
in the following diagram (representing the intersection of the configuration
with R2 ⊂ C2, with the fibers of π corresponding to vertical lines).

d

1

1′

d′

q
p0

p1 p2 p3

t1 td t′1 t′d

All the special points are sent to the real axis by the projection π; from
left to right, there are d tangency points t1, . . . , td, followed by d(d − 1)/2
nodes near p1, the multiple point p0, nodes near p2, nodes near p3, and
finally d tangency points t′1, . . . , t

′
d. The base point is chosen on the real axis,
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immediately to the right of π(p1); the d conics intersect the reference fiber of
π in 2d points (all along the real axis in the fiber), labelled 1, . . . , d, 1′, . . . , d′.

The system of generating loops that we use to define the braid factor-
ization is given by paths joining the base point to the projections of the
various tangencies and nodes as shown in the following diagram represent-
ing the base of the fibration π :

q q q q q q q q qq qj q qj q qjp p p p p p p p p p p p p p
t1 td p1

p0 p2 p3 t′
1

t′
d

We order the various generating loops for π1(C − crit) counterclockwise
around the base point, starting with the first of the arcs joining the base
point to the projection of a node near p1, and ending with the arc joining
the base point to π(td).

The contribution of each node or tangency point to braid monodromy
can be calculated using a two-step process: first, one computes the local
braid monodromy, i.e. the monodromy action on a fiber of π very close to
the critical point; this is the power of a half-twist exchanging two imme-
diately adjacent intersection points of the considered fiber of π with the
configuration of d conics. Next, the local configuration is brought back to
the chosen fixed reference fiber of π along a prescribed arc, and the desired
braid is obtained as the image of the local monodromy under this “parallel
transport” operation; for the purpose of the calculation, it is often efficient
to perform a suitable homotopy in order to break down the given arc into a
succession of half-circles centered on other critical values along the real axis,
since parallel transport along such a half-circle can be explicitly described
as a square root of the local monodromy.

The monodromy around the multiple intersection point p0 is easily seen to
be a full twist of a disc containing the d intersection points labelled 1, . . . , d
in the reference fiber of π; we use the notation ∆2

d for this element of B2d,
which is actually the image of the central element ∆2

d ∈ Bd under the natural
embedding Bd ↪→ B2d.

In the case of the nodes near p1, the braid monodromy can be computed
directly from the local picture; for a generic choice of the conics, the inter-
section points labelled 1′, . . . , d′ behave as in the case of d lines in general
position, and their d(d−1)/2 intersections give rise to the braid monodromy
factorization

L′
d =

d−1
∏

i=1

d
∏

j=i+1

Z2
i′j′

or any Hurwitz equivalent expression (compare with equation (2)).
For the nodes near p2, the local monodromy is the same as in the case of

p1, except that the ordering of the points 1, . . . , d is reversed compared to the
reference fiber of π (these points are not affected by the local monodromy
anyway). Since parallel transport along a half-circle around p0 precisely
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amounts to a half-rotation of a disc containing the points labelled 1, . . . , d,
the contribution to braid monodromy remains given by the same expression
L′

d as above. Near π(p3), the local configuration is the same as for p2 up
to reversing the ordering of the points 1′, . . . , d′ inside the fibers of π; this
discrepancy is taken care of by parallel transport along a half-circle centered
at p2, and so the contribution to braid monodromy is again L′

d.
In the case of the tangency point td, the intersection of the d conics

with the fiber of π above a point immediately to the right of π(td) consists
of 2d points in the order 1, . . . , d, d′, . . . , 1′ on the real axis, and the local
monodromy is a half-twist exchanging the consecutive points d, d′. Parallel
transport along a clockwise half-circle around π(p1) induces a half-rotation
of the disc containing d′, . . . , 1′ in the clockwise direction, and therefore
transforms this half-twist into Zdd′ .

More generally, in a fiber immediately to the right of ti, the local pic-
ture consists of 2i points 1, . . . , i, i′, . . . , 1′ on the real axis, while the points
d, . . . , (i+1), (i+1)′, . . . , d′ have moved to the pure imaginary axis, and the
local monodromy around ti is a half-twist exchanging the consecutive points
i and i′. Parallel transport along a clockwise half-circle around π(tj) for
each j > i rotates the two points j and j ′ clockwise by π

2 , which eventually
yields the following half-twist in a fiber immediately to the right of π(td):

q q q q q qp p p p p p p p p p p p p p p p p p p p p p p p
1 i d d′ i′ 1′

Finally, going around π(p1) we need to perform a clockwise half-rotation of
a disc containing d′, . . . , 1′, which yields the half-twist Zii′ in the reference
fiber of π. Therefore, the contribution of ti to the braid factorization is Zii′ .

The tangencies t′1, . . . , t
′
d are handled in the exactly the same manner;

the calculations are slightly more tedious because of the more complicated
choices of arcs joining π(t′i) to the base point, but one easily checks that the
braid monodromy around t′i is again the half-twist Zii′ .

Putting the various contributions together in the correct order, we obtain
that the braid monodromy for the chosen configuration of conics can be
expressed by the factorization

(5) ∆2
2d = L′

d ·
d
∏

i=1

Zii′ · ∆
2
d · (L

′
d)

2 ·
d
∏

i=1

Zii′ .

As explained at the beginning of this section, in order to get the braid fac-
torization for V ′

2(Dk) we need to replace in (5) the factor ∆2
d, corresponding

to the local monodromy at the intersection point p0, with the braid fac-
torization corresponding to Dk, embedded into B2d in the natural way by
considering a disc containing the points 1, . . . , d (see also the remark below).
This immediately yields the formula (3).



A DEGREE DOUBLING FORMULA 27

The equivalent expression (4) is obtained from (3) by a sequence of Hur-
witz moves, or equivalently, by a change in the choice of generators for
π1(C − crit). Indeed, moving the factors in the first L′

d to the right across
∏

Zii′ and Fk affects these latter factors by a conjugation by the inverse of
the product of all the factors in L′

d, i.e. by a clockwise full twist of the disc

containing the points 1′, . . . , d′. As a result, Zii′ is transformed into Ẑii′ ,
while the factors in Fk commute with those in L′

d and remain unaffected.
This completes the proof of Proposition 3.

Remark. As observed in §1.1, the braid factorization Fk is only defined
up to certain algebraic operations, among which global conjugation by an
element of Bd. At first glance, the expressions obtained from (3) and (4) by
replacing Fk with its conjugate (Fk)Q by some braid Q ∈ Bd appear to be
inequivalent to the original unconjugated ones. Nonetheless, as suggested
by the geometric intuition, all possible choices yield equivalent results for
the braid factorization of V ′

2(Dk). More precisely, defining Xr = Zr,r+1 and
X ′

r = Zr′,(r+1)′ for any 1≤r≤d−1, we claim that replacing Fk by (Fk)Xr in
the r.h.s. of (4) yields an expression which is Hurwitz and conjugation equiv-
alent to the original one. This is proved by observing that the conjugated
expressions (L′

d)X′

r
, (
∏

Ẑii′)XrX′

r
and (

∏

Zii′)XrX′

r
are Hurwitz equivalent

to the unconjugated ones (checking these identities is an easy task left to the
reader), so that a global conjugation by XrX

′
r and a sequence of Hurwitz

moves can compensate for the conjugation of Fk.

3.3. The V2 branch curve. We now compute the braid factorization corre-
sponding to the branch curve C2 of the quadratic map V ′

2 (or more generally
of any generic quadratic holomorphic map from CP

2 to itself). Elementary
calculations show that C2 is a curve of degree 6 with nine cusps, no nodal
points, and tangent to the fibers of π in three points.

The braid factorizations for branch curves of generic polynomial maps
from CP

2 to itself in any degree have been computed by Moishezon [13] (see
also [14]), using a very technical and intricate argument. For the sake of
completeness, we provide a direct calculation in the degree 2 case.

Proposition 4. The braid factorization for the branch curve of V ′
2 is given

by the formula

(6) ∆2
6 =

(

Z3
13Z

3
14Z12;(34)Z

3
23

)

·
(

Z3
15Z

3
16Z12;(56)Z

3
25

)

·
(

Z3
35Z

3
36Z34;(56)Z

3
45

)

,

where Zab;(cd) = (Z2
bcZ

2
bd)Zab(Z

2
bcZ

2
bd)

−1 is a half-twist interchanging a and b
along a path that goes around the points labelled c and d.

Proposition 4 is proved by studying the effect of a generic small deforma-
tion of the degenerate map V 0

2 : (x : y : z) 7→ (x2 : y2 : z2) on its branch
curve. The ramification locus of V 0

2 in the source CP
2 consists of three lines,

which map two-to-one to three lines in the target CP
2 : the branching divi-

sor of V 0
2 therefore consists of three lines with multiplicity 2 (this behavior

is extremely non-generic). The perturbation of V 0
2 into the generic map V ′

2
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in particular affects the local behavior of the branch curve near the three
points where the lines in the branch curve of V 0

2 intersect. It also affects the
branch curve in a more global manner, since the multiplicity 2 lines making
up the branch divisor of V 0

2 are deformed into a configuration without mul-
tiplicities; roughly speaking, away from the intersection points each line of
multiplicity 2 is separated into two distinct lines lying close to each other
(even though one must keep in mind that the curve C2 is irreducible).

In order to avoid the pole of the projection π, we compose the map V 0
2

with the linear transformation (x : y : z) 7→ (x + ηz : y + ηz : z), for η > 0
small. The resulting branch divisor still consists of three multiplicity 2 lines,
intersecting the real slice R2 ⊂ C2 in the following manner:

�
�
�
�
��

A
A

A
A

AA

q1 = (1:0 :0) (0 :1 :0) = q3

(η :η :1) = q2

5612

34

On this diagram, the fibers of π correspond to vertical lines. We choose
the reference fiber of π far to the left on the real axis; after a generic pertur-
bation, each of the three lines gives rise to two intersection points between
C2 and the reference fiber of π, for a total of 6 intersection points, all ly-
ing close to the real axis in the fiber. We label these points from 1 to 6
in the natural order along the real axis, namely we label 1 and 2 the two
intersection points corresponding to the line y = 0 ; we label 3 and 4 those
corresponding to z = 0, and finally 5 and 6 those corresponding to x = 0.

The braid factorization is computed by considering the three intersection
points, which obviously play very similar roles. The first intersection point
q1, for which we study the braid monodromy by considering paths close to
the real axis in the base, involves the double lines 1 − 2 and 3 − 4, the first
of which has the greatest slope ; computations in local coordinates yield a
word in the braid group B4, which needs to be embedded into B6 simply
by considering a disc containing the points 1, 2, 3, 4 and centered on the real
axis (the “parallel transport” operation is trivial in this case).

The second intersection point q2 involves 1 − 2 and 5 − 6, the first of
which again has the greatest slope ; because the local picture is the same,
the local computation yields the same word in B4 as for q1. In the base
of the fibration π, we choose to join π(q2) to the reference fiber via a path
passing above the real axis; one easily checks that parallel transport along
this path (going around π(q1) in the counterclockwise direction) amounts
to a counterclockwise half-rotation of the points 1 − 2 around 3 − 4. As a
consequence, we must now use an embedding of B4 into B6 corresponding
to a domain containing the points 1, 2, 5, 6 and passing above the real axis
near the points 3, 4. Finally, the third point q3 involving 3 − 4 and 5 − 6
again corresponds to the same local picture. We choose to join π(q3) to the
base point by a path passing above the real axis, and one easily checks that,
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after parallel transport around π(q1) and π(q2), the relevant embedding of
B4 into B6 is simply that given by a disc containing the points 3, 4, 5, 6 and
centered on the real axis.

Consider any of the three intersection points q1, q2, q3, where we want to
compute the local contribution to braid monodromy after a small generic
perturbation. Above such a point, the map V 0

2 is given in local affine coor-
dinates by (x, y) 7→ (x2, y2) ; we choose to perturb it into the map

f : (x, y) 7→ (x2 + αy, y2 + βx),

where α and β are small nonzero constants. The ramification curve is given
by the vanishing of the Jacobian of f , which is 4xy−αβ ; the branch curve
of f is therefore parametrized as

{

(

x2 +
α2β

4x
,
α2β2

16x2
+ βx

)

, x ∈ C − {0}

}

.

We also need to specify the projection map in the local coordinates : it
can be assumed to be (z1, z2) 7→ z1 + εz2 for a small nonzero value of the
constant ε.

