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PRÉSENTATION DES TRAVAUX

1. Introduction

Les travaux décrits dans ce texte portent sur l’étude de la topologie des variétés
symplectiques compactes à l’aide de techniques de géométrie approximativement
holomorphe. L’objectif est, par analogie avec la géométrie algébrique complexe,
de construire des “systèmes linéaires” sur les variétés symplectiques compactes,
puis d’utiliser ces objets pour définir de nouveaux invariants topologiques. Ces
invariants, très différents de ceux obtenus par des méthodes de théorie de jauge ou
de comptage de courbes pseudo-holomorphes, laissent espérer une meilleure com-
préhension de la topologie des variétés symplectiques et notamment des différences
entre variétés symplectiques et variétés kählériennes.

1.1. Rappels et généralités. Rappelons qu’une forme symplectique sur une va-
riété C∞ est une 2-forme ω fermée (dω = 0) et non dégénérée (ωn = vol > 0).
Contrairement au cas riemannien où la courbure est un invariant local, toutes les
variétés symplectiques sont localement symplectomorphes à R2n muni de la forme
standard ω0 =

∑

dxi∧dyi (théorème de Darboux). Le problème de la classification
des variétés symplectiques est donc avant tout de nature topologique.

Les surfaces de Riemann (Σ, volΣ) sont des variétés symplectiques; de façon plus
générale, toute variété kählérienne est symplectique, ce qui inclut toutes les variétés
projectives complexes. Toutefois la catégorie symplectique est beaucoup plus vaste
que celle des variétés complexes : ainsi Gompf a montré en 1994 que tout groupe
de présentation finie peut être réalisé comme le groupe fondamental d’une variété
symplectique compacte de dimension 4 [Go1], alors que pour une variété kählérienne
le premier nombre de Betti est toujours pair.

A défaut d’être complexe, toute variété symplectique admet une structure presque
complexe compatible, i.e. un endomorphisme J ∈ End(TX) vérifiant J 2 = −Id et tel
que g(u, v) := ω(u, Jv) est une métrique riemannienne. En tout point, (X,ω, J) est
semblable à (Cn, ω0, i), mais J n’est pas nécessairement intégrable : ainsi ∇J 6= 0,
∂̄2 6= 0, et le crochet de Lie de deux champs de vecteurs de type (1, 0) n’est pas néces-
sairement de type (1, 0). Sur une variété symplectique, il n’y a donc en général pas
de fonctions holomorphes, même localement, et en particulier pas de coordonnées
locales holomorphes.

Les problèmes auxquels s’attaque la topologie symplectique sont des questions
telles que : quelles variétés lisses admettent des structures symplectiques ? peut-
on classifier les structures symplectiques sur une variété lisse donnée ? Il faut
noter qu’un résultat classique de Moser indique que, si la classe de cohomologie
[ω] ∈ H2(X,R) est fixée, alors les déformations de la structure symplectique sont
triviales. Les motivations pour l’étude des variétés symplectiques sont aussi bien
d’ordre physique (mécanique classique ; théorie des cordes ; . . . ) que géométrique.

Certaines propriétés des variétés complexes s’étendent au cas symplectique, mais
c’est loin d’être la règle générale. C’est en dimension 4 que la situation est la mieux
connue, notamment grâce aux travaux de Taubes sur la structure des invariants
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2 PRÉSENTATION DES TRAVAUX

de Seiberg-Witten des variétés symplectiques et leur relation avec les invariants
de Gromov-Witten [Ta]. En revanche, lorsque dimX ≥ 6, il y a très peu de ré-
sultats, et par exemple aucune obstruction non triviale (en-dehors des conditions
cohomologiques évidentes liées au fait que ω est non dégénérée) n’est connue à
l’existence d’une structure symplectique sur une variété donnée.

1.2. Géométrie approximativement holomorphe. L’idée de base introduite
au milieu des années 90 par Donaldson, et que j’ai développée par la suite, est la
suivante : en présence d’une structure presque complexe, le défaut d’intégrabilité
est une obstruction à l’existence d’objets holomorphes (sections de fibrés, systèmes
linéaires), mais on peut travailler de façon similaire avec des objets approximative-
ment holomorphes.

Soit (X,ω) une variété symplectique compacte de dimension 2n. On supposera
tout du long que 1

2π
[ω] ∈ H2(X,Z); cette condition d’intégralité ne restreint pas le

type topologique de X, car toute forme symplectique peut être perturbée jusqu’à
rendre sa classe de cohomologie rationnelle, puis entière après multiplication par un
facteur constant. Soit J une structure presque complexe compatible avec ω, et soit
g(., .) = ω(., J.) la métrique riemannienne correspondante.

On considère un fibré en droites complexes L sur X tel que c1(L) = 1
2π

[ω], muni
d’une métrique hermitienne et d’une connexion hermitienne ∇L dont la forme de
courbure est F (∇L) = −iω. La structure presque complexe induit une décompo-
sition de la connexion : ∇L = ∂L + ∂̄L, avec ∂Ls(v) = 1

2
(∇Ls(v) − i∇Ls(Jv)) et

∂̄Ls(v) = 1
2
(∇Ls(v) + i∇Ls(Jv)).

Si la structure presque complexe J est intégrable, i.e. si X est une variété com-
plexe kählérienne, alors le fibré L est un fibré en droites holomorphe ample, c’est-
à-dire que pour k suffisamment grand le fibré L⊗k admet de nombreuses sections
holomorphes. Dans ce cas, la variété X se plonge dans un espace projectif (par un
théorème de Kodaira); des sections hyperplanes génériques fournissent des hyper-
surfaces lisses de X (par le théorème de Bertini), et plus généralement le système
linéaire formé par les sections de L⊗k permet de construire diverses structures :
pinceaux de Lefschetz, . . .

Lorsque la variété X est seulement symplectique, si le défaut d’intégrabilité de J
empêche l’existence de sections holomorphes, il est cependant possible de trouver un
modèle local approximativement holomorphe : un voisinage d’un point x ∈ X muni
de la forme symplectique ω et de la structure presque complexe J s’identifie à un
voisinage de l’origine dans Cn muni de la forme symplectique standard ω0 et d’une
structure presque complexe de la forme i + O(|z|). Dans ce modèle local, le fibré
L⊗k muni de la connexion ∇ = (∇L)⊗k de courbure −ikω peut s’identifier au fibré
trivial C muni de la connexion d + k

4

∑

(zj dz̄j − z̄j dzj). La section de L⊗k définie
localement par sk,x(z) = exp(−1

4
k|z|2) est alors approximativement holomorphe

[Do1]. Plus précisément :

Définition 1.1. Une suite de sections sk de L⊗k est dite approximativement holo-
morphe si, pour la métrique redimensionnée gk = kg, et en normalisant les sections
sk de sorte que ‖sk‖Cr,gk

∼ C, on a une inégalité de la forme ‖∂̄sk‖Cr−1,gk
< C ′k−1/2,

où C et C ′ sont des constantes indépendantes de k.

Le changement de métrique, qui dilate les distances d’un facteur
√
k, est néces-

saire pour l’obtention d’estimées uniformes du fait de la courbure de plus en plus
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grande du fibré L⊗k. L’idée intuitive est que, pour k grand, les sections du fibré L⊗k

de courbure −ikω voient la géométrie de X à petite échelle (de l’ordre de 1/
√
k), ce

qui rend la structure presque complexe J presque intégrable et permet d’approcher
de mieux en mieux la condition d’holomorphie ∂̄s = 0.

Il est à noter que, la condition ci-dessus étant ouverte, il n’est pas possible de
définir un “espace de sections approximativement holomorphes” de L⊗k de façon
simple (cf. les travaux de Borthwick et Uribe [BU] ou de Shiffman et Zelditch pour
d’autres approches du problème).

Les techniques approximativement holomorphes ont permis d’obtenir de nom-
breux résultats d’existence et de structure pour les variétés symplectiques com-
pactes, à commencer par la construction de sous-variétés symplectiques obtenue
par Donaldson vers 1995 [Do1]. Il s’agit essentiellement, une fois obtenues de nom-
breuses sections approximativement holomorphes, d’en trouver certaines dont le
comportement géométrique est aussi générique que possible. Plusieurs résultats
de ce type sont décrits dans la suite de ce texte, ainsi que leurs applications à
l’obtention de nouveaux invariants topologiques permettant de caractériser les va-
riétés symplectiques.

Pour terminer cette introduction, il est à mentionner que plusieurs des résul-
tats de topologie symplectique obtenus à l’aide des techniques approximativement
holomorphes ont été transposés au cadre de la géométrie de contact (en dimension
impaire) par Presas et ses collaborateurs (cf. par exemple [IMP]), le résultat le plus
spectaculaire étant un théorème d’existence de structures de livres ouverts sur les
variétés de contact compactes récemment obtenu par Giroux et Mohsen [GM].

2. Constructions de sous-variétés symplectiques

En conservant les notations introduites au §1.2, le premier résultat obtenu à
l’aide des méthodes approximativement holomorphes est le théorème d’existence de
sous-variétés symplectiques suivant, dû à Donaldson [Do1] :

Théorème 2.1 (Donaldson). Pour k � 0, L⊗k admet des sections approximative-
ment holomorphes sk dont les lieux d’annulation Wk sont des hypersurfaces sym-
plectiques lisses.

Ce résultat part de l’observation que, si la section sk s’annule transversalement et
si l’on a |∂̄sk(x)| � |∂sk(x)| en tout point de Wk = s−1

k (0), alors la sous-variété Wk

est symplectique (i.e., ω|Wk
est non dégénérée, ce qui implique que (Wk, ω|Wk

) est
symplectique), et même approximativement J-holomorphe (i.e. J(TWk) est proche
de TWk). Le point crucial est donc d’obtenir une borne inférieure en tout point de
Wk pour ∂sk, pour compenser le défaut d’holomorphie.

Définition 2.2. On dit que des sections sk de L⊗k sont uniformément transverses
à 0 s’il existe une constante η > 0 (indépendante de k) telle que, en tout point de
X tel que |sk(x)| < η, on a |∂sk(x)|gk

> η.

Pour des sections approximativement holomorphes, l’obtention d’une telle estimée
uniforme de transversalité suffit à obtenir le Théorème 2.1. La construction de telles
sections comporte deux grandes étapes : la première est un résultat de transversalité
effectif local pour des fonctions à valeurs complexes, et fait appel à un résultat de
Yomdin sur la complexité des ensembles semi-algébriques réels; la seconde étape est
un procédé de globalisation original, qui permet par perturbations successives des



4 PRÉSENTATION DES TRAVAUX

sections sk d’obtenir des propriétés de transversalité uniforme sur des ouverts de
plus en plus grands jusqu’à recouvrir X [Do1].

La première étape (résultat de transversalité effectif local) a récemment fait
l’objet d’une simplification notable [Au5], qui permet de formuler l’argument de
façon nettement plus courte et sans faire appel aux travaux de Yomdin. L’obser-
vation élémentaire qui sous-tend cette simplification est la suivante : une fonction
holomorphe f : Cn → C s’annule transversalement (i.e., 0 est une valeur régulière)
si et seulement si son 1-jet (f, df) ne s’annule nulle part. Dès lors, en travail-
lant sur les 1-jets plutôt que sur les fonctions, et en s’autorisant des perturbations
affines plutôt que constantes, il devient nettement plus facile d’obtenir un résul-
tat de transversalité uniforme de type Sard pour les fonctions approximativement
holomorphes.

Les sous-variétés symplectiques construites par Donaldson possèdent plusieurs
propriétés spécifiques qui les rapprochent davantage des sous-variétés complexes que
des sous-variétés symplectiques générales. Tout d’abord, elles vérifient le théorème
de l’hyperplan de Lefschetz : jusqu’en dimension moitié, les groupes d’homologie et
d’homotopie de Wk sont identiques à ceux de X [Do1]. De façon plus importante,
elles vérifient une propriété d’unicité asymptotique décrite dans [Au1] :

Théorème 2.3 ([Au1]). Pour k suffisamment grand fixé, les sous-variétés Wk obte-
nues à l’aide du Théorème 2.1 pour des constantes de transversalité données sont,
à isotopie symplectique près, indépendantes de tous les choix effectués (y compris
celui de la structure presque complexe J).

Ce résultat d’unicité, qui repose sur une extension de l’argument de Donaldson
au cas de familles de sections dépendant d’un paramètre réel, est intéressant car il
permet d’envisager l’utilisation d’invariants topologiques ou symplectiques associés
aux sous-variétés Wk pour caractériser la variété X. De plus, il donne une informa-
tion sur le problème d’isotopie symplectique, qui consiste à déterminer si les courbes
symplectiques connexes représentant une classe d’homologie donnée dans une va-
riété symplectique de dimension 4 sont toutes mutuellement isotopes ou non : les
sous-variétés construites par Donaldson ne peuvent pas fournir de contre-exemples
à ce problème dont la réponse générale est négative (cf. par exemple [FS]), mais
pour lequel aucun contre-exemple n’est connu pour les courbes lisses connexes dont
le fibré normal est de degré positif.

Le comportement géométrique des sous-variétés symplectiques obtenues à l’aide
des techniques approximativement holomorphes est remarquable, en particulier
vis-à-vis des sous-variétés lagrangiennes (ou plus généralement isotropes). Ainsi,
de façon analogue à ce qui se produit en géométrie kählérienne, les sous-variétés
isotropes vérifient une propriété de convexité rationnelle, ce qui se manifeste no-
tamment par la possibilité de choisir les hypersurfaces symplectiques Wk de telle
sorte qu’elles évitent une sous-variété isotrope donnée tout en passant par un point
arbitrairement choisi du complémentaire.

Le résultat suivant a également été obtenu de façon indépendante par Damien
Gayet et Jean-Paul Mohsen, et a fait l’objet de la publication commune [AGM] :

Théorème 2.4 ([AGM]). Soit L ⊂ X une sous-variété isotrope compacte, et soit
N = |TorH1(L,Z)|. Alors, pour tout entier k multiple de N suffisamment grand, il
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existe des sections approximativement holomorphes de L⊗k dont les lieux d’annula-
tion Wk sont des sous-variétés symplectiques lisses disjointes de L, passant par un
point quelconque de X − L.

Le Théorème 2.4 présente un intérêt particulier en relation avec le résultat de
structure obtenu par Biran [Bi], qui permet de décomposer la variété X en d’une
part un fibré en disques sur Wk, et d’autre part un complexe cellulaire isotrope. En
principe, il devrait également permettre d’obtenir des obstructions à l’existence de
certains plongements lagrangiens (cf. notamment les travaux de Nemirovski).

3. Systèmes linéaires approximativement holomorphes

Si les sous-variétés symplectiques dont la construction et les propriétés ont été
abordées au §2 offrent déjà de vastes perspectives, les applications les plus intéres-
santes des techniques aproximativement holomorphes en topologie symplectique
font intervenir des systèmes linéaires engendrés par deux sections ou plus, qui
permettent de munir les variétés symplectiques compactes de diverses structures
topologiques extrêmement riches telles que pinceaux de Lefschetz, applications pro-
jectives, etc...

3.1. Pinceaux de Lefschetz symplectiques. Si l’on considère non plus une,
mais deux sections de L⊗k, Donaldson a montré qu’il est possible de munir la
variété X de structures de pinceaux de Lefschetz symplectiques [Do2, Do3] : un
couple de sections approximativement holomorphes (s0

k, s
1
k) de L⊗k convenablement

choisies définit une famille d’hypersurfaces Σk,α = {x ∈ X, s0
k(x) − αs1

k(x) = 0},
α ∈ CP1 = C∪{∞}. Les sous-variétés Σk,α sont symplectiques, et elles sont toutes
lisses excepté un nombre fini d’entre elles qui présentent une singularité isolée (un
point double ordinaire) ; elles s’intersectent le long des points base du pinceau, qui
forment une sous-variété symplectique lisse Zk = {s0

k = s1
k = 0} de codimension 4.

Ainsi, lorsque dimX = 4 (le cas le plus étudié), les fibres sont des surfaces compactes
orientées dont certaines présentent une singularité nodale, et Zk est constitué d’un
nombre fini de points.

On peut également définir l’application projective fk = [s0
k : s1

k ] : X−Zk → CP1,
dont les points critiques correspondent aux singularités des fibres Σk,α = f−1

k (α) ∪
Zk. La fonction fk est une fonction de Morse complexe, c’est-à-dire qu’au voisinage
d’un point critique on a un modèle local fk(z) = z2

1 + · · · + z2
n en coordonnées

approximativement holomorphes.
L’argument de Donaldson repose à nouveau sur des perturbations successives

des sections s0
k et s1

k afin d’obtenir des propriétés de transversalité uniforme, non
seulement pour les sections (s0

k, s
1
k) mais aussi pour la dérivée ∂fk [Do3]. Il est à

noter que la partie la plus technique de l’argument peut être simplifiée de la même
façon que pour la construction de sous-variétés [Au5].

Donaldson montre également que, pour k � 0 fixé, les pinceaux de Lefschetz
obtenus sont tous identiques à isotopie près, indépendamment des choix de con-
struction.

3.2. Revêtements ramifiés de CP2 et applications projectives. On considère
maintenant des systèmes linéaires engendrés par trois sections approximativement
holomorphes (s0

k, s
1
k, s

2
k) de L⊗k : pour k � 0, il est à nouveau possible d’obtenir un
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comportement générique pour l’application projective fk = (s0
k : s1

k : s2
k) (à valeurs

dans CP2) associée au système linéaire.
Si la variété X est de dimension 4, le système linéaire n’a pas de points base, et

l’application fk est un revêtement ramifié :

Théorème 3.1 ([Au2]). Pour k suffisamment grand, trois sections approximative-
ment holomorphes convenablement choisies de L⊗k au-dessus de X4 déterminent
un revêtement ramifié fk : X4 → CP2 à modèles locaux génériques : pour tout point
x ∈ X, il existe des coordonnées approximativement holomorphes locales au voisi-
nage de x et de fk(x) dans lesquelles fk s’identifie à l’un des trois modèles locaux
(u, v) 7→ (u, v) (difféomorphisme local), (u, v) 7→ (u2, v) (ramification simple), ou
(u, v) 7→ (u3 − uv, v) (cusp). De plus, pour k � 0 les revêtements ainsi construits
sont uniquement déterminés à isotopie près.

Les trois modèles locaux qui apparaissent dans l’énoncé du théorème sont les
mêmes que pour une application holomorphe générique en dimension complexe 2.
Toutefois ils sont ici réalisés dans des coordonnées locales qui ne sont pas holo-
morphes. La propriété importante des systèmes de coordonnées considérés est la
suivante : si l’on transporte la structure symplectique via le système de coordon-
nées, on obtient une forme symplectique sur C2 dont la restriction à une droite
complexe quelconque est toujours positive.

Le lieu des points critiques de fk est une courbe symplectique lisse (connexe)
Rk ⊂ X . En revanche, la courbe symplectique Dk = fk(Rk) ⊂ CP2 (“courbe de
ramification”, ou “courbe discriminante”) n’est immergée qu’en dehors des points
où le troisième modèle local s’applique. En ces points, la courbe Dk présente un
cusp complexe (27x2 = 4y3). Outre les cusps, la courbe Dk présente également
génériquement des points doubles, qui n’apparaissent pas dans les modèles locaux
car ils correspondent à des ramifications en deux points distincts de la même fibre
de fk ; bien que Dk soit approximativement holomorphe, les deux orientations sont
a priori envisageables pour ses points doubles, contrairement au cas complexe.

Réciproquement, un revêtement de CP2 ramifié le long d’une courbe symplectique
singulière admet toujours une structure symplectique naturelle (canonique à isotopie
près), obtenue par relèvement de la forme de Kähler de CP2 et perturbation le long
de la courbe de ramification.

Le résultat d’unicité du Théorème 3.1 implique que, pour k � 0, il est possible de
définir des invariants de la variété symplectique (X,ω) à partir de la monodromie
du revêtement et de la topologie de la courbe Dk ⊂ CP2 ; toutefois, la courbe Dk

n’est déterminée qu’à création ou annulation de paires de points doubles admissibles
près.

Lorsque dimX > 4, le lieu des points base Zk = {s0
k = s1

k = s2
k = 0} n’est plus

vide, et l’application projective fk n’est plus définie partout ; les points base forment
génériquement une sous-variété symplectique lisse de X, de codimension réelle 6.
A cette différence près, le résultat précédent s’étend en dimension supérieure :

Théorème 3.2 ([Au3]). Pour k suffisamment grand, trois sections approximative-
ment holomorphes convenablement choisies du fibré L⊗k déterminent une applica-
tion projective fk : X2n − Zk → CP2 à modèles locaux génériques, de façon cano-
nique à isotopie près.
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Près d’un point de Zk, un modèle local pour fk est (z1, . . . , zn) 7→ [z1 : z2 : z3].
Hors de Zk, les trois modèles locaux génériques deviennent respectivement :

(i) (z1, . . . , zn) 7→ (z1, z2) ;
(ii) (z1, . . . , zn) 7→ (z2

1 + · · · + z2
n−1, zn) ;

(iii) (z1, . . . , zn) 7→ (z3
1 − z1zn + z2

2 + · · · + z2
n−1, zn).

Le lieu des points critiques Rk ⊂ X est de nouveau une courbe symplectique lisse
(connexe), tandis que son image Dk = fk(Rk) ⊂ CP2 est encore une courbe sym-
plectique singulière, dont les seules singularités génériques sont des cusps complexes
ainsi que des points doubles (le signe de l’intersection pouvant être soit positif soit
négatif). Les fibres de fk sont des sous-variétés symplectiques de codimension réelle
4, s’intersectant le long de Zk; les fibres au-dessus des points de CP2 − Dk sont
lisses, tandis que celles au-dessus d’un point générique de Dk présentent un point
double ordinaire, et celles au-dessus d’un cusp de Dk présentent une singularité de
type A2.

Comme en dimension 4, le résultat d’unicité à isotopie près implique que, modulo
d’éventuelles créations ou annulations de paires de points doubles d’orientations
opposées dans la courbe Dk, la topologie de la fibration fk peut être utilisée pour
définir des invariants de la variété symplectique (X,ω) (voir §4).

3.3. Fibrés de jets et transversalité uniforme. Les constructions décrites ci-
dessus reposent sur l’analyse minutieuse des diverses situations locales possibles
pour fk et sur des arguments de transversalité permettant d’assurer l’existence de
sections de L⊗k se comportant de façon générique. Il s’agit donc de recenser les
divers cas particuliers, génériques ou non, susceptibles de se produire ; chacun cor-
respond à l’annulation d’une certaine quantité exprimable en fonction des sections
s0

k, s
1
k, s

2
k et de leurs dérivées.

Afin de faciliter ce type de constructions, et pour pouvoir étendre les résultats
à des systèmes linéaires déterminés par plus de trois sections ou à des situations
plus générales encore, il est nécessaire de développer une version approximativement
holomorphe de la théorie des singularités. L’ingrédient essentiel de cette approche
est un théorème de transversalité uniforme pour les jets de sections approximative-
ment holomorphes ([Au4], Théorème 1.1).

Etant données des sections approximativement holomorphes sk de fibrés très posi-
tifs Ek (par exemple Ek = Cm⊗L⊗k) sur une variété symplectique X, il est possible
de considérer leurs r-jets, jrsk = (sk, ∂sk, (∂∂sk)sym, . . . , (∂

rsk)sym), qui sont des sec-
tions de fibrés de jets J rEk =

⊕r
j=0(T

∗X(1,0))⊗j
sym ⊗ Ek. Les fibrés J rEk peuvent

naturellement être stratifiés par des sous-variétés approximativement holomorphes,
correspondant aux divers comportements locaux possibles à l’ordre r pour les sec-
tions sk. Le comportement génériquement attendu correspond au cas où le jet jrsk

est transverse aux sous-variétés de la stratification. Le résultat est le suivant :

Théorème 3.3 ([Au4]). Etant données des stratifications Sk des fibrés de jets J rEk

par des sous-variétés approximativement holomorphes (en nombre fini, régulières
au sens de Whitney, uniformément transverses aux fibres, et de courbure bornée in-
dépendamment de k), pour k suffisamment grand les fibrés Ek admettent des sections
approximativement holomorphes sk dont les r-jets sont uniformément transverses
aux stratifications Sk. De plus ces sections peuvent être choisies arbitrairement
proches de sections données.
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En l’appliquant à des stratifications convenablement choisies, ce théorème fournit
la partie principale de l’argument requis pour construire des m-uplets de sections
approximativement holomorphes de L⊗k (et donc des applications projectives à
valeurs dans CPm−1) présentant un comportement générique. De plus, une ver-
sion à un paramètre réel du Théorème 3.3 permet d’obtenir des résultats d’unicité
asymptotique à isotopie près pour ces sections génériques ([Au4], Théorème 3.2).

4. Invariants de monodromie

La topologie des structures introduites ci-dessus (pinceaux de Lefschetz, revête-
ments ramifiés, ...) peut être étudiée à l’aide de la notion de monodromie, dans le
but de définir des invariants de variétés symplectiques.

De façon générale, la monodromie d’une fibration lisse f : X → Y de fibre F est
décrite par un morphisme φ : π1(Y ) → π0Diff(F ), obtenu en considérant le difféo-
morphisme (défini seulement à isotopie près en l’absence du choix d’une connexion
sur la fibration) induit sur la fibre générique par un déplacement le long d’un lacet
dans la base Y ; en présence de structures supplémentaires sur les fibres (sections
distinguées, structures symplectiques, ...) on pourra aussi considérer des classes
d’isotopie de difféomorphismes relatifs, de symplectomorphismes, etc... Lorsque f
possède des points critiques, i.e. en présence de fibres singulières, la monodromie
est définie en se restreignant à la préimage de Y0 = Y − crit(f), la monodromie
autour des fibres singulières étant alors d’une importance toute particulière pour
l’étude de la topologie de l’application f .

4.1. Monodromie de fibrations de Lefschetz. On considère à nouveau une
structure de pinceau de Lefschetz symplectique sur X, donnée par des hypersurfaces
Σk,α s’intersectant transversalement le long de la sous-variété des points base Zk ;
les hypersurfaces Σk,α sont les surfaces de niveaux d’une fonction de Morse complexe
fk : X−Zk → CP1, et sont lisses excepté un nombre fini d’entre elles qui contiennent
un point double ordinaire comme seule singularité. Ce point double est obtenu à
partir d’une fibre générique par contraction d’une sphère lagrangienne appelée cycle
évanescent.

En considérant la variété X̂ formée par éclatement de X le long de Zk, on obtient
une fibration de Lefschetz f̂k : X̂ → CP1, dont on peut étudier la monodromie
autour des fibres singulières (correspondant aux valeurs critiques de fk). Cette
monodromie prend ses valeurs dans le mapping class group symplectique,

Mapω(Σk, Zk) = π0({φ ∈ Symp(Σk, ω), φ|V (Zk) = Id}),
où Σk est une fibre générique de f̂k (correspondant au choix d’un point de référence
α ∈ CP1), et V (Zk) est un voisinage de Zk dans la fibre Σk. On obtient ainsi un
morphisme de monodromie ψk : π1(C − crit fk) → Mapω(Σk, Zk). La monodromie
autour d’une fibre singulière est un twist de Dehn (positif) le long du cycle évanes-
cent (une sphère lagrangienne plongée Sn−1 ⊂ Σk − Zk).

Dans le cas où dimX = 4, les fibres sont des surfaces compactes et Zk est un
ensemble fini de points ; le groupe Mapω(Σk, Zk) s’identifie donc au “mapping class
group” Mapg,N d’une surface de Riemann de genre g = g(Σk) à N = cardZk

composantes de bord, et la monodromie autour d’une fibre singulière (une surface
de Riemann possédant un point double à croisement normal) est un twist de Dehn
le long d’une courbe fermée simple.
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Le résultat d’unicité asymptotique de Donaldson implique que, pour k suffisam-
ment grand, la monodromie des pinceaux de Lefschetz construits à partir de sections
approximativement holomorphes de L⊗k est un invariant symplectique de (X,ω).
Inversement, Gompf a montré que la donnée du morphisme de monodromie déter-
mine entièrement la variété X munie de sa structure symplectique [Go2] ; de plus,
en dimension 4 l’espace total d’une “fibration de Lefschetz topologique” au-dessus
de CP1 admet toujours une structure symplectique [GS].

Les propriétés géométriques et topologiques des pinceaux et fibrations de Lef-
schetz ont fait l’objet de nombreuses études ces dernières années, particulièrement
en dimension 4 ; cf. par exemple [ABKP], [Sm1], [EK]. Donaldson et Smith ont
montré qu’une variante des invariants de Gromov-Witten peut être exprimée en ter-
mes de fibrations en produits symétriques associées à un pinceau de Lefschetz, ce
qui leur a permis de redémontrer sans faire appel à la théorie de Seiberg-Witten des
résultats de Taubes sur l’existence de courbes symplectiques dans certaines classes
d’homologie [DS, Sm2]. Par ailleurs, Seidel a introduit une version combinatoire
de l’homologie de Floer lagrangienne pour les pinceaux de Lefschetz [Se], ce qui lui
a permis d’obtenir une description simplifiée, effectivement calculable, de certaines
catégories de Fukaya (A∞-catégories dont les objets sont des sous-variétés lagran-
giennes et dont les morphismes sont donnés par l’homologie de Floer), et de vérifier
ainsi les conjectures de symétrie miroir de Kontsevich pour des exemples simples.

Tous ces travaux montrent clairement l’intérêt que présente le calcul de la mono-
dromie des pinceaux de Lefschetz symplectiques construits par Donaldson. Malheu-
reusement, ce calcul est très délicat en pratique ; de fait, la méthode de calcul la
plus efficace consiste souvent à faire intervenir un système linéaire comportant une
troisième section (c’est-à-dire une application à valeurs dans CP2), et à calculer les
invariants de monodromie qui lui sont associés avant d’en déduire ceux du pinceau
de Lefschetz correspondant.

4.2. Monodromie de revêtements ramifiés de CP2. Les données topologiques
qui caractérisent un revêtement ramifié fk : X4 → CP2 sont d’une part la courbe de
ramification Dk ⊂ CP2 (à isotopie et annulation de paires de points doubles près),
et d’autre part un morphisme de monodromie θk : π1(CP2 − Dk) → SN décrivant
l’agencement des N = deg fk feuillets du revêtement au-dessus de CP2 −Dk.

L’étude d’une courbe singulière D ⊂ CP2 peut se faire en utilisant les techniques
de groupes de tresses introduites en géométrie algébrique complexe par Moishezon
et Teicher [Mo1, Te1] : l’idée est de choisir une projection linéaire π : CP2−{pt} →
CP1, par exemple π([x :y :z]) = [x :y], de telle sorte que la courbe D soit en position

?
π : [x :y :z] 7→ [x :y]

CP1

CP2 − {∞} D

q q q

q q q
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générale par rapport aux fibres de π. La restriction π|D est alors un revêtement
ramifié singulier de degré d = degD, dont les points particuliers sont d’une part les
singularités de D (points doubles et cusps) et d’autre part des points de tangence
verticale où la courbe D devient tangente aux fibres de π.

Hormis celles qui contiennent des points particuliers de D, les fibres de π sont des
droites qui intersectent la courbe D en d points distincts. Si l’on choisit un point
de référence dans CP1 (et la fibre correspondante ` ' C ⊂ CP2 de π), et si l’on se
restreint à un ouvert affine afin de pouvoir trivialiser la fibration π, la topologie du
revêtement ramifié π|D peut être décrite par un morphisme ρ : π1(C−{pts}) → Bd,
où Bd est le groupe des tresses à d brins : la tresse ρ(γ) correspond au mouvement
des d points de ` ∩D à l’intérieur des fibres de π lors d’un déplacement le long du
lacet γ. De façon équivalente, si l’on choisit un système de lacets qui engendrent le
groupe libre π1(C − {pts}), le morphisme ρ peut être décrit par une factorisation
dans le groupe de tresses Bd, faisant intervenir la monodromie autour de chacun des
points particuliers de D (laquelle, pour chaque type de point, est toujours conjuguée
à un modèle local standard).

Le morphisme ρ et la factorisation correspondante dépendent de choix de trivia-
lisation, qui les affectent par conjugaison simultanée (changement de trivialisation
de la fibre ` de π) ou par opérations de Hurwitz (changement de générateurs de
π1(C − {pts})). Il y a équivalence complète entre la donnée d’un morphisme ρ :
π1(C − {pts}) → Bd à ces opérations algébriques près et la donnée d’une courbe
singulière symplectique planeD de degré d compatible avec la projection π à isotopie
symplectique (parmi les courbes singulières compatibles avec la projection π) près.
En revanche, la courbe D n’est isotope à une courbe complexe que pour certains
choix particuliers du morphisme ρ.

Contrairement au cas complexe, dans le cas symplectique il n’est pas évident a
priori que la courbe de ramification Dk puisse posséder les propriétés attendues
vis-à-vis de la projection linéaire π ; cela requiert en fait une amélioration du
Théorème 3.1 afin de contrôler le comportement de Dk près des points particu-
liers (tangences verticales, points doubles et cusps) [AK, Au3]. Par ailleurs, il faut
tenir compte des créations ou annulations de paires de points doubles admissibles
dans Dk, qui affectent le morphisme ρk : π1(C − {pts}) → Bd par insertion ou
suppression de paires de facteurs. Le résultat d’unicité du Théorème 3.1 implique
alors le résultat suivant, obtenu en collaboration avec L. Katzarkov [AK] :

Théorème 4.1 ([AK]). Pour k fixé suffisamment grand, les morphismes de mono-
dromie (ρk, θk) associés aux revêtements ramifiés approximativement holomorphes
fk : X → CP2 définis par trois sections de L⊗k sont, à conjugaisons, opérations de
Hurwitz et insertions ou suppressions près, des invariants de la variété symplectique
(X4, ω). De plus, ces invariants sont complets, en ce sens que la donnée de ρk et
de θk permet de reconstruire (X4, ω) à symplectomorphisme près.

Il est intéressant de mentionner que les pinceaux de Lefschetz symplectiques con-
struits par Donaldson peuvent être réobtenus très facilement à partir des revête-
ments ramifiés fk, simplement en considérant les applications composées π ◦ fk à
valeurs dans CP1. Autrement dit, les fibres Σk,α du pinceau sont les préimages par
fk des fibres de π, les fibres singulières du pinceau correspondant aux points de
tangence verticale de Dk. En fait, les morphismes de monodromie ψk des pinceaux
de Lefschetz peuvent être construits de façon explicite à partir de θk et ρk : par
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restriction à la droite ¯̀ = ` ∪ {∞}, le morphisme θk à valeurs dans SN décrit la
topologie d’une fibre du pinceau en tant que revêtement ramifié de CP1 à N feuillets
et d points de ramification, ce qui permet de définir un morphisme de relèvement
(θk)∗ d’un sous-groupe de Bd à valeurs dans Map(Σk, Zk) = Mapg,N . On a alors
ψk = (θk)∗ ◦ ρk (cf. [AK], §5.2). Cette relation permet de tirer parti des diverses
techniques disponibles pour le calcul de la monodromie de revêtements ramifiés
[Mo2, Te1, ADKY], afin d’obtenir des formules explicites décrivant la monodromie
de pinceaux de Lefschetz dans des cas qui ne sont pas accessibles au calcul direct
(voir notamment [AK2]).