With this setup, the branch curve of f presents one tangency point and
three cusps, and the corresponding factorization in B4 can be expressed as

(7) Z3
13 · Z

3
14 · Z12;(34) · Z

3
23,

where Z12;(34) = (Z2
23Z

2
24)Z12(Z

2
23Z

2
24)

−1 is the following half-twist :

q q q q
1 2 3 4

One can easily check that the product of the factors in (7) is equal to
Z12Z34Z

2
13Z

2
14Z

2
23Z

2
24, which amounts to the double lines 1 − 2 and 3 − 4

intersecting each other while the two lines in each double line (1 and 2 on
one hand, 3 and 4 on the other hand) twist by a half-turn around each other :
this is exactly the expected contribution (the presence of the half-twists is
due to the fact that each double line is the image of a 2 : 1 covering branched
at the singular point).

It is worth mentioning that the expression (7) is Hurwitz equivalent to its
conjugates under the action of the half-twists Z12 or Z34 (or any combination
of them). This “invariance property” is suggested by the geometric intuition,
since the two points of each pair 1−2 or 3−4 arising from the perturbation
of a double line play interchangeable roles; in fact, the diffeomorphisms Z12

or Z34 of the reference fiber of π are induced by suitable changes in the
parameters of the perturbation (from β to −β via (eiθβ)0≤θ≤π, and simi-
larly for α, respectively). This observation explains why, although the three
embeddings B4 → B6 described above are in fact naturally determined only
up to certain conjugations, we need not worry about the lack of canonicality
of our choices.
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Finally, one obtains the braid factorization for C2 by putting together the
contributions of the three intersection points q1, q2, q3, using the embeddings
B4 → B6 described above. The images of (7) under these embeddings are
exactly the three expressions appearing in the r.h.s. of (6). One easily
checks that all the special points of C2 are accounted for, either by using
the Plücker formulas to show that C2 only has 9 cusps and 3 tangency points,
or by verifying directly that the product of the factors in the r.h.s. of (6) is
equal to the central element ∆2

6. This completes the proof of Proposition 4.

Let us point out that, although (7) looks very similar to the formula
obtained by Moishezon for the braid monodromy at what he calls a “3-point”
[11], the two geometric situations are very different : Moishezon’s 3-points
correspond to a generic projection of a very degenerate algebraic surface,
with locally a covering map of degree 3, while the points we describe here
correspond to a very degenerate projection of a smooth algebraic surface,
with locally a covering map of degree 4. The fact that two very different
geometric descriptions of the curve C2 yield identical braid factorizations is
one of the many remarkable properties of quadratic maps from CP

2 to itself.

We finish this section by briefly describing the geometric monodromy rep-
resentation θV2

: π1(CP
2 −C2) → S4 corresponding to the factorization (6).

Each double line in the branch curve of V 0
2 corresponds to two disjoint trans-

positions in S4, while the transpositions corresponding to lines in different
double lines are adjacent. Therefore, after a suitable reordering of the four
sheets of the covering V ′

2 , one may assume that the six geometric generators
γ1, . . . , γ6 (small loops going around each of the six points labelled 1, . . . , 6
in the reference fiber of π) are mapped to the transpositions (1 2), (3 4),
(1 3), (2 4), (1 4) and (2 3) respectively. One easily checks that all the
braids appearing in the factorization (6) satisfy the compatibility relations
stated in the introduction (e.g., for the first factor Z3

13, the transpositions
θV2

(γ1) = (1 2) and θV2
(γ3) = (1 3) are indeed adjacent).

3.4. Regeneration of the mutual intersections. We now describe the
contribution to the braid monodromy of D2k of an intersection point of
V ′

2(Dk) with C2. As observed in §2.2, the behavior of the map f ′2k = V ′
2 ◦ fk

above such a point is not generic, and a perturbation is needed in order to
obtain the generic map f2k. The local description of this perturbation is the
following :

Lemma 2. Over a neighborhood of a point where Rk intersects f−1
k (R′

2),
up to an isotopy of the branch curve among locally braided curves we can
assume that f ′2k and f2k are given by the following models in local complex
coordinates: f ′2k(x, y) = (−x2 +y,−y2), and f2k(x, y) = (−x2 +y,−y2 +εx),
where ε is a small non-zero constant, π being the projection to the first
component.

Proof. Provided that k is large enough and given a point p ∈ Rk ∩ f
−1
k (R′

2),
the argument in §3 of [1] (see also [5],[3]) implies that a small perturbation
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term, localized near p, can be added to f ′2k in order to make it generic and
achieve the required transversality properties near p ; the other transversal-
ity properties of f ′2k are not affected if the perturbation is chosen small
enough. Moreover, the one-parameter construction used in [1] to prove
uniqueness up to isotopy implies that the space of admissible perturbations
is path connected (once again provided that k is large enough).

Local models for the various maps can be obtained as follows. First
observe that there exist local holomorphic coordinates (z1, z2) on CP

2 near
fk(p) in which V ′

2 can be expressed as (z1, z2) 7→ (z1,−z
2
2). Moreover, it was

shown in [1] that there exist local approximately holomorphic coordinates
(x, y) on X and (z̃1, z̃2) on CP

2 in which fk is given by (x, y) 7→ (x2, y).
Recall that fk satisfies properties (2) and (5) of Definition 7. Therefore,

provided that V ′
2 is chosen sufficiently close to V 0

2 (which is always assumed
to be the case), we know two things : first, by property (2), the branch
curve Dk = fk(Rk) intersects the ramification curve R′

2 of V ′
2 transversely ;

second, by property (5), the tangent space to Dk at fk(p) does not lie in
the kernel of the differential of V ′

2 , i.e. the image by V ′
2 of the branch curve

of fk is locally immersed. Therefore, Dk, given by the equation z̃1 = 0, is
transverse at fk(p) to both axes of the coordinate system (z1, z2) on CP

2.
A first consequence is that (z̃1, z2) are local approximately holomorphic

coordinates on CP
2 ; replacing the coordinate y on X by ỹ = f ∗k (z2), we

obtain that the expression of fk in the local coordinates (x, ỹ) and (z̃1, z2)
remains (x, y) 7→ (x2, y).

Another consequence is that the coefficients of z̃1 and z2 in the expression
of z1 as a function of z̃1 and z2 are both non-zero. Therefore, near the
origin we can write z1 = z̃1φ(z̃1, z2) + z2ψ(z2) + O(k−1/2), where φ and ψ
are non-vanishing holomorphic functions and the last part corresponds to
the antiholomorphic terms.

Working with coordinates (z1, z2) on CP
2, the expression of fk becomes

(x, y) 7→ (x2φ(x2, y) + yψ(y) + O(k−1/2), y). Performing the coordinate

change (x, y) 7→ (ixφ(x2, y)1/2, y) on X, we can reduce the model for fk to

the simpler expression (x, y) 7→ (−x2 + yψ(y) +O(k−1/2), y). Decomposing
ψ into even and odd degree parts, we can write

f ′2k(x, y) = (−x2 + yψ0(y
2) + y2ψ1(y

2) +O(k−1/2),−y2).

Composing with the coordinate change (u, v) 7→ (u + vψ1(−v), vψ0(−v)
2)

on CP
2, we reduce to f ′2k(x, y) = (−x2 + yψ0(y

2) + O(k−1/2),−y2ψ0(y
2)2).

Finally, the coordinate change (x, y) 7→ (x, yψ0(y
2)) on X yields the expres-

sion f ′2k(x, y) = (−x2 + y+O(k−1/2),−y2). This expression differs from the

desired one only by antiholomorphic terms, which are bounded by O(k−1/2)
and therefore can be discarded without affecting the local braid monodromy
computations.

We know that for large enough k the space of admissible asymptotically
holomorphic local perturbations of f ′2k near p (i.e. perturbations satisfying
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the required uniform transversality properties) is path connected. Therefore,
we are free to choose the perturbation which suits best our purposes ; fixing a
constant ε 6= 0, we set f2k to be of the form (x, y) 7→ (−x2+y,−y2+εx). One
easily checks that, provided that the chosen value of ε is bounded from below
independently of k, this map locally satisfies all the required properties.

Concretely, this perturbation of f ′2k can be performed in the same man-
ner as in [1], by considering the very localized asymptotically holomorphic
sections srefk,p of L⊗k with exponential decay away from p first introduced by

Donaldson in [7]. It is easy to check that, by adding to one of the sections
of L⊗2k defining the covering map f ′2k a small multiple of x ·sref2k,p, where x is

the first coordinate function on X near p, the map f ′2k itself is affected by a
perturbation which coincides at the first order with the desired one. In view
of the local models, this is sufficient to ensure that the branch curve agrees
with the prescribed one up to isotopy among locally braided curves, and
hence to ensure that the braid monodromy is as desired. In fact, replacing
the coefficient in front of sref2k,p by a suitable polynomial of higher degree in

the coordinates, we can even make the perturbation of f ′
2k coincide with the

desired one up to arbitrarily high order.
We finally consider the projection π used to define braid monodromy.

Recall that the various hypotheses made on V ′
2 and fk ensure that the branch

curve of V ′
2 remains locally transverse to the fibers of π. Furthermore, over

a neighborhood of the considered point, the tangent space to the branch
curve of f ′2k in CP

2 remains very close to the direction determined by the
branch curve of V ′

2 (in our local model, the first coordinate axis) ; an easy
calculation shows that the same property remains true for f2k (see also
below). It follows that the local braid monodromy does not depend at all on
choice of the projection π as long as its fibers are locally transverse to the
first coordinate axis. Therefore, performing if necessary an isotopy among
locally braided curves by means of a suitable rotation, we can safely assume
π to be the projection to the first coordinate axis. �

By Lemma 2 we know that the local braid monodromy of f2k can be
computed using for f2k the local model

(x, y) 7→ (−x2 + y,−y2 + εx)

where ε is a small non-zero constant. The Jacobian of this map is 4xy − ε,
and its branch curve can be parametrized as

{

(

−x2 +
ε

4x
,−

ε2

16x2
+ εx

)

, x ∈ C − {0}

}

.

The signs have been chosen in such a way that, taking ε along the positive
real axis and taking the base point at a large negative real value of the first
coordinate, the intersection of the branch curve with the reference fiber
of π consists of three points aligned along the real axis, the left-most one
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corresponding to the branch curve of fk while the two others correspond to
the branch curve of V ′

2 .
Projecting to the first component (or choosing any other generic projec-

tion), the only remarkable features of the branch curve near the origin are
three cusps, and the corresponding braid factorization can be expressed as

(8) Z3
12 · Z

3
13 · Z

3
12;(3),

where the point labelled 1 corresponds to the branch curve of fk while the
points labelled 2 and 3 correspond to the branch curve of V ′

2 , and where

Z12;(3) = Z2
23Z12Z

−2
23 is a half-twist exchanging 1 and 2 along a path that

goes around 3 :

q q q
1 2 3

A short calculation in B3 shows that the product of the factors in (8) is
equal to Z23(Z

2
12Z

2
13)

2, which amounts to the line labelled 1 twisting twice
around 2 and 3 while these two lines undergo a half-twist. This is consistent
with the geometric intuition, since the branch curve of fk, folded onto itself
by V ′

2 , hits the branch curve of V ′
2 in a manner that can be represented by

the following picture:

1

3
2

The line labelled 1 intersects 2 and 3 with multiplicity 2 because the image
of Dk by V ′

2 is necessarily tangent to the branch curve of V ′
2 wherever they

intersect ; the lines 2 and 3 twist around each other by a half-turn because
they arise as the two sheets of a 2:1 covering branched at the origin (they
correspond to the two preimages by fk of each point where V ′

2 is ramified).
It is also worth observing that the expression (8) is easily shown to be Hur-

witz equivalent to its conjugates under the action of the group generated by
the half-twist Z23 exchanging the two points labelled 2 and 3, in agreement
with the geometric intuition suggesting that their roles are interchangeable.

In order to understand how the braid monodromy given in (8) fits in the
global picture, we now need to explain the labelling of the various compo-
nents making up D2k and the corresponding geometric monodromy repre-
sentation.

Notations. As described above the branch curve D2k is obtained by
deforming the union of V ′

2(Dk) and n copies of C2. Its degree is therefore
d̄ = 2d+6n. For braid group calculations in B2d+6n, the 2d+6n intersection
points of D2k with the reference fiber of π will be labelled as follows: we
assign labels 1, . . . , d and 1′, . . . , d′ to the 2d intersection points which cor-
respond to V ′

2(Dk) (in the same manner as in §3.2), and iα, i
′
α, iβ, i

′
β, iγ , i

′
γ
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for 1 ≤ i ≤ n to the 6n intersection points corresponding to the n copies
of C2. More precisely, recall that the branch curve of V ′

2 is obtained as a
perturbation of the branch curve of V 0

2 , which consists of three double lines :
therefore the n copies of C2 can be thought of as three groups of 2n lines.
These three groups correspond to the three subscripts α, β and γ ; for each
value of i the two labels iα and i′α correspond to the perturbation of a double
line in the i-th copy of the branch curve of V 0

2 .
We will choose the reference fiber of π and the configuration of the

branch curve in such a way that the 2d + 6n intersection points of the ref-
erence fiber with D2k all lie on the real axis, in the order 1, . . . , d, 1′, . . . , d′,
1α, 1

′
α, 2α, 2

′
α, . . . , nα, n

′
α, 1β , 1

′
β , . . . , nβ , n

′
β, 1γ , 1

′
γ , . . . , nγ , n

′
γ ; in fact, we will

actually choose a reference fiber yielding a slightly different configuration of
intersection points, and then conjugate the obtained monodromy by a suit-
able braid. In any case, when using Zij notations it will be understood
that the 2d + 6n intersection points of D2k with the reference fiber of the
projection π are to be placed on the real axis in the above-given order.