4.3. Monodromie d’applications projectives. Lorsque dimX > 4, la topologie
d’une application projective fk : X−Zk → CP2 et la courbe discriminanteDk ⊂ CP2

peuvent être décrites de la même façon que pour un revêtement ramifié ; la seule
différence est que le morphisme θk décrivant la monodromie de la fibration au-dessus
du complémentaire de Dk prend désormais ses valeurs dans le “mapping class group”
symplectique Mapω(Σk, Zk) de la fibre générique de fk. Le Théorème 4.1 demeure
vrai dans ce cadre [Au3]. Toutefois, ces invariants sont difficilement exploitables,
notamment lorsque dimX ≥ 8, car le groupe Mapω(Σk, Zk) est très mal connu.

Cependant, il existe une procédure de réduction dimensionnelle qui permet d’évi-
ter cet écueil. En effet, la restriction de fk à la droite ¯̀⊂ CP2 définit un pinceau
de Lefschetz sur une hypersurface symplectique Wk ⊂ X, de fibre générique Σk et
de monodromie θk.

CP2

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
��

�
��

�
��

X

CP1
-π

WΣ

D

¯̀

s

s

ss

Cette structure peut être enrichie par ajout d’une section supplémentaire de L⊗k

de façon à obtenir une application de Wk dans CP2, qui peut de nouveau être
caractérisée par des invariants de monodromie, et ainsi de suite jusqu’en petite
dimension. Au final, étant donnée une variété symplectique (X2n, ω) et un entier
k � 0, on obtient n−1 courbes singulièresD(n)

k , D
(n−1)
k , . . . , D

(2)
k ⊂ CP2, décrites par

autant de morphismes à valeurs dans des groupes de tresses, et un morphisme θ(2)
k de

π1(CP2 −D
(2)
k ) dans un groupe symétrique. Ces invariants suffisent à reconstruire

de proche en proche les différentes sous-variétés de X qui interviennent dans le
processus de réduction, et en fin de compte ils déterminent la variété (X,ω) à
symplectomorphisme près [Au3] :

Théorème 4.2 ([Au3]). Pour k fixé suffisamment grand, les morphismes de mono-

dromie ρ
(n)
k , . . . , ρ

(2)
k à valeurs dans des groupes de tresses et θ

(2)
k à valeurs dans un

groupe symétrique associés à des systèmes linéaires de sections de L⊗k sont, à con-
jugaison, opérations de Hurwitz et insertions ou suppressions près, des invariants
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de la variété symplectique (X2n, ω). De plus, ces invariants sont complets : ils
permettent de reconstruire (X2n, ω) à symplectomorphisme près.

Cette stratégie d’étude semble beaucoup plus prometteuse que celle consistant
à considérer directement des applications projectives à valeurs dans des espaces
CPm pour m ≥ 3. En effet, même si les méthodes de monodromie continuent en
principe à s’appliquer dans ce cadre, la courbeDk ⊂ CP2 est alors remplacée par une
hypersurface dans CPm, susceptible de présenter des singularités très compliquées
et donc délicate à étudier.

4.4. Techniques de calcul. En principe, les Théorèmes 4.1 et 4.2 ramènent la
classification des variétés symplectiques compactes à des questions purement com-
binatoires concernant les groupes de tresses et les groupes symétriques, et la topolo-
gie symplectique semble se réduire en grande partie à l’étude de certaines courbes
planes singulières, ou de façon équivalente de certains mots dans des groupes de
tresses.

Le calcul explicite de ces invariants de monodromie est difficile dans le cas général,
mais est rendu possible pour un grand nombre de surfaces complexes par l’utilisation
de techniques de “dégénération” et de perturbations approximativement holomor-
phes. Ainsi, les invariants définis par le Théorème 4.1 sont calculables explicitement
pour divers exemples tels que CP2, CP1 × CP1 [Mo2], quelques intersections com-
plètes (surfaces de Del Pezzo ou K3) [Ro], la surface d’Hirzebruch F1, et tous les
revêtements doubles de CP1 × CP1 (parmi lesquels une famille infinie de surfaces
de type général) [ADKY].

La technique de dégénération, développée par Moishezon et Teicher [Mo2, Te1],
consiste à partir d’un plongement projectif de la surface complexe X et à déformer
l’image de ce plongement en une configuration singulière X0 constituée d’une union
de plans s’intersectant le long de droites. La courbe discriminante d’une projection
de X0 sur CP2 est donc une union de droites ; la façon dont une désingularisation de
X0 affecte cette courbe peut être étudiée explicitement, en considérant un certain
nombre de modèles locaux standard au voisinage des divers points de X0 où trois
plans et plus s’intersectent. Ceci permet de traiter de nombreux exemples en petit
degré, mais pour le cas k � 0 qui nous intéresse (systèmes linéaires très positifs)
seules des surfaces très simples peuvent être abordées.

Pour aller au-delà, il est plus efficace de s’affranchir de la rigidité des applications
algébriques, et de s’autoriser des perturbations approximativement holomorphes
dont la flexibilité supérieure permet de choisir des modèles locaux plus accessibles
au calcul. Il devient ainsi possible de calculer directement les invariants de mono-
dromie pour tous les systèmes linéaires de la forme f ∗O(p, q) sur des revêtements
doubles de CP1×CP1 ramifiés le long de courbes algébriques lisses connexes de degré
arbitraire [ADKY]. Il devient également possible d’obtenir une formule générale de
“stabilisation”, qui décrit explicitement les invariants de monodromie associés au
système linéaire L⊗2k en fonction de ceux associés au système linéaire L⊗k (lorsque
k � 0), pour les revêtements ramifiés de CP2 comme pour les pinceaux de Lefschetz
en dimension 4 [AK2].

Toutefois, malgré ces succès, un obstacle sérieux limite l’utilisation des invariants
de monodromie en pratique : il n’est pas possible de les exploiter efficacement pour
différencier deux variétés symplectiques homéomorphes en toute généralité, car il
n’existe pas d’algorithme pour comparer deux mots dans un groupe de tresses (ou
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dans un mapping class group) à opérations de Hurwitz près. Cet obstacle théorique
oblige à se tourner vers des invariants moins complets mais plus maniables.

5. Groupes fondamentaux de complémentaires de courbes planes

Le groupe fondamental du complémentaire est un invariant qu’il est très naturel
d’associer à une courbe plane singulière D ⊂ CP2, notamment dans le cas d’une
courbe de ramification. Son étude pour divers types de courbes algébriques est un
sujet classique depuis les travaux de Zariski, et a été beaucoup développée dans les
années 80 et 90 grâce notamment aux travaux de Moishezon et Teicher [Mo1, Mo2,
Te1]. La relation avec les invariants de monodromie est directe : grâce au théorème
de Zariski-van Kampen, le morphisme de monodromie ρ : π1(C − {pts}) → Bd

fournit une présentation explicite de π1(CP2 −D). Toutefois, comme l’introduction
ou l’élimination de paires de points doubles affecte ce groupe fondamental, il ne peut
être directement utilisé comme invariant pour un revêtement ramifié symplectique,
et doit être remplacé par un quotient convenable, le groupe fondamental stabilisé, qui
a été introduit et étudié dans un travail en commun avec S. Donaldson, L. Katzarkov
et M. Yotov [ADKY].

En reprenant les notations du §4.2, l’inclusion i : ` − (` ∩ Dk) → CP2 − Dk de
la fibre de référence de la projection linéaire π induit un morphisme surjectif sur
les groupes fondamentaux; les images des générateurs standard du groupe libre et
leurs conjugués forment un sous-ensemble Γk ⊂ π1(CP2 − Dk) dont les éléments
sont appelés générateurs géométriques. Les images des générateurs géométriques
par le morphisme θk sont des transpositions dans SN . La création d’une paire
de points doubles dans la courbe Dk revient à quotienter π1(CP2 − Dk) par une
relation de la forme [γ1, γ2] ∼ 1, où γ1, γ2 ∈ Γk sont tels que θk(γ1) et θk(γ2) sont
des transpositions disjointes. On note Kk le sous-groupe normal de π1(CP2 −Dk)
engendré par tous ces commutateurs [γ1, γ2].

Théorème 5.1 ([ADKY]). Pour k � 0 fixé, le groupe fondamental stabilisé Ḡk =
π1(CP2 −Dk)/Kk est un invariant de la variété symplectique (X4, ω).

Cet invariant peut être calculé explicitement pour les divers exemples où les in-
variants de monodromie sont calculables (CP2, CP1 × CP1, intersections complètes
Del Pezzo et K3, surface d’Hirzebruch F1, revêtements doubles de CP1 × CP1).
Ces divers exemples ont servi de point de départ à diverses observations et con-
jectures concernant les groupes fondamentaux de complémentaires de courbes de
ramification [ADKY].

Tout d’abord, il est à noter que, dans tous les exemples connus, pour k suffi-
samment grand l’opération de stabilisation devient triviale : Kk = {1}, c’est-à-dire
que les générateurs géométriques associés à des transpositions disjointes commutent
déjà dans π1(CP2 −Dk). Par exemple, lorsque X = CP2 on a Ḡk = π1(CP2 −Dk)
pour tout k ≥ 3. Le quotient par Kk ne semble donc pas engendrer de perte
d’information, du moins pour k � 0 (la situation pour de petites valeurs de k
pouvant être très différente).

Le principal résultat de structure est le suivant :

Théorème 5.2 ([ADKY]). Il existe une suite exacte naturelle

1 −→ G0
k −→ Ḡk −→ Sn × Zd −→ Z2 −→ 1,
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où n = deg fk et d = degDk. De plus, si X est simplement connexe, alors il existe
un morphisme surjectif naturel φk : G0

k � (Z2/Λk)
n−1, où

Λk = {(c1(KX) · α, c1(L⊗k) · α), α ∈ H2(X,Z)}
est un sous-groupe de Z2 entièrement déterminé par les propriétés numériques de
la classe symplectique et de la classe canonique.

Dans cet énoncé, les deux composantes du morphisme Ḡk → Sn×Zd sont respec-
tivement données par la monodromie du revêtement ramifié, θk : π1(CP2 −Dk) →
Sn, et le morphisme d’abélianisation δk : π1(CP2 −Dk) → H1(CP2 −Dk,Z) ' Zd.
Pour sa part, le morphisme φk est défini en considérant les n relèvements à X d’un
lacet fermé γ élément de G0

k, ou plus précisément leurs classes d’homologie (dont la
somme est nulle) dans le complémentaire d’une section hyperplane et de la courbe
de ramification dans X.

En outre, les exemples connus incitent à formuler la conjecture suivante, beaucoup
plus forte, sur la structure des sous-groupes G0

k :

Conjecture 5.3 ([ADKY]). Si X est simplement connexe, alors pour k suffisam-
ment grand le morphisme φk induit un isomorphisme au niveau de l’abélianisé,
c’est-à-dire que AbG0

k ' (Z2/Λk)
n−1, tandis que Kerφk = [G0

k, G
0
k] est un quotient

de Z2 × Z2.

6. Variétés symplectiques et variétés kählériennes

Il est bien connu depuis les années 70 que la topologie des variétés symplectiques
compactes de dimension 4 offre une diversité beaucoup plus grande que celle des
variétés kählériennes. D’autre part, il a été découvert plus récemment (dans les an-
nées 90) que les courbes symplectiques (lisses ou singulières) dans une variété donnée
peuvent aussi présenter une plus vaste palette de possibilités que les courbes com-
plexes, auxquelles elles ne sont pas toujours isotopes. Le Théorème 3.1 jette un pont
entre ces deux phénomènes : en effet, un revêtement de CP2 (ou plus généralement
d’une surface complexe) ramifié le long d’une courbe complexe hérite automatique-
ment d’une structure complexe, ce qui signifie que, à partir d’une variété symplec-
tique n’admettant pas de structure kählérienne, le Théorème 3.1 fournit toujours
des courbes de ramification qui ne sont isotopes à aucune courbe complexe dans
CP2. L’étude de ces phénomènes d’isotopie et de non-isotopie présente donc un
intérêt majeur pour la compréhension de la topologie des variétés symplectiques de
dimension 4. Des résultats ont été obtenus dans deux directions.

6.1. Phénomènes d’isotopie et de stabilisation. Le problème d’isotopie sym-
plectique consiste à déterminer si, dans une variété donnée, toutes les sous-variétés
symplectiques réalisant une classe d’homologie donnée sont isotopes à des sous-
variétés complexes. Le premier résultat positif est dû à Gromov, qui a montré
à l’aide de son résultat de compacité pour les courbes pseudo-holomorphes que,
dans CP2, une courbe symplectique lisse de degré 1 ou 2 est toujours isotope à une
courbe complexe. Des améliorations successives de cette technique ont permis de
traiter le cas de courbes lisses de degré supérieur dans CP2 ou dans CP1 ×CP1 ; le
meilleur résultat connu actuellement est dû à Siebert et Tian, et permet de traiter
le cas des courbes lisses de CP2 jusqu’en degré 17 [ST]. Des résultats sur certaines
configurations singulières très simples sont également connus.
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Au niveau des variétés symplectiques de dimension 4, la conséquence plus im-
médiate du phénomène d’isotopie symplectique est l’holomorphicité de certaines
fibrations de Lefschetz. Ainsi, la classification complète des fibrations de Lefschetz
elliptiques (qui sont toutes holomorphes) est un résultat classique de Moishezon.
Les fibrations de Lefschetz de genre 2 sont toutes hyperelliptiques, ce qui permet
de les réaliser comme des revêtements doubles de surfaces réglées, ramifiés le long
de courbes symplectiques intersectant la fibre en 6 points (la courbe de ramifica-
tion est lisse si toutes les fibres singulières sont irréductibles ; en présence de fibres
réductibles des transformations birationnelles sont nécessaires). Ceci a permis à
Siebert et Tian de démontrer, grâce à leur résultat d’isotopie symplectique pour les
courbes lisses dans CP1 × CP1 et dans la surface d’Hirzebruch F1, que toutes les
fibrations de Lefschetz de genre 2 à fibres irréductibles et à monodromie transitive
(i.e. dont la courbe de ramification est connexe) sont isomorphes à des fibrations
holomorphes [ST].

Néanmoins, dans le cas où on autorise la présence de fibres singulières réductibles,
cette propriété disparaît, et il existe des fibrations de Lefschetz symplectiques de
genre 2 dont l’espace total n’est difféomorphe à aucune surface complexe [OS]. Il
est alors naturel de se demander si une propriété plus faible demeure vraie, lorsque
l’on autorise la stabilisation par sommes connexes fibrées avec certaines fibrations
holomorphes. Dans le cas du genre 2, il suffit en fait de considérer la stabilisation
par une seule fibration, la fibration holomorphe f0 présentant 20 fibres singulières
irréductibles et dont l’espace total est une surface rationnelle. Le résultat obtenu
est le suivant :

Théorème 6.1 ([Au6]). Soit f : X → S2 une fibration de Lefschetz de genre 2.
Alors la somme fibrée de f avec un nombre suffisant de copies de la fibration holo-
morphe f0 est isomorphe à une fibration holomorphe.

De plus, cette somme fibrée f#n f0 (n � 0) est entièrement déterminée par son
nombre total de fibres singulières et par le nombre de fibres singulières réductibles
de chaque type (deux composantes de genre 1, ou composantes de genres 0 et 2).

Ce résultat conduit à formuler la question suivante : étant donné une fibration
de Lefschetz symplectique (sans restriction sur le genre des fibres), est-il toujours
possible, par sommes fibrées successives avec des fibrations holomorphes choisies
parmi une liste finie de possibilités, de se ramener à une fibration holomorphe
(éventuellement elle-même décomposable en un certain nombre de blocs simples) ?
Une réponse à cette question améliorerait grandement notre compréhension de la
structure des fibrations de Lefschetz symplectiques.

6.2. Phénomènes de non-isotopie, tressage et chirurgie de Luttinger. A
l’inverse des cas d’isotopie décrits ci-dessus, la réponse au problème d’isotopie sym-
plectique semble en général être négative. Les premiers contre-exemples connus
dans le cas de courbes symplectiques lisses connexes sont dûs à Fintushel et Stern
[FS], qui ont construit par un procédé de tressage des familles infinies de courbes
symplectiques deux à deux non isotopes, réalisant une même classe d’homologie
(multiple de la fibre) dans des surfaces elliptiques, et à Smith, qui a utilisé la même
construction en genre supérieur. Toutefois, ces deux constructions sont précédées
par un résultat de Moishezon [Mo3], qui a établi dès le début des années 90 un ré-
sultat qui donne l’existence dans CP2 de familles infinies de courbes symplectiques
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de degré fixé et possédant des cusps et points doubles en nombre fixé, deux à deux
non isotopes ; une reformulation du résultat permet de voir qu’il s’agit encore une
fois d’une construction de tressage. Dans un travail en commun avec Donaldson
et Katzarkov, ce résultat de Moishezon a été réétudié et mis en relation avec une
construction de chirurgie le long d’un tore lagrangien dans une variété symplectique
de dimension 4, appelée chirurgie de Luttinger [ADK]. Ceci a permis de simplifier
notablement l’argument de Moishezon, qui se basait sur de longs et délicats cal-
culs de groupes fondamentaux de complémentaires de courbes, tout en le reliant à
diverses constructions développées en topologie de la dimension 4.

Etant donnés un tore lagrangien T plongé dans une variété symplectique (X 4, ω),
un lacet plongé homotopiquement non trivial γ ⊂ T et un entier k, la chirurgie de
Luttinger est une opération qui consiste à découper dansX un voisinage tubulaire de
T , feuilleté par des tores lagrangiens parallèles à T , et à le recoller de telle sorte que
le nouveau méridien diffère de l’ancien par k tours le long du lacet γ (tandis que les
longitudes ne sont pas affectées), ce qui fournit une nouvelle variété symplectique
(X̃, ω̃). Cette construction relativement peu étudiée, qui permet notamment de
passer d’un produit T 2 × Σ à n’importe quel fibré en surfaces au-dessus de T 2,
ou encore de transformer une somme fibrée classique en somme “twistée”, permet
de décrire de façon unifiée de nombreux exemples de variétés symplectiques de
dimension 4 construits au cours de ces dernières années.

La construction de tressage de courbes symplectiques, quant à elle, part d’une
courbe symplectique éventuellement singulière Σ ⊂ (Y 4, ωY ) et de deux cylindres
symplectiques plongés dans Σ pouvant être joints par un anneau lagrangien con-
tenu dans le complémentaire de Σ, et consiste à effectuer k demi-torsions entre ces
cylindres pour obtenir une nouvelle courbe symplectique Σ̃ dans Y . Dans le cas où
Σ est la courbe de ramification d’un revêtement ramifié symplectique f : X → Y ,
on a le résultat suivant :

Proposition 6.2 ([ADK]). Le revêtement ramifié de Y le long de la courbe sym-
plectique Σ̃ obtenue par tressage de Σ le long d’un anneau lagrangien A ⊂ Y − Σ
est naturellement symplectomorphe à la variété X̃ construite à partir du revêtement
ramifié X par chirurgie de Luttinger le long d’un tore lagrangien T ⊂ X obtenu par
relèvement de A.

Ainsi, une fois construite une famille infinie de courbes symplectiques grâce au
procédé de tressage, il ne reste plus qu’à trouver des invariants qui distinguent les
revêtements ramifiés correspondants pour conclure à la non-isotopie des courbes
construites. Dans la construction de Fintushel et Stern, ce rôle est joué par les
invariants de Seiberg-Witten, dont le comportement est bien compris pour les fi-
brations elliptiques et leurs chirurgies.

Dans le cas des exemples de Moishezon, une construction de tressage permet,
à partir de courbes complexes Σp,0 ⊂ CP2 (p ≥ 2) de degré dp = 9p(p − 1) et
comptant κp = 27(p − 1)(4p − 5) cusps et νp = 27(p − 1)(p − 2)(3p2 + 3p − 8)/2
points doubles, de construire des courbes symplectiques Σp,k ⊂ CP2 pour tout
k ∈ Z, de même degré et avec les mêmes singularités. Grâce à la Proposition 6.2,
ces courbes peuvent être vues comme les courbes de ramification de revêtements
ramifiés symplectiques, dont les espaces totaux Xp,k diffèrent par des chirurgies de
Luttinger le long d’un tore lagrangien T ⊂ Xp,0. L’effet de ces chirurgies sur le
fibré canonique et sur la forme symplectique peut être décrit explicitement, ce qui
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permet de distinguer les variétés Xp,k : la classe canonique de (Xp,k, ωp,k) est donnée
par p c1(Kp,k) = (6p−9)[ωp,k]+ (2p−3)k PD([T ]). De plus, [T ] ∈ H2(Xp,k,Z) n’est
pas une classe de torsion, et si p 6≡ 0 mod 3 ou k ≡ 0 mod 3 alors c’est une classe
primitive [ADK]. Ceci implique que, parmi les courbes Σp,k, il en existe une infinité
qui sont deux à deux non isotopes.

Il est à noter que l’argument utilisé par Moishezon pour distinguer les courbes
Σp,k, qui repose sur le difficile calcul des groupes fondamentaux π1(CP2−Σp,k) [Mo3],
est mis en relation avec celui présenté ici par le biais de la Conjecture 5.3, dont on
peut conclure a posteriori qu’elle est satisfaite par les revêtements ramifiés Xp,k.

Le fait que la plupart des exemples connus de courbes non-isotopes se réduisent
à des constructions de tressage, et qu’un très grand nombre de constructions de
variétés symplectiques par chirurgie puissent se reformuler en termes de chirur-
gies de Luttinger, incite à poser la question du rôle de cette construction dans
la différenciation des variétés symplectiques par rapport aux variétés kählériennes.
Ainsi, une réponse à la question de l’existence de variétés symplectiques compactes
de dimension 4 ne pouvant pas être obtenues à partir de surfaces complexes par
chirurgies de Luttinger successives et déformations ferait certainement progresser
notre compréhension de la topologie symplectique en dimension 4.
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ASYMPTOTICALLY HOLOMORPHIC FAMILIES OF

SYMPLECTIC SUBMANIFOLDS

DENIS AUROUX

Abstract. We construct a wide range of symplectic submanifolds in a compact
symplectic manifold as the zero sets of asymptotically holomorphic sections of
vector bundles obtained by tensoring an arbitrary vector bundle by large powers
of the complex line bundle whose first Chern class is the symplectic form. We
also show that, asymptotically, all sequences of submanifolds constructed from a
given vector bundle are isotopic. Furthermore, we prove a result analogous to the
Lefschetz hyperplane theorem for the constructed submanifolds.

1. Introduction

In a recent paper [1], Donaldson has exhibited an elementary construction of
symplectic submanifolds of codimension 2 in a compact symplectic manifold, where
the submanifolds are seen as the zero sets of asymptotically holomorphic sections
of well-chosen line bundles. In this paper, we extend this construction to higher
rank bundles as well as one-parameter families, and obtain as a consequence an
important isotopy result.

In all the following, (X,ω) will be a compact symplectic manifold of dimension
2n, such that the cohomology class [ ω

2π
] is integral. A compatible almost-complex

structure J and the corresponding riemannian metric g are fixed. Let L be the
complex line bundle on X whose first Chern class is c1(L) = [ ω

2π
]. Fix a hermitian

structure on L, and let ∇L be a hermitian connection on L whose curvature 2-form
is equal to −iω (it is clear that such a connection always exists).

We will consider families of sections of bundles of the form E⊗Lk on X, defined
for all large values of an integer parameter k, where E is any hermitian vector
bundle over X. The connection ∇L induces a connection of curvature −ikω on Lk,
and together with any given hermitian connection ∇E on E this yields a hermitian
connection on E ⊗ Lk for any k. We are interested in sections which satisfy the
following two properties :

Definition 1. A sequence of sections sk of E⊗Lk (for large k) is said to be asymp-
totically holomorphic with respect to the given connections and almost-complex struc-
ture if the following bounds hold :

|sk| = O(1), |∇sk| = O(k1/2), |∂̄sk| = O(1),
|∇∇sk| = O(k), |∇∂̄sk| = O(k1/2).

Since X is compact, up to a change by a constant factor in the estimates, the no-
tion of asymptotic holomorphicity does not actually depend on the chosen hermitian
structures and on the chosen connection ∇E. On the contrary, the connection ∇L

is essentially determined by the symplectic form ω, and the positivity property of
its curvature is the fundamental ingredient that makes the construction possible.
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Definition 2. A section s of a vector bundle E ⊗ Lk is said to be η-transverse
to 0 if whenever |s(x)| < η, the covariant derivative ∇s(x) : TxX → (E ⊗ Lk)x

is surjective and admits a right inverse whose norm is smaller than η−1.k−1/2. A
family of sections is transverse to 0 if there exists an η > 0 such that η-transversality
to 0 holds for all large values of k.

In the case of line bundles, η-transversality to 0 simply means that the covariant
derivative of the section is larger than ηk1/2 wherever the section is smaller than
η. Also note that transversality to 0 is an open property : if s is η-transverse to 0,
then any section σ such that |s − σ| < ε and |∇s − ∇σ| < k1/2ε is automatically
(η − ε)-transverse to 0. The following holds clearly, independently of the choice of
the connections on the vector bundles :

Proposition 1. Let sk be sections of the vector bundles E⊗Lk which are simultane-
ously asymptotically holomorphic and transverse to 0. Then for all large enough k,
the zero sets Wk of sk are embedded symplectic submanifolds in X. Furthermore, the
submanifolds Wk are asymptotically J-holomorphic, i.e. J(TWk) is within O(k−1/2)
of TWk.

The result obtained by Donaldson [1] can be expressed as follows :

Theorem 1. For all large k there exist sections of the line bundles Lk which are
transverse to 0 and asymptotically holomorphic (with respect to connections of cur-
vature −ikω on Lk).

Our main result is the following (the extension to almost-complex structures that
depend on t was suggested by the referee) :

Theorem 2. Let E be a complex vector bundle of rank r over X, and let a pa-
rameter space T be either {0} or [0, 1]. Let (Jt)t∈T be a family of almost-complex
structures on X compatible with ω. Fix a constant ε > 0, and let (st,k)t∈T,k≥K be
a sequence of families of asymptotically Jt-holomorphic sections of E ⊗ Lk defined
for all large k, such that the sections st,k and their derivatives depend continuously
on t.

Then there exist constants K̃ ≥ K and η > 0 (depending only on ε, the geometry
of X and the bounds on the derivatives of st,k), and a sequence (σt,k)t∈T,k≥K̃ of

families of asymptotically Jt-holomorphic sections of E ⊗Lk defined for all k ≥ K̃,
such that

(a) the sections σt,k and their derivatives depend continuously on t,
(b) for all t ∈ T , |σt,k − st,k| < ε and |∇σt,k −∇st,k| < k1/2ε,
(c) for all t ∈ T , σt,k is η-transverse to 0.

Note that, since we allow the almost-complex structure on X to depend on t,
great care must be taken as to the choice of the metric on X used for the estimates
on derivatives. The most reasonable choice, and the one which will be made in the
proof, is to always use the same metric, independently of t (so, there is no relation
between g, ω and Jt). However, it is clear from the statement of the theorem that,
since the spaces X and T are compact, any change in the choice of metric can be
absorbed by simply changing the constants K̃ and η, and so the result holds in all
generality.

Theorem 2 has many consequences. Among them, we mention the following
extension of Donaldson’s result to higher rank bundles :
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Corollary 1. For any complex vector bundle E over X and for all large k, there
exist asymptotically holomorphic sections of E ⊗ Lk which are transverse to 0, and
thus whose zero sets are embedded symplectic submanifolds in X. Furthermore given
a sequence of asymptotically holomorphic sections of E ⊗ Lk and a constant ε > 0,
we can require that the transverse sections lie within ε in C0 sense (and k1/2ε in C1

sense) of the given sections.

Therefore, the homology classes that one can realize by this construction include
all classes whose Poincaré dual is of the form [ kω

2π
]r + c1.[

kω
2π

]r−1 + . . . + cr, with
c1, . . . , cr the Chern classes of any complex vector bundle and k any sufficiently
large integer.

An important result that one can obtain on the sequences of submanifolds con-
structed using Corollary 1 is the following isotopy result derived from the case where
T = [0, 1] in Theorem 2 and which had been conjectured by Donaldson in the case
of line bundles :

Corollary 2. Let E be any complex vector bundle over X, and let s0,k and s1,k be
two sequences of sections of E ⊗Lk. Assume that these sections are asymptotically
holomorphic with respect to almost-complex structures J0 and J1 respectively, and
that they are ε-transverse to 0. Then for all large k the zero sets of s0,k and s1,k are
isotopic through asymptotically holomorphic symplectic submanifolds. Moreover,
this isotopy can be realized through symplectomorphisms of X.

This result follows from Theorem 2 by defining sections st,k and almost-complex
structures Jt that interpolate between (s0,k, J0) and (s1,k, J1) in the following way :
for t ∈ [0, 1

3
], let st,k = (1 − 3t)s0,k and Jt = J0 ; for t ∈ [1

3
, 2

3
], let st,k = 0 and

take Jt to be a path of compatible almost-complex structures from J0 to J1 (this
is possible since the space of compatible almost-complex structures is connected) ;
and for t ∈ [2

3
, 1], let st,k = (3t− 2)s1,k and Jt = J1. One can then apply Theorem

2 and obtain for all large k and for all t ∈ [0, 1] sections σt,k that differ from st,k

by at most ε/2 and are η-transverse to 0 for some η. Since transversality to 0 is
an open property, the submanifolds cut out by σ0,k and σ1,k are clearly isotopic to
those cut out by s0,k and s1,k. Moreover, the family σt,k gives an isotopy between
the zero sets of σ0,k and σ1,k. So the constructed submanifolds are isotopic. The
proof that this isotopy can be realized through symplectomorphisms of X will be
given in Section 4.

As a first step in the characterization of the topology of the constructed sub-
manifolds, we also prove the following statement, extending the result obtained by
Donaldson in the case of the line bundles Lk :

Proposition 2. Let E be a vector bundle of rank r over X, and let Wk be a se-
quence of symplectic submanifolds of X constructed as the zero sets of asymptotically
holomorphic sections sk of E ⊗ Lk which are transverse to 0, for all large k. Then
when k is sufficiently large, the inclusion i : Wk → X induces an isomorphism on
homotopy groups πp for p < n − r, and a surjection on πn−r. The same property
also holds for homology groups.

Section 2 contains the statement and proof of the local result on which the whole
construction relies. Section 3 deals with the proof of a semi-global statement, using
a globalization process to obtain results on large subsets of X from the local picture.
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The proofs of Theorem 2 and Corollary 2 are then completed in Section 4. Sec-
tion 5 contains miscellaneous results on the topology and geometry of the obtained
submanifolds, including Proposition 2.

Acknowledgments. The author wishes to thank Professor Mikhael Gromov
(IHES) for valuable suggestions and guidance throughout the elaboration of this
paper, and Professor Jean-Pierre Bourguignon (Ecole Polytechnique) for his sup-
port.

2. The local result

The proof of Theorem 2 relies on a local transversality result for approximatively
holomorphic functions, which we state and prove immediately.

Proposition 3. There exists an integer p depending only on the dimension n, with
the following property : let δ be a constant with 0 < δ < 1

2
, and let σ = δ. log(δ−1)−p.

Let (ft)t∈T be a family of complex-valued functions over the ball B+ of radius 11
10

in Cn, depending continuously on the parameter t ∈ T and satisfying for all t the
following bounds over B+ :

|ft| ≤ 1, |∂̄ft| ≤ σ, |∇∂̄ft| ≤ σ.

Then there exists a family of complex numbers wt ∈ C, depending continuously
on t, such that for all t ∈ T , |wt| ≤ δ, and ft −wt has a first derivative larger than
σ at any point of the interior ball B of radius 1 where its norm is smaller than σ.

Proposition 3 extends a similar result proved in detail in [1], which corresponds
to the case where T = {0}. The proof of Proposition 3 is based on the same ideas
as Donaldson’s proof, which is in turn based on considerations from real algebraic
geometry following the method of Yomdin [7][3], with the only difference that we
must get everything to depend continuously on t. Note that this statement is false
for more general parameter spaces T than {0} and [0, 1], since for example when T
is the unit disc in C and ft(z) = t, one looks for a continuous map t 7→ wt of the
disc to itself without a fixed point, in contradiction with Brouwer’s theorem.

The idea is to deal with polynomial functions gt approximating ft, for which a
general result on the complexity of real semi-algebraic sets gives constraints on the
near-critical levels. This part of the proof is similar to that given in [1], so we skip
the details. To obtain polynomial functions, we approximate ft first by a continuous
family of holomorphic functions f̃t differing from ft by at most a fixed multiple of
σ in C1 sense, using that ∂̄ft is small. The polynomials gt are then obtained by
truncating the Taylor series expansion of f̃t to a given degree. It can be shown
that by this method one can obtain polynomial functions gt of degree d less than
a constant times log(σ−1), such that gt differs from ft by at most c.σ in C1 sense,
where c is a fixed constant (see [1]). This approximation process does not hold on
the whole ball where ft is defined, which is why we needed ft to be defined on B+

to get a result over the slightly smaller ball B (see Lemmas 27 and 28 of [1]).
For a given complex-valued function h over B, call Yh,ε the set of all points

in B where the derivative of h has norm less than ε, and call Zh,ε the ε-tubular
neighborhood of h(Yh,ε). What we wish to construct is a path wt avoiding by at least
σ all near-critical levels of ft, i.e. consisting of values that lie outside of Zft,σ. Since
gt is within c.σ of ft, it is clear that Zft,σ is contained in Zt = Zgt,(c+1)σ. However
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a general result on the complexity of real semi-algebraic sets yields constraints on
the set Ygt,(c+1)σ. The precise statement which one applies to the real polynomial
|dgt|2 is the following (Proposition 25 of [1]) :

Lemma 1. Let F : Rm → R be a polynomial function of degree d, and let S(θ) ⊂
Rm be the subset S(θ) = {x ∈ Rm : |x| ≤ 1, F (x) ≤ 1 + θ}. Then for arbitrarily
small θ > 0 there exist fixed constants C and ν depending only on the dimension
m such that S(0) may be decomposed into pieces S(0) = S1 ∪ S2 · · · ∪ SA, where
A ≤ Cdν, in such a way that any pair of points in the same piece Sr can be joined
by a path in S(θ) of length less than Cdν.