In order to describe the geometric monodromy representation morphism
θ2k : π1(CP

2 − D2k) → S4n, we first need to choose a set of geometric
generators of π1(CP

2 −D2k). We choose the base point for π1(CP
2 −D2k)

to lie in the reference fiber of π, far above the real axis which contains
the 2d + 6n intersection points with D2k, and we use a system of 2d + 6n
generating loops, each joining the base point to one of the intersection points
along a straight line, circling once around the intersection point, and going
back to the base point along the same straight line.

The 4n sheets of the covering f2k can be thought of as four groups of
n sheets, which we will label as ia, ib, ic, id for 1 ≤ i ≤ n. Consider a
situation similar to that of §3.2, where most of the branch curve of fk is
concentrated into a small ball far away from the branch curve of V ′

2 : this
results in a picture where the parts of the branch curve corresponding to
V ′

2(Dk) connect to each other the n sheets of a single group (1a, . . . , na for
example), while the copies of C2 connect the various groups of n sheets
to each other. In particular, the transpositions in S4n corresponding to
the geometric generators around 1, . . . , d, 1′, . . . , d′ are directly given by the
geometric monodromy representation θk associated to Dk : for any 1 ≤
r ≤ d, if θk maps the r-th geometric generator to the transposition (ij)
in Sn then, calling γr and γr′ the geometric generators in π1(CP

2 − D2k)
corresponding to r and r′, one gets θ2k(γr) = θ2k(γr′) = (iaja). Finally, each
of the n copies of C2 connects four sheets to each other, one in each group
of n, in the same manner as for V ′

2 itself : therefore θ2k maps the geometric
generators around iα, i′α, iβ , i′β, iγ and i′γ to (iaib), (icid), (iaic), (ibid), (iaid)

and (ibic) respectively, for all 1 ≤ i ≤ n.
A suitable choice of geometric configuration and reference fiber of π yields

a situation in which θ2k is as described above. Our choice of configuration
will be made explicit in §3.5. A different set of geometric choices would lead
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to a different description of the braid monodromy and of θ2k, but the final
answer always remains the same up to Hurwitz and conjugation equivalence.

With this understood, we now describe the contribution to the braid
monodromy of a point where a piece of V ′

2(Dk), say e.g. the portion of conic
labelled r′ for some 1 ≤ r ≤ d, hits one of the three groups of 2n lines
making up the n copies of C2, say e.g. the lines labelled 1α, 1

′
α, . . . , nα, n

′
α.

If one just considers the composed map V ′
2 ◦fk, the n copies of the branch

curve C2 of V ′
2 all lie in the same position, and the curve V ′

2(Dk) hits them
tangently (and therefore with local intersection multiplicity +2). To obtain
the generic map f2k we add a small perturbation, which affects the situation
by moving the n copies of C2 apart from each other and also by modifying
the intersection of Rk with f−1

k (R′
2) in the manner explained above. More

precisely, R′
2 admits 2n − 2 local lifts to X which do not locally intersect

the branch curve of fk (because they lie in different sheets of the covering)
and thus do not require any special treatment, while the two other sheets
of fk give rise to “lifts” of R′

2 intersecting the branch curve of fk and each
other. Therefore, when computing the braid factorization of D2k, we can
locally consider the n copies of C2 as consisting of 2n − 2 parallel lines,
each intersected twice by V ′

2(Dk) (giving rise to two nodes), and two “lines”
parallel to the others which are hit by V ′

2(Dk) in the manner previously
explained.

The geometric monodromy representation θ2k maps the geometric gener-
ator around r′ to a transposition of the form (paqa), for some 1 ≤ p, q ≤ n.
The two lines hit in a non-trivial manner are those labelled pα and qα, which
under the map θ2k correspond respectively to the transpositions (papb) and
(qaqb) in S4n. The other 2n− 2 lines (iα for i 6∈ {p, q} and i′α for all i) lie in
different sheets of the covering and their intersections with r′ simply remain
as nodes in the branch curve D2k.

Parallel transport of the local configuration along a given arc in the base
of the fibration π reveals the important role played by two specific paths
in the reference fiber, namely the path along which the point labelled r′

approaches the group of 2n points 1α, . . . , n
′
α and the path along which two

of these 2n points approach each other. To phrase things differently, these
two paths determine an embedded triangle with vertices at r′, pα, qα in the
reference fiber, which collapses as one moves from the reference fiber towards
the intersection point.

We assume the configuration to be such that, after parallel transport of
the local configuration into the reference fiber of π, the path along which
the point labelled r′ approaches the 2n other points is the simplest possible
one passing above the real axis, while the two points pα and qα approach
each other along a path isotopic to an arc contained in the upper half-plane.
Equivalently, inside the reference fiber of π, we assume that the embedded
triangle with vertices r′, pα and qα which collapses as one approaches the
considered singular point is the simplest possible one lying in the upper



36 DENIS AUROUX AND LUDMIL KATZARKOV

half-plane. Whether this is truly the case or whether the formula needs to
be adjusted by a suitable global conjugation will be determined later on,
when the contributions of the various points are put together into a global
braid factorization in B2d+6n; if the motions of r′, pα and qα are different
from the (purely arbitrary) above choice, then the formula giving the local
monodromy will need to be conjugated by a certain element of B2d+6n (any
braid that maps the triangle joining r′, pα, qα into the correct position can
be used, as they all yield Hurwitz equivalent factorizations).

Proposition 5. The braid monodromy for the intersection of the portion of
conic labelled r′ with the 2n lines 1α, 1

′
α, . . . , nα, n

′
α is Hurwitz and conjuga-

tion equivalent to the following factorization :

(9)

1
∏

i=n

(

Ź2
r′i′α

[

Ź2
r′iα

]

i6∈{p,q}

)

· Z3
r′pα

· Z3
r′qα

· Z3
r′pα;(qα)·

1
∏

i=n

(

Z̀2
r′i′α

[

Z̀2
r′iα

]

i6∈{p,q}

)

,

where Źr′τ and Z̀r′τ are half-twists along the following paths:

Źr′τ q q q qp p p p p p p p p p p p p p p p p p p p p p p p
r′ d′

1α τ Z̀r′τ q q q qp p p p p p p p p p p p p p p p p p p p p p p p
r′

τ

1β

and Zr′pα;(qα) is a half-twist along the path

q q q q qp p p p p p p p p p p p p p p p p p p p p p p p
r′ pα qα

In (9), the products are to be performed in the reverse order (first i = n,
finishing with i = 1), and the notation [. . . ]i6∈{p,q} means that the enclosed
factor is not present for i = p or i = q.

Proof. We start by considering a slightly simpler setup where, instead of
being in their normal positions, the points pα and qα have been moved
to the right of the 2n − 2 other points 1α, . . . , n

′
α (i.e., further along the

positive real axis in the reference fiber of π). More precisely, we assume
that the points pα and qα have been moved into these positions along arcs
in the upper half-plane, so that the point r′ still reaches them by passing
above the real axis and the vanishing cycle is the line segment joining pα to
qα. The situation is then described by the following picture in R2 ⊂ C2:

r′

pα

qα

1α

n′αp p p p p p pppppp
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The reference fiber is once again placed to the left of the diagram, and
the vertical direction corresponds to the real axis in the fibers of π.

Recalling that V ′
2(Dk) hits C2 tangently, the expected total contribution

to the braid monodromy corresponds to r′ twisting twice around each of
the lines 1α, 1

′
α, . . . , nα, n

′
α. For the reasons explained above, a half-twist

between the lines pα and qα is also to be expected.
In order to compute the braid monodromy, we observe that in the chosen

configuration the singular fibers of π all lie along the real axis, and choose
the following system of generating paths in the base of the fibration π: the
first path connects the base point (far away on the negative real axis) to
the first intersection of r′ with n′α by passing below the real axis; the second
one similarly joins the base point to the first intersection of r′ with nα by
passing below the real axis; and so on, going from right to left, until all 2n−2
nodes in the left half of the diagram have been considered. The following
three paths join the base point to the three cusp singularities arising from
the perturbation of the singular point in the middle of the diagram, passing
above the real axis. Finally, the remaining 2n− 2 paths join the base point
to the intersections in the right half of the diagram, passing above the real
axis, and going from left to right (the first of these paths ends at the second
intersection of r′ with n′α, the last one ends at the second intersection with
1α). As should always be the case, the paths are ordered counterclockwise
around the base point.

Observing that the conic labelled r′ behaves similarly to the graph of the
identity function in the left half of the diagram and similarly to the graph
of −Id in the right half, one easily obtains the following expression for the
local braid monodromy of our configuration:

(10)
1
∏

i=n

(

Ź2
r′i′α

[

Ź2
r′iα

]

i6∈{p,q}

)

· Fr′pαqα
·

1
∏

i=n

(

Z̀2
r′i′α

[

Z̀2
r′iα

]

i6∈{p,q}

)

,

where the notation Fr′pαqα
represents an expression similar to (8), and Źr′iα

and Z̀r′iα are the same half-twists as in the statement of Proposition 5.
We now bring the two points pα and qα back to their respective positions,

moving them along paths passing above the real axis. The half-twists Źr′τ

and Z̀r′τ are not affected by this motion; whereas Fr′pαqα
is changed into

Z3
r′pα

· Z3
r′qα

· Z3
r′pα;(qα). Therefore, the expression (10) turns into (9). �

Observe that the conjugates of the expression (9) by certain elements of
B2n (acting on 1α, . . . , n

′
α) are Hurwitz equivalent to (9). Indeed, consider

the subgroup B2n−2×B2 ⊂ B2n of braids which globally preserve the triangle
formed by r′, pα and qα. The factor B2 is generated by the half-twist Zpαqα

interchanging pα and qα, while the factor B2n−2 is generated by half-twists
interchanging two of the 2n− 2 other points along a path passing below the
real axis. Conjugating (9) by Zpαqα simply amounts to a modification of
the three central degree 3 factors of (9) by two Hurwitz moves. Similarly,



38 DENIS AUROUX AND LUDMIL KATZARKOV

conjugation by one of the half-twists generating B2n−2 (interchanging two
consecutive points among the 2n − 2) is equivalent to two Hurwitz moves,

one among the Ź2
r′τ factors and the other among the Z̀2

r′τ factors. This is
in agreement with the geometric intuition suggesting that, since all these
conjugations do not affect the triangle joining r′, pα and qα, they do not
modify the braid monodromy in any significant way.

However, as already pointed out above, conjugating (9) by an element of
B2n lying outside of B2n−2×B2 affects non-trivially the path along which pα

and qα approach each other, and therefore yields an expression which is not
Hurwitz equivalent to the original one (this can be seen directly by observing
that the product of all factors in (9) is modified by the conjugation).

3.5. The assembling rule. We now study how the various elements de-
scribed above fit together to provide the braid factorization for D2k. We
will start by considering, as a toy model, a curve made up of d conics and
three lines, corresponding to the following diagram (drawn for d = 2) :

α γ

β

2 1

1′ 2′

The d conics play the role of V ′
2(Dk), while the three lines correspond to

the C2 part. As usual, the vertical direction corresponds to the real axis
in the fibers of π, and the reference fiber is to the left of the diagram ;
in the reference fiber the points are placed on the real axis in the order
1, . . . , d, 1′, . . . , d′, α, β, γ. Although the space of all configurations of d conics
and three lines tangent to them in CP

2 is connected, thus making all possible
choices equally suitable, the choice of the configuration represented above is
motivated by its remarkable similarity to the configurations chosen in §3.2
and §3.3 for V ′

2(Dk) and C2 respectively. In particular, one easily checks
that the braid monodromy for the chosen configuration of the d conics is
exactly the one computed in §3.2 (equation (5) and Proposition 3).

The braid monodromy for this configuration of d conics and three lines can
be computed explicitly in coordinates. However this calculation is tedious
and not very illuminating, so we first motivate the formula by deriving it
by a different method : we start from a situation where the lines are in
general position with respect to the conics, and we follow on the level of
braid factorizations the deformation of such a generic configuration into the
specific desired one. In fact, keeping track of the deformation amounts to
performing a sequence of Hurwitz moves with the aim of bringing next to
each other the two factors arising from the intersections of each line with
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each conic ; the resulting braid factorization contains consecutive identical
degree 2 factors, so that merging the intersections becomes a trivial task.