So, as described in [1], given any fixed t, the set Ygt,(c+1)σ of near-critical points of
the polynomial function gt of degree d can be subdivided into at most P (d) subsets,
where P is a fixed polynomial, in such a way that two points lying in the same
subset can be joined by a path of length at most P (d) inside Ygt,2(c+1)σ. It follows
that the image by gt of Ygt,(c+1)σ is contained in the union of P (d) discs of radius at
most 2(c+1)σP (d), so that the set Zt of values which we wish to avoid is contained
in the union Z+

t of P (d) discs of radius σQ(d), where Q = 3(c + 1)P is a fixed
polynomial and d = O(log σ−1).

If one assumes δ to be larger than σQ(d)P (d)1/2, it follows immediately from this
constraint on Zt that Zt cannot fill the disc D of all complex numbers of norm at
most δ : this immediately proves the case T = {0}. However, when T = [0, 1], we
also need wt to depend continuously on t. For this purpose, we show that if δ is
large enough, D − Z+

t , when decomposed into connected components, splits into
several small components and only one large component.

Indeed, given a component C of D−Z+
t , the simplest situation is that it does not

meet the boundary of D. Then its boundary is a curve consisting of pieces of the
boundaries of the balls making up Z+

t , so its length is at most 2πP (d)Q(d)σ, and
it follows that C has diameter less than πP (d)Q(d)σ. Considering two components
C1 and C2 which meet the boundary of D at points z1 and z2, we can consider an
arc γ joining the boundary of D to itself that separates C1 from C2 and is contained
in the boundary of Z+

t . Assuming that δ is larger than e.g. 100P (d)Q(d)σ, since
the length of γ is at most 2πP (d)Q(d)σ, it must stay close to either z1 or z2 in order
to separate them : γ must remain within a distance of at most 10P (d)Q(d)σ from
one of them. It follows that there exists i ∈ {1, 2} such that Ci is contained in the
ball of radius 10P (d)Q(d)σ centered at zi. So all components of D − Z+

t except
at most one are contained in balls of radius R(d)σ, for some fixed polynomial R.
Furthermore, the number of components of D− Z+

t is bounded by a value directly
related to the number of balls making up Z+

t , so that, increasing R if necessary, the
number of components of D − Z+

t is also bounded by R(d).
Assuming that δ is much larger than R(d)3/2σ, the area πδ2 of D is much larger

than πR(d)3σ2, so that the small components of D − Z+
t cannot fill it, and there

must be a single large component. Getting back to D − Zt, which was the set in
which we had to choose wt, it contains D−Z+

t and differs from it by at most Q(d)σ,
so that, letting U(t) be the component of D − Zt containing the large component
of D − Z+

t , it is the only large component of D − Zt. The component U(t) is
characterized by the property that it is the only component of diameter more than
2R(d)σ in D − Zt.
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So the existence of a single large component U(t) in D − Zt is proved upon the
assumption that δ is large enough, namely larger than σ.Φ(d) where Φ is a given
fixed polynomial that can be expressed in terms of P , Q and R (so Φ depends only
on the dimension n). Since d is bounded by a constant times log σ−1, it is not
hard to see that there exists an integer p such that, for all 0 < δ < 1

2
, the relation

σ = δ. log(δ−1)−p implies that δ > σ.Φ(d). This is the value of p which we choose in
the statement of the proposition, thus ensuring that the above statements always
hold.

Since
⋃

t{t} × Zt is a closed subset of T × D, the open set U(t) depends semi-
continuously on t : let U−(t, ε) be the set of all points of U(t) at distance more than
ε from Zt ∪ ∂D. We claim that, given any t and any small ε > 0, for all τ close
enough to t, U(τ) contains U−(t, ε). To see this, we first show for all τ close to t,
U−(t, ε) ∩ Zτ = ∅. Assuming that such is not the case, one can get a sequence of
points of Zτ for τ → t that belong to U−(t, ε). From this sequence one can extract
a convergent subsequence, whose limit belongs to Ū−(t, ε) and thus lies outside of
Zt, in contradiction with the fact that

⋃

t{t} × Zt is closed. So U−(t, ε) ⊂ D − Zτ

for all τ close enough to t. Making ε smaller if necessary, one may assume that
U−(t, ε) is connected, so that for τ close to t, U−(t, ε) is necessarily contained in
the large component of D − Zτ , namely U(τ).

It follows that U =
⋃

t{t} × U(t) is an open connected subset of T × D, and is
thus path-connected. So we get a path s 7→ (t(s), w(s)) joining (0, w(0)) to (1, w(1))
inside U , for any given w(0) and w(1) in U(0) and U(1). We then only have to
make sure that s 7→ t(s) is strictly increasing in order to define wt(s) = w(s).

Getting the t component to increase strictly is in fact quite easy. Indeed, we first
get it to be weakly increasing, by considering values s1 < s2 of the parameter such
that t(s1) = t(s2) = t and simply replacing the portion of the path between s1 and
s2 by a path joining w(s1) to w(s2) in the connected set U(t). Then, we slightly
shift the path, using the fact that U is open, to get the t component to increase
slightly over the parts where it was constant. Thus we can define wt(s) = w(s) and
end the proof of Proposition 3.

3. The globalization process

3.1. Statement of the result. We will now prove a semi-global result using
Proposition 3. The globalization process we describe here is based on that used
by Donaldson in [1], but a significantly higher amount of work is required because
we have to deal with bundles of rank larger than one. The important fact we use
is that transversality to 0 is a local and open property.

Theorem 3. Let U be any open subset of X, and let E be a complex vector bundle
of rank r ≥ 0 over U . Let (Jt)t∈T be a family of almost-complex structures on X
compatible with ω. Fix a constant ε > 0. Let Wt,k be a family of symplectic sub-
manifolds in U , obtained as the zero sets of asymptotically Jt-holomorphic sections
wt,k of the vector bundles E⊗Lk which are η-transverse to 0 over U for some η > 0
and depend continuously on t ∈ T (if the rank is r = 0, then we simply define
Wt,k = U). Finally, let (σt,k) be a family of asymptotically Jt-holomorphic sections
of Lk which depend continuously on t. Define U=

k to be the set of all points of U at
distance more than 4k−1/3 from the boundary of U .
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Then for some η̃ > 0 and for all large k, there exist asymptotically Jt-holomorphic
sections σ̃t,k of Lk over U , depending continuously on t, and such that

(a) for all t ∈ T , σ̃t,k is equal to σt,k near the boundary of U ,
(b) |σ̃t,k − σt,k| < ε and |∇σ̃t,k −∇σt,k| < k1/2ε for all t,
(c) the sections (wt,k + σ̃t,k) of (E ⊕ C) ⊗ Lk are η̃-transverse to 0 over U=

k for
all t.

Basically, this result states that the construction of Theorem 2 can be carried
out, in the line bundle case, in such a way that the resulting sections are transverse
to a given family of symplectic submanifolds.

As remarked in the introduction, the choice of the metric in the statement of the
theorem is not obvious. We choose to use always the same metric g on X, rather
than trying to work directly with the metrics gt induced by ω and Jt.

3.2. Local coordinates and sections. The proof of Theorem 3 is based on the
existence of highly localized asymptotically holomorphic sections of Lk near every
point x ∈ X. First, we notice that near any point x ∈ X, we can define local complex
Darboux coordinates (zi), that is to say a symplectomorphism from a neighborhood
of x in (X,ω) to a neighborhood of 0 in Cn with the standard symplectic form. Fur-
thermore it is well-known that, by composing the coordinate map with a (R-linear)
symplectic transformation of Cn, one can ensure that its differential at x induces a
complex linear map from (TxX, Jt) to Cn with its standard complex structure.

Since the almost-complex structure Jt is not integrable, the coordinate map can-
not be made pseudo-holomorphic on a whole neighborhood of x. However, since the
manifold X and the parameter space T are compact, the Nijenhuis tensor, which is
the obstruction to the integrability of the complex structure Jt on X, is bounded by
a fixed constant, and so are its derivatives. It follows that for a suitable choice of the
Darboux coordinates, the coordinate map can be made nearly pseudo-holomorphic
around x, in the sense that the antiholomorphic part of its differential vanishes at
x and grows no faster than a constant times the distance to x. Furthermore, it is
easy to check that the coordinate map can be chosen to depend continuously on
the parameter t. So, we have the following lemma :

Lemma 2. Near any point x ∈ X, there exist for all t ∈ T complex Darboux coor-
dinates depending continuously on t, such that the inverse ψt : (Cn, 0) → (X, x) of
the coordinate map is nearly pseudo-holomorphic with respect to the almost-complex
structure Jt on X and the canonical complex structure on Cn. Namely, the map
ψt, which trivially satisfies |∇ψt| = O(1) and |∇∇ψt| = O(1) on a ball of fixed
radius around 0, fails to be pseudo-holomorphic by an amount that vanishes at 0
and thus grows no faster than the distance to the origin, i.e. |∂̄ψt(z)| = O(|z|), and
|∇∂̄ψt| = O(1).

Fix a certain value of the parameter t ∈ T , and consider the hermitian connections
with curvature −ikω that we have put on Lk in the introduction. Near any point
x ∈ X, using the local complex Darboux coordinates (zi) we have just constructed,
a suitable choice of a local trivialization of Lk leads to the following connection
1-form :

Ak =
k

4

n
∑

j=1

(zjdzj − zjdzj)
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(it can be readily checked that dAk = −ikω).
On the standard Cn with connection Ak, the function s(z) = exp(−k|z|2/4)

satisfies the equation ∂̄Ak
s = 0 and the bound |∇Ak

s| = O(k1/2). Multiplying this
section by a cut-off function at distance k−1/3 from the origin whose derivative is
small enough, we get a section s̃ with small compact support. Since the coordinate
map near x has small antiholomorphic part where s̃ is large, the local sections
s̃ ◦ ψ−1

t of Lk defined near x by pullback of s̃ through the coordinate map can be
easily checked to be asymptotically holomorphic with respect to Jt and Ak. Thus,
for all large k and for any point x ∈ X, extending s̃ ◦ ψ−1

t by 0 away from x, we
obtain asymptotically holomorphic sections st,k,x of Lk.

Since T is compact, the metrics gt induced on X by ω and Jt differ from the
chosen reference metric g by a bounded factor. Therefore, it is clear from the way
we constructed the sections st,k,x that the following statement holds :

Lemma 3. There exist constants λ > 0 and cs > 0 such that, given any x ∈
X, for all t ∈ T and large k, there exist sections st,k,x of Lk over X with the
following properties : the sections st,k,x are asymptotically Jt-holomorphic ; they
depend continuously on t ; the bound |st,k,x| ≥ cs holds over the ball of radius
10k−1/2 around x ; and finally, |st,k,x| ≤ exp(−λk.distg(x, .)

2) everywhere on X.

3.3. General setup and strategy of proof. In a first step, we wish to obtain
sections σ̃t,k of Lk over U satisfying all the requirements of Theorem 3, except that
we replace (c) by the weaker condition that the restriction of σ̃t,k to Wt,k must be
η̂-transverse to 0 over Wt,k ∩ U−

k for some η̂ > 0, where U−
k is the set of all points

of U at distance more than 2k−1/3 from the boundary of U . It will be shown later
that the transversality to 0 of the restriction to Wt,k ∩U−

k of σ̃t,k, together with the
bounds on the second derivatives, implies the transversality to 0 of (wt,k + σ̃t,k) over
U=

k .
To start with, we notice that there exists a constant c > 0 such that Wt,k is trivial

at small scale, namely in the ball of radius 10c.k−1/2 around any point. Indeed, if
r = 0 we just take c = 1, and otherwise we use the fact that wt,k is η-transverse to
0, which implies that at any x ∈ Wt,k, |∇wt,k(x)| > η.k1/2. Since |∇∇wt,k| < C2.k
for some constant C2, defining c = 1

100
η.C−1

2 , the derivative ∇wt,k varies by a factor

of at most 1
10

in the ball B of radius 10c.k−1/2 around x. It follows that B ∩Wt,k is
diffeomorphic to a ball.

In all the following, we work with a given fixed value of k, while keeping in mind
that all the constants appearing in the estimates have to be independent of k.

For fixed k, we consider a finite set of points xi of U−
k ⊂ U such that the balls of

radius c.k−1/2 centered around xi cover U−
k . A suitable choice of the points ensures

that their number is O(kn). For fixed D > 0, this set can be subdivided into N
subsets Sj such that the distance between two points in the same subset is at least
D.k−1/2. Furthermore, N = O(D2n) can be chosen independent of k. The precise
value of D (and consequently of N) will be determined later in the proof.

The idea is to start with the sections σt,k of Lk and proceed in steps. Let Nj

be the union of all balls of radius c.k−1/2 around the points of Si for all i < j.
During the j-th step, we start from asymptotically Jt-holomorphic sections σt,k,j

which satisfy conditions (a) and (b), and such that the restriction of σt,k,j to Wt,k

is ηj-transverse to 0 over Wt,k ∩Nj, for some constant ηj independent of k. For the



A.H. FAMILIES OF SYMPLECTIC SUBMANIFOLDS 27

first step, this requirement is void, but we choose η0 = ε
2

in order to obtain a total
perturbation smaller than ε at the end of the process. We wish to construct σt,k,j+1

from σt,k,j by subtracting small multiples ct,k,xst,k,x of the sections st,k,x for x ∈ Sj,
in such a way that the restrictions of the resulting sections are ηj+1-transverse to
0, for some small ηj+1, over the intersection of Wt,k with all balls of radius c.k−1/2

around points in Sj. Furthermore, if the coefficients of the linear combination are
chosen much smaller than ηj, transversality to 0 still holds over Wt,k ∩ Nj. Also,
since the coefficients ct,k,x are bounded, the resulting sections, which are sums of
asymptotically holomorphic sections, remain asymptotically holomorphic. So we
need to find, for all x ∈ Sj, small coefficients ct,k,x so that σt,k,j − ct,k,xst,k,x has the
desired properties near x.

3.4. Obtaining transversality near a point of Sj. In what follows, x is a given
point in Sj, and Bx is the ball of radius c.k−1/2 around x. Let Ω be the closure
of the open subset of T containing all t such that Bx ∩Wt,k is not empty (when
r = 0, one gets Ω = T ). When Ω is empty, it is sufficient to define ct,k,x = 0 for all
t. Otherwise, Ω = {0} when T = {0}, and when T = [0, 1] clearly Ω is a union of
disjoint closed intervals. In any case, we choose a component I of Ω, i.e. either a
closed interval or a point.

We can then define for all t ∈ I a point xt belonging to Bx ∩Wt,k, in such a way
that xt depends continuously on t, since Wt,k depends continuously on t and always

intersects Bx in a nice way (when r = 0 one can simply choose xt = x). Let B̂t

be the ball in Wt,k of radius 3c.k−1/2 (for the metric induced by g) centered at xt.

Because of the bounds on the second derivatives of wt,k, we know that B̂t contains
Bx∩Wt,k for all t ∈ I. We now want to define a nearly holomorphic diffeomorphism

from a neighborhood of 0 in Cn−r to B̂t.
Let B̂ be the ball of radius 4ck−1/2 around 0 in Cn−r, and let B̂− be the smaller

ball of radius 3ck−1/2 around 0. We claim the following :

Lemma 4. For all t ∈ I, there exist diffeomorphisms θt from B̂ to a neighborhood
of xt in Wt,k, depending continuously on t, such that θt(0) = xt and θt(B̂

−) ⊃ B̂t,

and satisfying the following estimates over B̂ :

|∂̄θt| = O(k−1/2), |∇θt| = O(1), |∇∂̄θt| = O(1), |∇∇θt| = O(k1/2).

Proof. Recall that, by Lemma 2, there exist local complex Darboux coordinates
on X near x depending continuously on t with the property that the inverse map
ψt : (Cn, 0) → (X, x) satisfies the following bounds at all points at distance O(k−1/2)
from x :

|∂̄ψt| = O(k−1/2), |∇ψt| = O(1), |∇∂̄ψt| = O(1), |∇∇ψt| = O(1).

Let Tt be the kernel of the complex linear map ∂wt,k(xt) in TxtX : it is within
O(k−1/2) of the tangent space to Wt,k at xt, but Tt is preserved by Jt. Composing

ψt with a translation and a rotation in Cn, one gets maps ψ̃t satisfying the same
requirements as ψt, but with ψ̃t(0) = xt and such that the differential of ψ̃t at 0
maps the span of the n− r first coordinates to Tt.

Furthermore, X and T are compact, so the metrics gt induced by ω and Jt differ
from the reference metric g by at most a fixed constant. It follows that, composing
ψ̃t with a fixed dilation of Cn if necessary, one may also require that the image by



28 DENIS AUROUX

ψ̃t of the ball of radius 3ck−1/2 around 0 contains the ball of radius 4ck−1/2 around
x for the reference metric g. The only price to pay is that ψ̃t is no longer a local
symplectomorphism ; all other properties still hold.

Since by definition of c the submanifolds Wt,k are trivial over the considered balls,
it follows from the implicit function theorem that Wt,k can be parametrized around

xt in the chosen coordinates as the set of points of the form ψ̃t(z, τt(z)) for z ∈ Cn−r,
where τt : Cn−r → Cr satisfies τt(0) = 0 and ∇τt(0) = O(k−1/2). The derivatives of
τt can be easily computed, since it is characterized by the equation

wt,k(ψ̃t(z, τt(z))) = 0.

Notice that it follows from the transversality to 0 of wt,k that |∇wt,k ◦ dψ̃t(v))| is
larger than a constant times k1/2|v| for all v ∈ 0 × Cr. Combining this estimate
with the bounds on the derivatives of wt,k given by asymptotic holomorphicity and

the above bounds on those of ψ̃t, one gets the following estimates for τt over the
ball B̂ :

|∂̄τt| = O(k−1/2), |∇τt| = O(1), |∇∂̄τt| = O(1), |∇∇τt| = O(k1/2).

It is then clear that θt(z) = ψ̃t(z, τt(z)) satisfies all the required properties.

Now that a local identification between Wt,k and Cn−r is available, we define
the restricted sections ŝt,k,x(z) = st,k,x(θt(z)) and σ̂t,k,j(z) = σt,k,j(θt(z)). Since
st,k,x and σt,k,j are both asymptotically holomorphic, the estimates on θt imply

that ŝt,k,x and σ̂t,k,j , as sections of the pull-back of Lk over the ball B̂, are also
asymptotically holomorphic. Furthermore, they clearly depend continuously on
t ∈ I, and ŝt,k,x remains larger than a fixed constant cs > 0 over B̂. We can then

define the complex-valued functions ft,k,x = σ̂t,k,j/ŝt,k,x over B̂, which are clearly
asymptotically holomorphic too.

After dilation of B̂ by a factor of 3c.k1/2, all hypotheses of Proposition 3 are
satisfied with δ as small as desired, provided that k is large enough. Indeed, the
asymptotic holomorphicity of ft,k,x implies that, for large k, the antiholomorphic
part of the function over the dilated ball is smaller than σ = δ.(log δ−1)−p. So
the local result implies that there exist complex numbers ct,k,x of norm less than
δ and depending continuously on t ∈ I, such that the functions ft,k,x − ct,k,x are

σ-transverse to 0 over the ball B̂− of radius 3c.k−1/2 around 0 in Cn−r. We now
notice that the sections ĝt,k,x = σ̂t,k,j −ct,k,xŝt,k,x, which clearly depend continuously

on t and are asymptotically holomorphic, are σ′-transverse to 0 over B̂−, for some
σ′ differing from σ by at most a constant factor. Indeed,

∇ĝt,k,x = ∇(ŝt,k,x(ft,k,x − ct,k,x)) = ŝt,k,x∇ft,k,x − (ft,k,x − ct,k,x)∇ŝt,k,x.

Wherever ĝt,k,x is very small, so is ft,k,x − ct,k,x, and ∇ft,k,x is thus large. Since
ŝt,k,x remains larger than some cs > 0 and ∇ŝt,k,x is bounded by a constant times
k1/2, it follows that ∇ĝt,k,x is large wherever ĝt,k,x is very small. Putting the right
constants in the right places, one easily checks that ĝt,k,x is σ′-transverse to 0 with
σ/σ′ bounded by a fixed constant.

We now notice that the restrictions to Wt,k of the sections gt,k,x = σt,k,j−ct,k,xst,k,x

of Lk over U , which clearly are asymptotically Jt-holomorphic and depend contin-
uously and t, are also σ′′-transverse to 0 over B̂t for some σ′′ differing from σ′ by at
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most a constant factor. Indeed, B̂t is contained in the set of all points of the form
θt(z) for z ∈ B̂−, and

gt,k,x(θt(z)) = σ̂t,k,j(z) − ct,k,xŝt,k,x(z) = ĝt,k,x(z),

so wherever gt,k,x is smaller than σ′, the derivative of ĝt,k,x is larger than σ′.k1/2,
and since ∇θt is bounded by a fixed constant, ∇gt,k,x is large too.

Next we extend the definition of ct,k,x to all t ∈ T , in the case of T = [0, 1], since
we have defined it only over the components of Ω. However when t 6∈ Ω, Wt,k does
not meet the ball Bx, so that there is no transversality requirement. Thus the only
constraints are that ct,k,x must depend continuously on t and remain smaller than
δ for all t. These conditions are easy to satisfy, so we have proved the following :

Lemma 5. For all large k there exist complex numbers ct,k,x smaller than δ and
depending continuously on t ∈ T such that the restriction to Wt,k of σt,k,j−ct,k,xst,k,x

is σ′′-transverse to 0 over Wt,k ∩ Bx. Furthermore, for some constant p′ depending
only on the dimension, σ′′ is at least δ.(log δ−1)−p′.

3.5. Constructing σt,k,j+1 from σt,k,j. We can now define the sections σt,k,j+1 of
Lk over U by

σt,k,j+1 = σt,k,j −
∑

x∈Sj

ct,k,xst,k,x.

Clearly the sections σt,k,j+1 are asymptotically holomorphic and depend continu-
ously on t ∈ T . Furthermore, any two points in Sj are distant of at least D.k−1/2

with D > 0, so the total size of the perturbation is bounded by a fixed multiple of δ.
So, choosing δ smaller than ηj over a constant factor (recall that ηj is the transver-
sality estimate of the previous step of the iterative process), we can ensure that
|σt,k,j+1−σt,k,j| < ηj

2
and |∇σt,k,j+1−∇σt,k,j| < ηj

2
k1/2. As a direct consequence, the

restriction to Wt,k of σt,k,j+1 is
ηj

2
-transverse to 0 wherever the restriction of σt,k,j is

ηj-transverse to 0, including over Wt,k ∩Nj (recall that Nj =
⋃

i<j

⋃

x∈Si
Bx).

Letting ηj+1 = 1
2
σ′′, it is known that for all x ∈ Sj the restriction of σt,k,j −

ct,k,xst,k,x to Wt,k is 2ηj+1-transverse to 0 over Bx ∩ Wt,k. So, in order to prove
that the restriction to Wt,k of σt,k,j+1 is ηj+1-transverse to 0 over Wt,k ∩ Nj+1, it
is sufficient to check that given x ∈ Sj, over Bx, the sum of the perturbations
corresponding to all points y ∈ Sj distinct from x is smaller than ηj+1, and the
sum of their derivatives is smaller than ηj+1k

1/2. In other words, since several
contributions were added at the same time (one at each point of Sj), we have to
make sure that they cannot interfere.

This is where the parameter D (minimum distance between two points in Sj) is
important : indeed, over Bx, by Lemma 3, each of the contributions of the other
points in Sj is at most of the order of δ. exp(−λD2), and the sum of these terms is
O(ηj. exp(−λD2)). Similarly, the derivative of that sum is O(ηj. exp(−λD2).k1/2).
So the requirement that the sum of the contributions of all points of Sj distinct from
x be smaller than ηj+1 corresponds to an inequality of the form K0 exp(−λD2) <
ηj+1/ηj, where K0 is a fixed constant depending only on the geometry of X. Recall-
ing that ηj+1 is no smaller than ηj. log(η−1

j )−P for some fixed integer P , the required
inequality is

exp(λD2) > K0. log(η−1
j )P .
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This inequality, which does not depend on k, must be satisfied by every ηj, for each
of the N steps of the process.

To check that the condition on D can be enforced at all steps, we must recall
that the number of steps in the process is N = O(D2n), and study the sequence
(ηj) given by a fixed η0 > 0 and the inductive definition described above. It can
be shown (see Lemma 24 of [1]) that the sequence (ηj) satisfies for all j a bound of
the type log(η−1

j ) = O(j. log(j)). It follows that log(η−1
N )P = O(D2nP .log(D2n)P ),

which is clearly subexponential : a choice of sufficiently large D thus ensures that
the required inequality holds at all steps. So the inductive process described above
is valid, and leads to sections σ̃t,k = σt,k,N which are asymptotically Jt-holomorphic,
depend continuously on t, and whose restrictions to Wt,k are η̂-transverse to 0 over
U−

k for η̂ = ηN . Furthermore, σ̃t,k is equal to σt,k near the boundary of U because
we only added a linear combination of sections st,k,x for x ∈ U−

k , and st,k,x vanishes
by construction outside of the ball of radius k−1/3 around x. Moreover, σ̃t,k differs
from σt,k by at most

∑

j ηj, which is less than 2η0 = ε. So to complete the proof of
Theorem 3 we only have to show that the transversality result on σ̃t,k|Wt,k

implies
the transversality to 0 of (wt,k + σ̃t,k) over U=

k .

3.6. Transversality to 0 over U=
k . At a point x ∈ Wt,k ∩U−

k where |σ̃t,k| < η̂, we
know that ∇wt,k is surjective and vanishes in all directions tangential to Wt,k, while
∇σ̃t,k has a tangential component larger than η̂.k1/2. It follows that ∇(wt,k + σ̃t,k)
is surjective. We now construct a right inverse R : (Ex ⊕ C) ⊗ Lk

x → TxX whose
norm is O(k−1/2).

Considering a unit length element u of Lk
x, there exists a vector û ∈ TxWt,k of

norm at most (η̂.k1/2)−1 such that ∇σ̃t,k(û) = u. Clearly ∇wt,k(û) = 0 because
û ∈ TxWt,k, so we define R(u) = û. Now consider an orthonormal frame (vi)
in Ex ⊗ Lk

x. It follows from the η-transversality to 0 of wt,k that ∇xwt,k has a
right inverse of norm smaller than (η.k1/2)−1, so we obtain vectors v̂i in TxX such
that ∇wt,k(v̂i) = vi and |v̂i| < (η.k1/2)−1. There exist coefficients λi such that
∇σ̃t,k(v̂i) = λi.u, with |λi| < C.k1/2.|v̂i| < C.η−1, for some constant C such that
|∇σ̃t,k| < C.k1/2 everywhere. So we define R(vi) = v̂i − λiû, which completes the
determination of R.

The norm of R is, by construction, smaller than K.k−1/2 for some K depending
only on the constants above (C, η and η̂). We thus know that ∇(wt,k + σ̃t,k)
has a right inverse smaller than K.k−1/2 at any point of Wt,k ∩ U−

k where |σ̃t,k| <
η̂. Furthermore we know, from the definition of asymptotic holomorphicity, that
|∇∇(wt,k + σ̃t,k)| < K ′.k for some constant K ′.

Consider a point x of U=
k where |wt,k| and |σ̃t,k| are both smaller than some α

which is simultaneously smaller than η̂
2
, ηη̂

2C
and η

2KK′
. From the η-transversality to

0 of wt,k, we know that ∇wt,k is surjective at x and has a right inverse smaller than
(η.k1/2)−1. Since the connection ∇ is unitary, applying the right inverse to wt,k itself,
we can follow the downward gradient flow of |wt,k|, and we are certain to reach a
point y of Wt,k at a distance d from the starting point x no larger than α.(η.k1/2)−1,

which is simultaneously smaller than 1
2KK′

.k−1/2 and η̂
2C
.k−1/2. Furthermore if k is

large enough, d < 2k−1/3 so that y ∈ U−
k .

Since |∇σ̃t,k| < C.k1/2 everywhere, |σ̃t,k(y)| − |σ̃t,k(x)| < C.k1/2.d < η̂
2
, so that

|σ̃t,k(y)| < η̂, and the previous results apply at y. Also, since the second derivatives
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are bounded by K ′.k everywhere, ∇x(wt,k + σ̃t,k) differs from ∇y(wt,k + σ̃t,k) by at
most K ′k.d, which is smaller than 1

2K
.k1/2, so that it is still surjective and admits

a right inverse of norm O(k−1/2). From this we infer immediately that (wt,k + σ̃t,k)
is transverse to 0 over all of U=

k , and the proof of Theorem 3 is complete.

4. The main result

4.1. Proof of Theorem 2. Theorem 2 follows from Theorem 3 by a simple induc-
tion argument. Indeed, to obtain asymptotically holomorphic sections of E ⊗ Lk

which are transverse to 0 over X for any vector bundle E, we start from the fact
that E is locally trivial, so that there exists a finite covering of X by N open subsets
Uj such that E is a trivial bundle on a small neighborhood of each Uj. We start
initially from the sections st,k,0 = st,k of E ⊗ Lk, and proceed iteratively, assuming
at the beginning of the j-th step that we have constructed, for all large k, asymptot-
ically holomorphic sections st,k,j of E ⊗ Lk which are ηj-transverse to 0 on

⋃

i<j Ui

for some ηj > 0 and differ from st,k by at most jε/N .
Over a small neighborhood of Uj, we trivialize E ' Cr and decompose the sections

st,k,j into their r components for this trivialization. Recall that, in order to define
the connections on E ⊗Lk for which asymptotic holomorphicity and transversality
to 0 are expected, we have used a hermitian connection ∇E on E. Because X is
compact the connection 1-form of ∇E in the chosen trivializations can be safely
assumed to be bounded by a fixed constant. It follows that, up to a change in the
constants, asymptotic holomorphicity and transversality to 0 over Uj with respect
to the connections on E ⊗ Lk induced by ∇E and ∇L are equivalent to asymptotic
holomorphicity and transversality to 0 with respect to the connections induced by
∇L and the trivial connection on E in the chosen trivialization. So we actually do
not have to worry about ∇E.

Now let α be a constant smaller than both ε/rN and ηj/2r. First, using The-
orem 3, we perturb the first component of st,k,j over a neighborhood of Uj by at
most α to make it transverse to 0 over a slightly smaller neighborhood. Next, us-
ing again Theorem 3, we perturb the second component by at most α so that the
sum of the two first components is transverse to 0, and so on, perturbing the i-th
component by at most α to make the sum of the i first components transverse to
0. The result of this process is a family of asymptotically Jt-holomorphic sections
st,k,j+1 of E ⊗ Lk which are transverse to 0 over Uj. Furthermore, since the total
perturbation is smaller than rα ≤ ηj/2, transversality to 0 still holds over Ui for
i < j, so that the hypotheses of the next step are satisfied. The construction thus
leads to sections σt,k = st,k,N which are transverse to 0 over all of X. Since at each
of the N steps the total perturbation is less than ε/N , the sections σt,k differ from
st,k by less than ε, and Theorem 2 is proved.

4.2. Symplectic isotopies. We now give the remaining part of the proof of Corol-
lary 2, namely the following statement :

Proposition 4. let (Wt)t∈[0,1] be a family of symplectic submanifolds in X. Then
there exist symplectomorphisms Φt : X → X depending continuously on t, such that
Φ0 = Id and Φt(W0) = Wt.
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The following strategy of proof, based on Moser’s ideas, was suggested to me by
M. Gromov. The reader unfamiliar with these techniques may use [4] (pp. 91-101)
as a reference.

It follows immediately from Moser’s stability theorem that there exists a continu-
ous family of symplectomorphisms φt : (W0, ω|W0) → (Wt, ω|Wt). Since the symplec-
tic normal bundles to Wt are all isomorphic, Weinstein’s symplectic neighborhood
theorem allows one to extend these maps to symplectomorphisms ψt : U0 → Ut such
that ψt(W0) = Wt, where Ut is a small tubular neighborhood of Wt for all t.

Let ρt be any family of diffeomorphisms of X extending ψt. Let ωt = ρ∗tω and
Ωt = −dωt/dt. We want to find vector fields ξt onX such that the 1-forms αt = ιξtωt

satisfy dαt = Ωt and such that ξt is tangent to W0 at any point of W0. If this is
possible, then define diffeomorphisms Ψt as the flow of the vector fields ξt, and
notice that

d

dt
(Ψ∗

tρ
∗
tω) = Ψ∗

t

(

d

dt
(ρ∗tω) + Lξt(ρ

∗
tω)

)

= Ψ∗
t (−Ωt + dιξtωt) = 0.

So the diffeomorphisms ρt◦Ψt are actually symplectomorphisms of X. Furthermore
Ψt preserves W0 by construction, so ρt ◦Ψt maps W0 to Wt, thus giving the desired
result.

So we are left with the problem of finding ξt, or equivalently αt, such that dαt = Ωt

and ξt|W0 is tangent to W0. Note that, since ρt extends the symplectomorphisms
ψt, one has ωt = ω and Ωt = 0 over U0. It follows that the condition on ξt|W0 is
equivalent to the requirement that at any point x ∈ W0, the ω-symplectic orthogonal
NxW0 to TxW0 lies in the kernel of the 1-form αt.

Since the closed 2-forms ωt are all cohomologous, one has [Ωt] = 0 in H2(X,R),
so there exist 1-forms βt on X such that dβt = Ωt. Remark that, although Ωt = 0
over U0, one cannot ensure that βt|U0 = 0 unless the class [Ωt] also vanishes in the
relative cohomology group H2(X,U0; R). So we need to work a little more to find
the proper 1-forms αt.

Over U0 one has dβt = Ωt = 0, so βt defines a class in H1(U0,R). By further
restriction, the forms βt|W0 are also closed 1-forms on W0. Let π be a projection
map U0 → W0 such that at any point x ∈ W0 the tangent space to π−1(x) is the
symplectic normal space NxW0, and let γt = π∗(βt|W0). First we notice that, by
construction, the 1-form γt is closed over U0, and at any point x ∈ W0 the space
NxW0 lies in the kernel of γt. Furthermore the composition of π∗ and the restric-
tion map induces the identity map over H1(U0,R), so [γt] = [βt|U0 ] in H1(U0,R).
Therefore there exist functions ft over U0 such that γt = βt +dft at any point of U0.

Let gt be any smooth functions over X extending ft, and let αt = βt + dgt. The
1-forms αt satisfy dαt = dβt = Ωt, and since αt|U0 = γt the space NxW0 also lies in
the kernel of αt at any x ∈ W0. So Proposition 4 is proved.

5. Properties of the constructed submanifolds

5.1. Proof of Proposition 2. This proof is based on that of a similar result
obtained by Donaldson [1] for the submanifolds obtained from Theorem 1 (r =
1). The result comes from a Morse theory argument, as described in [1]. Indeed,
consider the real valued function f = log |s|2 over X −W (where W = s−1(0)). We
only have to show that, if k is large enough, all its critical points are of index at
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least n− r + 1. For this purpose, let x be a critical point of f , and let us compute
the derivative ∂̄∂f at x.

First we notice that x is also a critical point of |s|2, so that s itself is not in the
image of ∇xs. Recalling that s is η-transverse to 0 for some η > 0, it follows that
∇xs is not surjective and thus |s(x)| ≥ η.

Recalling that the scalar product is linear in the first variable and antilinear in
the second variable, we compute the derivative

∂ log |s|2 =
1

|s|2 (〈∂s, s〉 + 〈s, ∂̄s〉),

which equals zero at x. A first consequence is that, at x, |〈∂s, s〉| = |〈∂̄s, s〉| < C|s|,
where C is a constant bounding ∂̄s independently of k.

A second derivation, omitting the quantities that vanish at a critical point, yields
that, at x,

∂̄∂ log |s|2 =
1

|s|2 (〈∂̄∂s, s〉 − 〈∂s, ∂s〉 + 〈∂̄s, ∂̄s〉 + 〈s, ∂∂̄s〉).

Recall that ∂̄∂+∂∂̄ is equal to the part of type (1,1) of the curvature of the bundle
E ⊗ Lk. This is equal to −ikω ⊗ Id + R, where R is the part of type (1,1) of the
curvature of E, so that at x,

∂̄∂ log |s|2 = −ikω +
1

|s|2 (〈R.s, s〉 − 〈∂∂̄s, s〉 + 〈s, ∂∂̄s〉 − 〈∂s, ∂s〉 + 〈∂̄s, ∂̄s〉).

To go further, we have to restrict our choice of vectors to a subspace of the
tangent space TxX at x. Call Θ the space of all vectors v in TxX such that ∂s(v)
belongs to the complex line generated by s in (E ⊗ Lk)x. The subspace Θ of TxX
is clearly stable by the almost-complex structure, and its complex dimension is at
least n − r + 1. For any vector v ∈ Θ, |〈∂s(v), s〉| = |∂s(v)|.|s| is smaller than
|v|.|〈∂s, s〉| < C|v|.|s| where C is the same constant as above, so that ∂s is O(1)
over Θ.

Since ∂̄s = O(1) and ∂∂̄s = O(k1/2) because of asymptotic holomorphicity, it
is now known that the restriction to Θ of ∂̄∂ log |s|2 is equal to −ikω + O(k1/2).
It follows that, for all large k, given any unit length vector u ∈ Θ, the quantity
−2i∂̄∂f(u, Ju), which equals Hf (u) + Hf (Ju) where Hf is the Hessian of f at
x, is negative. If the index of the critical point at x were less than n − r + 1,
there would exist a subspace P ⊂ TxX of real dimension at least n+ r over which
Hf is non-negative, and the subspace P ∩ JP of real dimension at least 2r would
necessarily intersect non-trivially with Θ whose real dimension is at least 2n−2r+2,
contradicting the previous remark. The index of the critical point x of f is thus at
least n− r + 1.

A standard Morse theory argument then implies that the inclusion W → X
induces an isomorphism on all homotopy (and homology) groups up to πn−r−1

(resp. Hn−r−1), and a surjection on πn−r (resp. Hn−r), which completes the proof
of Proposition 2.

5.2. Homology and Chern numbers of the submanifolds. Proposition 2 al-
lows one to compute the middle-dimensional Betti number bn−r = dimHn−r(Wk,R)
of the constructed submanifolds. Indeed the tangent bundle TWk and the normal
bundle NWk (isomorphic to the restriction to Wk of E ⊗ Lk) are both symplectic
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vector bundles over Wk. So it is well-known (see e.g. [4], p. 67) that they admit
underlying structures of complex vector bundles, uniquely determined up to homo-
topy (in our case there exist J-stable subspaces in TX very close to TWk and NWk,
so after a small deformation one can think of these complex structures as induced
by J). Furthermore one has TWk ⊕ NWk ' TX|Wk

. It follows that, calling i the
inclusion map Wk → X, the Chern classes of the bundle TWk can be computed
from the relation

i∗c(TX) = i∗c(E ⊗ Lk).c(TWk).

Since cn−r(TWk).[Wk] is equal to the Euler-Poincaré characteristic of Wk, and since
the spaces Hi(Wk,R) have the same dimension as Hi(X,R) for i < n − r, the
dimension of Hn−r(Wk,R) follows immediately.

For further computations, we need an estimate on this dimension :

Proposition 5. For any sequence of symplectic submanifolds Wk ⊂ X of real
codimension 2r obtained as the zero sets of asymptotically holomorphic sections
of E ⊗ Lk which are transverse to 0, the Chern classes of Wk are given by

cl(TWk) = (−1)l
(

r+l−1
l

)

(kω̂)l +O(kl−1),

where ω̂ denotes the class of ω
2π

in the cohomology of Wk.

This can be proved by induction on l, starting from c0(TWk) = 1, since the above
equality implies that

cl(TWk) = i∗cl(TX) −
l−1
∑

j=0

i∗cl−j(E ⊗ Lk).cj(TWk).

It can be checked that i∗cl−j(E⊗Lk) =
(

r
l−j

)

(kω̂)l−j +O(kl−j−1), so that the result

follows from a combinatorial calculation showing that
∑l

j=0(−1)j
(

r
l−j

)(

r+j−1
j

)

= 0.

Since [Wk] is Poincaré dual in X to cr(E⊗Lk), Proposition 5 yields that χ(Wk) =
cn−r(TWk).[Wk] = (−1)n−r

(

n−1
n−r

)

(kω̂)n−r.(kω̂)r + O(kn−1). Finally, Proposition 2

implies that χ(Wk) = (−1)n−r dimHn−r(Wk,R) +O(1), so that

dimHn−r(Wk,R) =
(

n−1
n−r

)

[ ω
2π

]n.kn +O(kn−1).

5.3. Geometry of the submanifolds. Aside from the above topological informa-
tion on the submanifolds, one can also try to characterize the geometry of Wk inside
X. We prove the following result, expressing the fact that the middle-dimensional
homology of Wk has many generators that are very “localized” around any given
point of X :

Proposition 6. There exists a constant C > 0 depending only on the geometry
of the manifold X with the following property : let B be any ball of small enough
radius ρ > 0 in X. For any sequence of symplectic submanifolds Wk ⊂ X of real
codimension 2r obtained as the zero sets of asymptotically holomorphic sections of
E⊗Lk which are transverse to 0, let Nk(B) be the number of independent generators
of Hn−r(Wk,R) which can be realized by cycles that are entirely included in Wk ∩B.
Then, if k is large enough, one has

Nk(B) > C.ρ2n. dimHn−r(Wk,R).
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As a consequence, we can state that when k becomes large the submanifolds Wk

tend to “fill out” all of X, since they must intersect non-trivially with any given
ball.

The proof of Proposition 6 relies on the study of what happens when we perform
a symplectic blow-up on the manifold X inside the ball B. Recall that the blown-up
manifold X̃ is endowed with a symplectic form ω̃ which is equal to ω outside of B,
and can be described inside B using the following model on Cn around 0 : define
on Cn × (Cn − {0}) the 2-form

φ = i∂∂̄(p∗1β.p
∗
2 log ‖ · ‖2),

where p1 is the projection map to Cn, β is a cut-off function around the blow-up
point, and p2 is the projection on the factor Cn − {0}. The 2-form φ projects to
Cn×CPn−1, and after restriction to the graph of the blown-up manifold (i.e. the set
of all (x, y) such that x belongs to the complex line in Cn defined by y) one obtains
a closed 2-form whose restriction to the exceptional divisor is positive. Calling θ the
2-form on X̃ supported in B defined by this procedure, it can be checked that, if
ε > 0 is small enough and π is the projection map X̃ → X, the 2-form ω̃ = π∗ω+εθ
is symplectic on X̃.

If we call e ∈ H2(X̃,Z) the Poincaré dual of the exceptional divisor, since
its normal bundle is the inverse of the standard bundle over CPn−1, we have
(−e)n−1.e = 1, so that en = (−1)n−1. Furthermore, the cohomology class of ω̃
is given by [ ω̃

2π
] = π∗[ ω

2π
] − ε.e. Now we consider the sections sk of E ⊗ Lk over

X which define Wk, and assuming ε−1 to be an integer we write k = K + k̃ with
0 ≤ k̃ < ε−1 and εK ∈ N. Notice that ω̃ = π∗ω outside B and that we can safely
choose a metric on X̃ with the same property. Considering that the line bundle
L̃K on X̃ whose first Chern class is K[ ω̃

2π
] is isomorphic to π∗LK over X̃ − B,

the sections π∗sk of π∗(E ⊗ Lk) = π∗(E ⊗ Lk̃) ⊗ π∗LK obtained by pull-back of
sk satisfy all desired conditions outside B, namely asymptotic holomorphicity and
transversality to 0. If we multiply π∗sk by a cut-off function equal to 1 over X̃ −B
and vanishing over the support of θ, we now obtain asymptotically holomorphic

sections of π∗(E ⊗ Lk̃) ⊗ L̃K over X̃ which are transverse to 0 over X̃ − B. So,
if K is large enough, we can use the construction described in Theorems 2 and
3 to perturb these sections over B only to make them transverse to 0 over all of
X̃. Since there are only finitely many values of k̃, the bounds on K required for
each k̃ translate as a single bound on k. Considering the zero sets of the resulting
sections, we thus obtain symplectic submanifolds W̃k ⊂ X̃ to which we can again
apply Propositions 2 and 5. The interesting remark is that, using the above esti-
mate for dimHn−r(W̃k,R), since [ ω̃

2π
]n = [ ω

2π
]n − εn (symplectic blowups decrease

the symplectic volume), we get for all large k

dimHn−r(W̃k,R) = dimHn−r(Wk,R) − εn
(

n−1
n−r

)

kn +O(kn−1).

This means that we have decreased the dimension of Hn−r(Wk,R) by changing the
picture only inside the ball B. To continue we need an estimate on the dependence
of ε on the radius ρ of the ball. The main constraint on ε is that εθ should be
much smaller than π∗ω so that the perturbation does not affect the positivity of
π∗ω. The norm of θ is directly related to that of the second derivative ∂∂̄β of the
cut-off function β. Since the only constraint on β is that it should be 0 outside B
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and 1 near the blow-up point, an appropriate choice of β leads to a bound of the
type |∂∂̄β| = O(ρ−2). It follows that ε can be chosen equal at least to a constant
times ρ2. So we obtain that, for a suitable value of C and for all large enough k,

dimHn−r(W̃k,R) < (1 − 2Cρ2n) dimHn−r(Wk,R).

Proposition 6 now follows immediately from the following general lemma by decom-
posing Wk into (Wk −B)∪ (Wk ∩B) and perturbing slightly ρ if necessary so that
the boundary of B is transverse to Wk :

Lemma 6. Let W be a 2d-dimensional compact manifold which decomposes into
two pieces W = A ∪ B glued along their common boundary S, which is a smooth
codimension 1 submanifold in W . Assume that there exists a manifold W̃ which
is identical to W outside of B, and such that dimHd(W̃ ,R) ≤ dimHd(W,R) −N .
Then there exists a N

2
-dimensional subspace in Hd(W,R) consisting of classes which

can be represented by cycles contained in B.

To prove this lemma, let H = Hd(W,R) and consider its subspaces F consisting
of all classes which can be represented by a cycle contained in A and G consisting
of all classes representable in B. We have to show that dimG ≥ N

2
. Let G⊥ be

the subspace of H orthogonal to G with respect to the intersection pairing, namely
the set of classes which intersect trivially with all classes in G. We claim that
G⊥ ⊂ F +G.

Indeed, let α be a cycle realizing a class in G⊥. Subdividing α along its inter-
section with the common boundary S of A and B, we have α = α1 + α2 where
α1 and α2 are chains respectively in A and B, such that ∂α1 = −∂α2 = β is a
(d − 1)-cycle contained in S. However β intersects trivially with any d-cycle in S
since α intersects trivially with all cycles that have a representative in B. So the
homology class represented by β in Hd−1(S,R) is trivial, and we have β = ∂γ for
some d-chain γ in S. Writing α = (α1 − γ) + (α2 + γ) and shifting slightly the two
copies of γ on either side of S, we get that [α] ∈ F +G.

It follows that, if FG is a supplementary of F ∩G in F , dimFG+dimG = dim(F+
G) is larger than dimG⊥ ≥ dimH − dimG, so that dimG ≥ 1

2
(dimH − dimFG).

Thus it only remains to show that dimFG ≤ dimHd(W̃ ,R) to complete the proof of
the lemma. To do this, we remark that the morphism h : Hd(W ; R) → Hd(W,B; R)
in the relative homology sequence is injective on FG, since its kernel is precisely G.
However, if we define F̃ and G̃ inside Hd(W̃ ,R) similarly to F and G, the subspace
F̃G̃ similarly injects intoHd(W̃ , B̃; R). Furthermore, the images of the two injections
are both equal to the image of the morphism Hd(A; R) → Hd(A, S; R) under the
identification Hd(W̃ , B̃; R) ' Hd(A, S; R) ' Hd(W,B; R), so that dimHd(W̃ ,R) ≥
dim F̃G̃ = dimFG and the proof is complete.

6. Conclusion

This paper has extended the field of applicability of the construction outlined by
Donaldson [1] to more general vector bundles. It is in fact probable that similar
methods can be used in other situations involving sequences of vector bundles whose
curvatures become very positive.

The statement that, in spite of the high flexibility of the construction, the sub-
manifolds obtained as zero sets of asymptotically holomorphic sections of E ⊗ Lk
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which are transverse to 0 are all isotopic for a given large enough k, has impor-
tant consequences. Indeed, as suggested by Donaldson, it may allow the definition
of relatively easily computable invariants of higher-dimensional symplectic mani-
folds from the topology of their submanifolds, for example from the Seiberg-Witten
invariants of 4-dimensional submanifolds [5][6]. Furthermore, it facilitates the char-
acterization of the topology of the constructed submanifolds in many cases, thus
leading the way to many possibly new examples of symplectic manifolds.
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SYMPLECTIC 4-MANIFOLDS AS BRANCHED COVERINGS OF

CP2

DENIS AUROUX

Abstract. We show that every compact symplectic 4-manifold X can be topo-
logically realized as a covering of CP

2 branched along a smooth symplectic curve
in X which projects as an immersed curve with cusps in CP

2. Furthermore,
the covering map can be chosen to be approximately pseudo-holomorphic with
respect to any given almost-complex structure on X.

1. Introduction

It has recently been shown by Donaldson [3] that the existence of approximately
holomorphic sections of very positive line bundles over compact symplectic mani-
folds allows the construction not only of symplectic submanifolds ([2], see also [1],[5])
but also of symplectic Lefschetz pencil structures. The aim of this paper is to show
how similar techniques can be applied in the case of 4-manifolds to obtain maps
to CP2, thus proving that every compact symplectic 4-manifold is topologically a
(singular) branched covering of CP2.

Let (X,ω) be a compact symplectic 4-manifold such that the cohomology class
1
2π

[ω] ∈ H2(X,R) is integral. This integrality condition does not restrict the dif-
feomorphism type of X in any way, since starting from an arbitrary symplectic
structure one can always perturb it so that 1

2π
[ω] becomes rational, and then mul-

tiply ω by a constant factor to obtain integrality. A compatible almost-complex
structure J on X and the corresponding Riemannian metric g are also fixed.

Let L be the complex line bundle on X whose first Chern class is c1(L) = 1
2π

[ω].
Fix a Hermitian structure on L, and let ∇L be a Hermitian connection on L whose
curvature 2-form is equal to −iω (it is clear that such a connection always exists).
The key observation is that, for large values of an integer parameter k, the line bun-
dles Lk admit many approximately holomorphic sections, thus making it possible
to obtain sections which have nice transversality properties.

For example, one such section can be used to define an approximately holomorphic
symplectic submanifold in X [2]. Similarly, constructing two sections satisfying
certain transversality requirements yields a Lefschetz pencil structure [3]. In our
case, the aim is to construct, for large enough k, three sections s0

k, s
1
k and s2

k of Lk

satisfying certain transversality properties, in such a way that the three sections do
not vanish simultaneously and that the map from X to CP2 defined by x 7→ [s0

k(x) :
s1

k(x) : s2
k(x)] is a branched covering.

Let us now describe more precisely the notion of approximately holomorphic
singular branched covering. Fix a constant ε > 0, and let U be a neighborhood of a
point x in an almost-complex 4-manifold. We say that a local complex coordinate
map φ : U → C2 is ε-approximately holomorphic if, at every point, |φ∗J − J0| ≤ ε,
where J0 is the canonical complex structure on C2. Another equivalent way to

39
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state the same property is the bound |∂̄φ(u)| ≤ 1
2
ε|dφ(u)| for every tangent vector

u (this definition does not depend on the choice of a metric on the almost-complex
4-manifold ; C2 is endowed with its usual Euclidean metric).

Definition 1. A map f : X → CP2 is locally ε-holomorphically modelled at x on
a map g : C2 → C2 if there exist neighborhoods U of x in X and V of f(x) in CP2,
and ε-approximately holomorphic C1 coordinate maps φ : U → C2 and ψ : V → C2

such that f = ψ−1 ◦ g ◦ φ over U .

Definition 2. A map f : X → CP2 is an ε-holomorphic singular covering branched
along a submanifold R ⊂ X if its differential is surjective everywhere except at
the points of R, where rank(df) = 2, and if at any point x ∈ X it is locally ε-
holomorphically modelled on one of the three following maps :

(i) local diffeomorphism : (z1, z2) 7→ (z1, z2) ;
(ii) branched covering : (z1, z2) 7→ (z2

1 , z2) ;
(iii) cusp covering : (z1, z2) 7→ (z3

1 − z1z2, z2).

In particular it is clear that the cusp model occurs only in a neighborhood of a
finite set of points C ⊂ R, and that the branched covering model occurs only in
a neighborhood of R (away from C), while f is a local diffeomorphism everywhere
outside of a neighborhood of R. Moreover, the set of branch points R and its
projection f(R) can be described as follows in the local models : for the branched
covering model, R = {(z1, z2), z1 = 0} and f(R) = {(x, y), x = 0} ; for the cusp
covering model, R = {(z1, z2), 3z2

1 − z2 = 0} and f(R) = {(x, y), 27x2 − 4y3 = 0}.
It follows that, if ε < 1, R is a smooth 2-dimensional submanifold in X, approx-

imately J-holomorphic, and therefore symplectic, and that f(R) is an immersed
symplectic curve in CP2 except for a finite number of cusps.

We now state our main result :

Theorem 1. For any ε > 0 there exists an ε-holomorphic singular covering map
f : X → CP2.

The techniques involved in the proof of this result are similar to those introduced
by Donaldson in [2] : the first ingredient is a local transversality result stating
roughly that, given approximately holomorphic sections of certain bundles, it is
possible to ensure that they satisfy certain transversality estimates over a small
ball in X by adding to them small and localized perturbations. The other ingre-
dient is a globalization principle, which, if the small perturbations providing local
transversality are sufficiently well localized, ensures that a transversality estimate
can be obtained over all of X by combining the local perturbations.

We now define more precisely the notions of approximately holomorphic sections
and of transversality with estimates. We will be considering sequences of sections of
complex vector bundles Ek over X, for all large values of the integer k, where each
of the bundles Ek carries naturally a Hermitian metric and a Hermitian connection.
These connections together with the almost complex structure J on X yield ∂ and ∂̄
operators on Ek. Moreover, we choose to rescale the metric on X, and use gk = k g :
for example, the diameter of X is multiplied by k1/2, and all derivatives of order
p are divided by kp/2. The reason for this rescaling is that the vector bundles Ek

we will consider are derived from Lk, on which the natural Hermitian connection
induced by ∇L has curvature −ikω.
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Definition 3. Let (sk)k�0 be a sequence of sections of complex vector bundles Ek

over X. The sections sk are said to be asymptotically holomorphic if there exist
constants (Cp)p∈N such that, for all k and at every point of X, |sk| ≤ C0, |∇psk| ≤
Cp and |∇p−1∂̄sk| ≤ Cpk

−1/2 for all p ≥ 1, where the norms of the derivatives are
evaluated with respect to the metrics gk = k g.

Definition 4. Let sk be a section of a complex vector bundle Ek, and let η > 0 be
a constant. The section sk is said to be η-transverse to 0 if, at any point x ∈ X
where |sk(x)| < η, the covariant derivative ∇sk(x) : TxX → (Ek)x is surjective and
has a right inverse of norm less than η−1 w.r.t. the metric gk.

We will often say that a sequence (sk)k�0 of sections of Ek is transverse to 0
(without precising the constant) if there exists a constant η > 0 independent of k
such that η-transversality to 0 holds for all large k.

In this definition of transversality, two cases are of specific interest. First, when Ek

is a line bundle, and if one assumes the sections to be asymptotically holomorphic,
transversality to 0 can be equivalently expressed by the property

∀x ∈ X, |sk(x)| < η ⇒ |∇sk(x)|gk
> η.

Next, when Ek has rank greater than 2 (or more generally than the complex di-
mension of X), the property actually means that |sk(x)| ≥ η for all x ∈ X.

An important point to keep in mind is that transversality to 0 is an open property :
if s is η-transverse to 0, then any section σ such that |s−σ|C1 < ε is (η−ε)-transverse
to 0.

The interest of such a notion of transversality with estimates is made clear by
the following observation :

Lemma 1. Let γk be asymptotically holomorphic sections of vector bundles Ek over
X, and assume that the sections γk are transverse to 0. Then, for large enough k,
the zero set of γk is a smooth symplectic submanifold in X.

This lemma follows from the observation that, where γk vanishes, |∂̄γk| = O(k−1/2)
by the asymptotic holomorphicity property while ∂γk is bounded from below by the
transversality property, thus ensuring that for large enough k the zero set is smooth
and symplectic, and even asymptotically J-holomorphic.

We can now write our second result, which is a one-parameter version of Theo-
rem 1 :

Theorem 2. Let (Jt)t∈[0,1] be a family of almost-complex structures on X com-
patible with ω. Fix a constant ε > 0, and let (st,k)t∈[0,1],k�0 be asymptotically Jt-
holomorphic sections of C3 ⊗ Lk, such that the sections st,k and their derivatives
depend continuously on t.

Then, for all large enough values of k, there exist asymptotically Jt-holomorphic
sections σt,k of C3 ⊗Lk, nowhere vanishing, depending continuously on t, and such
that, for all t ∈ [0, 1], |σt,k − st,k|C3,gk

≤ ε and the map X → CP2 defined by σt,k is
an approximately holomorphic singular covering with respect to Jt.

Note that, although we allow the almost-complex structure on X to depend on
t, we always use the same metric gk = k g independently of t. Therefore, there is
no special relation between gk and Jt. However, since the parameter space [0, 1] is
compact, we know that the metric defined by ω and Jt differs from g by at most
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a constant factor, and therefore up to a change in the constants this has no real
influence on the transversality and holomorphicity properties.

We now describe more precisely the properties of the approximately holomorphic
singular coverings constructed in Theorems 1 and 2, in order to state a uniqueness
result for such coverings.

Definition 5. Let sk be nowhere vanishing asymptotically holomorphic sections of
C3 ⊗ Lk. Define the corresponding projective maps fk = Psk from X to CP2 by
fk(x) = [s0

k(x) : s1
k(x) : s2

k(x)]. Define the (2, 0)-Jacobian Jac(fk) = det(∂fk), which
is a section of Λ2,0T ∗X ⊗ f ∗

kΛ2,0TCP2 = KX ⊗ L3k. Finally, define R(sk) to be the
set of points of X where Jac(fk) vanishes, i.e. where ∂fk is not surjective.

Given a constant γ > 0, we say that sk satisfies the transversality property P3(γ)
if |sk| ≥ γ and |∂fk|gk

≥ γ at every point of X, and if Jac(fk) is γ-transverse to 0.

If sk satisfies P3(γ) for some γ > 0 and if k is large enough, then it follows from
Lemma 1 that R(sk) is a smooth symplectic submanifold in X. By analogy with
the expected properties of the set of branch points, it is therefore natural to require
such a property for the sections which define our covering maps.

Furthermore, recall that one expects the projection to CP2 of the set of branch
points to be an immersed curve except at only finitely many non-degenerate cusps.
Forget temporarily the antiholomorphic derivative ∂̄fk, and consider only the holo-
morphic part. Then the cusps correspond to the points of R(sk) where the kernel of
∂fk and the tangent space to R(sk) coincide (in other words, the points where the
tangent space to R(sk) becomes “vertical”). Since R(sk) is the set of points where
Jac(fk) = 0, the cusp points are those where the quantity ∂fk ∧ ∂Jac(fk) vanishes ;
in this notation ∂fk and ∂Jac(fk) are both seen as (1, 0)-forms with values in vec-
tor bundles (f ∗

kTCP2 and KX ⊗ L3k, respectively), and their exterior product is a
(2, 0)-form with values in the tensor product (f ∗

kTCP2) ⊗ (KX ⊗ L3k).
Note that, along R(sk), ∂fk has complex rank 1 and so is actually a nowhere van-

ishing (1, 0)-form with values in the rank 1 subbundle L(sk) = Im ∂fk ⊂ f ∗
kTCP2.

In a neighborhood of R(sk), this is no longer true, but one can project ∂fk onto
a rank 1 subbundle in f ∗

kTCP2 (which will still be called L(sk)), thus obtaining a
nonvanishing (1, 0)-form π(∂fk) with values in the line bundle L(sk). The quantity
π(∂fk)∧∂Jac(fk) (where the wedge notation denotes as above the exterior product
of two (1, 0)-forms with values in line bundles), which is a section of a line bundle
over R(sk), can under the above-described transversality assumptions be thought
of as a measurement of the angle between the kernel of ∂fk and the tangent space
to R(sk). Its vanishing over R(sk) is therefore characteristic of cusp points, and so
it is natural to require that its restriction to R(sk) be transverse to 0, as it implies
that the cusp points are isolated and in some sense non-degenerate.

It is worth noting that, up to a change of constants in the estimates, this transver-
sality property is actually independent of the choice of the subbundle of f ∗

kTCP2

on which one projects ∂fk, as long as π(∂fk) remains bounded from below.
For convenience, we introduce the following notations :

Definition 6. Let sk be asymptotically holomorphic sections of C3 ⊗ Lk and fk =
Psk. Assume that sk satisfies P3(γ) for some γ > 0. Consider the rank one sub-
bundle L(sk) = (Im ∂fk)|R(sk) of f ∗

kTCP2 over R(sk), and let π : f ∗
kTCP2 → L(sk)
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be the orthogonal projection. Finally define, over R(sk), the quantity T (sk) =
π(∂fk) ∧ ∂Jac(fk).

We say that asymptotically holomorphic sections sk of C3 ⊗ Lk are γ-generic if
they satisfy P3(γ) and if the quantity T (sk) is γ-transverse to 0 over R(sk). We
then define the set of cusp points C(sk) as the set of points of R(sk) where T (sk) = 0.

In a holomorphic setting, such a genericity property would be sufficient to ensure
that the map fk = Psk is a singular branched covering. However, in our case, extra
difficulties arise because we only have approximately holomorphic sections. This
means that at a point of R(sk), although ∂fk has rank 1, we have no control over
the rank of ∂̄fk, and the local picture may be very different from what one expects.
Therefore, we need to control the antiholomorphic part of the derivative along the
set of branch points by adding the following requirement :

Definition 7. Let sk be γ-generic asymptotically J-holomorphic sections of C3⊗Lk.
We say that sk is ∂̄-tame if there exist constants (Cp)p∈N and c > 0, depending only
on the geometry of X and the bounds on sk and its derivatives, and an ω-compatible
almost complex structure J̃k, such that the following properties hold :

(1) ∀p ∈ N, |∇p(J̃k − J)|gk
≤ Cpk

−1/2 ;

(2) the almost-complex structure J̃k is integrable over the set of points whose gk-
distance to CJ̃k

(sk) is less than c (the subscript indicates that one uses ∂J̃k
rather

than ∂J to define C(sk)) ;
(3) the map fk = Psk is J̃k-holomorphic at every point of X whose gk-distance to

CJ̃k
(sk) is less than c ;

(4) at every point of RJ̃k
(sk), the antiholomorphic derivative ∂̄J̃k

(Psk) vanishes
over the kernel of ∂J̃k

(Psk).

Note that since J̃k is within O(k−1/2) of J , the notions of asymptotic J-holomor-
phicity and asymptotic J̃k-holomorphicity actually coincide, because the ∂ and ∂̄ op-
erators differ only by O(k−1/2). Furthermore, if k is large enough, then γ-genericity
for J implies γ ′-genericity for J̃k as well for some γ ′ slightly smaller than γ ; and,
because of the transversality properties, the sets RJ̃k

(sk) and CJ̃k
(sk) lie within

O(k−1/2) of RJ(sk) and CJ(sk).
In the case of families of sections depending continuously on a parameter t ∈ [0, 1],

it is natural to also require that the almost complex structures J̃t,k close to Jt for
every t depend continuously on t. We claim the following :

Theorem 3. Let sk be asymptotically J-holomorphic sections of C3 ⊗Lk. Assume
that the sections sk are γ-generic and ∂̄-tame. Then, for all large enough values
of k, the maps fk = Psk are εk-holomorphic singular branched coverings, for some
constants εk = O(k−1/2).

Therefore, in order to prove Theorems 1 and 2 it is sufficient to construct γ-
generic and ∂̄-tame sections (resp. one-parameter families of sections) of C3 ⊗ Lk.
Even better, we have the following uniqueness result for these particular singular
branched coverings :

Theorem 4. Let s0,k and s1,k be sections of C3 ⊗ Lk, asymptotically holomorphic
with respect to ω-compatible almost-complex structures J0 and J1 respectively. As-
sume that s0,k and s1,k are γ-generic and ∂̄-tame. Then there exist almost-complex
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structures (Jt)t∈[0,1] interpolating between J0 and J1, and a constant η > 0, with
the following property : for all large enough k, there exist sections (st,k)t∈[0,1],k�0 of
C3 ⊗Lk interpolating between s0,k and s1,k, depending continuously on t, which are,
for all t ∈ [0, 1], asymptotically Jt-holomorphic, η-generic and ∂̄-tame with respect
to Jt.

In particular, for large k the approximately holomorphic singular branched cover-
ings Ps0,k and Ps1,k are isotopic among approximately holomorphic singular branched
coverings.

Therefore, there exists for all large k a canonical isotopy class of singular branched
coverings X → CP2, which could potentially be used to define symplectic invariants
of X.

The remainder of this article is organized as follows : §2 describes the process of
perturbing asymptotically holomorphic sections of bundles of rank greater than 2
to make sure that they remain away from zero. §3 deals with further perturbation
in order to obtain γ-genericity. §4 describes a way of achieving ∂̄-tameness, and
therefore completes the proofs of Theorems 1, 2 and 4. Finally, Theorem 3 is proved
in §5, and §6 deals with various related remarks.

Acknowledgments. The author wishes to thank Misha Gromov for valuable
suggestions and comments, and Christophe Margerin for helpful discussions.

2. Nowhere vanishing sections

2.1. Non-vanishing of sk. Our strategy to prove Theorem 1 is to start with given
asymptotically holomorphic sections sk (for example sk = 0) and perturb them in
order to obtain the required properties ; the proof of Theorem 2 then relies on
the same arguments, with the added difficulty that all statements must apply to
1-parameter families of sections.

The first step is to ensure that the three components s0
k, s

1
k and s2

k do not vanish
simultaneously, and more precisely that, for some constant η > 0 independent of k,
the sections sk are η-transverse to 0, i.e. |sk| ≥ η over all of X. Therefore, the first
ingredient in the proof of Theorems 1 and 2 is the following result :

Proposition 1. Let (sk)k�0 be asymptotically holomorphic sections of C3⊗Lk, and
fix a constant ε > 0. Then there exists a constant η > 0 such that, for all large
enough values of k, there exist asymptotically holomorphic sections σk of C3 ⊗ Lk

such that |σk − sk|C3,gk
≤ ε and that |σk| ≥ η at every point of X. Moreover, the

same statement holds for families of sections indexed by a parameter t ∈ [0, 1].

Proposition 1 is a direct consequence of the main theorem in [1], where it is proved
that, given any complex vector bundle E, asymptotically holomorphic sections of
E ⊗ Lk (or 1-parameter families of such sections) can be made transverse to 0 by
small perturbations : Proposition 1 follows simply by considering the case where E
is the trivial bundle of rank 3. However, for the sake of completeness and in order
to introduce tools which will also be used in later parts of the proof, we give here
a shorter argument dealing with the specific case at hand.

There are three ingredients in the proof of Proposition 1. The first one is the
existence of many localized asymptotically holomorphic sections of the line bundle
Lk for sufficiently large k.
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Definition 8. A section s of a vector bundle Ek has Gaussian decay in Cr norm
away from a point x ∈ X if there exists a polynomial P and a constant λ > 0
such that for all y ∈ X, |s(y)|, |∇s(y)|gk

, . . . , |∇rs(y)|gk
are all bounded by

P (d(x, y)) exp(−λ d(x, y)2), where d(., .) is the distance induced by gk.
The decay properties of a family of sections are said to be uniform if there exist P

and λ such that the above bounds hold for all sections of the family, independently
of k and of the point x at which decay occurs for a given section.

Lemma 2 ([2],[1]). Given any point x ∈ X, for all large enough k, there ex-
ist asymptotically holomorphic sections sref

k,x of Lk over X satisfying the following

bounds : |sref
k,x| ≥ cs at every point of the ball of gk-radius 1 centered at x, for some

universal constant cs > 0 ; and the sections sref
k,x have uniform Gaussian decay away

from x in C3 norm.
Moreover, given a one-parameter family of ω-compatible almost-complex struc-

tures (Jt)t∈[0,1], there exist one-parameter families of sections sref
t,k,x which are asymp-

totically Jt-holomorphic for all t, depend continuously on t and satisfy the same
bounds.

The first part of this statement is Proposition 11 of [2], while the extension to one-
parameter families is carried out in Lemma 3 of [1]. Note that here we require decay
with respect to the C3 norm instead of C0, but the bounds on all derivatives follow
immediately from the construction of these sections : indeed, they are modelled
on f(z) = exp(−|z|2/4) in a local approximately holomorphic Darboux coordinate
chart for kω at x and in a suitable local trivialization of Lk where the connection
1-form is 1

4

∑

(zjdz̄j − z̄jdzj). Therefore, it is sufficient to notice that the model
function has Gaussian decay and that all derivatives of the coordinate map are
uniformly bounded because of the compactness of X.