Alternatively, the reader may jump ahead to the statement of Proposition
6 and the outline of proof given afterwards for a description of the direct
monodromy calculation.

The standard braid factorization assembling formula for the union of two
tranversely intersecting curves of respective degrees p and q is given by

(11) ∆2
p+q = ∆2

p ·

p
∏

i=1

p+q
∏

j=p+1

Z2
ij · ∆

2
q ,

where the points are labelled 1, . . . , p for the first curve and p+ 1, . . . , p+ q
for the second, and ∆2

p and ∆2
q stand for the braid factorizations of the

two components. The braid groups Bp and Bq are implicitly embedded into
Bp+q by considering two disjoint disks containing the p first points and the q
last points respectively. The formula (11) can be easily checked by applying
a suitable isotopy to the two components so that, outside of two mutually
disjoint balls, they behave like respectively p and q mutually transverse lines.

In our case we want the three lines to be tangent to the conics, so we need
to perform Hurwitz moves on this factorization so that the two intersections
of each line with each conic can be brought together. Our starting point, as
given by (11) and (4), is the factorization

(12) ∆2 =
(

d
∏

i=1

Ẑii′ · Ld · (L
′
d)

3 ·
d
∏

i=1

Zii′

)

·

d
∏

i=1

(

Z2
iαZ

2
iβZ

2
iγ

)

·
d
∏

i=1

(

Z2
i′αZ

2
i′βZ

2
i′γ

)

·
(

Z2
αβZ

2
αγZ

2
βγ

)

.

Moving the Zii′ factors to the right, one replaces the central Z2
iαZ

2
iβZ

2
iγ terms

by Z2
i′αZ

2
i′βZ

2
′iγ ; then, moving the rightmost terms to the left, one obtains

the new expression

∆2 =
(

d
∏

i=1

Ẑii′ · Ld · (L
′
d)

3
)

·
(

d
∏

i=1

(

Z2
i′αZ

2
i′βZ

2
i′γ

)

)2
·
(

Z2
αβZ

2
αγZ

2
βγ

)

·
d
∏

i=1

Žii′

where Žii′ is a half-twist along the following path :

q q q q q q q q qp p p p p p p p p p p p p p p p p p p p p p p p
1 i d 1’ i′ d′ α β γ

To shorten notations, we will write this factorization in the form

(13) ∆2 =
d
∏

i=1

Ẑii′ · Ld · Θ ·
d
∏

i=1

Žii′ ,
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and work only with the central part Θ, which geometrically corresponds to
the upper half of the considered diagram. Using the commutativity rules in
the central part, one can rewrite Θ as

Θ = (L′
d)

3 ·
(

d
∏

i=1

Z2
i′α

d
∏

i=1

Z2
i′β

d
∏

i=1

Z2
i′γ

)2
·
(

Z2
αβZ

2
αγZ

2
βγ

)

.

Moving the second set of Z2
i′α and Z2

i′β factors to the left, one can rewrite
this expression as

Θ = (L′
d)

3 ·
(

d
∏

i=1

Z2
i′α

)2
·

d
∏

i=1

Z2
i′β;{α} ·

d
∏

i=1

Z2
i′β ·

d
∏

i=1

Z2
i′γ;{β} ·

d
∏

i=1

Z2
i′γ ·
(

Z2
αβZ

2
αγZ

2
βγ

)

where Zi′β;{α} and Zi′γ;{β} are half-twists along the following paths :

q q q q q q qp p p p p p p p p p p p p p p
d 1’ i′ d′ α β γ

Zi′β;{α}

q q q q q q qp p p p p p p p p p p p p p p
d 1’ i′ d′ α β γ

Zi′γ;{β}

A succession of Hurwitz moves to the right makes it possible to rewrite
Θ as

(L′
d)

3 ·
(

d
∏

i=1

Z2
i′α

)2
·

d
∏

i=1

Z2
i′β;{α} · Z̃

2
αβ,0 ·

d
∏

i=1

Z2
i′β ·

d
∏

i=1

Z2
i′γ;{β} · Z̃

2
αγZ̃

2
βγ ·

d
∏

i=1

Z2
i′γ

where Z̃αβ,0, Z̃αγ and Z̃βγ are half-twists along the following paths :

q q q q q qp p p p p p p p p
d 1′ d′

α

β γ

Z̃αβ,0

q q q q q qp p p p p p p p p
d 1′ d′

α

β γ

Z̃αγ

q q q q q qp p p p p p p p p
d 1′ d′ α β γ

Z̃βγ

Moving Z̃2
αβ,0, Z̃

2
αγ and Z̃2

βγ to the left, one can rewrite Θ as

Θ = (L′
d)

3 ·
(

d
∏

i=1

Z2
i′α

)2
· Z̃2

αβ,0 ·
(

d
∏

i=1

Z2
i′β

)2
· Z̃2

αγZ̃
2
βγ ·

(

d
∏

i=1

Z2
i′γ

)2
.

Moving the Z2
i′β factors to the left, one obtains the new expression

Θ = (L′
d)

3 ·
(

d
∏

i=1

Z2
i′α

)2
·
(

d
∏

i=1

Z2
i′β

)2
· Z̃2

αβ · Z̃2
αγZ̃

2
βγ ·

(

d
∏

i=1

Z2
i′γ

)2
,

where Z̃αβ is a half-twist along the path

q q q q q qp p p p p p p p p
d 1′ d′

α

β γ
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Observing that each factor Z2
i′j′ in L′

d commutes with the products
∏

Z2
i′α

and
∏

Z2
i′β and also with Z̃2

αβ , Z̃2
αγ and Z̃2

βγ , a sequence of Hurwitz moves
to the left makes it possible to rewrite Θ as

(14) L′
d ·
(

d
∏

i=1

Z2
i′α

)2
· L′

d ·
(

d
∏

i=1

Z2
i′β

)2
· Z̃2

αβZ̃
2
αγZ̃

2
βγ · L′

d ·
(

d
∏

i=1

Z2
i′γ

)2
.

We now study more in detail the first part of (14), namely

Θα = L′
d ·
(

d
∏

i=1

Z2
i′α

)2
=

d−1
∏

i=1

d
∏

j=i+1

Z2
i′j′ ·

(

d
∏

i=1

Z2
i′α

)2
.

A sequence of Hurwitz moves to the right makes it possible to rewrite this
expression as

Θα =

d−1
∏

i=1

d
∏

j=i+1

Z2
i′j′ ·

d
∏

i=1

(

Z2
i′αẐ

2
i′α

)

,

where Ẑi′α is a half-twist along the path

q q q q qp p p p p pp p p p p p
1′ i′ d′ α

Using commutation relations, more Hurwitz moves yield the identity

Θα =
d
∏

i=1

(

d
∏

j=i+1

Z2
i′j′ · Z

2
i′αẐ

2
i′α

)

.

Next we move Z2
i′α to the left and obtain

Θα =
d
∏

i=1

(

Z2
i′α ·

d
∏

j=i+1

Z2
i′j′;(α) · Ẑ

2
i′α

)

,

where Zi′j′;(α) = Z−2
i′αZi′j′Z

2
i′α is a twist along the path

q q q q q qp p p p p p p p p p p p p p p p p p
i′ j′ d′ α β γ

Finally, moving the Z2
i′j′;(α) factors to the left, one obtains the identity

Θα =
d
∏

i=1

(

(Z2
i′α)2 ·

d
∏

j=i+1

Z2
i′j′;(α)

)

.

Geometrically this expression corresponds to the following picture :

α

1′ 2′
...

d′



42 DENIS AUROUX AND LUDMIL KATZARKOV

Proceeding similarly with the pieces involving β and γ in the expression
(14), and letting Zi′j′;(β) = Z−2

i′βZi′j′Z
2
i′β and Zi′j′;(γ) = Z−2

i′γZi′j′Z
2
i′γ (these

twists correspond to the same picture as Zi′j′;(α) but going around β or γ
instead of α), the factorization (14) rewrites as

Θ =
d
∏

i=1

(

(Z2
i′α)2 ·

d
∏

j=i+1

Z2
i′j′;(α)

)

·
d
∏

i=1

(

(Z2
i′β)2 ·

d
∏

j=i+1

Z2
i′j′;(β)

)

·

Z̃2
αβZ̃

2
αγZ̃

2
βγ ·

d
∏

i=1

(

(Z2
i′γ)2 ·

d
∏

j=i+1

Z2
i′j′;(γ)

)

.

We have finally achieved our goal of bringing next to each other the two
intersections of each conic with each line. Therefore, going back to (13), we
finally obtain :

Proposition 6. The braid factorization corresponding to the union of d
conics and three lines tangent to them is given by

(15) ∆2 =
d
∏

i=1

Ẑii′ · Ld ·
d
∏

i=1

(

Z4
i′α ·

d
∏

j=i+1

Z2
i′j′;(α)

)

·
d
∏

i=1

(

Z4
i′β ·

d
∏

j=i+1

Z2
i′j′;(β)

)

·

Z̃2
αβZ̃

2
αγZ̃

2
βγ ·

d
∏

i=1

(

Z4
i′γ ·

d
∏

j=i+1

Z2
i′j′;(γ)

)

·
d
∏

i=1

Žii′ .

As explained above, the connectedness of the space of configurations of
mutually tangent conics and lines implies that, for a different choice of the
initial configuration, the braid factorization remains the same up to Hurwitz
equivalence and global conjugation. For instance, using different expressions
as starting points for the above geometric derivation of (15) leads to formulas

in which the half-twists Ẑii′ and Žii′ are replaced by slightly different half-
twists with the same end points; these formulas are equivalent to (15) up to
suitable Hurwitz moves and conjugations.

For completeness, we now describe how the reader may re-obtain the
formula (15) by a direct calculation from the diagram presented at the be-
ginning of this section (we describe the case d = 2, the extension to all
values of d is trivial). We start again from the diagram representing the
intersection of the configuration with R2 ⊂ C2.

α γ

β

2 1

1′ 2′
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All the special points are sent to the real axis by the projection π, and
labelling them in the obvious manner they are, from left to right, in the
following order (after slightly deforming the projection in a manner which
clearly doesn’t affect the braid factorization) : 11′, 22′ (tangencies), 12, 1′α,
1′2′, 2′α, αβ, 2′β, 1′2′, 1′β, αγ, βγ, 1′γ, 1′2′, 2′γ (nodes and double nodes),
11′, 22′ (tangencies).

The base point is placed on the real axis, immediately to the right of the
first two tangencies (and to the left of all other points). The intersection
with the reference fiber differs from the expected one by a permutation of
the points labelled 1′ and 2′ (the points are in the order 1, 2, 2′, 1′, α, β, γ) ;
this is taken care of by conjugating all computed monodromies by a half-
twist, namely the point labelled 1′ is brought back to the left of 2′ by moving
it counterclockwise along a half-circle passing above 2′.

The system of generating loops that we use to define the braid factoriza-
tion is given by paths joining the base point to the various other points in
the following manner (one easily checks that these paths are ordered coun-
terclockwise around the base point). The first two paths join the base point
to the points 11′ and 22′ on its left, starting below the real axis and rotating
twice clockwise around 11′ and 22′ (see diagram below). The four following
paths join the base point to the points 12, 1′α, 1′2′ and 2′α on its right,
passing above the real axis. The next four paths reach the points 1′β, 1′2′,
2′β and αβ in that order, starting above the real axis and crossing it between
1′β and αγ to reach their end points from below, as shown on the diagram.
The following two paths join the base point to αγ and βγ, simply passing
above the real axis. The next three paths have 1′γ, 1′2′ and 2′γ as end
points, passing above the real axis but circling once clockwise around the
three points before reaching them. Finally, the last two paths connect the
base point to the two rightmost points 11′ and 22′, passing above the real
axis and circling twice clockwise around them. The picture is as follows :

q q q q q q q q q q q q q q q q q q
11′ 22′ 12 1′α 1′2′ 2′α

αβ 2′β 1′2′1′β

αγ βγ 1′γ 1′2′ 2′γ 11′ 22′

The monodromy around each point is computed using the following ob-
servation : placing oneself along the real axis, close to the image in the
base of one of the special points, the intersection points of the curve with
the fiber of π all lie along the real axis (except at the outermost tangencies
where some points have moved off the axis), and the two points involved in
the monodromy lie next to each other. The monodromy then corresponds
to a twist along a line segment between these two points ; more importantly,
restricting oneself to a half-circle around the considered point in the base
amounts to rotating the two points in the fiber around each other by half
the total angle. With this understood, and decomposing each path into
half-circles around the various points, the computations simply become a
tedious task of careful accounting.