More precisely, the result of existence of local approximately holomorphic Dar-
boux coordinate charts needed for Lemma 2 (and throughout the proofs of the main
theorems as well) is the following (see also [2]) :

Lemma 3. Near any point x ∈ X, for any integer k, there exist local complex
Darboux coordinates (z1

k, z
2
k) : (X, x) → (C2, 0) for the symplectic structure kω (i.e.

such that the pullback of the standard symplectic structure of C2 is kω) such that,
denoting by ψk : (C2, 0) → (X, x) the inverse of the coordinate map, the following
bounds hold uniformly in x and k : |z1

k(y)| + |z2
k(y)| = O(distgk

(x, y)) on a ball of
fixed radius around x ; |∇rψk|gk

= O(1) for all r ≥ 1 on a ball of fixed radius around
0 ; and, with respect to the almost-complex structure J on X and the canonical
complex structure J0 on C2, |∂̄ψk(z)|gk

= O(k−1/2|z|) and |∇r∂̄ψ|gk
= O(k−1/2) for

all r ≥ 1 on a ball of fixed radius around 0.
Moreover, given a continuous 1-parameter family of ω-compatible almost-complex

structures (Jt)t∈[0,1] and a continuous family of points (xt)t∈[0,1], one can find for all
t coordinate maps near xt satisfying the same estimates and depending continuously
on t.

Proof. By Darboux’s theorem, there exists a local symplectomorphism φ from a
neighborhood of 0 in C2 with its standard symplectic structure to a neighborhood of
x in (X,ω). It is well-known that the space of symplectic R-linear endomorphisms
of C2 which intertwine the complex structures J0 and φ∗J(x) is non-empty (and
actually isomorphic to U(2)). So, choosing such a linear map Ψ and defining ψ =
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φ◦Ψ, one gets a local symplectomorphism such that ∂̄ψ(0) = 0. Moreover, because
of the compactness of X, it is possible to carry out the construction in such a
way that, with respect to the metric g, all derivatives of ψ are bounded over a
neighborhood of x by uniform constants which do not depend on x. Therefore, over a
neighborhood of x one can assume that |∇(ψ−1)|g = O(1), as well as |∇rψ|g = O(1)
and |∇r∂̄ψ|g = O(1) ∀r ≥ 1.

Define ψk(z) = ψ(k−1/2z), and switch to the metric gk : then ∂̄ψk(0) = 0, and
at every point near x, |∇(ψ−1

k )|gk
= |∇(ψ−1)|g = O(1). Moreover, |∇rψk|gk

=
O(k(1−r)/2) = O(1) and |∇r∂̄ψk|gk

= O(k−r/2) = O(k−1/2) for all r ≥ 1. Finally,
since |∇∂̄ψk|gk

= O(k−1/2) and ∂̄ψk(0) = 0 we have |∂̄ψk(z)|gk
= O(k−1/2|z|), so

that all expected estimates hold. Because of the compactness of X, the estimates
are uniform in x, and because the maps ψk for different values of k differ only by a
rescaling, the estimates are also uniform in k.

In the case of a one-parameter family of almost-complex structures, there is only
one thing to check in order to carry out the same construction for every value of
t ∈ [0, 1] while ensuring continuity in t : given a one-parameter family of local
Darboux maps φt near xt (the existence of such maps depending continuously on
t is trivial), one must check the existence of a continuous one-parameter family of
R-linear symplectic endomorphisms Ψt of C2 intertwining the complex structures
J0 and φ∗

tJt(xt) on C2. To prove this, remark that for every t the set of these
endomorphisms of C2 can be identified with the group U(2). Therefore, what we
are looking for is a continuous section (Ψt)t∈[0,1] of a principal U(2)-bundle over
[0, 1]. Since [0, 1] is contractible, this bundle is necessarily trivial and therefore has
a continuous section. This proves the existence of the required maps Ψt, so one can
define ψt = φt ◦ Ψt, and set ψt,k(z) = ψt(k

−1/2z) as above. The expected bounds
follow naturally ; the estimates are uniform in t because of the compactness of
[0, 1].

The second tool we need for Proposition 1 is the following local transversality
result, which involves ideas similar to those in [2] and in §2 of [1] but applies to
maps from Cn to Cm with m > n rather than m = 1 :

Proposition 2. Let f be a function defined over the ball B+ of radius 11
10

in Cn

with values in Cm, with m > n. Let δ be a constant with 0 < δ < 1
2
, and let

η = δ log(δ−1)−p where p is a suitable fixed integer depending only on the dimension
n. Assume that f satisfies the following bounds over B+ :

|f | ≤ 1, |∂̄f | ≤ η, |∇∂̄f | ≤ η.

Then, there exists w ∈ Cm, with |w| ≤ δ, such that |f − w| ≥ η over the interior
ball B of radius 1.

Moreover, if one considers a one-parameter family of functions (ft)t∈[0,1] satis-
fying the same bounds, then one can find for all t elements wt ∈ Cm depending
continuously on t such that |wt| ≤ δ and |ft − wt| ≥ η over B.

This statement is proved in §2.3. The last, and most crucial, ingredient of the
proof of Proposition 1 is a globalization principle due to Donaldson [2] which we
state here in a general form.

Definition 9. A family of properties P(ε, x)x∈X,ε>0 of sections of bundles over X
is local and Cr-open if, given a section s satisfying P(ε, x), any section σ such that
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|σ(x)− s(x)|, |∇σ(x)−∇s(x)|, . . . , |∇rσ(x)−∇rs(x)| are smaller than η satisfies
P(ε− Cη, x), where C is a constant (independent of x and ε).

For example, the property |s(x)| ≥ ε is local and C0-open ; ε-transversality to 0
of s at x is local and C1-open.

Proposition 3 ([2]). Let P(ε, x)x∈X,ε>0 be a local and Cr-open family of properties
of sections of vector bundles Ek over X. Assume that there exist constants c, c′

and p such that, given any x ∈ X, any small enough δ > 0, and asymptotically
holomorphic sections sk of Ek, there exist, for all large enough k, asymptotically
holomorphic sections τk,x of Ek with the following properties : (a) |τk,x|Cr,gk

< δ,
(b) the sections 1

δ
τk,x have uniform Gaussian decay away from x in Cr-norm, and

(c) the sections sk + τk,x satisfy the property P(η, y) for all y ∈ Bgk
(x, c), with

η = c′δ log(δ−1)−p.
Then, given any α > 0 and asymptotically holomorphic sections sk of Ek, there

exist, for all large enough k, asymptotically holomorphic sections σk of Ek such
that |sk − σk|Cr,gk

< α and the sections σk satisfy P(ε, x) ∀x ∈ X for some ε > 0
independent of k.

Moreover the same result holds for one-parameter families of sections, provided
the existence of sections τt,k,x satisfying properties (a), (b), (c) and depending con-
tinuously on t ∈ [0, 1].

This result is a general formulation of the argument contained in §3 of [2] (see also
[1], §3.3 and 3.5). For the sake of completeness, let us recall just a brief outline of the
construction. To achieve property P over all of X, the idea is to proceed iteratively :

in step j, one starts from sections s
(j)
k satisfying P(δj, x) for all x in a certain

(possibly empty) subset U
(j)
k ⊂ X, and perturbs them by less than 1

2C
δj (where C

is the same constant as in Definition 9) to get sections s
(j+1)
k satisfying P(δj+1, x)

over certain balls of gk-radius c, with δj+1 = c′(
δj

2C
) log((

δj

2C
)−1)−p. Because the

property P is open, s
(j+1)
k also satisfies P(δj+1, x) over U

(j)
k , therefore allowing one

to obtain P everywhere after a certain number N of steps.
The catch is that, since the value of δj decreases after each step and we want

P(ε, x) with ε independent of k, the number of steps needs to be bounded inde-
pendently of k. However, the size of X for the metric gk increases as k increases,
and the number of balls of radius c needed to cover X therefore also increases. The
key observation due to Donaldson [2] is that, because of the Gaussian decay of the
perturbations, if one chooses a sufficiently large constant D, one can in a single
step carry out perturbations centered at as many points as one wants, provided
that any two of these points are distant of at least D with respect to gk : the idea
is that each of the perturbations becomes sufficiently small in the vicinity of the
other perturbations in order to have no influence on property P there (up to a slight
decrease of δj+1). Therefore the construction is possible with a bounded number of
steps N and yields property P(ε, x) for all x ∈ X and for all large enough k, with
ε = δN independent of k.

We now show how to derive Proposition 1 from Lemma 2 and Propositions 2
and 3, following the ideas contained in [2]. Proposition 1 follows directly from
Proposition 3 by considering the property P defined as follows : say that a section
sk of C3 ⊗ Lk satisfies P(ε, x) if |sk(x)| ≥ ε. This property is local and open
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in C0-sense, and therefore also in C3-sense. So it is sufficient to check that the
assumptions of Proposition 3 hold for P .

Let x ∈ X, 0 < δ < 1
2
, and consider asymptotically holomorphic sections sk of

C3 ⊗ Lk (or 1-parameter families of sections st,k). Recall that Lemma 2 provides
asymptotically holomorphic sections sref

k,x of Lk which have Gaussian decay away
from x and remain larger than a constant cs over Bgk

(x, 1). Therefore, dividing sk

by sref
k,x yields asymptotically holomorphic functions uk on Bgk

(x, 1) with values in

C3. Next, one uses a local approximately holomorphic coordinate chart as given
by Lemma 3 to obtain, after composing with a fixed dilation of C2 if necessary,
functions vk defined on the ball B+ ⊂ C2, with values in C3, and satisfying the
estimates |vk| = O(1), |∂̄vk| = O(k−1/2) and |∇∂̄vk| = O(k−1/2).

Let C0 be a constant bounding |sref
k,x|C3,gk

, and let α = δ
C0

log(( δ
C0

)−1)−p. Provided

that k is large enough, Proposition 2 yields constants wk ∈ C3, with |wk| ≤ δ
C0

, such

that |vk−wk| ≥ α over the unit ball in C2. Equivalently, one has |uk −wk| ≥ α over
Bgk

(x, c) for some constant c. Multiplying by sref
k,x again, one gets that |sk−wk s

ref
k,x| ≥

csα over Bgk
(x, c).

The assumptions of Proposition 3 are therefore satisfied if one chooses η = csα
(larger than c′δ log(δ−1)−p for a suitable constant c′ > 0) and τk,x = −wk s

ref
k,x.

Moreover, the same argument applies to one-parameter families of sections st,k (one
similarly constructs perturbations τt,k,x = −wt,k s

ref
t,k,x). So Proposition 3 applies,

which ends the proof of Proposition 1.

2.2. Non-vanishing of ∂fk. We have constructed asymptotically holomorphic sec-
tions sk = (s0

k, s
1
k, s

2
k) of C3 ⊗ Lk for all large enough k which remain away from

zero. Therefore, the maps fk = Psk from X to CP2 are well defined, and they
are asymptotically holomorphic, because the lower bound on |sk| implies that the
derivatives of fk are O(1) and that ∂̄fk and its derivatives are O(k−1/2) (taking the
metric gk on X and the standard metric on CP2). Our next step is to ensure, by
further perturbation of the sections sk, that ∂fk vanishes nowhere and remains far
from zero :

Proposition 4. Let δ and γ be two constants such that 0 < δ < γ
4
, and let (sk)k�0

be asymptotically holomorphic sections of C3 ⊗Lk such that |sk| ≥ γ at every point
of X and for all k. Then there exists a constant η > 0 such that, for all large enough
values of k, there exist asymptotically holomorphic sections σk of C3 ⊗Lk such that
|σk − sk|C3,gk

≤ δ and that the maps fk = Pσk satisfy the bound |∂fk|gk
≥ η at every

point of X. Moreover, the same statement holds for families of sections indexed by
a parameter t ∈ [0, 1].

Proposition 4 is proved in the same manner as Proposition 1 and uses the same
three ingredients, namely Lemma 2 and Propositions 2 and 3. Proposition 4 follows
directly from Proposition 3 by considering the following property : say that a section
s of C3 ⊗ Lk of norm everywhere larger than γ

2
satisfies P(η, x) if the map f = Ps

satisfies |∂f(x)|gk
≥ η. This property is local and open in C1-sense, and therefore

also in C3-sense, because the lower bound on |s| makes f depend nicely on s (by
the way, note that the bound |s| ≥ γ

2
is always satisfied in our setting since one

considers only sections differing from sk by less than γ
4
). So one only needs to check

that the assumptions of Proposition 3 hold for this property P .
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Therefore, let x ∈ X, 0 < δ < γ
4
, and consider nonvanishing asymptotically

holomorphic sections sk of C3 ⊗Lk and the corresponding maps fk = Psk. Without
loss of generality, composing with a rotation in C3 (constant over X), one can
assume that sk(x) is directed along the first component in C3, i.e. that s1

k(x) =
s2

k(x) = 0 and therefore |s0
k(x)| ≥ γ

2
. Because one has a uniform bound on |∇sk|,

there exists a constant r > 0 (independent of k) such that |s0
k| ≥ γ

3
over Bgk

(x, r).
Therefore, over this ball one can define a map to C2 by

hk(y) = (h1
k(y), h

2
k(y)) =

(s1
k(y)

s0
k(y)

,
s2

k(y)

s0
k(y)

)

.

It is quite easy to see that, at any point y ∈ Bgk
(x, r), the ratio between |∂hk(y)|

and |∂fk(y)| is bounded by a uniform constant. Therefore, what one actually needs
to prove is that, for large enough k, a perturbation of sk with Gaussian decay and
smaller than δ can make |∂hk| larger than η = c′δ (log δ−1)−p over a ball Bgk

(x, c),
for some constants c, c′ and p.

Recall that Lemma 2 provides asymptotically holomorphic sections sref
k,x of Lk

which have Gaussian decay away from x and remain larger than a constant cs over
Bgk

(x, 1). Moreover, consider a local approximately holomorphic coordinate chart
(as given by Lemma 3) on a neighborhood of x, and call z1

k and z2
k the two complex

coordinate functions. Define the two 1-forms

µ1
k = ∂

(z1
ks

ref
k,x

s0
k

)

and µ2
k = ∂

(z2
ks

ref
k,x

s0
k

)

,

and notice that at x they are both of norm larger than a fixed constant (which can
be expressed as a function of cs and the uniform C0 bound on sk), and mutually
orthogonal. Moreover µ1

k, µ
2
k and their derivatives are uniformly bounded because of

the bounds on sref
k,x, on s0

k and on the coordinate map ; these bounds are independent

of k. Finally, µ1
k and µ2

k are asymptotically holomorphic because all the ingredients
in their definition are asymptotically holomorphic and |s0

k| is bounded from below.
If follows that, for some constant r′, one can express ∂hk on the ball Bgk

(x, r′) as
(∂h1

k, ∂h
2
k) = (u11

k µ
1
k +u12

k µ
2
k, u

21
k µ

1
k +u22

k µ
2
k), thus defining a function uk on Bgk

(x, r′)
with values in C4. The properties of µi

k described above imply that the ratio between
|∂hk| and |uk| is bounded between two constants which do not depend on k (because
of the bounds on µ1

k and µ2
k, and of their orthogonality at x), and that the map uk

is asymptotically holomorphic (because of the asymptotic holomorphicity of µi
k).

Next, one uses the local approximately holomorphic coordinate chart to obtain
from uk, after composing with a fixed dilation of C2 if necessary, functions vk

defined on the ball B+ ⊂ C2, with values in C4, and satisfying the estimates |vk| =
O(1), |∂̄vk| = O(k−1/2) and |∇∂̄vk| = O(k−1/2). Let C0 be a constant larger than
|zi

ks
ref
k,x|C3,gk

, and let α = δ
4C0

. log(( δ
4C0

)−1)−p. Then, by Proposition 2, for all large

enough k there exist constants wk = (w11
k , w

12
k , w

21
k , w

22
k ) ∈ C4, with |wk| ≤ δ

4C0
,

such that |vk − wk| ≥ α over the unit ball in C2.
Equivalently, one has |uk−wk| ≥ α overBgk

(x, c) for some constant c. Multiplying
by µi

k, one therefore gets that, over Bgk
(x, c),

∣

∣

∣

∣

∣

(

∂
(

h1
k − w11

k

z1
ks

ref
k,x

s0
k

− w12
k

z2
ks

ref
k,x

s0
k

)

, ∂
(

h2
k − w21

k

z1
ks

ref
k,x

s0
k

− w22
k

z2
ks

ref
k,x

s0
k

)

)∣

∣

∣

∣

∣

≥ α

C
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where C is a fixed constant determined by the bounds on µi
k. In other terms, letting

(τ 0
k,x, τ

1
k,x, τ

2
k,x) = (0,−(w11

k z
1
k + w12

k z
2
k)s

ref
k,x,−(w21

k z
1
k + w22

k z
2
k)s

ref
k,x),

and defining h̃k similarly to hk starting with sk + τk,x instead of sk, the above

formula can be rewritten as |∂h̃k| ≥ α
C
. Therefore, one has managed to make |∂h̃k|

larger than η = α
C

over Bgk
(x, c) by adding to sk the perturbation τk,x. Moreover,

|τk,x| ≤
∑ |wij

k |.|zi
ks

ref
k,x| ≤ δ, and the sections zi

ks
ref
k,x have uniform Gaussian decay

away from x.
As remarked above, setting f̃k = P(sk + τk,x), the bound |∂h̃k| ≥ η implies

that |∂f̃k| is larger than some η′ differing from η by at most a constant factor. The
assumptions of Proposition 3 are therefore satisfied, since one has η ′ ≥ c′δ log(δ−1)−p

for a suitable constant c′ > 0. Moreover, the whole argument also applies to one-
parameter families of sections st,k as well (considering one-parameter families of
coordinate charts, reference sections sref

t,k,x, and constants wt,k). So Proposition 3
applies. This ends the proof of Proposition 4.

2.3. Proof of Proposition 2. The proof of Proposition 2 goes along the same
lines as that of the local transversality result introduced in [2] and extended to
one-parameter families in [1] (see Proposition 6 below). To start with, notice that
it is sufficient to prove the result in the case where m = n + 1. Indeed, given
a map f = (f 1, . . . , fm) : B+ → Cm with m > n + 1 satisfying the hypotheses
of Proposition 2, one can define f ′ = (f 1, . . . , fn+1) : B+ → Cn+1, and notice
that f ′ also satisfies the required bounds. Therefore, if it is possible to find w′ =
(w1, . . . , wn+1) ∈ Cn+1 of norm at most δ such that |f ′ −w′| ≥ η over the unit ball
B, then setting w = (w1, . . . , wn+1, 0, . . . , 0) ∈ Cm one gets |w| = |w′| ≤ δ and
|f − w| ≥ |f ′ − w′| ≥ η at all points of B, which is the desired result. The same
argument applies to one-parameter families (ft)t∈[0,1].

So we are now reduced to the case m = n + 1. Let us start with the case of a
single map f , before moving on to the case of one-parameter families. The first
step in the proof is to replace f by a complex polynomial g approximating f . For
this, one approximates each of the n+1 components f i by a polynomial gi, in such
a way that g differs from f by at most a fixed multiple of η over the unit ball B
and that the degree d of g is less than a constant times log(η−1). The process is the
same as the one described in [2] for asymptotically holomorphic maps to C, so we
skip the details. To obtain polynomial functions, one first constructs holomorphic
functions f̃ i differing from f i by at most a fixed multiple of η, using the given
bounds on ∂̄f i. The polynomials gi are then obtained by truncating the Taylor
series expansion of f̃ i to a given degree. It can be shown that by this method one
can obtain polynomial functions gi of degree less than a constant times log(η−1)

and differing from f̃ i by at most a constant times η (see Lemmas 27 and 28 of [2]).
The approximation process does not hold on the whole ball where f is defined ;
this is why one needs f to be defined on B+ to get a result over the slightly smaller
ball B.

Therefore, we now have a polynomial map g of degree d = O(log(η−1)) such that
|f − g| ≤ c η for some constant c. In particular, if one finds w ∈ Cn+1 with |w| ≤ δ
such that |g − w| ≥ (c + 1)η over the ball B, then it follows immediately that
|f −w| ≥ η everywhere, which is the desired result. The key observation for finding
such a w is that the image g(B) ⊂ Cn+1 is contained in an algebraic hypersurface H
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in Cn+1 of degree at most D = (n+1)dn. Indeed, if such were not the case, then for
every nonzero polynomial P of degree at most D in n+1 variables, P (g1, . . . , gn+1)
would be a non identically zero polynomial function of degree at most dD in n
variables ; since the space of polynomials of degree at most D in n + 1 variables
is of dimension

(

D+n+1
n+1

)

while the space of polynomials of degree at most dD in n

variables is of dimension
(

dD+n
n

)

, the injectivity of the map P 7→ P (g1, . . . , gn+1)

from the first space to the second would imply that
(

D+n+1
n+1

)

≤
(

dD+n
n

)

. However
since D = (n+ 1)dn one has
(

D+n+1
n+1

)

(

dD+n
n

) =
(n+ 1)dn + (n+ 1)

n+ 1
· D + n

dD + n
· · · D + 1

dD + 1
≥ (dn + 1) ·

(

1

d

)n

> 1,

which gives a contradiction. So g(B) ⊂ H for a certain hypersurface H ⊂ Cn+1 of
degree at most D = (n+ 1)dn. Therefore the following classical result of algebraic
geometry (see e.g. [4], pp. 11–15) can be used to provide control on the size of H
inside any ball in Cn+1 :

Lemma 4. Let H ⊂ Cn+1 be a complex algebraic hypersurface of degree D. Then,
given any r > 0 and any x ∈ Cn+1, the 2n-dimensional volume of H ∩B(x, r) is at
most DV0 r

2n, where V0 is the volume of the unit ball of dimension 2n. Moreover,
if x ∈ H, then one also has vol2n(H ∩B(x, r)) ≥ V0 r

2n.

In particular, we are interested in the intersection of H with the ball B̂ of radius
δ centered at the origin. Lemma 4 implies that the volume of this intersection is
bounded by (n + 1)V0 d

nδ2n. Cover B̂ by a finite number of balls B(xi, η), in such
a way that no point is contained in more than a fixed constant number (depending
only on n) of the balls B(xi, 2η). Then, for every i such that B(xi, η) ∩H is non-
empty, B(xi, 2η) contains a ball of radius η centered at a point of H, so by Lemma
4 the volume of B(xi, 2η) ∩ H is at least V0 η

2n. Summing the volumes of these

intersections and comparing with the total volume of H ∩ B̂, one gets that the
number of balls B(xi, η) which meet H is bounded by N = Cdnδ2nη−2n, where C

is a constant depending only on n. Therefore, H ∩ B̂ is contained in the union of
N balls of radius η.

Since our goal is to find w ∈ B̂ at distance more than (c + 1)η of g(B) ⊂ H,
the set Z of values which we want to avoid is contained in a set Z+ which is the
union of N = Cdnδ2nη−2n balls of radius (c + 2)η. The volume of Z+ is bounded
by C ′dnδ2nη2 for some constant C ′ depending only on n. Therefore, there exists a
constant C ′′ such that, if one assumes δ to be larger than C ′′dn/2η, the volume of
B̂ is strictly larger than that of Z+, and so B̂ − Z+ is not empty. Calling w any
element of B̂ − Z+, one has |w| ≤ δ, and |g − w| ≥ (c + 1)η at every point of B,
and therefore |f − w| ≥ η at every point of B, which is the desired result.

Since d is bounded by a constant times log(η−1), it is not hard to see that there
exists an integer p such that, for all 0 < δ < 1

2
, the relation η = δ log(δ−1)−p implies

that δ > C ′′dn/2η. This is the value of p which we choose in the statement of the
proposition, thus ensuring that B̂−Z+ is not empty and therefore that there exists
w with |w| ≤ δ such that |f − w| ≥ η at every point of B.

We now consider the case of a one-parameter family of functions (ft)t∈[0,1]. The
first part of the above argument also applies to this case, so there exist polynomial
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maps gt of degree d = O(log(η−1)), depending continuously on t, such that |ft−gt| ≤
c η for some constant c and for all t. In particular, if one finds wt ∈ Cn+1 with
|wt| ≤ δ and depending continuously on t such that |gt−wt| ≥ (c+1)η over the ball
B, then it follows immediately that |ft − wt| ≥ η everywhere, which is the desired
result.

As before, gt(B) is contained in a hypersurface of degree at most (n + 1)dn in
Cn+1, and the same argument as above implies that the set Zt of values which we
want to avoid for wt (i.e. all the points of B̂ at distance less than (c + 1)η from
gt(B)) is contained in a set Z+

t which is the union of N = Cdnδ2nη−2n balls of radius
(c+2)η. The rest of the proof is now a higher-dimensional analogue of the argument

used in [1] : the crucial point is to show that, if δ is large enough, B̂−Z+
t splits into

several small connected components and only one large component, because the
boundary Yt = ∂Z+

t is much smaller than a (2n+ 1)-ball of radius δ and therefore

cannot split B̂ into components of comparable sizes.
Each component of B̂ − Z+

t is delimited by a subset of the sphere ∂B̂ and by a

union of components of Yt. Each component Yt,i of Yt is a real hypersurface in B̂
(with corners at the points where the boundaries of the various balls of Z+

t intersect)

whose boundary is contained in ∂B̂, and therefore splits B̂ into two components
C ′

i and C ′′
i . So each component of B̂ − Z+

t is an intersection of components C ′
i or

C ′′
i where i ranges over a certain subset of the set of components of Yt. Let us now

state the following isoperimetric inequality :

Lemma 5. Let Y be a connected (singular) submanifold of real codimension 1 in
the unit ball of dimension 2n + 2, with (possibly empty) boundary contained in the
boundary of the ball. Let A be the (2n+1)-dimensional area of Y . Then the volume
V of the smallest of the two components delimited by Y in the ball satisfies the bound
V ≤ K A(2n+2)/(2n+1), where K is a fixed constant depending only on the dimension.

Proof. The stereographic projection maps the unit ball quasi-isometrically onto a
half-sphere. Therefore, up to a change in the constant, it is sufficient to prove the
result on the half-sphere. By doubling Y along its intersection with the boundary
of the half-sphere, which doubles both the volume delimited by Y and its area,
one reduces to the case of a closed connected (singular) real hypersurface in the
sphere S2n+2 (if Y does not meet the boundary, then it is not necessary to consider
the double). Next, one notices that the singular hypersurfaces we consider can be
smoothed in such a way that the area of Y and the volume it delimits are changed
by less than any fixed constant ; therefore, Lemma 5 follows from the classical
spherical isoperimetric inequality (see e.g. [6]).

It follows that, letting Ai be the (2n + 1)-dimensional area of Yt,i, the smallest

of the two components delimited by Yt,i, e.g. C ′
i, has volume Vi ≤ K A

(2n+2)/(2n+1)
i .

Therefore, the volume of the set
⋃

iC
′
i is bounded by

K
∑

iA
(2n+2)/(2n+1)
i ≤ K (

∑

iAi)
(2n+2)/(2n+1).

However,
∑

iAi is the total area of the boundary Yt of Z+
t , so it is less than the

total area of the boundaries of the balls composing Z+
t , which is at most a fixed

constant times Cdnδ2nη−2n((c+2)η)2n+1, i.e. at most a fixed constant times dnδ2nη.
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Therefore, one has

vol(
⋃

i

C ′
i) ≤ K ′

(

dnη

δ

)
2n+2
2n+1

δ2n+2

for some constant K ′ depending only on n. So there exists a constant K ′′ depending
only on n such that, if δ > K ′′dnη, then vol(

⋃

iC
′
i) ≤ 1

10
vol(B̂), and therefore

vol(
⋂

iC
′′
i ) ≥ 8

10
vol(B̂).

Since d is bounded by a constant times log(η−1), it is not hard to see that there
exists an integer p such that, for all 0 < δ < 1

2
, the relation η = δ log(δ−1)−p implies

that δ > K ′′dnη. This is the value of p which we choose in the statement of the
proposition, thus ensuring that the above volume bounds on

⋃

iC
′
i and

⋂

iC
′′
i hold.

Now, recall that every component of B̂ −Z+
t is an intersection of sets C ′

i and C ′′
i

for certain values of i. Therefore, every component of B̂−Z+
t either is contained in

⋃

iC
′
i or contains

⋂

iC
′′
i . However, because

⋃

iC
′
i is much smaller than the ball B̂,

one cannot have B̂ − Z+
t ⊂ ⋃iC

′
i. Therefore, there exists a component in B̂ − Z+

t

containing
⋃

iC
′′
i . Since its volume is at least 8

10
vol(B̂), this large component is

necessarily unique.

Let U(t) be the connected component of B̂−Zt which contains the large compo-

nent of B̂−Z+
t : it is the only large component of B̂−Zt. We now follow the same

argument as in [1]. Since gt(B) depends continuously on t, so does its (c + 1)η-

neighborhood Zt, and the set
⋃

t{t} × Zt is therefore a closed subset of [0, 1] × B̂.

Let U−(t, ε) be the set of all points of U(t) at distance more than ε from Zt ∪ ∂B̂.
Then, given any t and any small ε > 0, for all τ close to t, U(τ) contains U−(t, ε).
To see this, we first notice that, for all τ close to t, U−(t, ε) ∩ Zτ = ∅. Indeed,
if such were not the case, one could take a sequence of points of Zτ ∩ U−(t, ε) for

τ → t, and extract a convergent subsequence whose limit belongs to U
−
(t, ε) and

therefore lies outside of Zt, in contradiction with the fact that
⋃

t{t}×Zt is closed.

So U−(t, ε) ⊂ B̂ − Zτ for all τ close enough to t. Making ε smaller if necessary,
one may assume that U−(t, ε) is connected, so that for all τ close to t, U−(t, ε) is

necessarily contained in the large component of B̂ − Zτ , namely U(τ).

It follows that U =
⋃

t{t} × U(t) is an open connected subset of [0, 1] × B̂, and
is therefore path-connected. So we get a path s 7→ (t(s), w(s)) joining (0, w(0)) to
(1, w(1)) inside U , for any given w(0) and w(1) in U(0) and U(1). We then only
have to make sure that s 7→ t(s) is strictly increasing in order to define wt(s) = w(s).

Getting the t component to increase strictly is not hard. Indeed, one first gets it
to be weakly increasing, by considering values s1 < s2 of the parameter such that
t(s1) = t(s2) = t and replacing the portion of the path between s1 and s2 by a path
joining w(s1) to w(s2) in the connected set U(t). Then, we slightly shift the path,
using the fact that U is open, to get the t component to increase slightly over the
parts where it was constant. Thus we can define wt(s) = w(s) and end the proof of
Proposition 2.

3. Transversality of derivatives

3.1. Transversality to 0 of Jac(fk). At this point in the proofs of Theorems
1 and 2, we have constructed for all large k asymptotically holomorphic sections
sk of C3 ⊗ Lk (or families of sections), bounded away from 0, and such that the
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holomorphic derivative of the map fk = Psk is bounded away from 0. The next
property we wish to ensure by perturbing the sections sk is the transversality to 0
of the (2, 0)-Jacobian Jac(fk) = det(∂fk). The main result of this section is :

Proposition 5. Let δ and γ be two constants such that 0 < δ < γ
4
, and let

(sk)k�0 be asymptotically holomorphic sections of C3 ⊗ Lk such that |sk| ≥ γ and
|∂(Psk)|gk

≥ γ at every point of X. Then there exists a constant η > 0 such that,
for all large enough values of k, there exist asymptotically holomorphic sections σk

of C3⊗Lk such that |σk −sk|C3,gk
≤ δ and Jac(Pσk) is η-transverse to 0. Moreover,

the same statement holds for families of sections indexed by a parameter t ∈ [0, 1].

The proof of Proposition 5 uses once more the same techniques and globaliza-
tion argument as Propositions 1 and 4. The local transversality result one uses in
conjunction with Proposition 3 is now the following statement for complex valued
functions :

Proposition 6 ([2],[1]). Let f be a function defined over the ball B+ of radius
11
10

in Cn with values in C. Let δ be a constant such that 0 < δ < 1
2
, and let

η = δ log(δ−1)−p where p is a suitable fixed integer depending only on the dimension
n. Assume that f satisfies the following bounds over B+ :

|f | ≤ 1, |∂̄f | ≤ η, |∇∂̄f | ≤ η.

Then there exists w ∈ C, with |w| ≤ δ, such that f − w is η-transverse to 0 over
the interior ball B of radius 1, i.e. f − w has derivative larger than η at any point
of B where |f − w| < η.

Moreover, the same statement remains true for a one-parameter family of func-
tions (ft)t∈[0,1] satisfying the same bounds, i.e. for all t one can find elements
wt ∈ C depending continuously on t such that |wt| ≤ δ and ft − wt is η-transverse
to 0 over B.

The first part of this statement is exactly Theorem 20 of [2], and the version for
one-parameter families is Proposition 3 of [1].

Proposition 5 is proved by applying Proposition 3 to the following property : say
that a section s of C3⊗Lk everywhere larger than γ

2
and such that |∂Ps| ≥ γ

2
every-

where satisfies P(η, x) if Jac(Ps) is η-transverse to 0 at x, i.e. either |Jac(Ps)(x)| ≥ η
or |∇Jac(Ps)(x)| > η. This property is local and C2-open, and therefore also C3-
open, because the lower bound on s makes Jac(Ps) depend nicely on s. Note that,
since one considers only sections differing from sk by less than δ in C3 norm, de-
creasing δ if necessary, one can safely assume that the two hypotheses |s| ≥ γ

2
and

|∂(Ps)| ≥ γ
2

are satisfied everywhere by all the sections appearing in the construc-
tion of σk. So one only needs to check that the assumptions of Proposition 3 hold
for the property P defined above.

Therefore, let x ∈ X, 0 < δ < γ
4
, and consider asymptotically holomorphic

sections sk of C3 ⊗ Lk and the corresponding maps fk = Psk, such that |sk| ≥ γ
2

and |∂fk| ≥ γ
2

everywhere. The setup is similar to that of §2.2. Without loss of
generality, composing with a rotation in C3 (constant over X), one can assume that
sk(x) is directed along the first component in C3, i.e. that s1

k(x) = s2
k(x) = 0 and

therefore |s0
k(x)| ≥ γ

2
. Because of the uniform bound on |∇sk|, there exists r > 0
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(independent of k) such that |s0
k| ≥ γ

3
, |s1

k| < γ
3

and |s2
k| < γ

3
over the ball Bgk

(x, r).
Therefore, over this ball one can define the map

hk(y) = (h1
k(y), h

2
k(y)) =

(s1
k(y)

s0
k(y)

,
s2

k(y)

s0
k(y)

)

.