44 DENIS AUROUX AND LUDMIL KATZARKOV

After suitably conjugating by a half-twist between 1′ and 2′, it turns
out that the braid monodromies along the various given loops are exactly
the factors appearing in (15), except in the case of the tangency points 11′

and 22′ at either extremity. In fact, the monodromies around the tangency
points differ from Ẑii′ and Žii′ by a conjugation by Z4

12 (or more generally
the square of ∆2

d when d > 2) ; a global conjugation of all factors by this
braid eliminates the discrepancy and yields the desired formula.

(The choices made for the two sets of d tangencies may seem rather arti-
ficial, and indeed other choices would lead in a slightly more direct manner
to equally valid expressions – Hurwitz and conjugation equivalent to (15) –

involving different half-twists instead of Ẑii′ and Žii′ . The choices made here
are motivated by consistency with the geometric derivation outlined before
the statement of Proposition 6, where these half-twists come up as a conse-
quence of the use of Proposition 3 as a starting point for the calculation.)

3.6. The degree doubling formula. We finally turn to our main ob-
jective, computing the braid factorization for D2k. Recall from §2.2 that
the generic covering map f2k can be obtained as a small perturbation of
f ′2k = V ′

2 ◦ fk, where V ′
2 is a generic quadratic holomorphic map obtained by

slightly perturbing V 0
2 : (x : y : z) 7→ (x2 : y2 : z2). More precisely, Proposi-

tion 2 states that, away from the intersection points of the two branch curves
Rk and f−1

k (R′
2), the map f ′2k satisfies almost all expected properties, the

only problem for the definition of braid monodromy invariants being that
its branch curve is not everywhere transverse to itself ; of course, it is also
necessary to perturb f ′2k near the intersection points in order to obtain a
generic local model.

Recall that, by the main result of [5], f ′2k can be made generic near the

points of I ′
k = Rk ∩ f−1

k (R′
2) by adding to it small perturbation terms (see

also the argument at the end of §2.2). Provided that the perturbations
are chosen small enough, the transversality properties satisfied by f ′

2k away
from these points are not affected. Moreover, recall that for large k the
one-parameter argument proving the uniqueness up to isotopy of quasiholo-
morphic coverings also implies the connectedness of the space of admissible
perturbations of f ′2k near a given point of I ′

k. Therefore, the perturbation of
f ′2k affects the braid monodromy near each point of I ′

k exactly as described
in §3.4.

It is important to observe that these perturbations of f ′
2k only signifi-

cantly affect the branch curve near the points of I ′
k : away from I ′

k, the
branch curve of the perturbed map remains C1-close to that of f ′2k (the
perturbation terms are very small in comparison with the transversality es-
timates satisfied by f ′2k). Therefore, no unexpected changes can take place
in the braid monodromy, although some pairs of nodes may be created when
self-transversality is lost.

Another seemingly crucial point to be understood is the manner in which
the n copies of the branch curve of V ′

2 are moved into mutually transverse
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positions. Indeed, as explained at the end of §3.4 this information directly
determines the contribution to the braid monodromy of the points of I ′

k by
modifying the local configuration of vanishing cycles. Similarly, the braid
monodromy arising near the points (1 : 0 : 0), (0 : 1 : 0) and (0 :0 : 1) from the
cusps and tangency points in the n copies of C2 is strongly related to the
local configuration in each group of 2n lines. Therefore, our lack of control
over the manner in which each of the three groups of 2n lines is arranged
may seem rather disturbing.

Fortunately, up to m-equivalence this does not affect the final outcome
of the calculations. Indeed, in most places the 2n components labelled
1α, . . . , n

′
α (or similarly the two other groups of 2n lines) all lift into dif-

ferent sheets of the covering f2k : X → CP
2 ; the only exceptions are near

the intersection points of C2 with V ′
2(Dk), where two of the 2n curves actu-

ally meet each other (e.g., those labelled pα and qα in §3.4), and similarly
near the points of intersection between two groups of 2n lines, where the
two curves coming from the same copy of C2 (e.g., those labelled iα and i′α)
also merge. In any case, we are free to move the various lines across each
other, as long as the two distinguished components are kept together ; in this
process, the braid factorization only changes when pairs of intersections are
created or cancelled, which always amounts to an m-equivalence. Observe
moreover that all possible configurations can be deformed into each other in
this way ; this follows e.g. from the fact that all the curves under consider-
ation, whether self-transverse or not, are locally braided. We conclude that
up to m-equivalence the braid monodromy does not depend on the chosen
configuration.

Another more algebraic way to express the same idea is the following. As
observed at the end of §3.4, the manner in which the local braid monodromy
arising from a point of I ′

k depends on the local configuration is a conjuga-
tion by an element Q of B2n which after multiplication by an element of
B2n−2 × B2 can easily be assumed to be a pure braid. Denoting by Φ the
factorized expression corresponding to the standard configuration and by
ΦQ its conjugate by the braid Q, we have the chain of m-equivalences

ΦQ ∼ Q ·Q−1 · ΦQ ∼ Q · Φ ·Q−1 ∼ Q ·Q−1
Φ · Φ,

where the first operation is a pair creation and the two others are Hurwitz
moves ; therefore, conjugating Φ by Q is equivalent to inserting the two
factors Q and Q−1

Φ , which are both pure braids in B2n. A similar phenom-
enon occurs near the intersection points between two groups of 2n lines :
the choice of a specific configuration amounts to a conjugation by a pure
braid in B2n ×B2n, which after a suitable m-equivalence simply amounts to
inserting some pure braids into the factorization. Finally, some intersections
between the 2n lines also occur outside of these points, which means that,
independently of the issue of the local configurations, some pure braids in
B2n appear as factors. Collecting all the pure braids in B2n we have ob-
tained in this description, we get that the choice of a specific configuration
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amounts to the choice of a set of pure braid factors in B2n (or more precisely,
three such sets of factors, one for each of the groups of lines labelled α, β
and γ). The product of these factors is always the same independently of
the chosen configuration, because in the end we only consider factorizations
of ∆2. The result then follows from the following observation : given a
pure braid Q ∈ B2n, any two decompositions of Q into products of positive
and negative twists differ from each other by Hurwitz moves and pair can-
cellations. This can be seen by realizing a factorization of Q as the braid
monodromy of a curve with 2n components in C2 and by observing that any
two such configurations are deformation equivalent (e.g., when Q = 1 the
components can be unknotted by translating them). See also [6].

As explained in §3.2, we can deform the curve Dk so that its image by
V 0

2 becomes arbitrarily close to a union of d conics, at which point the
braid factorization for V 0

2 (Dk), or equivalently V ′
2(Dk), is given by (4). First

consider the singular map V 0
2 ◦fk, whose branch curve is the union of V 0

2 (Dk)
with three lines (each of which has multiplicity 2n). These three lines always
intersect V 0

2 (Dk) tangently. Therefore, after slightly deforming the map V 0
2

so that the three lines composing its branch curve avoid the pole of the
projection π, the braid factorization for the branch curve of V 0

2 ◦ fk is very
close to that given by Proposition 6 ; keeping in mind the result of §3.2, the
only difference between the braid monodromy for V 0

2 ◦ fk and (15) is that
the Ld term in (15) should be replaced by the braid factorization Fk for Dk.

The discussion at the beginning of this section gives a description of the
modifications that occur when V 0

2 is replaced by V ′
2 and f ′2k is perturbed

into the generic map f2k. In this situation, the lines labelled α, β and γ in
§3.5 each need to be replaced by a set of 2n lines. As we know from our
study of the structure of f2k near the points of I ′

k, the factors Z4
i′α, Z4

i′β and

Z4
i′γ in (15) need to be replaced by expressions similar to (9) ; as explained

above we do not have to worry about the details of the local configurations.
Moreover, the factors Z̃2

αβ , Z̃2
αγ and Z̃2

βγ in (15) need to be replaced by the
factorizations describing the behavior of n copies of C2 near one of the points
where two groups of 2n lines intersect each other. The contribution of each
copy of C2 has been computed in §3.3, but we must also take into account
the mutual intersections between the various components. Fortunately, as
explained above we do not have to worry about the exact local configuration,
so we can choose one that simplifies calculations.

Finally, we also need consider the mutual intersections of the 2n lines
labelled 1α, . . . , n

′
α (and similarly in the two other groups) ; although the

possibility of moving the lines across each other gives a lot of freedom, the
manner in which they intersect is largely determined by the twisting phe-
nomena arising at the points of intersection with V ′

2(Dk) or with the other
groups of 2n lines. Indeed, since the total braid monodromy for the branch
curve of f2k has to be ∆2, the amount of twisting of any two lines around
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each other, and more precisely the product of all the degree ±2 factors in-
volving 1α, . . . , n

′
α, is entirely determined by the chosen configurations at

the intersection points with V ′
2(Dk) and the other groups of 2n lines. As

observed above, the various possible decompositions of this product into de-
gree ±2 factors are all m-equivalent to each other, so that once again we can
choose one freely (more geometrically, it is quite clear that any two configu-
rations of the lines that are compatible with the local configurations chosen
at the intersection points can be deformed into one another and hence yield
m-equivalent results).

We now need to explicitly describe the geometric monodromy represen-
tation θ : Fd → Sn for fk. Recalling from §3.1 that all geometric morphisms
θ : Fd → Sn are equivalent to each other up to conjugation, we are free to
choose the one most suited to our purposes ; since the choice that we now
make is in some particular cases not the most practical one, we will also
explain how to adapt the formula for a different choice of θ.

Let us assume from now on that n = deg fk and d = degDk satisfy the
inequality d ≤ n(n− 1). This inequality is satisfied in almost all examples ;
in particular, given any symplectic 4-manifold, it is satisfied as soon as k is
large enough. Consider geometric generators γ1, . . . , γd of π1(CP

2 − Dk) :
the loops γi are contained in the reference fiber of the projection to CP

1,
in which, assuming that the base point and the d intersection points with
Dk all lie on the real axis, they join the base point to the i-th intersection
point by passing above the real axis, circle once counterclockwise around
the intersection point, and return to the base point along the same path.

Performing a suitable global conjugation of the braid monodromy of fk if
necessary, we can assume that the geometric monodromy representation is
such that the transpositions θ(γ1), . . . , θ(γd) are respectively equal to the d
first terms of the factorized expression

Id =
n−1
∏

i=1

n
∏

j=i+1

(ij) (ij)

in the symmetric group Sn. This choice is legal because d is even and
d ≥ 2n− 2. For each 1 ≤ i ≤ n(n− 1) we define the two indices 1 ≤ p(i) <
q(i) ≤ n such that the i-th factor of this expression in Sn is the transposition
(p(i)q(i)) ; in particular θ(γi) = (p(i)q(i)) for all i ≤ d.

We first consider the contribution of the intersection points of V ′
2(Dk)

with C2. Making the same choice of local configurations as in §3.4, each
factor Z4

i′α in (15) needs to be replaced by

(16)

1
∏

j=n

(

Ź2
i′j′α

[

Ź2
i′jα

]

j 6∈{p(i),q(i)}

)

· Z3
i′p(i)α

· Z3
i′q(i)α

· Z3
i′p(i)α;(q(i)α)·

1
∏

j=n

(

Z̀2
i′j′α

[

Z̀2
i′jα

]

j 6∈{p(i),q(i)}

)

,
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and similarly for the Z4
i′β and Z4

i′γ factors.