Note that fk is the composition of hk with the map ι : (z1, z2) 7→ [1 : z1 : z2] from
C2 to CP2, which is a quasi-isometry over the unit ball in C2. Therefore, at any point
y ∈ Bgk

(x, r), the bound |∂fk(y)| ≥ γ
2

implies that |∂hk(y)| ≥ γ ′ for some constant
γ′ > 0. Moreover, the (2, 0)-Jacobians Jac(fk) = det(∂fk) and Jac(hk) = det(∂hk)
are related to each other : Jac(fk)(y) = φ(y) Jac(hk)(y), where φ(y) is the Jacobian
of ι at hk(y). In particular, |φ| is bounded between two universal constants over
Bgk

(x, r), and ∇φ is also bounded.
Since ∇Jac(hk) = φ−1∇Jac(fk)−φ−2Jac(fk)∇φ, it follows from the bounds on φ

that, if Jac(fk) fails to be α-transverse to 0 at y for some α, i.e. if |Jac(fk)(y)| < α
and |∇Jac(fk)(y)| ≤ α, then |Jac(hk)(y)| < Cα and |∇Jac(hk)(y)| ≤ Cα for some
constant C independent of k and α. This means that, if Jac(hk) is Cα-transverse
to 0 at y, then Jac(fk) is α-transverse to 0 at y. Therefore, what one actually
needs to prove is that, for large enough k, a perturbation of sk with Gaussian
decay and smaller than δ allows one to obtain the η-transversality to 0 of Jac(hk)
over a ball Bgk

(x, c), with η = c′δ (log δ−1)−p, for some constants c, c′ and p ; the
η
C
-transversality to 0 of Jac(fk) then follows by the above remark.

Since |∂hk(x)| ≥ γ ′, one can assume, after composing with a rotation in C2 (con-
stant over X) acting on the two components (s1

k, s
2
k) or equivalently on (h1

k, h
2
k), that

|∂h2
k(x)| ≥ γ′

2
. As in §2.2, consider the asymptotically holomorphic sections sref

k,x of

Lk with Gaussian decay away from x given by Lemma 2, and the complex coordi-
nate functions z1

k and z2
k of a local approximately holomorphic Darboux coordinate

chart on a neighborhood of x. Recall that the two asymptotically holomorphic
1-forms

µ1
k = ∂

(z1
ks

ref
k,x

s0
k

)

and µ2
k = ∂

(z2
ks

ref
k,x

s0
k

)

are, at x, both of norm larger than a fixed constant and mutually orthogonal, and
that µ1

k, µ
2
k and their derivatives are uniformly bounded independently of k.

Because µ1
k(x) and µ2

k(x) define an orthogonal frame in Λ1,0T ∗
xX, there exist

complex numbers ak and bk such that ∂h2
k(x) = akµ

1
k(x) + bkµ

2
k(x). Let λk,x =

(b̄kz
1
k − ākz

2
k)s

ref
k,x. The properties of λk,x of importance to us are the following :

the sections λk,x are asymptotically holomorphic because the coordinates zi
k are

asymptotically holomorphic ; they are uniformly bounded in C3 norm by a constant
C0, because of the bounds on sref

k,x, on the coordinate chart and on ∂h2
k(x) ; they

have uniform Gaussian decay away from x ; and, letting

Θk,x = ∂
(λk,x

s0
k

)

∧ ∂h2
k,

one has |Θk,x(x)| = |(b̄kµ1
k(x) − ākµ

2
k(x)) ∧ (akµ

1
k(x) + bkµ

2
k(x))| ≥ γ ′′ for some

constant γ ′′ > 0, because of the lower bounds on |µi
k(x)| and |∂h2

k(x)|.
Because ∇Θk,x is uniformly bounded and |Θk,x(x)| ≥ γ ′′, there exists a constant

r′ > 0 independent of k such that |Θk,x| remains larger than γ′′

2
over the ball

Bgk
(x, r′). Define on Bgk

(x, r′) the function uk = Θ−1
k,xJac(hk) with values in C :
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because Θk,x is bounded from above and below and has bounded derivative, the
transversality to 0 of uk is equivalent to that of Jac(hk). Moreover, for any wk ∈ C,
adding wkλk,x to s1

k is equivalent to adding wkΘk,x to Jac(hk) = ∂h1
k ∧ ∂h2

k, i.e.
adding wk to uk. Therefore, to prove Proposition 5 we only need to find wk ∈ C

with |wk| ≤ δ
C0

such that the functions uk − wk are transverse to 0.

Using the local approximately holomorphic coordinate chart, one can obtain from
uk, after composing with a fixed dilation of C2 if necessary, functions vk defined on
the ball B+ ⊂ C2, with values in C, and satisfying the estimates |vk| = O(1),
|∂̄vk| = O(k−1/2) and |∇∂̄vk| = O(k−1/2). One can then apply Proposition 6,
provided that k is large enough, to obtain constants wk ∈ C, with |wk| ≤ δ

C0
, such

that vk−wk is α-transverse to 0 over the unit ball in C2, where α = δ
C0

log(( δ
C0

)−1)−p.

Therefore, uk −wk is α
C′

-transverse to 0 over Bgk
(x, c) for some constants c and C ′.

Multiplying by Θk,x, one finally gets that, over Bgk
(x, c), Jac(hk) − wkΘk,x is η-

transverse to 0, where η = α
C′′

for some constant C ′′.

In other terms, let (τ 0
k,x, τ

1
k,x, τ

2
k,x) = (0,−wkλk,x, 0), and define h̃k similarly to hk

starting with sk + τk,x instead of sk : then the above discussion shows that Jac(h̃k)
is η-transverse to 0 over Bgk

(x, c). Moreover, |τk,x|C3 = |wk| |λk,x|C3 ≤ δ, and the
sections τk,x have uniform Gaussian decay away from x. As remarked above, the

η-transversality to 0 of Jac(h̃k) implies that Jac(P(sk + τk,x)) is η′-transverse to
0 for some η′ differing from η by at most a constant factor. The assumptions of
Proposition 3 are therefore satisfied, since η′ ≥ c′δ log(δ−1)−p for a suitable constant
c′ > 0.

Moreover, the whole argument also applies to one-parameter families of sections
st,k as well. The only nontrivial point to check, in order to apply the above con-
struction for each t ∈ [0, 1] in such a way that everything depends continuously
on t, is the existence of a continuous family of rotations of C2 acting on (h1

k, h
2
k)

allowing one to assume that |∂h2
t,k(x)| > γ′

2
for all t. For this, observe that, for every

t, such rotations in SU(2) are in one-to-one correspondence with pairs (α, β) ∈ C2

such that |α|2 + |β|2 = 1 and |α ∂h1
t,k(x) + β ∂h2

t,k(x)| > γ′

2
. The set Γt of such pairs

(α, β) is non-empty because |∂ht,k(x)| ≥ γ ′ ; let us now prove that it is connected.
First, notice that Γt is invariant under the diagonal S1 action on C2. Therefore,

it is sufficient to prove that the set of (α : β) ∈ CP1 such that

φ(α : β) :=
|α ∂h1

t,k(x) + β ∂h2
t,k(x)|2

|α|2 + |β|2 >
(γ′)2

4

is connected. For this, consider a critical point of φ over CP1. Composing with a
rotation in CP1, one may assume that this critical point is (1 : 0). Then it follows
from the property ∂

∂β
φ(1 : β)|β=0 = 0 that ∂h1

t,k(x) and ∂h2
t,k(x) must necessarily be

orthogonal to each other. Therefore, one has

φ(1 : β) =
|∂h1

t,k(x)|2 + |β|2|∂h2
t,k(x)|2

1 + |β|2 ,

and it follows that either φ is constant over CP1 (if |∂h1
t,k(x)| = |∂h2

t,k(x)|), or

the critical point is nondegenerate of index 0 (if |∂h1
t,k(x)| < |∂h2

t,k(x)|), or it is

nondegenerate of index 2 (if |∂h1
t,k(x)| > |∂h2

t,k(x)|). As a consequence, since φ has
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no critical point of index 1, all nonempty sets of the form {(α : β) ∈ CP1, φ(α, β) >
constant} are connected.

Lifting back from CP1 to the unit sphere in C2, it follows that Γt is connected.
Therefore, for each t the open set Γt ⊂ SU(2) of admissible rotations of C2 is con-
nected. Since ht,k depends continuously on t, the sets Γt also depend continuously
on t (with respect to nearly every conceivable topology), and therefore

⋃

t{t} × Γt

is connected. The same argument as in the end of §2.3 then implies the existence of
a continuous section of

⋃

t{t}×Γt over [0, 1], i.e. the existence of a continuous one-

parameter family of rotations of C2 which allows one to ensure that |∂h2
t,k(x)| > γ′

2
for all t. Therefore, the argument described in this section also applies to the case
of one-parameter families, and the assumptions of Proposition 3 are satisfied by the
property P even in the case of one-parameter families of sections. Proposition 5
follows immediately.

3.2. Nondegeneracy of cusps. At this point in the proof, we have obtained
sections satisfying the transversality property P3(γ). The only missing property in
order to obtain η-genericity for some η > 0 is the transversality to 0 of T (sk) over
R(sk). The main result of this section is therefore the following :

Proposition 7. Let δ and γ be two constants such that 0 < δ < γ
4
, and let (sk)k�0

be asymptotically holomorphic sections of C3 ⊗ Lk satisfying P3(γ) for all k. Then
there exists a constant η > 0 such that, for all large enough values of k, there exist
asymptotically holomorphic sections σk of C3 ⊗ Lk such that |σk − sk|C3,gk

≤ δ and
that the restrictions to R(σk) of the sections T (σk) are η-transverse to 0 over R(σk).
Moreover, the same statement holds for families of sections indexed by a parameter
t ∈ [0, 1].

Note that, decreasing δ if necessary in the statement of Proposition 7, it is safe
to assume that all sections lying within δ of sk in C3 norm, and in particular the
sections σk, satisfy P3(

γ
2
).

For technical reasons that will be clear below, we need to extend the definition of
the quantity T (sk) to a neighborhood of R(sk). As suggested in the introduction,
this can be done by extending to a neighborhood of R(sk) the rank 1 subbundle
L(sk) of f ∗

kTCP2 over which the quantity ∂fk is projected. Recall from the intro-
duction that L(sk) has been defined over R(sk) to be the line bundle Im ∂fk, and
denote again by L(sk) its extension over a neighborhood of R(sk) as a subbun-
dle of f ∗

kTCP2, constructed by radial parallel transport along directions normal to
R(sk). Finally define, over the same neighborhood of R(sk) and as in the intro-
duction, T (sk) = π(∂fk) ∧ ∂Jac(fk), where π : f ∗

kTCP2 → L(sk) is the orthogonal
projection.

There are several ways of obtaining transversality to 0 of certain sections re-
stricted to asymptotically holomorphic symplectic submanifolds : for example, one
such technique is described in the main argument of [1]. However in our case, the
perturbations we will add to sk in order to get the transversality to 0 of T (sk) have
the side effect of moving the submanifolds R(sk) along which the transversality
conditions have to hold, which makes things slightly more complicated. Therefore,
we choose to use the equivalence between two different transversality properties :
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Lemma 6. Let σk and σ′
k be asymptotically holomorphic sections of vector bundles

Ek and E ′
k respectively over X. Assume that σ′

k is γ-transverse to 0 over X for
some γ > 0, and let Σ′

k be its (smooth) zero set. Fix a constant r > 0 and a point
x ∈ X. Then :

(1) There exists a constant c > 0, depending only on r, γ and the bounds on the
sections, such that, if the restriction of σk to Σ′

k is η-transverse to 0 over Bgk
(x, r)∩

Σ′
k for some η < γ, then σk ⊕ σ′

k is c η-transverse to 0 at x as a section of Ek ⊕E ′
k.

(2) If σk ⊕ σ′
k is η-transverse to 0 at x and x belongs to Σ′

k, then the restriction
of σk to Σ′

k is η-transverse to 0 at x.

Proof. We start with (1), whose proof follows the ideas of §3.6 of [1] with improved
estimates. Let C1 be a constant bounding |∇σk| everywhere, and let C2 be a
constant bounding |∇∇σk| and |∇∇σ′

k| everywhere. Fix two constants 0 < c < c′ <
1
2
, such that the following inequalities hold : c < r, c < 1

2
γ C−1

1 , c′ < (2+ γ−1C1)
−1,

and (2C2γ
−1 + 1)c < c′. Clearly, these constants depend only on r, γ, C1 and C2.

Assume that |σk(x)| and |σ′
k(x)| are both smaller than c η. Because of the γ-

transversality to 0 of σ′
k and because |σ′

k(x)| < c η < γ, the covariant derivative of
σ′

k is surjective at x, and admits a right inverse (E ′
k)x → TxX of norm less than

γ−1. Since the connection is unitary, applying this right inverse to σ ′
k itself one

can follow the downward gradient flow of |σ′
k|, and since one remains in the region

where |σ′
k| < γ this gradient flow converges to a point y where σ′

k vanishes, at a
distance d from the starting point x no larger than γ−1c η. In particular, d < c < r,
so y ∈ Bgk

(x, r) ∩ Σ′
k, and therefore the restriction of σk to Σ′

k is η-transverse to 0
at y.

Since c < 1
2
γ C−1

1 , the norm of σk(y) differs from that of σk(x) by at most C1d <
η
2
,

and so |σk(y)| < η. Since y ∈ Bgk
(x, r)∩Σ′

k, we therefore know that ∇σ′
k is surjective

at y and vanishes in all directions tangential to Σ′
k, while ∇σk restricted to TyΣ

′
k

is surjective and larger than η. It follows that ∇(σk ⊕ σ′
k) is surjective at y. Let

ρ : (Ek)y → TyΣ
′
k and ρ′ : (E ′

k)y → TyX be the right inverses of ∇yσk |Σ′

k
and ∇yσ

′
k

given by the transversality properties of σk |Σ′

k
and σ′

k. We now construct a right

inverse ρ̂ : (Ek ⊕ E ′
k)y → TyX of ∇y(σk ⊕ σ′

k) with bounded norm.
Considering any element u ∈ (Ek)y, the vector û = ρ(u) ∈ TyΣ

′
k has norm at most

η−1|u| and satisfies ∇σk(û) = u. Clearly ∇σ′
k(û) = 0 because û is tangent to Σ′

k, so
we define ρ̂(u) = û. Now consider an element v of (E ′

k)y, and let v̂ = ρ′(v) : we have
|v̂| ≤ γ−1|v| and ∇σ′

k(v̂) = v. Let ŵ = ρ(∇σk(v̂)) : then ∇σk(ŵ) = ∇σk(v̂) and
∇σ′

k(ŵ) = 0, while |ŵ| ≤ η−1C1|v̂| ≤ η−1γ−1C1|v|. Therefore ∇(σk⊕σ′
k)(v̂−ŵ) = v,

and we define ρ̂(v) = v̂ − ŵ.
Therefore ∇(σk ⊕ σ′

k) admits at y a right inverse ρ̂ of norm bounded by η−1 +
γ−1 + η−1γ−1C1 ≤ (2 + γ−1C1)η

−1 < (c′η)−1. Finally, note that ∇x(σk ⊕ σ′
k) differs

from ∇y(σk ⊕σ′
k) by at most 2C2d < 2C2γ

−1c η < (c′− c)η. Therefore, ∇x(σk ⊕σ′
k)

is also surjective, and is larger than (c′η)− ((c′−c)η) = c η. In other terms, we have
shown that σk ⊕ σ′

k is c η-transverse to 0 at x, which is what we sought to prove.

The proof of (2) is much easier : we know that x ∈ Σ′
k, i.e. σ′

k(x) = 0, and
let us assume that |σk(x)| < η. Then |σk(x) ⊕ σ′

k(x)| = |σk(x)| < η, and the η-
transversality to 0 of σk ⊕ σ′

k at x implies that ∇x(σk ⊕ σ′
k) has a right inverse ρ̂

of norm less than η−1. Choose any u ∈ (Ek)x, and let ρ(u) = ρ̂(u ⊕ 0). One has
∇σ′

k(ρ(u)) = 0, therefore ρ(u) lies in TxΣ
′
k, and ∇σk(ρ(u)) = u by construction.

So (∇σk)|TxΣ′

k
is surjective and admits ρ as a right inverse. Moreover, |ρ(u)| =
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|ρ̂(u ⊕ 0)| ≤ η−1|u|, so the norm of ρ is less than η−1, which shows that σk |Σ′

k
is

η-transverse to 0 at x.

It follows from assertion (2) of Lemma 6 that, in order to obtain the transversality
to 0 of T (σk)|R(σk), it is sufficient to make T (σk) ⊕ Jac(Pσk) transverse to 0 over a
neighborhood of R(σk). Therefore, we can use once more the globalization principle
of Proposition 3 to prove Proposition 7. Indeed, consider a section s of C3 ⊗ Lk

satisfying P3(
γ
2
), a point x ∈ X and a constant η > 0, and say that s satisfies the

property P(η, x) if either x is at distance more than η of R(s), or x lies close to R(s)
and T (s)⊕ Jac(Ps) is η-transverse to 0 at x (i.e. one of the two quantities |(T (s)⊕
Jac(Ps))(x)| and |∇(T (s)⊕ Jac(Ps))(x)| is larger than η). Since Jac(Ps)⊕T (s) is,
under the assumption P3(

γ
2
), a smooth function of s and its first two derivatives,

and since R(s) depends nicely on s, it is easy to show that the property P is
local and C3-open. So one only needs to check that P satisfies the assumptions of
Proposition 3. Our next remark is :

Lemma 7. There exists a constant r′0 > 0 (independent of k) with the follow-
ing property : choose x ∈ X and r′ < r′0, and let sk be asymptotically holo-
morphic sections of C3 ⊗ Lk satisfying P3(

γ
2
). Assume that Bgk

(x, r′) intersects
R(sk). Then there exists an approximately holomorphic map θk,x from the disc D+

of radius 11
10

in C to R(sk) such that : (i) the image by θk,x of the unit disc D

contains Bgk
(x, r′) ∩ R(sk) ; (ii) |∇θk,x|C1,gk

= O(1) and |∂̄θk,x|C1,gk
= O(k−1/2) ;

(iii) θk,x(D
+) is contained in a ball of radius O(r′) centered at x.

Moreover the same statement holds for one-parameter families of sections : given
sections (st,k)t∈[0,1] depending continuously on t, satisfying P3(

γ
2
) and such that

Bgk
(x, r′) intersects R(st,k) for all t, there exist approximately Jt-holomorphic maps

θt,k,x depending continuously on t and with the same properties as above.

Proof. We work directly with the case of one-parameter families (the result for
isolated sections follows trivially) and let jt,k = Jac(Pst,k). First note that R(st,k)
is the zero set of jt,k, which is γ

2
-transverse to 0 and has uniformly bounded second

derivative. So, given any point y ∈ R(st,k), |∇jt,k(y)| > γ
2
, and therefore there

exists c > 0, depending only on γ and the bound on ∇∇jt,k, such that ∇jt,k varies
by a factor of at most 1

10
in the ball of radius c centered at y. It follows that

Bgk
(y, c) ∩ R(st,k) is diffeomorphic to a ball (in other words, R(st,k) is “trivial at

small scale”).
Assume first that 3r′ < c. For all t, choose a point yt,k (not necessarily depending

continuously on t) in Bgk
(x, r′)∩R(st,k) 6= ∅. The intersection Bgk

(yt,k, 3r
′)∩R(st,k)

is diffeomorphic to a ball and therefore connected, and contains Bgk
(x, r′)∩R(st,k)

which is nonempty and depends continuously on t. Therefore, the set
⋃

t{t} ×
Bgk

(yt,k, 3r
′) ∩ R(st,k) is connected, which implies the existence of points xt,k ∈

Bgk
(yt,k, 3r

′) ∩R(st,k) ⊂ Bgk
(x, 4r′) ∩R(st,k) which depend continuously on t.

Consider local approximately Jt-holomorphic coordinate charts over a neigh-
borhood of xt,k, depending continuously on t, as given by Lemma 3, and call
ψt,k : (C2, 0) → (X, xt,k) the inverse of the coordinate map. Because of asymp-
totic holomorphicity, the tangent space to R(st,k) at xt,k lies within O(k−1/2) of the

complex subspace T̃xt,k
R(st,k) = Ker ∂jt,k(xt,k) of Txt,k

X. Composing ψt,k with a
rotation in C2, one can get maps ψ′

t,k satisfying the same bounds as ψt,k and such

that the differential of ψ′
t,k at 0 maps C × {0} to T̃xt,k

R(st,k).
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The estimates of Lemma 3 imply that there exists a constant λ = O(r′) such that

ψ′
t,k(BC2(0, λ)) ⊃ Bgk

(x, r′). Define ψ̃t,k(z) = ψ′
t,k(λz) : if r′ is sufficiently small,

this map is well-defined over the ball BC2(0, 2). Over BC2(0, 2) the estimates of

Lemma 3 imply that |∂̄ψ̃t,k|C1,gk
= O(λk−1/2) and |∇ψ̃t,k|C1,gk

= O(λ). Moreover,

because λ = O(r′) the image by ψ̃t,k of BC2(0, 2) is contained in a ball of radius
O(r′) around x.

Assuming r′ to be sufficiently small, one can also require that the image of
BC2(0, 2) by ψ̃t,k has diameter less than c. The submanifolds R(st,k) are then triv-
ial over the considered balls, so it follows from the implicit function theorem that
R(st,k) ∩ ψ̃t,k(D

+ ×D+) can be parametrized in the chosen coordinates as the set

of points of the form ψ̃t,k(z, τt,k(z)) for z ∈ D+, where τt,k : D+ → D+ satisfies
τt,k(0) = 0 and ∇τt,k(0) = O(k−1/2).

The derivatives of τt,k can be easily computed, since they are characterized by the

equation jt,k(ψ̃t,k(z, τt,k(z))) = 0. Notice that, if r′ is small enough, it follows from

the transversality to 0 of jt,k that |∇jt,k ◦ dψ̃t,k(v)| is larger than a constant times
λ|v| for all v ∈ {0} × C and at any point of D+ × D+. Combining this estimate
with the bounds on the derivatives of jt,k given by asymptotic holomorphicity and

the above bounds on the derivatives of ψ̃t,k, one gets that |∇τt,k|C1 = O(1) and
|∂̄τt,k|C1 = O(k−1/2) over D+.

One then defines θt,k(z) = ψ̃t,k(z, τt,k(z)) over D+, which satisfies all the required
properties : the image θt,k(D

+) is contained in R(st,k) and in a ball of radius O(r′)

centered at x ; θt,k(D) contains the intersection of R(st,k) with ψ̃t,k(D × D+) ⊃
ψ′

t,k(BC2(0, λ)) ⊃ Bgk
(x, r′) ; and the required bounds on derivatives follow directly

from those on derivatives of τt,k and ψ̃t,k. Therefore, Lemma 7 is proved under the
assumption that r′ is small enough. We set r′0 in the statement of the lemma to
be the bound on r′ which ensures that all the assumptions we have made on r′ are
satisfied.

We now prove that the assumptions of Proposition 3 hold for property P in the
case of single sections sk (the case of one-parameter families is discussed later). Let
x ∈ X, 0 < δ < γ

4
, and consider asymptotically holomorphic sections sk of C3 ⊗ Lk

satisfying P3(
γ
2
) and the corresponding maps fk = Psk. We have to show that, for

large enough k, a perturbation of sk with Gaussian decay and smaller than δ in C3

norm can make property P hold over a ball centered at x. Because of assertion (1)
of Lemma 6, it is actually sufficient to show that there exist constants c, c′ and p
independent of k and δ such that, if x lies within distance c of R(sk), then sk can
be perturbed to make the restriction of T (sk) to R(sk) η-transverse to 0 over the
intersection of R(sk) with a ball Bgk

(x, c), where η = c′δ (log δ−1)−p. Such a result
is then sufficient to imply the transversality to 0 of T (sk) ⊕ Jac(fk) over the ball
Bgk

(x, c
2
), with a transversality constant decreased by a bounded factor.

As in previous sections, composing with a rotation in C3 (constant over X),
one can assume that sk(x) is directed along the first component in C3, i.e. that
s1

k(x) = s2
k(x) = 0 and therefore |s0

k(x)| ≥ γ
2
. Because of the uniform bound on

|∇sk|, there exists r > 0 (independent of k) such that |s0
k| ≥ γ

3
, |s1

k| < γ
3

and
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|s2
k| < γ

3
over the ball Bgk

(x, r). Therefore, over this ball one can define the map

hk(y) = (h1
k(y), h

2
k(y)) =

(s1
k(y)

s0
k(y)

,
s2

k(y)

s0
k(y)

)

.

The map fk is the composition of hk with the map ι : (z1, z2) 7→ [1 : z1 : z2] from
C2 to CP2, which is a quasi-isometry over the unit ball in C2. Therefore, at any
point y ∈ Bgk

(x, r), the bound |∂fk(y)| ≥ γ
2

implies that |∂hk(y)| ≥ γ ′ for some
constant γ ′ > 0. Moreover, one has Jac(fk) = φ Jac(hk), where φ(y) is the Jacobian
of ι at hk(y). In particular, Jac(hk) vanishes at exactly the same points of Bgk

(x, r)
as Jac(fk). Since |φ| is bounded between two universal constants over Bgk

(x, r)
and ∇φ is bounded too, it follows from the γ

2
-transversality to 0 of Jac(fk) that,

decreasing γ ′ if necessary, Jac(hk) is γ′-transverse to 0 over Bgk
(x, r).

Since |∂hk(x)| ≥ γ ′, after composing with a rotation in C2 (constant over X)

acting on the two components (s1
k, s

2
k) one can assume that |∂h2

k(x)| ≥ γ′

2
. Since

∇∇hk is uniformly bounded, decreasing r if necessary one can ensure that |∂h2
k|

remains larger than γ′

4
at every point of Bgk

(x, r).

Let us now show that, over R̂x(sk) = Bgk
(x, r)∩R(sk), the transversality to 0 of

T (sk) follows from that of T̂ (sk) = ∂h2
k ∧ ∂Jac(hk).

It follows from the identity Jac(fk) = φ Jac(hk) and the vanishing of Jac(hk)

over R̂x(sk) that ∂Jac(fk) = φ ∂Jac(hk) over R̂x(sk). Moreover the two (1, 0)-forms

∂fk and ∂hk have complex rank one at any point of R̂x(sk) and are related by
∂fk = dι(∂hk), so they have the same kernel (in some sense they are “colinear”).
Because |∂h2

k| is bounded from below over Bgk
(x, r), the ratio between |∂hk| and

|∂h2
k| is bounded. Because the line bundle L(sk) on which one projects ∂fk coincides

with Im ∂fk over R(sk), we have |π(∂fk)| = |∂fk| over R(sk). Since ι is a quasi-
isometry over the unit ball, it follows that the ratio between |π(∂fk)| and |∂h2

k|
is bounded from above and below over R̂x(sk). Moreover, the two 1-forms π(∂fk)

and ∂h2
k have same kernel, so one can write π(∂fk) = ψ ∂h2

k over R̂x(sk), with ψ
bounded from above and below. Because of the uniform bounds on derivatives of sk

and therefore fk and hk, it is easy to check that the derivatives of ψ are bounded.
So T (sk) = φψ T̂ (sk) over R̂x(sk). Therefore, assume that T̂ (sk)|R(sk) is η-

transverse to 0 at a given point y ∈ R̂x(sk), and let C > 1 be a constant such

that 1
C
< |φψ| < C and |∇(φψ)| < C over R̂x(sk). If |T (sk)(y)| < η

2C3 , then

|T̂ (sk)(y)| < η
2C2 < η, and therefore |∂(T̂ (sk))(y)| > η, so at y one has |∂(T (sk))| ≥

|φψ ∂(T̂ (sk))| − |T̂ (sk)∂(φψ)| > 1
C
η − η

2C2C = η
2C

> η
2C3 . In other terms, the

restriction to R(sk) of T (sk) is η
2C3 -transverse to 0 at y.

Therefore, we only need to show that there exists a constant c > 0 such that, if
Bgk

(x, c)∩R(sk) 6= ∅, then by perturbing sk it is possible to ensure that T̂ (sk)|R(sk)

is transverse to 0 over Bgk
(x, c) ∩R(sk).

By Lemma 7, given any sufficiently small constant c > 0 and assuming that
Bgk

(x, c) ∩ R(sk) 6= ∅, there exists an approximately holomorphic map θk : D+ →
R(sk) such that θk(D) contains Bgk

(x, c)∩R(sk) and satisfying bounds |∇θk|C1,gk
=

O(1) and |∂̄θk|C1,gk
= O(k−1/2). We call c̄ = O(c) the size of the ball such that

θk(D
+) ⊂ Bgk

(x, c̄), and assume that c is small enough to have c̄ < r.
From now on, we assume that Bgk

(x, c) ∩R(sk) 6= ∅.
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Let sref
k,x be the asymptotically holomorphic sections of Lk with Gaussian decay

away from x given by Lemma 2, and let z1
k and z2

k be the complex coordinate
functions of a local approximately holomorphic Darboux coordinate chart on a
neighborhood of x. There exist two complex numbers a and b such that ∂h2

k(x) =
a ∂z1

k(x) + b ∂z2
k(x). Composing the coordinate chart (z1

k, z
2
k) with the rotation

1

|a|2 + |b2|

(

b̄ −ā
a b

)

,

we can actually write ∂h2
k(x) = λ ∂z2

k(x), with |λ| bounded from below indepen-
dently of k and x. We now define Qk,x =

(

0, (z1
k)

2sref
k,x, 0

)

and study the behavior of

T̂ (sk + wQk,x) for small w ∈ C.

First we look at how adding wQk,x to sk affects the submanifold R(sk) : for small
enough w, R(sk +wQk,x) is a small deformation of R(sk) and can therefore be seen
as a section of TX|R(sk). Because the derivative of Jac(hk) is uniformly bounded and
Bgk

(x, c)∩R(sk) is not empty, if c is small enough then |Jac(hk)| remains less than
γ′ over Bgk

(x, c̄). Recall that Jac(hk) is γ′-transverse to 0 over Bgk
(x, r) : therefore,

at every point y ∈ Bgk
(x, c̄), ∇Jac(hk) admits a right inverse ρ : Λ2,0T ∗

yX → TyX

of norm less than 1
γ′

. Adding wQk,x to sk increases Jac(hk) by w∆k,x, where

∆k,x = ∂
((z1

k)
2sref

k,x

s0
k

)

∧ ∂h2
k.

Therefore, R(sk + wQk,x) is obtained by shifting R(sk) by an amount equal to

−ρ(w∆k,x) + O(|w∆k,x|2). It follows immediately that the value of T̂ (sk + wQk,x)

at a point of R(sk + wQk,x) differs from the value of T̂ (sk) at the corresponding
point of R(sk) by an amount

Θk,x(w) = w ∂h2
k ∧ ∂∆k,x −∇(T̂ (sk)).ρ(w∆k,x) +O(w2).

Our aim is therefore to show that, if c is small enough, for a suitable value of w the
quantity T̂ (sk) + Θk,x(w) is transverse to 0 over R(sk) ∩Bgk

(x, c).

Notice that the quantities T̂ (sk) and Jac(hk) are asymptotically holomorphic, so

that ∇(T̂ (sk)) and ρ are approximately complex linear. Therefore,

∇(T̂ (sk)).ρ(w∆k,x) = w∇(T̂ (sk)).ρ(∆k,x) +O(k−1/2).

It follows that Θk,x(w) = wΘ0
k,x +O(w2) +O(k−1/2), where

Θ0
k,x = ∂h2

k ∧ ∂∆k,x −∇(T̂ (sk)).ρ(∆k,x).

We start by computing the value of Θ0
k,x at x, using the fact that ∂h2

k(x) =

λ ∂z2
k(x) while z1

k(x) = 0 and therefore ∆k,x(x) = 0. Because of the identity ∆k,x =
sref
k,x

s0
k

2z1
k∂z

1
k ∧ ∂h2

k +O(|z1
k|2), an easy calculation yields that

∂∆k,x = 2
sref

k,x

s0
k

(∂z1
k ∧ ∂h2

k) ∂z
1
k +O(|z1

k|)

and therefore

Θ0
k,x(x) = −2λ2

sref
k,x(x)

s0
k(x)

(

∂z1
k(x) ∧ ∂z2

k(x)
)2
.
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The important point is that there exists a constant γ ′′ > 0 independent of k and x
such that |Θ0

k,x(x)| ≥ γ ′′.

Since the derivatives of Θ0
k,x are uniformly bounded, |Θ0

k,x| remains larger than
γ′′

2
at every point of Bgk

(x, c̄) if c is small enough. It follows that, over R(sk) ∩
Bgk

(x, c), the transversality to 0 of T̂ (sk)+Θk,x(w) is equivalent to that of (T̂ (sk)+
Θk,x(w))/Θ0

k,x. The value of c we finally choose to use in Lemma 7 for the construc-
tion of θk is one small enough to ensure that all the above statements hold (but still
independent of k, x and δ). Now define, over the disc D+ ⊂ C, the function

vk(z) =
T̂ (sk)(θk(z))

Θ0
k,x(θk(z))

with values in C. Because Θ0
k,x is bounded from below over Bgk

(x, c̄) and because of
the bounds on the derivatives of θk given by Lemma 7, the functions vk : D+ → C

satisfy the hypotheses of Proposition 6 for all large enough k. Therefore, if C0 is a
constant larger than |Qk,x|C3,gk

, and if k is large enough, there exists wk ∈ C, with
|wk| ≤ δ

C0
, such that vk + wk is α-transverse to 0 over the unit disc D in C, where

α = δ
C0

log(( δ
C0

)−1)−p.

Multiplying again by Θ0
k,x and recalling that θk maps diffeomorphically D to a

subset of R(sk) containing R(sk) ∩ Bgk
(x, c), we get that the restriction to R(sk)

of T̂ (sk) + wkΘ
0
k,x is α′-transverse to 0 over R(sk) ∩ Bgk

(x, c) for some α′ differing

from α by at most a constant factor. Recall that Θk,x(wk) = wkΘ
0
k,x + O(|wk|2) +

O(k−1/2), and note that |wk|2 is at most of the order of δ2, while α′ is of the order of
δ log(δ−1)−p : so, if δ is small enough, one can assume that |wk|2 is much smaller than

α′. If k is large enough, k−1/2 is also much smaller than α′, so that T̂ (sk)+Θk,x(wk)

differs from T̂ (sk) +wkΘ
0
k,x by less than α′

2
, and is therefore α′

2
-transverse to 0 over

R(sk) ∩Bgk
(x, c).

Next, recall that R(sk + wkQk,x) is obtained by shifting R(sk) by an amount
−ρ(wk∆k,x) + O(|wk∆k,x|2) = O(|wk|) (because |∆k,x| is uniformly bounded, or
more generally because the perturbation of sk is O(|wk|) in C3 norm). So, if δ is
small enough, one can safely assume that the distance by which one shifts the points
of R(sk) is less than c

2
. Therefore, given any point in R(sk + wkQk,x) ∩ Bgk

(x, c
2
),

the corresponding point in R(sk) belongs to Bgk
(x, c).

We have seen above that the value of T̂ (sk +wkQk,x) at a point of R(sk +wkQk,x)

differs from the value of T̂ (sk) at the corresponding point of R(sk) by Θk,x(wk) ;

therefore it follows from the transversality properties of T̂ (sk) + Θk,x(wk) that the

restriction to R(sk + wkQk,x) of T̂ (sk + wkQk,x) is α′′-transverse to 0 over R(sk +
wkQk,x) ∩Bgk

(x, c
2
) for some α′′ > 0 differing from α′ by at most a constant factor.