We next consider the intersections of the 2n lines labelled 1α, . . . , n
′
α with

the 2n lines labelled 1β , . . . , n
′
β. We choose as local configuration a situation

consisting of n identical copies of C2 shifted away from each other by generic
translations. The amounts by which the various copies are translated away
from each other are assumed to be much larger than the distance between
the two lines in a pair (e.g., iα and i′α) ; although this configuration can no
longer be considered as a very small perturbation of f ′2k, it is quite clear
that the translation process preserves the property of being locally braided,
so that in terms of braid monodromy this configuration is m-equivalent to
that obtained by a small perturbation of f ′2k. This choice of configuration
can be represented on the following diagram :

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

p p p p

s

s

s

β

α

In this picture each intersection along the diagonal corresponds to a copy
of C2, yielding an expression similar to that in (7), while all other intersec-
tions occur between different copies of C2 and simply yield nodes. However,
recall from the computations in §3.5 that, when inserted into the expression
for the global braid monodromy, all local braid monodromy contributions
need to be conjugated in such a way that the various twists are performed
along paths similar to the one appearing in the definition of Z̃αβ . There-
fore, if we momentarily ignore the specificities of the intersections along the
diagonal, the braid monodromy for nodal intersections between the two sets
of 2n lines should be given by

n
∏

i=1

n
∏

j=1

(

Z̃2
iαjβ

Z̃2
iαj′

β
Z̃2

i′αjβ
Z̃2

i′αj′
β

)

,

where for any τ ∈ {1α, 1
′
α, . . . , nα, n

′
α} and υ ∈ {1β , 1

′
β, . . . , nα, n

′
β} the

notation Z̃τυ represents a half-twist along the path

p p p p p p q
d

q
1′

p p p p p p q
d′

q
1α

p p p p p p q
τ

p p p p p p q
n′α

q
1β

p p p p p p q
υ

p p p p p p q
n′β

q
1γ

p p p p p p

However, according to the calculations performed in §3.3, the intersections
corresponding to i = j consist of three cusps and one tangency point set up
as in (7) rather than four nodes. Therefore, the correct contribution to the
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braid factorization of f2k is given by the expression

(17)
n
∏

i=1

(

i−1
∏

j=1

(

Z̃2
iαjβ

Z̃2
iαj′

β
Z̃2

i′αjβ
Z̃2

i′αj′
β

)

· Z̃3
iαiβ

Z̃3
iαi′

β
Z̃iαi′α;(iβi′

β
)Z̃

3
i′αiβ

·

n
∏

j=i+1

(

Z̃2
iαjβ

Z̃2
iαj′

β
Z̃2

i′αjβ
Z̃2

i′αj′
β

))

,

where Z̃iαi′α;(iβi′
β
) = (Z̃2

i′αiβ
Z̃2

i′αi′
β
)Ziαi′α(Z̃2

i′αiβ
Z̃2

i′αi′
β
)−1 is a half-twist exchang-

ing iα and i′α along a path that goes around iβ and i′β (the α points being

connected to the β points along the same type of path described above).

The factors Z̃2
αγ and Z̃2

βγ in (15) are treated similarly, and give rise to

expressions similar to (17), except that the paths along which the Z̃2
τυ factors

twist now follow the model of Z̃2
αγ or Z̃2

βγ instead of Z̃2
αβ .

Our choice of local configuration for the α− β intersection is rather arbi-
trary ; however, a different choice would only affect the braid factorization
by conjugation by a pure braid in B2n×B2n (each factor acting on one group
of lines, while the path along which the groups are connected to each other
necessarily remains that of Z̃αβ). By the argument at the beginning of this
section, such a conjugation amounts up to m-equivalence to inserting some
pure braid factors in B2n×B2n into the global braid monodromy, which has
been shown not to affect the outcome of the computations, so that we can
safely ignore this issue.

We now look at the remaining nodal intersections between the 2n lines
1α, 1

′
α, . . . , nα, n

′
α. The product of all these contributions to the braid mon-

odromy is determined in the following manner by the previously chosen
configurations at intersection points with V ′

2(Dk) and with the other groups
of 2n lines. If we consider only the relative motions of the 2n points labelled
1α, . . . , n

′
α induced by the various braids in the factorization, it is easy to

check from the above formulas that the tangent intersection with the line
labelled i′ in V ′

2(Dk) contributes a half-twist Zp(i)αq(i)α
for all 1 ≤ i ≤ d,

while the intersection of iα and i′α with iβ and i′β (or similarly iγ and i′γ)
contributes the half-twist Ziαi′α . Therefore, the total contribution of inter-

section points is equal to
∏d

i=1 Zp(i)αq(i)α
·
(
∏n

i=1 Ziαi′α

)2
.

On the other hand, recalling that we are looking for the braid factorization
of a curve in CP

2, the overall relative motions of the 2n points 1α, . . . , n
′
α

around each other must amount exactly to the central element ∆2
2n in B2n ;

the contribution of the additional nodal intersections is therefore exactly the
difference between the contribution of intersection points and ∆2

2n. More-
over, recall from the discussion at the beginning of this section that the
decomposition of this contribution into a product of positive and negative
twists is unique up to m-equivalence. In order to explicitly compute this
decomposition, we first derive a suitable expression of ∆2

2n. Viewing the 2n
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points 1α, 1
′
α, . . . , nα, n

′
α as n groups of two points, it is easy to check that

the full twist ∆2
2n can be expressed as

(18) ∆2
2n =

n−1
∏

i=1

n
∏

j=i+1

(Z2
iαjα

Z2
iαj′α

Z2
i′αjα

Z2
i′αj′α

) ·
n
∏

i=1

Z2
iαi′α

.

Note that the two parts of this expression can be exchanged by Hurwitz
moves. The second part of (18) corresponds exactly to the contribution of
the intersection points with the two other groups of 2n lines ; meanwhile, the
first d/2 factors Z2

iαjα
correspond to the contribution of the points of I ′

k (re-

call the choice of geometric monodromy representation made above). There-
fore, the nodal intersections correspond exactly to the remaining factors in
(18). Inserting these braids at their respective positions in the factorization,
and bringing the Žii′ factors back to the beginning of the factorization by
Hurwitz moves, we finally obtain the following result :

Theorem 3. Let X be a compact symplectic 4-manifold, and let fk : X →
CP

2 be an approximately holomorphic branched covering given by three sec-
tions of L⊗k. Denote by Dk the branch curve of fk, and let d = degDk

and n = deg fk. Assume that d ≤ n(n − 1). Denote by Fk the braid fac-
torization corresponding to Dk, and assume that the geometric monodromy
representation θ : π1(CP

2 − Dk) → Sn is as described at the beginning of
§3.6, i.e. θ(γi) = (p(i)q(i)). Then, with the notations described in §3.4, the
braid factorization corresponding to the branch curve D2k of f2k is given up
to m-equivalence by the following formula, provided that k is large enough :

(19) ∆2
2d+6n = Td · ι(Fk) · I

α
d,n,θ · I

β
d,n,θ · V

αβ
n · Vαγ

n · Vβγ
n · Iγ

d,n,θ,

where ι : Bd ↪→ B2d+6n is the natural embedding given by considering a disc
containing the d leftmost points (labelled 1, . . . , d),

Td =
d
∏

i=1

Žii′ ·
d
∏

i=1

Ẑii′ ,

Iα
d,n,θ =

d
∏

i=1

(

1
∏

j=n

(

Ź2
i′j′α

[

Ź2
i′jα

]

j 6∈{p(i),q(i)}

)

· Z3
i′p(i)α

· Z3
i′q(i)α

·

Z3
i′p(i)α;(q(i)α) ·

1
∏

j=n

(

Z̀2
i′j′α

[

Z̀2
i′jα

]

j 6∈{p(i),q(i)}

)

·
d
∏

j=i+1

Z2
i′j′;(α) ·

[

Z2
p(i)αq(i)′α

Z2
p′(i)αq(i)α

Z2
p′(i)αq′(i)α

]

i≡0 mod 2

)

·

n(n−1)/2
∏

i=(d/2)+1

(

Z2
p(2i)αq(2i)α

Z2
p(2i)αq(2i)′α

Z2
p′(2i)αq(2i)α

Z2
p′(2i)αq′(2i)α

)

,
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I
β
d,n,θ =

d
∏

i=1

(

1
∏

j=n

(

Ź2
i′j′

β

[

Ź2
i′jβ

]

j 6∈{p(i),q(i)}

)

· Z3
i′p(i)β

· Z3
i′q(i)β

·

Z3
i′p(i)β ;(q(i)β) ·

1
∏

j=n

(

Z̀2
i′j′

β

[

Z̀2
i′jβ

]

j 6∈{p(i),q(i)}

)

·
d
∏

j=i+1

Z2
i′j′;(β) ·

[

Z2
p(i)βq(i)′

β
Z2

p′(i)βq(i)β
Z2

p′(i)βq′(i)β

]

i≡0 mod 2

)

·

n(n−1)/2
∏

i=(d/2)+1

(

Z2
p(2i)βq(2i)β

Z2
p(2i)βq(2i)′

β
Z2

p′(2i)βq(2i)β
Z2

p′(2i)βq′(2i)β

)

,

I
γ
d,n,θ =

d
∏

i=1

(

1
∏

j=n

(

Ź2
i′j′γ

[

Ź2
i′jγ

]

j 6∈{p(i),q(i)}

)

· Z3
i′p(i)γ

· Z3
i′q(i)γ

·

Z3
i′p(i)γ ;(q(i)γ) ·

1
∏

j=n

(

Z̀2
i′j′γ

[

Z̀2
i′jγ

]

j 6∈{p(i),q(i)}

)

·
d
∏

j=i+1

Z2
i′j′;(γ) ·

[

Z2
p(i)γq(i)′γ

Z2
p′(i)γq(i)γ

Z2
p′(i)γq′(i)γ

]

i≡0 mod 2

)

·

n(n−1)/2
∏

i=(d/2)+1

(

Z2
p(2i)γq(2i)γ

Z2
p(2i)γq(2i)′γ

Z2
p′(2i)γq(2i)γ

Z2
p′(2i)γq′(2i)γ

)

,

Vαβ
n =

n
∏

i=1

(

i−1
∏

j=1

(

Z̃2
iαjβ

Z̃2
iαj′

β
Z̃2

i′αjβ
Z̃2

i′αj′
β

)

· Z̃3
iαiβ

Z̃3
iαi′

β
Z̃iαi′α;(iβi′

β
)Z̃

3
i′αiβ

·

n
∏

j=i+1

(

Z̃2
iαjβ

Z̃2
iαj′

β
Z̃2

i′αjβ
Z̃2

i′αj′
β

)

)

,

Vαγ
n =

n
∏

i=1

(

i−1
∏

j=1

(

Z̃2
iαjγ

Z̃2
iαj′γ

Z̃2
i′αjγ

Z̃2
i′αj′γ

)

· Z̃3
iαiγ Z̃

3
iαi′γ

Z̃iαi′α;(iγ i′γ)Z̃
3
i′αiγ ·

n
∏

j=i+1

(

Z̃2
iαjγ

Z̃2
iαj′γ

Z̃2
i′αjγ

Z̃2
i′αj′γ

)

)

,

Vβγ
n =

n
∏

i=1

(

i−1
∏

j=1

(

Z̃2
iβjγ

Z̃2
iβj′γ

Z̃2
i′
β
jγ
Z̃2

i′
β
j′γ

)

· Z̃3
iβiγ Z̃

3
iβi′γ

Z̃iβi′
β
;(iγ i′γ)Z̃

3
i′
β
iγ
·

n
∏

j=i+1

(

Z̃2
iβjγ

Z̃2
iβj′γ

Z̃2
i′
β
jγ
Z̃2

i′
β
j′γ

)

)

.
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In these expressions, the notation [. . . ]i≡0 mod 2 means that the enclosed
factors are only present for even values of i ; the various notations for
braids correspond to half-twists along the following paths :
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Remark : in the expression (19) we have made use of our specific choice of
geometric monodromy representation for fk, which requires the inequality
d ≤ n(n− 1) to hold in counterpart for the relative simplicity of the result-
ing factors. Also, we have chosen to insert some of the pure braid factors
involving the 2n lines 1α, . . . , n

′
α amid the contributions of the intersection

points of these lines with V ′
2(Dk), in order to avoid the need for a rewriting

of (18) using Hurwitz moves to isolate these contributions.
In general, if one wishes to get rid of the assumption made on the struc-

ture of the geometric monodromy representation θ and to remove the con-
straint d ≤ n(n − 1), the necessary modifications are rather easy and only
involve finding a different expression of ∆2

2n to replace (18). Namely, de-
note by (τ(i)υ(i)) ∈ Sn the image by θ of the i-th geometric generator of
π1(CP

2 −Dk) (in the standard situation of (19) one has τ(i) = p(i) and
υ(i) = q(i) but we now want to lift this assumption). Then, if we keep our
choice of the simplest local geometric configurations at points of I ′

k, the con-
tribution of these points to the twisting among the lines 1α, . . . , n

′
α is given

by the pure braid
∏d

i=1 Zτ(i)αυ(i)α
. We know that the total contribution of

nodal intersections between the 2n lines must be equal to

Qα =
(

d
∏

i=1

Zτ(i)αυ(i)α

)−1
· ∆2

2n ·
(

n
∏

i=1

Z2
iαi′α

)−1
.

Since Qα is a pure braid it can be decomposed into a product of positive
and negative twists involving 1α, . . . , n

′
α. The resulting modification of the

factors in Iα
d,n,θ is as follows : in the first two lines, p(i) and q(i) should

be replaced by τ(i) and υ(i) respectively ; the third line, consisting only of
nodal intersections inserted amid the other contributions, should be deleted ;
and the last line, containing the main group of nodal intersections, should
be replaced by the chosen factorization of Qα. Similar modifications are also

required in I
β
d,n,θ and I

γ
d,n,θ.



54 DENIS AUROUX AND LUDMIL KATZARKOV

As explained previously, the independence of the braid factorization upon
the choice of local configurations and the fact that any two geometric mon-
odromy representations differ from each other by a global conjugation imply
that the expression obtained for a non-standard choice of θ is m-equivalent
to the standard one. In particular, the possible presence of negative twists
in the factorization of Qα should not be considered as an indication of the
existence of non-removable negative nodes.