By the remarks above, this transversality property implies transversality to 0 of
the restriction of T (sk + wkQk,x) over R(sk + wkQk,x) ∩ Bgk

(x, c
2
) ; therefore, by

Lemma 6, T (sk +wkQk,x)⊕ Jac(P(sk +wkQk,x)) is η-transverse to 0 over Bgk
(x, c

4
),

with a transversality constant η differing from α′′ by at most a constant factor. So,
if δ is small enough and k large enough, in the case where Bgk

(x, c)∩R(sk) 6= ∅, we
have constructed wk such that sk +wkQk,x satisfies the required property P(η, y) at
every point y ∈ Bgk

(x, c
4
). By construction, |wkQk,x|C3,gk

≤ δ, the asymptotically
holomorphic sections Qk,x have uniform Gaussian decay away from x, and η is larger
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than c′δ log(δ−1)−p for some constant c′ > 0, so all required properties hold in this
case.

Moreover, in the case where Bgk
(x, c) does not intersect R(sk), the section sk

already satisfies the property P( 3
4
c, y) at every point y of Bgk

(x, c
4
) and no per-

turbation is necessary. Therefore, the property P under consideration satisfies the
hypotheses of Proposition 3 whether Bgk

(x, c) intersects R(sk) or not. This ends
the proof of Proposition 7 for isolated sections sk.

In the case of one-parameter families of sections, the argument still works sim-
ilarly : we are now given sections st,k depending continuously on a parameter
t ∈ [0, 1], and try to perform the same construction as above for each value of
t, in such a way that everything depends continuously on t. As previously, we have
to show that one can perturb st,k in order to ensure that, for all t such that x lies
in a neighborhood of R(st,k), T (st,k)|R(st,k) is transverse to 0 over the intersection
of R(st,k) with a ball centered at x.

As before, a continuous family of rotations of C3 can be used to ensure that
s1

t,k(x) and s2
t,k(x) vanish for all t, allowing one to define ht,k for all t. Moreover

the argument at the end of §3.1 proves the existence of a continuous one-parameter
family of rotations of C2 acting on the two components (s1

t,k, s
2
t,k) allowing one to

assume that |∂h2
t,k(x)| ≥ γ′

2
for all t. Therefore, as in the case of isolated sections,

the problem is reduced to that of perturbing st,k when x lies in a neighborhood of

R(st,k) in order to obtain the transversality to 0 of T̂ (st,k)|R(st,k) over the intersection
of R(st,k) with a ball centered at x.

Because Lemma 7 and Proposition 6 also apply in the case of 1-parameter families
of sections, the argument used above to obtain the expected transversality result
for isolated sections also works here for all t such that x lies in the neighborhood
of R(st,k). However, the ball Bgk

(x, c) intersects R(st,k) only for certain values of
t ∈ [0, 1], which makes it necessary to work more carefully.

Define Ωk ⊂ [0, 1] as the set of all t for which Bgk
(x, c)∩R(st,k) 6= ∅. For all large

enough k and for all t ∈ Ωk, Lemma 7 allows one to define maps θt,k : D+ → R(st,k)
depending continuously on t and with the same properties as in the case of isolated
sections. Using local coordinates zi

t,k depending continuously on t given by Lemma

3 and sections sref
t,k,x given by Lemma 2, the quantities Qt,k,x, ∆t,k,x, Θt,k,x(w), Θ0

t,k,x

and vt,k can be defined for all t ∈ Ωk by the same formulae as above and depend
continuously on t.

Proposition 6 then gives, for all large k and for all t ∈ Ωk, complex numbers
wt,k of norm at most δ

C0
and depending continuously on t, such that the functions

vt,k +wt,k are transverse to 0 over D. As in the case of isolated sections, this implies
that st,k + wt,kQt,k,x satisfies the required transversality property over Bgk

(x, c
4
).

Our problem is to define asymptotically holomorphic sections τt,k,x of C3⊗Lk for
all values of t ∈ [0, 1], of C3-norm less than δ and with Gaussian decay away from
x, in such a way that the sections st,k + τt,k,x depend continuously on t ∈ [0, 1] and
satisfy the property P over Bgk

(x, c
4
) for all t. For this, let β : R+ → [0, 1] be a

continuous cut-off function equal to 1 over [0, 3c
4
] and to 0 over [c,+∞). Define, for

all t ∈ Ωk,
τt,k,x = β

(

distgk
(x,R(st,k))

)

wt,kQt,k,x,
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and τt,k,x = 0 for all t 6∈ Ωk. It is clear that, for all t ∈ [0, 1], the sections τt,k,x

are asymptotically holomorphic, have Gaussian decay away from x, depend con-
tinuously on t and are smaller than δ in C3 norm. Moreover, for all t such that
distgk

(x,R(st,k)) ≤ 3c
4
, one has τt,k,x = wt,kQt,k,x, so the sections st,k + τt,k,x satisfy

property P over Bgk
(x, c

4
) for all such values of t.

For the remaining values of t, namely those such that x is at distance more than 3c
4

from R(st,k), the argument is the following : since the perturbation τt,k,x is smaller
than δ, every point of R(st,k + τt,k,x) lies within distance O(δ) of R(st,k). Therefore,
decreasing the maximum allowable value of δ in Proposition 3 if necessary, one can
safely assume that this distance is less than c

4
. It follows that x is at distance more

than c
2

of R(st,k + τt,k,x), and so that the property P( c
4
, y) holds at every point

y ∈ Bgk
(x, c

4
).

Therefore, for all large enough k and for all t ∈ [0, 1], the perturbed sections
st,k+τt,k,x satisfy property P over the ball Bgk

(x, c
4
). It follows that the assumptions

of Proposition 3 also hold for P in the case of one-parameter families, and so
Proposition 7 is proved.

4. Dealing with the antiholomorphic part

4.1. Holomorphicity in the neighborhood of cusp points. At this point in
the proof, we have constructed asymptotically holomorphic sections of C3 ⊗ Lk

satisfying all the required transversality properties. We now need to show that, by
further perturbation, one can obtain ∂̄-tameness. We first handle the case of cusp
points :

Proposition 8. Let (sk)k�0 be γ-generic asymptotically J-holomorphic sections of
C3 ⊗ Lk. Then there exist constants (Cp)p∈N and c > 0 such that, for all large k,

there exist ω-compatible almost-complex structures J̃k on X and asymptotically J-
holomorphic sections σk of C3⊗Lk with the following properties : at any point whose
gk-distance to CJ̃k

(σk) is less than c, the almost-complex structure J̃k is integrable

and the map Pσk is J̃k-holomorphic ; and for all p ∈ N, |J̃k −J |Cp,gk
≤ Cpk

−1/2 and
|σk − sk|Cp,gk

≤ Cpk
−1/2.

Furthermore, the result also applies to one-parameter families of γ-generic asymp-
totically Jt-holomorphic sections (st,k)t∈[0,1],k�0 : for all large k there exist almost-

complex structures J̃t,k and asymptotically Jt-holomorphic sections σt,k depending
continuously on t and such that the above properties hold for all values of t. More-
over, if s0,k and s1,k already satisfy the required properties, and if one assumes that,
for some ε > 0, Jt and st,k are respectively equal to J0 and s0,k for all t ∈ [0, ε] and
to J1 and s1,k for all t ∈ [1 − ε, 1], then it is possible to ensure that σ0,k = s0,k and
σ1,k = s1,k.

The proof of this result relies on the following analysis lemma, which states that
any approximately holomorphic complex-valued function defined over the ball B+

of radius 11
10

in C2 can be approximated over the interior ball B of unit radius by a
holomorphic function :

Lemma 8. There exist an operator P : C∞(B+,C) → C∞(B,C) and constants

(Kp)p∈N such that, given any function f ∈ C∞(B+,C), the function f̃ = P (f) is

holomorphic over the unit ball B and satisfies |f− f̃ |Cp(B) ≤ Kp |∂̄f |Cp(B+) for every
p ∈ N.
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Proof. (see also [2]). This is a standard fact which can be proved e.g. using the
Hörmander theory of weighted L2 spaces. Using a suitable weighted L2 norm on B+

which compares uniformly with the standard norm on the interior ball B ′ of radius
1 + 1

20
(B ⊂ B′ ⊂ B+), one obtains a bounded solution to the Cauchy-Riemann

equation : for any ∂̄-closed (0, 1)-form ρ on B+ there exists a function T (ρ) such
that ∂̄T (ρ) = ρ and |T (ρ)|L2(B′) ≤ C|ρ|L2(B+) for some constant C.

Take ρ = ∂̄f and let h = T (ρ) : since ∂̄h = ρ = ∂̄f , the function f̃ = f − h is
holomorphic (in other words, we set P = Id−T ∂̄). Moreover the L2 norm of h and
the Cp norm of ∂̄h = ∂̄f over B′ are bounded by multiples of |∂̄f |Cp(B+) ; therefore,
by standard elliptic theory, the same is true for the Cp norm of h over the interior
ball B, which gives the desired result.

We first prove Proposition 8 in the case when there is no parameter, where the
argument is fairly easy. Because sk is γ-generic, the set of points of R(sk) where
T (sk) vanishes, i.e. CJ(sk), is finite. Moreover ∇T (sk)|R(sk) is larger than γ at all
cusp points and ∇∇T (sk) is uniformly bounded, so there exists a constant r > 0
such that the gk-distance between any two points of CJ(sk) is larger than 4r.

Let x be a point of CJ(sk), and consider a local approximately J-holomorphic
Darboux map ψk : (C2, 0) → (X, x) as given by Lemma 3. Because of the bounds
on ∂̄ψk, the ω-compatible almost-complex structure J ′

k on the ball Bgk
(x, 2r) defined

by pulling back the standard complex structure of C2 satisfies bounds of the type
|J ′

k − J |Cp,gk
= O(k−1/2) over Bgk

(x, 2r) for all p ∈ N.
Recall that the set of ω-skew-symmetric endomorphisms of square −1 of the

tangent bundle TX (i.e. ω-compatible almost-complex structures) is a subbundle
of End(TX) whose fibers are contractible. Therefore, there exists a one-parameter
family (J τ

k )τ∈[0,1] of ω-compatible almost-complex structures over Bgk
(x, 2r) depend-

ing smoothly on τ and such that J0
k = J and J1

k = J ′
k. Also, let τx : Bgk

(x, 2r) →
[0, 1] be a smooth cut-off function with bounded derivatives such that τx = 1 over
Bgk

(x, r) and τx = 0 outside of Bgk
(x, 3

2
r).

Then, define J̃k to be the almost-complex structure which equals J outside of the
2r-neighborhood of CJ(sk), and which at any point y of a ball Bgk

(x, 2r) centered

at x ∈ CJ(sk) coincides with J
τx(y)
k : it is quite easy to check that J̃k is integrable

over the r-neighborhood of CJ(sk) where it coincides with J ′
k, and satisfies bounds

of the type |J̃k − J |Cp,gk
= O(k−1/2) ∀p ∈ N.

Let us now return to a neighborhood of x ∈ CJ(sk), where we need to perturb
sk to make the corresponding projective map locally J̃k-holomorphic. First notice
that, by composing with a rotation of C3 (constant over X), one can safely assume
that s1

k(x) = s2
k(x) = 0. Therefore, |s0

k(x)| ≥ γ, and decreasing r if necessary one

can assume that |s0
k| remains larger than γ

2
at every point of Bgk

(x, r). The J̃k-
holomorphicity of Psk over a neighborhood of x is then equivalent to that of the
map hk with values in C2 defined by

hk(y) = (h1
k(y), h

2
k(y)) =

(s1
k(y)

s0
k(y)

,
s2

k(y)

s0
k(y)

)

.

Because of the properties of the map ψk given by Lemma 3, there exist constants
λ > 0 and r′ > 0, independent of k, such that ψk(BC2(0, 11

10
λ)) is contained in
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Bgk
(x, r) while ψk(BC2(0, 1

2
λ)) contains Bgk

(x, r′). We now define the two complex-
valued functions f 1

k (z) = h1
k(ψk(λz)) and f 2

k (z) = h2
k(ψk(λz)) over the ball B+ ⊂ C2.

By definition of J̃k, the map ψk intertwines the almost-complex structure J̃k over
Bgk

(x, r) and the standard complex structure of C2, so our goal is to make the
functions f 1

k and f 2
k holomorphic in the usual sense over a ball in C2.

This is where we use Lemma 8. Remark that, because of the estimates on ∂̄Jψk

given by Lemma 3 and those on ∂̄Jhk coming from asymptotic holomorphicity, we
have |∂̄f i

k|Cp(B+) = O(k−1/2) for every p ∈ N and i ∈ {1, 2}. Therefore, by Lemma 8

there exist two holomorphic functions f̃ 1
k and f̃ 2

k , defined over the unit ball B ⊂ C2,

such that |f i
k − f̃ i

k|Cp(B) = O(k−1/2) for every p ∈ N and i ∈ {1, 2}.
Let β : [0, 1] → [0, 1] be a smooth cut-off function such that β = 1 over [0, 1

2
] and

β = 0 over [3
4
, 1], and define, for all z ∈ B and i ∈ {1, 2}, f̂ i

k(z) = β(|z|)f̃ i
k(z) +

(1 − β(|z|))f i
k(z). By construction, the functions f̂ i

k are holomorphic over the ball
of radius 1

2
and differ from f i

k by O(k−1/2).

Going back through the coordinate map, let ĥi
k be the functions on the neigh-

borhood Ux = ψk(BC2(0, λ)) of x which satisfy ĥi
k(ψk(λz)) = f̂ i

k(z) for every z ∈ B.

Define ŝ0
k = s0

k, ŝ
1
k = ĥ1

ks
0
k and ŝ2

k = ĥ2
ks

0
k over Ux, and let σk be the global section

of C3 ⊗ Lk which ∀x ∈ CJ(sk) equals ŝk over Ux and which coincides with sk away
from CJ(sk).

Because f̂ i
k = f i

k near the boundary of B, ŝk coincides with sk near the boundary
of Ux, and σk is therefore a smooth section of C3 ⊗ Lk. For every p ∈ N, it follows
from the bound |f̂ i

k − f i
k|Cp(B) = O(k−1/2) that |σk − sk|Cp,gk

= O(k−1/2). Moreover,

the functions f̂ i
k are holomorphic over BC2(0, 1

2
) where they coincide with f̃ i

k, so the

functions ĥi
k are J̃k-holomorphic over ψk(BC2(0, 1

2
λ)) ⊃ Bgk

(x, r′), and it follows

that Pσk is J̃k-holomorphic over Bgk
(x, r′).

Therefore, the almost-complex structures J̃k and the sections σk satisfy all the
required properties, except that the integrability of J̃k and the holomorphicity of Pσk

are proved to hold on the r′-neighborhood of CJ(sk) rather than on a neighborhood
of CJ̃k

(σk).

However, the Cp bounds |J̃k−Jk| = O(k−1/2) and |σk−sk| = O(k−1/2) imply that
|JacJ̃k

(Pσk) − JacJ(Psk)| = O(k−1/2) and |TJ̃k
(σk) − TJ(sk)| = O(k−1/2). Therefore

it follows from the transversality properties of sk that the points of CJ̃k
(σk) lie

within gk-distance O(k−1/2) of CJ(sk). In particular, if k is large enough, the r′

2
-

neighborhood of CJ̃k
(σk) is contained in the r′-neighborhood of CJ(sk), which ends

the proof of Proposition 8 in the case of isolated sections.

In the case of one-parameter families of sections, the argument is similar. One first
notices that, because of γ-genericity, there exists r > 0 such that, for every t ∈ [0, 1],
the set CJt(st,k) consists of finitely many points, any two of which are mutually
distant of at least 4r. Therefore, the points of CJt(st,k) depend continuously on t,
and their number remains constant.

Consider a continuous family (xt)t∈[0,1] of points of CJt(st,k) : Lemma 3 provides
approximately Jt-holomorphic Darboux maps ψt,k depending continuously on t on
a neighborhood of xt. By pulling back the standard complex structure of C2, one



68 DENIS AUROUX

obtains integrable almost-complex structures J ′
t,k over Bgk

(xt, 2r), depending con-

tinuously on t and differing from Jt by O(k−1/2). As previously, because the set of
ω-compatible almost-complex structures is contractible, one can define a continu-
ous family of almost-complex structures J̃t,k on X by gluing together Jt with the
almost-complex structures J ′

t,k defined over Bgk
(xt, 2r), using a cut-off function at

distance r from CJt(st,k). By construction, the almost-complex structures J̃t,k are

integrable over the r-neighborhood of CJt(st,k), and |J̃t,k − Jt|Cp,gk
= O(k−1/2) for

all p ∈ N.
Next, we perturb st,k near xt ∈ CJt(st,k) in order to make the corresponding

projective map locally J̃t,k-holomorphic. As before, composing with a rotation of
C3 (constant over X and depending continuously on t) and decreasing r if necessary,
we can assume that s1

t,k(xt) = s2
t,k(xt) = 0 and therefore that |s0

t,k| remains larger

than γ
2

over Bgk
(xt, r). The J̃t,k-holomorphicity of Pst,k over Bgk

(xt, r) is then
equivalent to that of the map ht,k with values in C2 defined as above.

As previously, there exist constants λ and r′ such that ψt,k(BC2(0, 11
10
λ)) is con-

tained in Bgk
(xt, r) and ψt,k(BC2(0, 1

2
λ)) ⊃ Bgk

(xt, r
′) ; once again, our goal is to

make the functions f i
t,k : B+ → C defined by f i

t,k(z) = hi
t,k(ψt,k(λz)) holomorphic

in the usual sense.
Because of the estimates on ∂̄Jtψt,k and ∂̄Jtht,k, we have |∂̄f i

t,k|Cp(B+) = O(k−1/2)

∀p ∈ N, so Lemma 8 provides holomorphic functions f̃ i
t,k overB which differ from f i

t,k

by O(k−1/2). By the same cut-off procedure as above, we can thus define functions

f̂ i
t,k which are holomorphic over BC2(0, 1

2
) and coincide with f i

t,k near the boundary
of B. Going back through the coordinate maps, we define as previously functions
ĥi

t,k and sections ŝt,k over the neighborhood Ut,xt = ψt,k(BC2(0, λ)) of xt. Since ŝt,k

coincides with st,k near the boundary of Ut,xt , we can obtain smooth sections σt,k of
C3⊗Lk by gluing st,k together with the various sections ŝt,k defined near the points
of CJt(st,k).

As previously, the maps Pσt,k are J̃t,k-holomorphic over the r′-neighborhood of
CJt(st,k) and satisfy |σt,k − st,k|Cp,gk

= O(k−1/2) ; therefore the desired result follows

from the observation that, for large enough k, CJ̃t,k
(σt,k) lies within distance r′

2
of

CJt(st,k).

We now consider the special case where s0,k already satisfies the required con-
ditions, i.e. there exists an almost-complex structure J̄0,k within O(k−1/2) of J0,
integrable near CJ̄0,k

(s0,k), and such that Ps0,k is J̄0,k-holomorphic near CJ̄0,k
(s0,k).

Although this is actually not necessary for the result to hold, we also assume, as in
the statement of Proposition 8, that st,k = s0,k and Jt = J0 for every t ≤ ε, for some
ε > 0. We want to prove that one can take σ0,k = s0,k in the above construction.

We first show that one can assume that J̃0,k coincides with J̄0,k over a small
neighborhood of CJ0(s0,k). For this, remark that CJ0(s0,k) lies within O(k−1/2) of
CJ̄0,k

(s0,k), so there exists a constant δ such that, for large enough k, J̄0,k is integrable

and Ps0,k is J̄0,k-holomorphic over the δ-neighborhood of CJ0(s0,k).
Fix points (xt)t∈[0,1] in CJt(st,k), and consider, for all t ≥ ε, the approximately

Jt-holomorphic Darboux coordinates (z1
t,k, z

2
t,k) on a neighborhood of xt and the

inverse map ψt,k given by Lemma 3 and which are used to define the almost-complex

structures J ′
t,k and J̃t,k near xt. We want to show that one can extend the family ψt,k
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to all t ∈ [0, 1] in such a way that the map ψ0,k is J̄0,k-holomorphic. The hypothesis
that Jt and st,k are the same for all t ∈ [0, ε] makes things easier to handle because
Jε = J0 and xε = x0.

Since J̄0,k is integrable over Bgk
(x0, δ) and ω-compatible, there exist local complex

Darboux coordinates Zk = (Z1
k , Z

2
k) at x0 which are J̄0,k-holomorphic. It follows

from the approximate J0-holomorphicity of the coordinates zε,k = (z1
ε,k, z

2
ε,k) and

from the bound |J0− J̄0,k| = O(k−1/2) that, composing with a linear endomorphism
of C2 if necessary, one can assume that the differentials at x0 of the two coordinate
maps, namely ∇x0zε,k and ∇x0Zk, lie within O(k−1/2) of each other. For all t ∈ [0, ε],
žt,k = t

ε
zε,k + (1− t

ε
)Zk defines local coordinates on a neighborhood of x0 ; however,

for t ∈ (0, ε) this map fails to be symplectic by an amount which is O(k−1/2). So we
apply Moser’s argument to žt,k in order to get local Darboux coordinates zt,k over
a neighborhood of x0 which interpolate between Zk and zε,k and which differ from
žt,k by O(k−1/2). It is easy to check that, if k is large enough, then the coordinates
zt,k are well-defined over the ball Bgk

(xt, 2r). Since ∂̄J0Zk and ∂̄J0zε,k are O(k−1/2),
and because zt,k differs from žt,k by O(k−1/2), the coordinates defined by zt,k are
approximately J0-holomorphic (in the sense of Lemma 3) for all t ∈ [0, ε].

Defining ψt,k as the inverse of the map zt,k for every t ∈ [0, ε], it follows im-
mediately that the maps ψt,k, which depend continuously on t, are approximately
Jt-holomorphic over a neighborhood of 0 for every t ∈ [0, 1], and that ψ0,k is J̄0,k-
holomorphic.

We can then define J ′
t,k as previously on Bgk

(xt, 2r), and notice that J ′
0,k coincides

with J̄0,k. Therefore, the corresponding almost-complex structures J̃t,k over X, in

addition to all the properties described previously, also satisfy the equality J̃0,k =
J̄0,k over the r-neighborhood of CJ0(s0,k).

It follows that, constructing the sections σt,k from st,k as previously, we have

σ0,k = s0,k. Indeed, since Ps0,k is already J̃0,k-holomorphic over the r-neighborhood

of CJ0(s0,k), we get that, in the above construction, h1
0,k and h2

0,k are J̃0,k-holomorphic,

and so f 1
0,k and f 2

0,k are holomorphic. Therefore, by definition of the operator P of

Lemma 8, we have f̃ 1
0,k = f 1

0,k and f̃ 2
0,k = f 2

0,k, which clearly implies that σ0,k = s0,k.
The same argument applies near t = 1 to show that, if s1,k already satisfies the

expected properties and if Jt and st,k are the same for all t ∈ [1 − ε, 1], then one
can take σ1,k = s1,k. This ends the proof of Proposition 8.

4.2. Holomorphicity at generic branch points. Our last step in order to obtain
∂̄-tame sections is to ensure, by further perturbation, the vanishing of ∂̄J̃k

(Psk) over
the kernel of ∂J̃k

(Psk) at every branch point.

Proposition 9. Let (sk)k�0 be γ-generic asymptotically J-holomorphic sections of
C3 ⊗ Lk. Assume that there exist ω-compatible almost-complex structures J̃k such
that |J̃k − J |Cp,gk

= O(k−1/2) for all p ∈ N and such that, for some constant

c > 0, fk = Psk is J̃k-holomorphic over the c-neighborhood of CJ̃k
(sk). Then,

for all large k, there exist sections σk such that the following properties hold :
|σk−sk|Cp,gk

= O(k−1/2) for all p ∈ N ; σk coincides with sk over the c
2
-neighborhood

of CJ̃k
(σk) = CJ̃k

(sk) ; and, at every point of RJ̃k
(σk), ∂̄J̃k

(Pσk) vanishes over the
kernel of ∂J̃k

(Pσk).
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Moreover, the same result holds for one-parameter families of asymptotically Jt-
holomorphic sections (st,k)t∈[0,1],k�0 satisfying the above properties. Furthermore, if
s0,k and s1,k already satisfy the properties required of σ0,k and σ1,k, then one can
take σ0,k = s0,k and σ1,k = s1,k.

The role of the almost-complex structure J in the statement of this result may
seem ambiguous, as the sections sk are also asymptotically holomorphic and generic
with respect to the almost-complex structures J̃k. The point is that, by requiring
that all the almost-complex structures J̃k lie within O(k−1/2) of a fixed almost-
complex structure, one ensures the existence of uniform bounds on the geometry of
J̃k independently of k.

We now prove Proposition 9 in the case of isolated sections. In all the following,
we use the almost complex structure J̃k implicitly. Consider a point x ∈ R(sk)
at distance more than 3

4
c from C(sk), and let Kx be the one-dimensional complex

subspace Ker ∂fk(x) of TxX. Because x 6∈ C(sk), we have TxX = TxR(sk) ⊕
Kx. Therefore, there exists a unique 1-form θx ∈ T ∗

xX ⊗ Tfk(x)CP2 such that the
restriction of θx to TxR(sk) is zero and the restriction of θx to Kx is equal to
∂̄fk(x)|Kx

.

Because the restriction of T (sk) to R(sk) is transverse to 0 and because x is at
distance more than 3

4
c from C(sk), the quantity |T (sk)(x)| is bounded from below

by a uniform constant, and therefore the angle between TxR(sk) and Kx is also
bounded from below. So there exists a constant C independent of k and x such
that |θx| ≤ Ck−1/2. Moreover, because ∂̄fk vanishes over the c-neighborhood of
C(sk), the 1-form θx vanishes at all points x close to C(sk) ; therefore we can extend
θ into a section of T ∗X⊗f ∗

kTCP2 over R(sk) which vanishes over the c-neighborhood
of C(sk), and which satisfies bounds of the type |θ|Cp,gk

= O(k−1/2) for all p ∈ N.
Next, use the exponential map of the metric g to identify a tubular neighborhood

of R(sk) with a neighborhood of the zero section in the normal bundle NR(sk).
Given δ > 0 sufficiently small, we define a section χ of f ∗

kTCP2 over the δ-tubular
neighborhood of R(sk) by the following identity : given any point x ∈ R(sk) and
any vector ξ ∈ NxR(sk) of norm less than δ,

χ(expx(ξ)) = β(|ξ|) θx(ξ),

where the fibers of f ∗
kTCP2 at x and at expx(ξ) are implicitly identified using radial

parallel transport, and β : [0, δ] → [0, 1] is a smooth cut-off function equal to 1 over
[0, 1

2
δ] and 0 over [3

4
δ, δ]. Since χ vanishes near the boundary of the chosen tubular

neighborhood, we can extend it into a smooth section over all of X which vanishes
at distance more than δ from R(sk).

Decreasing δ if necessary, we can assume that δ < c
2

: it then follows from
the vanishing of θ over the c-neighborhood of C(sk) that χ vanishes over the c

2
-

neighborhood of C(sk). Moreover, because |θ|Cp,gk
= O(k−1/2) for all p ∈ N and

because the cut-off function β is smooth, χ also satisfies bounds |χ|Cp,gk
= O(k−1/2)

for all p ∈ N.
Fix a point x ∈ R(sk) : χ is identically zero over R(sk) by construction, so ∇χ(x)

vanishes over TxR(sk) ; and, because β ≡ 1 near the origin and by definition of the
exponential map, ∇χ(x)|NxR(sk) = θx|NxR(sk). Since TxR(sk) and NxR(sk) generate
TxX, we conclude that ∇χ(x) = θx. In particular, restricting to Kx, we get that
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∇χ(x)|Kx = θx|Kx
= ∂̄fk(x)|Kx . Equivalently, since Kx is a complex subspace of

TxX, we have ∂̄χ(x)|Kx = ∂̄fk(x)|Kx and ∂χ(x)|Kx = 0 = ∂fk(x)|Kx .

Recall that, for all x ∈ X, the tangent space to CP2 at fk(x) = Psk(x) canonically
identifies with the space of complex linear maps from Csk(x) to (Csk(x))

⊥ ⊂ C3 ⊗
Lk

x. This allows us to define σk(x) = sk(x) − χ(x).sk(x).
It follows from the properties of χ described above that σk coincides with sk over

the c
2
-neighborhood of C(sk) and that |σk−sk|Cp,gk

= O(k−1/2) for all p ∈ N. Because
of the transversality properties of sk, we get that the points of C(σk) lie within
distance O(k−1/2) of C(sk), and therefore if k is large enough that C(σk) = C(sk).

Let f̃k = Pσk, and consider a point x ∈ R(sk) : since χ(x) = 0 and therefore

f̃k(x) = fk(x), it is easy to check that ∇f̃k(x) = ∇fk(x)−∇χ(x) in T ∗
xX⊗Tfk(x)CP2.

Therefore, setting Kx = Ker ∂fk(x) as above, we get that ∂f̃k(x) = ∂fk(x)− ∂χ(x)

and ∂̄f̃k(x) = ∂̄fk(x) − ∂̄χ(x) both vanish over Kx. A first consequence is that

∂f̃k(x) also has rank one, i.e. x ∈ R(σk) : therefore R(sk) ⊂ R(σk). However,
because σk differs from sk by O(k−1/2), it follows from the transversality properties
of sk that, for large enough k, R(σk) is contained in a small neighborhood of R(sk),
and so R(σk) = R(sk).

Furthermore, recall that at every point x of R(σk) = R(sk) one has ∂̄f̃k(x)|Kx =

∂f̃k(x)|Kx = 0. Therefore ∂̄f̃k(x) vanishes over the kernel of ∂f̃k(x), and so the
sections σk satisfy all the required properties.

To handle the case of one-parameter families, remark that the above construc-
tion consists of explicit formulae, so it is easy to check that θ, χ and σk depend
continuously on sk and J̃k. Therefore, starting from one-parameter families st,k and

J̃t,k, the above construction yields for all t ∈ [0, 1] sections σt,k which satisfy the
required properties and depend continuously on t.

Moreover, if s0,k already satisfies the required properties, i.e. if ∂̄f0,k(x)|Kx van-
ishes at any point x ∈ R(s0,k), then the above definitions give θ ≡ 0, and therefore
χ ≡ 0 and σ0,k = s0,k ; similarly for t = 1, which ends the proof of Proposition 9.

4.3. Proof of the main theorems. Assuming that Theorem 3 holds, Theorems 1
and 2 follow directly from the results we have proved so far : combining Propositions
1, 4, 5 and 7, one gets, for all large k, asymptotically holomorphic sections of
C3 ⊗ Lk which are γ-generic for some constant γ > 0 ; Propositions 8 and 9 imply
that these sections can be made ∂̄-tame by perturbing them by O(k−1/2) (which
preserves the genericity properties if k is large enough) ; and Theorem 3 implies that
the corresponding projective maps are then approximately holomorphic singular
branched coverings.

Let us now prove Theorem 4. We are given two sequences s0,k and s1,k of sections
of C3⊗Lk which are asymptotically holomorphic, γ-generic and ∂̄-tame with respect
to almost-complex structures J0 and J1, and want to show the existence of a one-
parameter family of almost-complex structures Jt interpolating between J0 and
J1 and of generic and ∂̄-tame asymptotically Jt-holomorphic sections interpolating
between s0,k and s1,k.

One starts by defining sections st,k and compatible almost-complex structures Jt

interpolating between (s0,k, J0) and (s1,k, J1) in the following way : for t ∈ [0, 2
7
], let

st,k = s0,k and Jt = J0 ; for t ∈ [2
7
, 3

7
], let st,k = (3−7t)s0,k and Jt = J0 ; for t ∈ [3

7
, 4

7
],
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let st,k = 0 and take Jt to be a path of ω-compatible almost-complex structures
from J0 to J1 (recall that the space of compatible almost-complex structures is
connected) ; for t ∈ [ 4

7
, 5

7
], let st,k = (7t − 4)s1,k and Jt = J1 ; and for t ∈ [ 5

7
, 1],

let st,k = s1,k and Jt = J1. Clearly, Jt and st,k depend continuously on t, and the
sections st,k are asymptotically Jt-holomorphic for all t ∈ [0, 1].

Since γ-genericity is a local and C3-open property, there exists α > 0 such that
any section differing from s0,k by less than α in C3 norm is γ

2
-generic, and similarly

for s1,k. Applying Propositions 1, 4, 5 and 7, we get for all large k asymptotically
Jt-holomorphic sections σt,k which are η-generic for some η > 0, and such that
|σt,k − st,k|C3,gk

< α for all t ∈ [0, 1].
We now set s′t,k = s0,k for t ∈ [0, 1

7
] ; s′t,k = (2−7t)s0,k +(7t−1)σ 2

7
,k for t ∈ [1

7
, 2

7
] ;

s′t,k = σt,k for t ∈ [2
7
, 5

7
] ; s′t,k = (7t − 5)s1,k + (6 − 7t)σ 5

7
,k for t ∈ [5

7
, 6

7
] ; and

s′t,k = s1,k for t ∈ [6
7
, 1]. By construction, the sections s′t,k are asymptotically Jt-

holomorphic for all t ∈ [0, 1] and depend continuously on t. Moreover, they are
γ
2
-generic for t ∈ [0, 2

7
] because s′t,k then lies within α in C3 norm of s0,k, and

similarly for t ∈ [ 5
7
, 1] because s′t,k then lies within α in C3 norm of s1,k. They are

also η-generic for t ∈ [ 2
7
, 5

7
] because s′t,k is then equal to σt,k. Therefore the sections

s′t,k are η′-generic for all t ∈ [0, 1], where η′ = min(η, γ
2
).

Next, we apply Proposition 8 to the sections s′t,k : since s′0,k = s0,k and s′1,k = s1,k

are already ∂̄-tame, and since the families s′t,k and Jt are constant over [0, 1
7
] and

[6
7
, 1], one can require of the sections s′′t,k given by Proposition 8 that s′′0,k = s′0,k = s0,k

and s′′1,k = s′1,k = s1,k. Finally, we apply Proposition 9 to the sections s′′t,k to

obtain sections σ′′
t,k which simultaneously have genericity and ∂̄-tameness properties.

Since s′′0,k and s′′1,k are already ∂̄-tame, one can require that σ′′
0,k = s′′0,k = s0,k and

σ′′
1,k = s′′1,k = s1,k. The sections σ′′

t,k interpolating between s0,k and s1,k therefore
satisfy all the required properties, which ends the proof of Theorem 4.

5. Generic tame maps and branched coverings

5.1. Structure near cusp points. In order to prove Theorem 3, we need to
check that, given any generic and ∂̄-tame asymptotically holomorphic sections sk of
C3 ⊗ Lk, the corresponding projective maps fk = Psk : X → CP2 are, at any point
of X, locally approximately holomorphically modelled on one of the three model
maps of Definition 2. We start with the case of the neighborhood of a cusp point.