Remark : when X is a complex projective manifold, braid monodromy
becomes well-defined up to Hurwitz equivalence and global conjugation only,
since no negative nodes may appear in the (holomorphic) branch curve.
However, (19) only gives the answer up to m-equivalence even in this case.
If one looks more closely, the deformation process described in §3.2 can be
performed algebraically provided that L⊗k is sufficiently positive, and there-
fore remains valid in the complex setting ; in fact, all the braid monodromy
computations described in §§3.2–3.5 are valid not only up to m-equivalence
but also up to Hurwitz equivalence and conjugation. However, what is not
clear from an algebraic point of view is the exact configuration in which the
lines 1α, . . . , n

′
α are placed by a generic algebraic perturbation performed

near the points of I ′
k. Determining this information now becomes an impor-

tant matter, since our argument to show that all possible configurations are
m-equivalent involves cancelling pairs of nodal intersections.

More precisely, provided that d ≤ n(n− 1), by applying formula (19) we
obtain a braid factorization without negative twists, which ism-equivalent to
the braid factorization describing a generic algebraic map in degree 2k, but
we don’t know for sure whether the m-equivalence can be realized without
creating pairs of nodal intersections between the 2n lines 1α, . . . , n

′
α (resp.

β, γ). In fact, the perturbation of V ′
2 ◦ fk that we perform near the points

of I ′
k is isotopic through m-equivalence to a generic algebraic perturbation

of V ′
2 ◦ fk, which itself would yield the usual algebraic braid monodromy

invariants as defined by Moishezon and Teicher.
Still, it seems very unlikely that such pair creation operations are ever

needed, and it is reasonable to formulate the following conjecture :

Conjecture. When X is a complex algebraic manifold, the degree doubling
formula (19) is valid up to Hurwitz equivalence and global conjugation.

Motivation for this conjecture comes from the following observation. As-
sume that identifying the braid monodromy given by (19) with that of a
generic algebraic map requires the creation of pairs of nodes. Then, con-
sidering only the relative motions of the 2n points labelled 1α, . . . , n

′
α (resp.

β, γ), we obtain two factorizations of ∆2
2n as a product of positive twists

and half-twists in B2n which are inequivalent in a certain sense. These two
factorizations can be thought of as describing the braid monodromy of two
symplectic nodal curves in CP

2, both irreducible and of identical degree and
genus. The braid factorization in B2n arising from (19) is easily checked to
be that of an algebraic nodal curve. Therefore, the inequivalence of the two
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factorizations would be a strong indication of the possibility of construct-
ing by purely complex algebraic methods a counterexample to the nodal
symplectic isotopy conjecture ; this would be extremely surprising.

4. The degree doubling formula for Lefschetz pencils

4.1. Braid groups and mapping class groups. We now expand on the
ideas in §5 of [5] to provide a description of the relations between the braid
monodromy of a branch curve and the monodromy of the corresponding
Lefschetz pencil.

Recall that the Lefschetz pencils determined by approximately holomor-
phic sections of L⊗k are obtained from the corresponding branched coverings
simply by forgetting one of the three sections, or equivalently by composing
the covering map with the projection π : CP

2 − {pt} → CP
1. In particular

the curves making up the pencil are precisely the preimages of the fibers
of π by the branched covering, and the base points of the pencil are the
preimages of the pole of the projection π.

Consider as previously the branched covering fk : X → CP
2. Call n

its degree and d the degree of its branch curve Dk, and let θ : Fd =
π1(C−{q1, . . . , qd}) → Sn be the corresponding geometric monodromy rep-
resentation. The map θ determines a simple n-fold covering of CP

1 branched
at q1, . . . , qd ; we will denote this covering by u : Σg → CP

1, where Σg is a
Riemann surface of genus g = 1 − n+ (d/2).

It is important for our purposes to observe that the Riemann surface Σg

naturally comes with n marked points, corresponding to the base points of
the Lefschetz pencil : these n points are precisely the preimages by u of
the point at infinity in CP

1. In particular, rather than simply working in
the mapping class group Mg of Σg in the usual way, we will consider the
mapping class group Mg,n of a Riemann surface of genus g with n boundary
components, i.e. the set of isotopy classes of diffeomorphisms of the com-
plement of n discs centered at the given points in Σg which fix each of the
n boundary components (or equivalently, diffeomorphisms of Σg which fix
the n marked points and whose tangent map at each of these points is the
identity). Describing a Lefschetz pencil by a word in Mg,n provides a more
complete picture than the usual description using Mg, as it also accounts
for the relative positions of the base points of the pencil with respect to the
various vanishing cycles.

Recall the following construction from [5] : let Cn(q1, . . . , qd) be the (finite)
set of all surjective group homomorphisms Fd → Sn which map each of
the geometric generators γ1, . . . , γd of Fd to a transposition and map their
product γ1 · · · γd to the identity element in Sn. Each element of Cn(q1, . . . , qd)
determines a simple n-fold covering of CP

1 branched at q1, . . . , qd.
Denote by Xd the space of configurations of d distinct points in the plane.

The set of all simple n-fold coverings of CP
1 with d branch points and such

that no branching occurs above the point at infinity can be thought of as
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a covering X̃d,n above Xd, whose fiber above the configuration {q1, . . . , qd}
identifies with Cn(q1, . . . , qd). The braid group Bd identifies with the fun-
damental group of Xd, and therefore Bd acts on the fiber Cn(q1, . . . , qd) by

deck transformations of the covering X̃d,n.
Define the subgroup B0

d(θ) as the set of all the loops in Xd whose lift at

the point pθ ∈ X̃d,n corresponding to the covering described by θ is a closed

loop in X̃d,n, i.e. the set of all braids which act on Fd = π1(C−{q1, . . . , qd})
in a manner compatible with the covering structure defined by θ. Denoting
by Q∗ the action of a braid Q on Fd, it is easy to check that B0

d(θ) is the
set of all braids Q such that θ ◦Q∗ = θ.

There exists a natural (tautologically defined) bundle Yd,n over X̃d,n whose
fiber is a Riemann surface of genus g. Each of these Riemann surfaces comes
naturally as a branched covering of CP

1, and carries n distinct marked points
– the preimages of the point at infinity in CP

1 by the covering.
Given an element Q of B0

d(θ) ⊂ Bd, it can be lifted to X̃d,n as a loop
based at the point pθ, and the monodromy of the fibration Yd,n around
this loop defines an element of the mapping class group Mg,n of a Riemann
surface of genus g with n boundary components, which we will call θ∗(Q).
More intuitively, viewing Q as a compactly supported diffeomorphism of
the plane preserving {q1, . . . , qd}, the fact that Q ∈ B0

d(θ) means that the

diffeomorphism representing Q can be lifted via the covering u : Σg → CP
1

to a diffeomorphism of Σg, whose class in the mapping class group is θ∗(Q).

It is easy to check that the image of the braid monodromy homomorphism
is contained in B0

d(θ) : this is because the geometric monodromy represen-

tation θ factors through π1(CP
2 − Dk), on which the action of the braids

arising in the monodromy is clearly trivial. Therefore, we can take the image
of the braid factorization by the map θ∗ and obtain a factorization in the
mapping class group Mg,n. As observed in [5], all the factors of degree ±2
or 3 in the factorization lie in the kernel of θ∗ ; therefore, the only remaining
terms are those corresponding to the tangency points of the branch curve
Dk, and each of these is a Dehn twist.

Recall from [5] that the image in the mapping class group Mg,n of a half-
twist Q ∈ B0

d(θ) can be constructed as follows. Call γ the path in C joining
two of the branch points (say qi and qj) which describes the half-twist Q
(γ is the path along which the twisting occurs). Among the n lifts of γ
to Σg, only two hit the branch points of the covering ; these two lifts have
common end points, and together they define a loop δ in Σg. Equivalently,
one may also define δ as one of the two non-trivial lifts of the boundary of
a small tubular neighborhood of γ in C. In any case, one easily checks that
the element θ∗(Q) in Mg,n is a positive Dehn twist along the loop δ (see
Proposition 4 of [5]).

As a consequence, one obtains the usual description of the monodromy of
the Lefschetz pencil as a word in the mapping class group whose factors are
positive Dehn twists. However, as observed by Smith in [16], the product
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of all these Dehn twists is not the identity element in Mg,n, because after
blowing up the pencil at its base points one obtains a Lefschetz fibration in
which the exceptional sections have the non-trivial normal bundle O(−1).
Instead, the product of all the factors is equal to θ∗(∆

2
d), which is itself equal

to the product of n positive Dehn twists, one along a small loop around each
of the n base points of the pencil.

It follows from the above considerations that we can lift the degree dou-
bling formula for braid monodromies obtained in §3 and obtain a similar
formula for Lefschetz pencils. The task is made even easier by the fact that
we only need to consider the tangency points of the branch curves.

We now introduce the general setup for the degree doubling formula. To
start with, recall that the branch curve D2k is of degree d̄ = 2d+ 6n, while
the degree of the covering f2k is 4n. Recall from §3.4 the relation between
the geometric monodromy factorizations θ2k : Fd̄ → S4n and θk : Fd → Sn :
as previously, view the 4n sheets of f2k as four groups of n sheets labelled
ia, ib, ic, id, 1 ≤ i ≤ n, and use the same labelling of the branch points
as in §3. With these notations, the transpositions in S4n corresponding to
the geometric generators around 1, . . . , d, 1′, . . . , d′ are directly given by the
geometric monodromy representation θk associated to Dk : given 1 ≤ r ≤ d,
if θk maps the r-th geometric generator to the transposition (ij) in Sn then,
calling γr and γr′ the geometric generators in Fd̄ corresponding to r and r′,
one gets θ2k(γr) = θ2k(γr′) = (iaja). Moreover, each of the n copies of V2

connects four sheets to each other, one in each group of n : the geometric
generators around iα, i′α, iβ , i′β, iγ and i′γ are mapped by θ2k to (iaib), (icid),

(iaic), (ibid), (iaid) and (ibic) respectively, for all 1 ≤ i ≤ n.
As a consequence, θ2k determines a 4n-fold branched covering ū : Σḡ →

CP
1, with ḡ = 2g+ n− 1, whose structure is as follows. First, the preimage

of a disc D containing the d points labelled 1, . . . , d consists of 3n+1 compo-
nents. One of these components (the sheets 1a, . . . , na) is a n-fold covering
identical to the one described by θk, i.e. it naturally identifies with the fiber
Σg of the Lefschetz pencil associated to fk, with n small discs removed.
These punctures correspond to the preimages of a small disc around the
point at infinity in the covering u : Σg → CP

1, i.e. they correspond to small
discs around the base points in Σg. The other 3n components of ū−1(D), in
which no branching occurs, are topologically trivial.

The same picture also describes the preimage of a disc D′ containing the
d points labelled 1′, . . . , d′ : there is one non-trivial component which can be
identified with Σg punctured at its base points, and the other 3n components
are just plain discs.

Finally, the preimage by ū of the cylinder CP
1 − (D ∪ D′) consists of

n components, each of which is a four-sheeted covering branched at six
points, i.e. topologically a sphere with eight punctures. Actually, each of
these n components may be thought of as the fiber of the Lefschetz pencil
corresponding to the covering V2 (since we restrict ourselves to a cylinder we
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get eight punctures). For each i ∈ {1, . . . , n} the corresponding component
of ū−1(CP

1 − (D ∪ D′)) connects together the non-trivial components of
ū−1(D) and ū−1(D′) with the trivial components corresponding to the sheets
ib, ic and id.

In the end the Riemann surface Σḡ can be thought of as two copies of Σg

glued together at the n base points. This description coincides exactly with
the one obtained by Smith in [16] via more direct methods.

4.2. The degree doubling formula for Lefschetz pencils. In order to
simplify the description of the degree doubling formula for Lefschetz pencils,
we want to slightly modify the setup of §3.

First, we want to choose a different picture for θk : recall that global
conjugations in Bd make it possible to choose the most convenient geometric
monodromy representation θk : Fd → Sn. As a consequence we chose in §3
a setup that made the final answer (19) relatively easy to express, but as
observed in the remark at the end of §3.6 we could just as well have worked
with any other choice of θk, the only price being a slightly more complicated
expression for the degree doubling formula. Note that the change of θk only
affects factors of degree ±2 in the formula, and therefore the half-twists
which are relevant for our purposes are not affected.

Here we want to choose θk in such a way that the i-th geometric generator
γi is mapped to the transposition (1, 2) if i ≤ d − 2(n − 1) = 2g, and
θk(γd−2j) = θ(γd−2j−1) = (n− j− 1, n− j) for all j ≤ n− 2. In other words,
the transpositions θk(γi) correspond to the factorization

Id = (1, 2)2g ·
n−1
∏

i=1
(i, i+ 1)2

in Sn. Another change that we want to make is in the ordering of the
d̄ = 2d + 6n points that appear in the diagrams of §3 along the real axis.
Namely, we want to replace the ordering 1, . . . , d, 1′, . . . , d′, 1α, . . . , n

′
γ used

in §3 by the new ordering 1, . . . , d, 1α, . . . , n
′
γ , d′, . . . , 1′. This is done by

first moving the d points 1′, . . . , d′ clockwise around the points 1α, . . . , n
′
γ

by a half-turn, and then by rotating a disc containing the d points 1′, . . . , d′

counterclockwise by a half-turn.
Finally, in order to better visualize the positions of the base points of the

pencil (the 4n marked points on Σḡ), we want to move the fiber in which

they lie from the point at infinity in CP
1 back into our picture. We choose

to move the base points so that they correspond to the preimages of a point
b on the real axis lying inbetween the point labelled d and the point labelled
1α. The motion bringing the point at infinity to b is performed along a
vertical line in the upper half-plane (this motion of course affects some of
the braids, but it was chosen in such a way that the resulting changes are
minimal).
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The effect of all these changes is to make the covering ū : Σḡ → CP
1 easier

to visualize, while simplifying the paths corresponding to the half-twists in
(19). The picture is the following :

2 3

(d-1)’

1 2g

d-1 d d’

2g+3 (2g+3)’2g+4 (2g+4)’

2g+1 2g+2 (2g+2)’(2g+1)’ (2g)’ 3’ 2’ 1’1

2 2

1

n

In this picture, the labels in italics correspond to branch points and those
in boldface correspond to the sheets of the covering ; for simplicity we have
omitted the branch points 1α, . . . , n

′
γ , which should be placed in the necks

joining the two halves, and the 3n other sheets which do not contribute to
the topology. When the 3n sheets 1b, . . . , nd are collapsed, the corresponding
base points are brought back to the sheets 1a, . . . , na near the branch points
1α, . . . , n

′
γ ; therefore, on the picture each × mark corresponds to four base

points.
In order to understand the Lefschetz pencil corresponding to f2k, we need

to place the various half-twists appearing in the braid factorization of D2k

on this picture. A first set of half-twists comes from the braid factorization
of Dk. These half-twists correspond exactly to the Dehn twists appearing in
monodromy of the Lefschetz pencil for fk, after a suitable embedding ofMg,n

into the mapping class groupMḡ,4n. Recall that the braid factorization in Bd

corresponding to Dk is embedded into Bd̄ by considering a disc D containing
the d points labelled 1, . . . , d. Therefore, the corresponding embedding of
the mapping class group Mg,n into the larger mapping class group Mḡ,4n

is geometrically realized by the embedding into Σḡ of the main connected
component of ū−1(D), which as we know from §4.1 naturally identifies with
the Riemann surface Σg punctured at each of the n base points. On the
above picture of Σḡ this corresponds to the left half of the diagram.

Observe that all the other half-twists appearing in the braid factorization
for D2k are completely standard and depend only on d and n rather than
on the actual topology of the manifold X. Therefore, the degree doubling
formula for Lefschetz pencils is once again a universal formula : the word in
Mḡ,4n describing the Lefschetz pencil in degree 2k is obtained by embedding
the word describing the pencil in degree k via the above-described map
from Mg,n into Mḡ,4n and adding to it a completely standard set of Dehn
twists which depends only on g and n but not on the actual topology of the
manifold X. This observation was already made by Ivan Smith in [16].
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The extra half-twists appearing in the degree doubling formula for braid
monodromies are Žii′ and Ẑii′ for 1 ≤ i ≤ d, and Z̃iαi′α;(iβi′

β
), Z̃iαi′α;(iγ i′γ) and

Z̃iβi′
β
;(iγ i′γ) for 1 ≤ i ≤ n, as described in §3.6 (their total number 2d + 3n

is in agreement with an easy calculation of Euler-Poincaré characteristics).
We will now describe the Dehn twists corresponding to these half-twists.

After the global conjugation described above, Žii′ becomes a half-twist
along the following path :

q
1

p p p p p p q
i

p p p p p p q
d

×
b q1α p p p p p p qn

′
γ qd

′
p p p p p p qi

′
p p p p p p q1

′

Its lift to the mapping class group Mḡ,4n is a Dehn twist that we will call
τ̌i, and which can be represented as follows when i is even and i ≤ 2g :

i (i-1)’i-1 i’

For i odd and i ≤ 2g+1, the picture describing τ̌i becomes the following :

i i+1 i’(i+1)’

When i = 1 the undrawn parts on both sides of the picture are just
discs and the picture can therefore be slightly simplified ; conversely, when
i = 2g + 1 the points labelled (i + 1) and (i + 1)′ are immediately on both
sides of the central neck rather than as pictured.

For i even and i ≥ 2g + 2, τ̌i is described by the following picture (the
two necks shown correspond to the sheets numbered s and s + 1, where
s = 1

2(i− 2g) ≥ 1) :

ii-1 (i-1)’i’

s+1

s
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Finally, when i is odd and i ≥ 2g + 3, the picture describing τ̌i becomes
the following (the two necks shown correspond to the sheets numbered s and
s+ 1, where s = 1

2(i+ 1 − 2g) ≥ 2) :

s+1

i’i
i+1

(i+1)’
s

We now turn to Ẑii′ , which after the above-described global conjugation
becomes a half-twist along the following path :

q
1

p p p p p p q
i

p p p p p p q
d

×
b q

1α

p p p p p p q
n′γ

q
d′

p p p p p p q
i′

p p p p p p q
1′

This path can be homotoped into the following one, which goes through
the point at infinity in CP

1 :

q
1

p p p p p p q
i

p p p p p p q
d

×
b q1α p p p p p p qn

′
γ qd

′
p p p p p p qi

′
p p p p p p q1

′

pp
pp
pp
pp
pp
pp
pp
pp
p

Therefore, the Dehn twists τ̂i ∈ Mḡ,4n obtained by lifting Ẑii′ only differ
from τ̌i by a twisting in each of the necks joining the two halves of Σḡ. As
a result, we get the following pictures (using the same notations as for τ̌i) :

i (i-1)’i-1 i’

i i+1 i’(i+1)’

The first picture corresponds to the case i even, i ≤ 2g ; the second one
to i odd, i ≤ 2g + 1. In each of the two necks, the vanishing loop circles
around the base point corresponding to the sheet labelled 1a (resp. 2a), but
not around those corresponding to sheets 1b, 1c and 1d (resp. 2b, 2c, 2d).



62 DENIS AUROUX AND LUDMIL KATZARKOV

When i ≥ 2g+ 2, the pictures become the following (the left one is for even
i, the right one for odd i) :

ii-1 (i-1)’i’

s+1

s

i’i
i+1

s
(i+1)’

s+1

We now turn to the half-twists Z̃iαi′α;(iβi′
β
), Z̃iαi′α;(iγ i′γ) and Z̃iβi′

β
;(iγ i′γ) (1 ≤

i ≤ n). To simplify the diagrams we only represent the relevant points, i.e.
we forget jα, j

′
α, jβ, j

′
β , jγ , j

′
γ for j 6= i as these points do not play any role.

Moreover, we use the observation that, for the purposes of computing the
corresponding Dehn twists, we are allowed to move a path across a branch
point if the corresponding sheets of the covering are distinct. Finally, we
further simplify the diagrams by allowing ourselves to draw paths which go
through the point at infinity in CP

1. With all these simplifications, we get
the following diagrams :

Z̃iαi′α;(iβi′
β
)

q
1

p p p p p p q
d

×
b qiα qi′α q

iβ q
i′β q

iγ
q
i′γ

qd
′

p p p p p p q1
′

Z̃iαi′α;(iγ i′γ)
q
1

p p p p p p q
d

×
b q

iα
q
i′α

q
iβ

q
i′β

q
iγ

q
i′γ

qd
′

p p p p p p q1
′

Z̃iβi′
β
;(iγ i′γ)

q
1

p p p p p p q
d

×
b q

iα
q
i′α

q
iβ

q
i′β

q
iγ

q
i′γ

qd
′

p p p p p p q1
′

It is now clear that the only relevant parts of Σḡ are the sheets labelled
ib, ic, id of the covering, as well as the part of the sheet labelled ia that
lies inbetween the points 1, . . . , d and d′, . . . , 1′. In particular, the loops we
obtain are entirely located in the i-th neck joining the two halves of Σḡ ;
if we forget about the base points, the Dehn twists τi,αβ , τi,αγ and τi,βγ

corresponding to the half-twists Z̃iαi′α;(iβi′
β
), Z̃iαi′α;(iγ i′γ) and Z̃iβi′

β
;(iγ i′γ) are

equal to each other, and are twists along a loop that simply goes around the
i-th neck joining the two halves of Σḡ.

In the presence of the four base points lying in the sheets ia, ib, ic and
id of the covering, we have to be more careful, but it can be checked that
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the Dehn twists τi,αβ , τi,αγ and τi,βγ are respectively given by the following
diagrams (only the i-th neck is shown ; the base points are labelled a, b, c,
and d) :

i a
b

c

d

i a
b

c

d

i a
b

c

d

τi,αβ τi,αγ τi,βγ

Summarizing, we get the following result :

Theorem 4. Let X be a compact symplectic 4-manifold, and consider the
structure of symplectic Lefschetz pencil on X given by two sections of L⊗k.
Let g be the genus of the fiber Σg, and let n be the number of base points.
Let d = 2g − 2 + 2n, and call Ψg the word in the mapping class group Mg,n

describing the monodromy of this pencil.
Let ḡ = 2g+n−1, and view a Riemann surface Σḡ of genus ḡ as obtained

by gluing together two copies of Σg at the base points. Call ι : Mg,n →Mḡ,4n

the inclusion map discussed above.
Then, provided that k is large enough and using the notations described

above, the monodromy of the symplectic Lefschetz pencil structure obtained
on X from sections of L⊗2k is given by the word Ψḡ in the mapping class
group Mḡ,4n, where

(20) Ψḡ =
d
∏

i=1

τ̌i ·
d
∏

i=1

τ̂i · ι(Ψg) ·
n
∏

i=1

τi,αβ ·
n
∏

i=1

τi,αγ ·
n
∏

i=1

τi,βγ ,

and the Dehn twists τ̌i, τ̂i, τi,αβ, τi,αγ and τi,βγ are as described above.

Remark. One must be aware of the fact that, in the formula (20), com-
position products are written from left to right. This convention, which
is the usual one for braid groups, is the opposite of the usual notation for
composition products when working with diffeomorphisms (the order of the
factors then needs to be reversed).

It is also worth observing that the product of the factors in ι(Ψg) is almost
exactly the twist by which τ̂i differs from τ̌i, the only difference being in the
position of the base points with respect to the vanishing cycle. Therefore,
if we forget about the base points, a sequence of Hurwitz moves in (20)
yields the following slightly simpler formula (in Mḡ,0 instead of Mḡ,4n, and
observing that τi,αβ , τi,αγ and τi,βγ are equal in Mḡ,0):

Ψḡ =
d
∏

i=1

τ̌i · ι(Ψg) ·
d
∏

i=1

τ̌i ·
n
∏

i=1

τ3
i,αβ .

It is clear from this expression that the Lefschetz fibration with total space
a blow-up of X and monodromy Ψḡ contains many Lagrangian (−2)-spheres
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joining pairs of identical vanishing cycles among those introduced by the de-
gree doubling procedure; however these spheres collapse when the Lefschetz
fibration is blown down along its exceptional sections, as they intersect non-
trivially two such sections.

The correctness of the formula (20) can be checked easily in some simple
examples : for instance, a generic pencil of conics on CP

2 has three singular
fibers, and can be considered as obtained from a pencil of lines by the
procedure described above. This corresponds to the limit case where n = 1,
d = 0, g = 0 and the word Ψg is empty. The three Dehn twists τ1,αβ , τ1,αγ

and τ1,βγ in M0,4 then coincide with the well-known picture.
Another simple example that can be considered is the case of a pencil

of curves of degree (1, 1) on CP
1 × CP

1. The generic fiber of this pencil is
a rational curve (d = 2, n = 2, g = 0), and there are two singular fibers.
The corresponding word in M0,2 is τ · τ , where τ is a positive Dehn twist
along a simple curve separating the two base points. The degree doubling
procedure yields a word in M1,8 consisting of 12 Dehn twists. Forgetting the
positions of the base points, one easily checks that the reduction of this word
to M1,0 ' SL(2,Z) is Hurwitz equivalent to the well-known monodromy of
the elliptic surface E(1), which is exactly what one obtains by blowing up
the eight base points of a pencil of curves of degree (2, 2) on CP

1 × CP
1.
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