Let x0 ∈ X be a cusp point of fk, i.e. an element of CJ̃k
(sk), where J̃k is the

almost-complex structure involved in the definition of ∂̄-tameness. By definition,
J̃k differs from J by O(k−1/2) and is integrable over a neighborhood of x0, and fk

is J̃k-holomorphic over a neighborhood of x0. Therefore, choose J̃k-holomorphic
local complex coordinates on X near x0, and local complex coordinates on CP2

near fk(x0) : the map h corresponding to fk in these coordinate charts is, locally,
holomorphic. Because the coordinate map on X is within O(k−1/2) of being J-
holomorphic, we can restrict ourselves to the study of the holomorphic map h =
(h1, h2) defined over a neighborhood of 0 in C2 with values in C2, which satisfies
transversality properties following from the genericity of sk. We need to show that,
composing h with holomorphic local diffeomorphisms of the source space C2 or of
the target space C2, we can get h to be of the form (z1, z2) 7→ (z3

1 − z1z2, z2) over a
neighborhood of 0.
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This statement is a standard result in singularity theory and was first proven
by Whitney in [7] (§16–19). Due to a differently formulated definition of cusp
points and for the sake of completeness, we provide here the first part of Whitney’s
argument.

First, because |∂fk| is bounded from below and x0 is a cusp point, the derivative
∂h(0) does not vanish and has rank one. Therefore, composing with a rotation of
the target space C2 if necessary, we can assume that its image is directed along the
second coordinate, i.e. Im (∂h(0)) = {0} × C.

Calling Z1 and Z2 the two coordinates on the target space C2, it follows im-
mediately that the function z2 = h∗Z2 over the source space has a non-vanishing
differential at 0, and can therefore be considered as a local coordinate function on
the source space. Choose z1 to be any linear function whose differential at the
origin is linearly independent with dz2(0), so that (z1, z2) define holomorphic local
coordinates on a neighborhood of 0 in C2. In these coordinates, h is of the form
(z1, z2) 7→ (h1(z1, z2), z2) where h1 is a holomorphic function such that h1(0) = 0
and ∂h1(0) = 0.

Next, notice that, because Jac(fk) vanishes transversely at x0, the quantity
Jac(h) = det(∂h) = ∂h1/∂z1 vanishes transversely at the origin, i.e.

(

∂2h1

∂z2
1

(0),
∂2h1

∂z1∂z2

(0)

)

6= (0, 0).

Moreover, an argument similar to that of §3.2 shows that locally, because we have
arranged for |∂h2| to be bounded from below, the ratio between the quantities

T (sk) and T̂ = ∂h2 ∧ ∂Jac(h) is bounded from above and below. In particular, the

fact that x0 ∈ CJ̃k
(sk) implies that the restriction of T̂ to the set of branch points

vanishes transversely at the origin.
In our case, T̂ = dz2 ∧ ∂(∂h1

∂z1
) = −(∂2h1/∂z

2
1) dz1 ∧ dz2. Therefore, the vanishing

of T̂ (0) implies that ∂2h1/∂z
2
1 (0) = 0. It follows that ∂2h1/∂z1∂z2 (0) must be non-

zero ; rescaling the coordinate z1 by a constant factor if necessary, this derivative
can be assumed to be equal to −1. Therefore, the map h can be written as

h(z1, z2) = (−z1z2 + λz2
2 +O(|z|3), z2)

= (−z1z2 + λz2
2 + αz3

1 + βz2
1z2 + γz1z

2
2 + δz3

2 +O(|z|4), z2)

where λ, α, β, γ and δ are complex coefficients.
We now consider the following coordinate changes : on the target space C2, define

ψ(Z1, Z2) = (Z1 − λZ2
2 − δZ3

2 , Z2), and on the source space C2, define φ(z1, z2) =
(z1 + βz2

1 + γz1z2, z2). Clearly, these two maps are local diffeomorphisms near the
origin. Therefore, one can replace h by ψ ◦h◦φ, which has the effect of killing most
terms of the above expansion : this allows us to consider that h is of the form

h(z1, z2) = (−z1z2 + αz3
1 +O(|z|4), z2).

Next, recall that the set of branch points is, in our local setting, the set of points
where Jac(h) = ∂h1/∂z1 = −z2 + 3αz2

1 + O(|z|3) vanishes. Therefore, the tangent
direction to the set of branch points at the origin is the z1 axis, and the transverse
vanishing of T̂ at the origin implies that ∂

∂z1
T̂ (0) 6= 0. Using the above formula for

T̂ , we conclude that ∂3h1/∂z
3
1 6= 0, i.e. α 6= 0.
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Rescaling the two coordinates z1 and Z1 by a constant factor, we can assume
that α is equal to 1. Therefore, we have used all the transversality properties of h
to show that, on a neighborhood of x0, it is of the form

h(z1, z2) = (−z1z2 + z3
1 +O(|z|4), z2).

The uniform bounds and transversality estimates on sk can be used to show that all
the rescalings and transformations we have used are “nice”, i.e. they have bounded
derivatives and their inverses have bounded derivatives.

It then remains to show that further coordinate changes can kill the higher order
terms still present in the expression of h. The idea of Whitney’s argument is to
use successive coordinate changes in order to reduce to the case where the per-
turbation term vanishes up to order at least 2 over the parabola z2 = 3z2

1 , which
makes it possible to kill all higher order terms by composing h with a well-chosen
diffeomorphism of the source space C2. Details can be found in §16–19 of [7]. One
eventually gets that, setting h0(z1, z2) = (−z1z2 + z3

1 , z2), there exist holomorphic
diffeomorphisms Φ and Ψ of C2 near the origin such that Ψ ◦ h0 ◦ Φ = h over a
small neighborhood of 0 in C2, which is what we wanted to prove.

Moreover, because of the uniform transversality estimates and bounds on the
derivatives of sk, the derivatives of h are uniformly bounded. It follows easily, by
going over the argument, that the neighborhood of x0 over which the map fk has
been shown to be O(k−1/2)-approximately holomorphically modelled on the map
h0 can be assumed to contain a ball of fixed radius (depending on the bounds and
transversality estimates, but independent of x0 and k).

5.2. Structure near generic branch points. We now consider a branch point
x0 ∈ RJ̃k

(sk), which we assume to be at distance more than a fixed constant δ from
the set of cusp points CJ̃k

(sk). We want to show that, over a neighborhood of x0,

fk = Psk is approximately holomorphically modelled on the map (z1, z2) 7→ (z2
1 , z2).

From now on, we implicitly use the almost-complex structure J̃k and write R
for the intersection of RJ̃k

(sk) with the ball Bgk
(x0,

δ
2
). First note that, since R

remains at distance more than δ
2

from the cusp points, the tangent space to R
remains everywhere away from the kernel of ∂fk. Therefore, the restriction of fk

to R is a local diffeomorphism over a neighborhood of x0, and so fk(R) is locally
a smooth approximately holomorphic submanifold in CP2. It follows that there
exist approximately holomorphic coordinates (Z1, Z2) on a neighborhood of fk(x0)
in CP2 such that fk(R) is locally defined by the equation Z1 = 0.

Define the approximately holomorphic function z2 = f ∗
kZ2 over a neighborhood

of x0, and notice that its differential dz2 = dZ2 ◦ dfk does not vanish, because by
construction Z2 is a coordinate on fk(R). Therefore, z2 can be considered as a local
complex coordinate function on a neighborhood of x0. In particular, the level sets
of z2 are smooth and intersect R transversely at a single point.

Take z1 to be an approximately holomorphic function on a neighborhood of x0

which vanishes at x0 and whose differential at x0 is linearly independent with that
of z2 (e.g. take the two differentials to be mutually orthogonal), so that (z1, z2)
define approximately holomorphic coordinates on a neighborhood of x0. From now
on we use the local coordinates (z1, z2) on X and (Z1, Z2) on CP2.
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Because dz2|TR remains away from 0, R has locally an equation of the form
z1 = ρ(z2) for some approximately holomorphic function ρ (satisfying ρ(0) = 0
since x0 ∈ R). Therefore, shifting the coordinates on X in order to replace z1 by
z1 − ρ(z2), one can assume that z1 = 0 is a local equation of R. In the chosen local
coordinates, fk is therefore modelled on an approximately holomorphic map h from
a neighborhood of 0 in C2 with values in C2, of the form (z1, z2) 7→ (h1(z1, z2), z2),
with the following properties.

First, because R = {z1 = 0} is mapped to fk(R) = {Z1 = 0}, we have h1(0, z2) =
0 for all z2. Next, recall that the differential of fk has real rank 2 at any point of
R (because ∂fk has complex rank 1 and ∂̄fk vanishes over the kernel of ∂fk), so its
image is exactly the tangent space to fk(R). It follows that ∇h1 = 0 at every point
(0, z2) ∈ R.

Finally, because the chosen coordinates are approximately holomorphic the quan-
tity Jac(fk) is within O(k−1/2) of det(∂h) = (∂h1/∂z1) ∂z1 ∧ ∂z2 by O(k−1/2).
Therefore, the transversality to 0 of Jac(fk) implies that, along R, the norm of
(∂2h1/∂z

2
1 , ∂

2h1/∂z1∂z2) remains larger than a fixed constant. However ∂2h1/∂z1∂z2

vanishes at any point of R because ∂h1/∂z1 (0, z2) = 0 for all z2. Therefore the
quantity ∂2h1/∂z

2
1 remains bounded away from 0 on R.

The above properties imply that h can be written as

h(z1, z2) =
(

α(z2)z
2
1 + β(z2)z1z̄1 + γ(z2)z̄

2
1 + ε(z1, z2), z2

)

,

where α is approximately holomorphic and bounded away from 0, while β and
γ are O(k−1/2) (because of asymptotic holomorphicity), and ε(z1, z2) = O(|z1|3)
is approximately holomorphic. Moreover, composing with the coordinate change
(Z1, Z2) 7→ (α(Z2)

−1Z1, Z2) (which is approximately holomorphic and has bounded
derivatives because α is bounded away from 0), one reduces to the case where α is
identically equal to 1.

We now want to reduce further the problem by removing the β and γ terms in the
above expression : for this, we first remark that, given any small enough complex
numbers β and γ, there exists a complex number λ, of norm less than |β|+ |γ| and
depending smoothly on β and γ, such that

λ = −γλ̄+
β

2
(1 + |λ|2).

Indeed, if |β| + |γ| < 1
2

the right hand side of this equation is a contracting map
of the unit disc to itself, so the existence of a solution λ in the unit disc follows
immediately from the fixed point theorem. Furthermore, using the bound |λ| < 1
in the right hand side, one gets that |λ| < |β|+ |γ|. Finally, the smooth dependence
of λ upon β and γ follows from the implicit function theorem.

Assuming again that |β| + |γ| < 1
2

and defining λ as above, let

A =
1 − λ̄2γ

1 − |λ|4 and B =
γ − λ2

1 − |λ|4 .

The complex numbers A and B are also smooth functions of β and γ, and it is clear
that |A−1| = O(|β|+ |γ|) and |B| = O(|β|+ |γ|). Moreover, one easily checks that,
in the ring of polynomials in z and z̄,

A(z + λz̄)2 +B(z̄ + λ̄z)2 = z2 + 2
λ+ γλ̄

1 + |λ|2 zz̄ + γz̄2 = z2 + βzz̄ + γz̄2.
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Therefore, if one assumes k to be large enough, recalling that the quantities β(z2)
and γ(z2) which appear in the above expression of h are bounded by O(k−1/2), there
exist λ(z2), A(z2) and B(z2), depending smoothly on z2, such that |A(z2) − 1| =
O(k−1/2), |B(z2)| = O(k−1/2), |λ(z2)| = O(k−1/2) and

A(z2)(z1 + λ(z2)z̄1)
2 +B(z2)(z1 + λ(z2)z̄1)

2 = z2
1 + β(z2)z1z̄1 + γ(z2)z̄

2
1 .

So, let h0 be the map (z1, z2) 7→ (z2
1 , z2), and let Φ and Ψ be the two approximately

holomorphic local diffeomorphisms of C2 defined by Φ(z1, z2) = (z1 + λ(z2)z̄1, z2)
and Ψ(Z1, Z2) = (A(Z2)Z1 +B(Z2)Z̄1, Z2) : then

h(z1, z2) = Ψ ◦ h0 ◦ Φ(z1, z2) + (ε(z1, z2), 0).

It follows immediately that Ψ−1 ◦ h ◦ Φ−1(z1, z2) = (z2
1 + O(|z1|3), z2). Therefore,

this new coordinate change allows us to consider only the case where h is of the
form (z1, z2) 7→ (z2

1 + ε̃(z1, z2), z2), where ε̃(z1, z2) = O(|z1|3).
Because ε̃(z1, z2) = O(|z1|3), the bound |ε̃(z1, z2)| < 1

2
|z1|2 holds over a neighbor-

hood of the origin whose size can be bounded from below independently of k and x0

by using the uniform estimates on all derivatives. Over this neighborhood, define

φ(z1, z2) = z1

√

1 +
ε̃(z1, z2)

z2
1

for z1 6= 0, where the square root is determined without ambiguity by the condition
that

√
1 = 1. Setting φ(0, z2) = 0, it follows from the bound |φ(z1, z2) − z1| =

O(|z1|2) that the function φ is C1. In general φ is not C2, because ε̃ may contain
terms involving z̄2

1z1 or z̄3
1 .

Because φ(z1, z2) = z1+O(|z1|2), the map Θ : (z1, z2) 7→ (φ(z1, z2), z2) is a C1 local
diffeomorphism of C2 over a neighborhood of the origin. As previously, the uniform
bounds on all derivatives imply that the size of this neighborhood can be bounded
from below independently of k and x0. Moreover, it follows from the asymptotic
holomorphicity of sk that ε̃ has antiholomorphic derivatives bounded by O(k−1/2),
and so |∂̄φ| = O(k−1/2). Therefore Θ is O(k−1/2)-approximately holomorphic, and
we have

h0 ◦ Θ(z1, z2) = h(z1, z2),

which finally gives the desired result.

5.3. Proof of Theorem 3. Theorem 3 follows readily from the above arguments :
indeed, consider γ-generic and ∂̄-tame asymptotically holomorphic sections sk of
C3 ⊗ Lk, and let J̃k be the almost-complex structures involved in the definition of
∂̄-tameness. We need to show that, at any point x ∈ X, the maps fk = Psk are
approximately holomorphically modelled on one of the three maps of Definition 2.

First consider the case where x lies close to a point y ∈ CJ̃k
(sk). The argument

of §5.1 implies the existence of a constant δ > 0 independent of k and y such that,
over the ball Bgk

(y, 2δ), the map fk is J̃k-holomorphically modelled on the cusp
covering map (z1, z2) 7→ (z3

1 − z1z2, z2). If x lies within distance δ of y, Bgk
(y, 2δ)

is a neighborhood of x ; therefore the expected result follows at every point within
distance δ of CJ̃k

(sk) from the observation that, because |J̃k − J | = O(k−1/2), the

relevant coordinate chart on X is O(k−1/2)-approximately J-holomorphic.
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Next, consider the case where x lies close to a point y of RJ̃k
(sk) which is itself

at distance more than δ from CJ̃k
(sk). The argument of §5.2 then implies the

existence of a constant δ′ > 0 independent of k and y such that, over the ball
Bgk

(y, 2δ′), the map fk is, in O(k−1/2)-approximately holomorphic C1 coordinate
charts, locally modelled on the branched covering map (z1, z2) 7→ (z2

1 , z2). Therefore,
if one assumes the distance between x and y to be less than δ′, the given ball is a
neighborhood of x, and the expected result follows.

So we are left only with the case where x is at distance more than δ ′ from RJ̃k
(sk).

Assuming k to be large enough, it then follows from the bound |J̃k −J | = O(k−1/2)
that x is at distance more than 1

2
δ′ from RJ(sk). Therefore, the γ-transversality

to 0 of Jac(fk) implies that |Jac(fk)(x)| is larger than α = min( 1
2
δ′γ, γ) (otherwise,

the downward gradient flow of |Jac(fk)| would reach a point of RJ(sk) at distance
less than 1

2
δ′ from x).

Recalling that |∂̄fk| = O(k−1/2), one gets that fk is a O(k−1/2)-approximately
holomorphic local diffeomorphism over a neighborhood of x. Therefore, choose
holomorphic complex coordinates on CP2 near fk(x) and pull them back by fk to
obtain O(k−1/2)-approximately holomorphic local coordinates over a neighborhood
of x : in these coordinates, the map fk becomes the identity map, which ends the
proof of Theorem 3.

6. Further remarks

6.1. Branched coverings of CP2. A natural question to ask about the results
obtained in this paper is whether the property of being a (singular) branched cov-
ering of CP2, i.e. the existence of a map to CP2 which is locally modelled at every
point on one of the three maps of Definition 2, strongly restricts the topology of
a general compact 4-manifold. Since the notion of approximately holomorphic co-
ordinate chart on X no longer has a meaning in this case, we relax Definition 2
by only requiring the existence of a local identification of the covering map with
one of the model maps in a smooth local coordinate chart on X. However we keep
requiring that the corresponding local coordinate chart on CP2 be approximately
holomorphic, so that the branch locus in CP2 remains an immersed symplectic curve
with cusps. Call such a map a topological singular branched covering of CP2. Then
the following holds :

Proposition 10. Let X be a compact 4-manifold and consider a topological singu-
lar covering f : X → CP2 branched along a submanifold R ⊂ X. Then X carries
a symplectic structure arbitrarily close to f ∗ω0, where ω0 is the standard symplectic
structure of CP2.

Proof. The closed 2-form f ∗ω0 on X defines a symplectic structure on X−R which
degenerates along R. Therefore, one needs to perturb it by adding a small mul-
tiple of a closed 2-form with support in a neighborhood of R in order to make it
nondegenerate. This perturbation can be constructed as follows.

Call C the set of cusp points, i.e. the points of R where the tangent space to R
lies in the kernel of the differential of f , or equivalently the points around which f is
modelled on the map (z1, z2) 7→ (z3

1 −z1z2, z2). Consider a point x ∈ C, and work in
local coordinates such that f identifies with the model map. In these coordinates,
a local equation of R is z2 = 3z2

1 , and the kernel K of the differential of f coincides
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at every point of R with the subspace C × {0} of the tangent space ; this complex
identification determines a natural orientation ofK. Fix a constant ρx > 0 such that
BC(0, 2ρx)×BC(0, 2ρ2

x) is contained in the local coordinate patch, and choose cut-off
functions χ1 and χ2 over C in such a way that χ1 equals 1 over BC(0, ρx) and vanishes
outside of BC(0, 2ρx), and that χ2 equals 1 over BC(0, ρ2

x) and vanishes outside of
BC(0, 2ρ2

x). Then, let ψx be the 2-form which equals d(χ1(z1)χ2(z2)x1 dy1) over the
local coordinate patch, where x1 and y1 are the real and imaginary parts of z1, and
which vanishes over the remainder of X : the 2-form ψx coincides with dx1 ∧ dy1

over a neighborhood of x. More importantly, it follows from the choice of the cut-off
functions that the restriction of ψx to K = C × {0} is non-negative at every point
of R, and positive non-degenerate at every point of R which lies sufficiently close
to x.

Similarly, consider a point x ∈ R away from C and local coordinates such that f
identifies with the model map (z1, z2) 7→ (z2

1 , z2). In these coordinates, R identifies
with {0} × C, and the kernel K of the differential of f coincides at every point
of R with the subspace C × {0} of the tangent space. Fix a constant ρx > 0
such that BC(0, 2ρx) × BC(0, 2ρx) is contained in the local coordinate patch, and
choose a cut-off function χ over C which equals 1 over BC(0, ρx) and 0 outside of
BC(0, 2ρx). Then, let ψx be the 2-form which equals d(χ(z1)χ(z2)x1 dy1) over the
local coordinate patch, where x1 and y1 are the real and imaginary parts of z1, and
which vanishes over the remainder of X : as previously, the restriction of ψx to
K = C × {0} is non-negative at every point of R, and positive non-degenerate at
every point of R which lies sufficiently close to x.

Choose a finite collection of points xi of R (including all the cusp points) in such
a way that the neighborhoods of xi over which the 2-forms ψxi

restrict positively
to K cover all of R, and define α as the sum of all the 2-forms ψxi

. Then it follows
from the above definitions that the 2-form α is exact, and that at any point of R
its restriction to the kernel of the differential of f is positive and non-degenerate.
Therefore, the 4-form f ∗ω0 ∧ α is a positive volume form at every point of R.

Now choose any metric on a neighborhood of R, and let dR be the distance
function to R. It follows from the compactness of X and R and from the general
properties of the map f that, using the orientation induced by f and the chosen
metric to implicitly identify 4-forms with functions, there exist positive constants
K, C, C ′ and M such that the following bounds hold over a neighborhood of R :
f ∗ω0 ∧ f ∗ω0 ≥ KdR, f ∗ω0 ∧ α ≥ C − C ′dR, and |α ∧ α| ≤ M . Therefore, for all
ε > 0 one gets over a neighborhood of R the bound

(f ∗ω0 + ε α) ∧ (f ∗ω0 + ε α) ≥ (2ε C − ε2M) + (K − 2ε C ′)dR.

If ε is chosen sufficiently small, the coefficients 2ε C − ε2M and K − 2ε C ′ are both
positive, which implies that the closed 2-form f ∗ω0 + ε α is everywhere nondegen-
erate, and therefore symplectic.

Another interesting point is the compatibility of our approximately holomorphic
singular branched coverings with respect to the symplectic structures ω on X and
ω0 in CP2 (as opposed to the compatibility with the almost-complex structures,
which has been a major preoccupation throughout the previous sections).

It is easy to check that given a covering map f : X → CP2 defined by a section
of C3 ⊗ Lk, the number of preimages of a generic point is equal to 1

4π2k
2(ω2.[X]),
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while the homology class of the preimage of a generic line CP1 ⊂ CP2 is Poincaré
dual to 1

2π
k[ω]. If we normalize the standard symplectic structure ω0 on CP2 in

such a way that the symplectic area of a line CP1 ⊂ CP2 is equal to 2π, it follows
that the cohomology class of f ∗ω0 is [f ∗ω0] = k[ω].

As we have said above, the pull-back f ∗ω0 of the standard symplectic form of
CP2 by the covering map degenerates along the set of branch points, so there is no
chance of (X, f ∗ω0) being symplectic and symplectomorphic to (X, kω). However,
one can prove the following result which is nearly as good :

Proposition 11. The 2-forms ω̃t = tf ∗ω0 + (1 − t)kω on X are symplectic for all
t ∈ [0, 1). Moreover, for t ∈ [0, 1) the manifolds (X, ω̃t) are all symplectomorphic
to (X, kω).

This means that f ∗ω0 is, in some sense, a degenerate limit of the symplectic
structure defined by kω : therefore the covering map f behaves quite reasonably
with respect to the symplectic structures.

Proof. The 2-forms ω̃t are all closed and lie in the same cohomology class. We have
to show that they are non-degenerate for t < 1. For this, let x be any point of X
and let v be a nonzero tangent vector at x. It is sufficient to prove that there exists
a vector w ∈ TxX such that ω(v, w) > 0 and f ∗ω0(v, w) ≥ 0 : then ω̃t(v, w) > 0 for
all t < 1, which implies the non-degeneracy of ω̃t.

Recall that, by definition, there exist local approximately holomorphic coordinate
maps φ over a neighborhood of x and ψ over a neighborhood of f(x) such that locally
f = ψ−1 ◦ g ◦ φ where g is a holomorphic map from a subset of C2 to C2. Define
w = φ−1

∗ J0φ∗v, where J0 is the standard complex structure on C2 : then we have
w = (φ∗J0)v and, because g is holomorphic, f∗w = (ψ∗J0)f∗v.

Because the coordinate maps are O(k−1/2)-approximately holomorphic, we have
|w − Jv| ≤ Ck−1/2|v| and |f∗w − J0f∗v| ≤ Ck−1/2|f∗v|, where C is a constant
and J0 is the standard complex structure on CP2. It follows that ω(v, w) ≥ |v|2 −
Ck−1/2|v|2 > 0, and that ω0(f∗v, f∗w) ≥ |f∗v|2 − Ck−1/2|f∗v|2 ≥ 0. Therefore,
ω̃t(v, w) > 0 for all t ∈ [0, 1) ; since the existence of such a w holds for every
nonzero vector v, this proves that the closed 2-forms ω̃t are non-degenerate, and
therefore symplectic.

Moreover, these symplectic forms all lie in the cohomology class [kω], so it follows
from Moser’s stability theorem that the symplectic structures defined on X by ω̃t

for t ∈ [0, 1) are all symplectomorphic.

6.2. Symplectic Lefschetz pencils. The techniques used in this paper can also
be applied to the construction of sections of C2 ⊗ Lk (i.e. pairs of sections of Lk)
satisfying appropriate transversality properties : this is the existence result for
Lefschetz pencil structures (and uniqueness up to isotopy for a given value of k)
obtained by Donaldson [3].

For the sake of completeness, we give here an overview of a proof of Donaldson’s
theorem using the techniques described in the above sections. Let (X,ω) be a
compact symplectic manifold (of arbitrary dimension 2n) such that 1

2π
[ω] is integral,

and as before consider a compatible almost-complex structure J , the corresponding
metric g, and the line bundle L whose first Chern class is 1

2π
[ω], endowed with a

Hermitian connection of curvature −iω. The required properties of the sections we
wish to construct are determined by the following statement :
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Proposition 12. Let sk = (s0
k, s

1
k) be asymptotically holomorphic sections of C2 ⊗

Lk over X for all large k, which we assume to be η-transverse to 0 for some η > 0.
Let Fk = s−1

k (0) (it is a real codimension 4 symplectic submanifold of X), and define
the map fk = Psk = (s0

k : s1
k) from X − Fk to CP1. Assume furthermore that ∂fk

is η-transverse to 0, and that ∂̄fk vanishes at every point where ∂fk = 0. Then, for
all large k, the section sk and the map fk define a structure of symplectic Lefschetz
pencil on X.

Indeed, Fk corresponds to the set of base points of the pencil, while the hyper-
surfaces (Σk,u)u∈CP

1 forming the pencil are Σk,u = f−1
k (u) ∪ Fk, i.e. Σk,u is the set

of all points where (s0
k, s

1
k) belongs to the complex line in C2 determined by u. The

transversality to 0 of sk gives the expected pencil structure near the base points,
and the asymptotic holomorphicity implies that, near any point of X − Fk where
∂fk is not too small, the hypersurfaces Σk,u are smooth and symplectic (and even
approximately J-holomorphic).

Moreover, the transversality to 0 of ∂fk implies that ∂fk becomes small only
in the neighborhood of finitely many points where it vanishes, and that at these
points the holomorphic Hessian ∂∂fk is large enough and nondegenerate. Because
∂̄fk also vanishes at these points, an argument similar to that of §5.2 shows that,
near its critical points, fk behaves like a complex Morse function, i.e. it is locally
approximately holomorphically modelled on the map (z1, . . . , zn) 7→∑

z2
i from Cn

to C.
The approximate holomorphicity of fk and its structure at the critical points can

be easily shown to imply that the hypersurfaces Σk,u are all symplectic, and that
only finitely many of them have isolated singular points, which correspond to the
critical points of fk and whose structure is therefore completely determined.

Therefore, the construction of a Lefschetz pencil structure onX can be carried out
in three steps. The first step is to obtain for all large k sections sk of C2⊗Lk which
are asymptotically holomorphic and transverse to 0 : for example, the existence of
such sections follows immediately from the main result of [1]. As a consequence,
the required properties are satisfied on a neighborhood of Fk = s−1

k (0).
The second step is to perturb sk, away from Fk, in order to obtain the transver-

sality to 0 of ∂fk. For this purpose, one uses an argument similar to that of §2.2,
but where Proposition 2 has to be replaced by a similar result for approximately
holomorphic functions defined over a ball of Cn with values in Cn which has been an-
nounced by Donaldson (see [3]). Over a neighborhood of any given point x ∈ X−Fk,
composing with a rotation of C2 in order to ensure the nonvanishing of s0

k over a ball
centered at x and defining hk = (s0

k)
−1s1

k, one remarks that the transversality to 0
of ∂fk is locally equivalent to that of ∂hk. Choosing local approximately holomor-
phic coordinates zi

k, it is possible to write ∂hk as a linear combination
∑n

i=1 u
i
kµ

i
k

of the 1-forms µi
k = ∂(zi

k.(s
0
k)

−1sref
k,x). The existence of wk ∈ Cn of norm less than

a given δ ensuring the transversality to 0 of uk − wk over a neighborhood of x is
then given by the suitable local transversality result, and it follows easily that the
section (s0

k, s
1
k−
∑

wi
kz

i
ks

ref
k,x) satisfies the required transversality property over a ball

around x. The global result over the complement in X of a small neighborhood of
Fk then follows by applying Proposition 3.

An alternate strategy allows one to proceed without proving the local transver-
sality result for functions with values in Cn, if one assumes s0

k and s1
k to be linear
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combinations of sections with uniform Gaussian decay (this is not too restrictive
since the iterative process described in [1] uses precisely the sections sref

k,x as build-
ing blocks). In that case, it is possible to locally trivialize the cotangent bundle
T ∗X, and therefore work component by component to get the desired transversality
result ; in a manner similar to the argument of [1], one uses Lemma 6 to reduce
the problem to the transversality of sections of line bundles over submanifolds of
X, and Proposition 6 as local transversality result. The assumption on sk is used
to prove the existence of asymptotically holomorphic sections which approximate
sk very well over a neighborhood of a given point x ∈ X and have Gaussian decay
away from x : this makes it possible to find perturbations with Gaussian decay
which at the same time behave nicely with respect to the trivialization of T ∗X.
This way of obtaining the transversality to 0 of ∂fk is very technical, so we don’t
describe the details.

The last step in the proof of Donaldson’s theorem is to ensure that ∂̄fk vanishes
at the points where ∂fk vanishes, by perturbing sk by O(k−1/2) over a neighborhood
of these points. The argument is a much simpler version of §4.2 : on a neighborhood
of a point x where ∂fk vanishes, one defines a section χ of f ∗

kTCP1 by χ(expx(ξ)) =
β(|ξ|) ∂̄fk(x)(ξ), where β is a cut-off function, and one uses χ as a perturbation of
sk in order to cancel the antiholomorphic derivative at x.

6.3. Symplectic ampleness. We have seen that similar techniques apply in vari-
ous situations involving very positive bundles over a compact symplectic manifold,
such as constructing symplectic submanifolds ([2],[1]), Lefschetz pencils [3], or cov-
ering maps to CP2. In all these cases, the result is the exact approximately holo-
morphic analogue of a classical result of complex projective geometry. Therefore,
it is natural to wonder if there exists a symplectic analogue of the notion of ample-
ness : for example, the line bundle L endowed with a connection of curvature −i ω,
when raised to a sufficiently large power, admits many approximately holomorphic
sections, and so it turns out that some of these sections behave like generic sections
of a very ample bundle over a complex projective manifold.

Let (X,ω) be a compact 2n-dimensional symplectic manifold endowed with a
compatible almost-complex structure, and fix an integer r : it seems likely that any
sufficiently positive line bundle over X admits r + 1 approximately holomorphic
sections whose behavior is similar to that of generic sections of a very ample line
bundle over a complex projective manifold of dimension n. For example, the zero
set of a suitable section is a smooth approximately holomorphic submanifold of
X ; two well-chosen sections define a Lefschetz pencil ; for r = n, one expects
that n + 1 well-chosen sections determine an approximately holomorphic singular
covering X → CPn (this is what we just proved for n = 2) ; for r = 2n, it should
be possible to construct an approximately holomorphic immersion X → CP2n, and
for r > 2n a projective embedding. Moreover, in all known cases, the space of
“good” sections is connected when the line bundle is sufficiently positive, so that
the structures thus defined are in some sense canonical up to isotopy.

However, the constructions tend to become more and more technical when one
gets to the more sophisticated cases, and the development of a general theory of
symplectic ampleness seems to be a necessary step before the relations between
the approximately holomorphic geometry of compact symplectic manifolds and the
ordinary complex projective geometry can be fully understood.
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1. Introduction

Symplectic manifolds are an important class of four-dimensional manifolds. The
recent work of Seiberg and Witten [21], Taubes [19], Fintushel and Stern [10] has
improved drastically our understanding of the topology of four-dimensional sym-
plectic manifolds, based on the use of the Seiberg-Witten invariants.

Recent remarkable results by Donaldson ([8],[9]) open a new direction in con-
ducting investigations of four-dimensional symplectic manifolds by analogy with
projective surfaces. He has shown that every four-dimensional symplectic mani-
fold has a structure of symplectic Lefschetz pencil. Using Donaldson’s technique
of asymptotically holomorphic sections the first author has constructed symplectic
maps to CP2 [3]. In this paper we elaborate on ideas of [3], [8] and [9] in or-
der to adapt the braid monodromy techniques of Moishezon and Teicher from the
projective case to the symplectic case.

Our two primary directions are as follows :
(1) To classify, in principle, four-dimensional symplectic manifolds, using braid

monodromies. We define new invariants of symplectic manifolds arising from sym-
plectic maps to CP2, by adapting the braid monodromy technique to the symplectic
situation ;

(2) To compute these invariants in some examples.
We will show some computations with these invariants in a sequel of this paper.

Here we concentrate on the first direction.

The second author was partially supported by NSF Grant DMS-9700605 and A.P. Sloan
research fellowship.
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Recall from [3] that a compact symplectic 4-manifold can be realized as an ap-
proximately holomorphic branched covering of CP2. More precisely, let (X,ω) be
a compact symplectic 4-manifold, and assume the cohomology class 1

2π
[ω] to be

integral. Fix an ω-compatible almost-complex structure J and the corresponding
Riemannian metric g. Let L be a line bundle on X whose first Chern class is 1

2π
[ω],

endowed with a Hermitian metric and a Hermitian connection of curvature −iω
(more than one such bundle L exists if H2(X,Z) contains torsion ; any choice will
do). Then, for k � 0, the line bundles Lk admit many approximately holomorphic
sections, and the main result of [3] states that for large enough k three suitably cho-
sen sections of Lk determine X as an approximately holomorphic branched covering
of CP2. This branched covering is, in local approximately holomorphic coordinates,
modelled at every point of X on one of the holomorphic maps (x, y) 7→ (x, y) (lo-
cal diffeomorphism), (x, y) 7→ (x2, y) (branched covering), or (x, y) 7→ (x3 − xy, y)
(cusp). Moreover, the constructed coverings are canonical for large enough k, and
their topology is a symplectic invariant (it does not even depend on the chosen
almost-complex structure).

Although the concept of approximate holomorphicity mostly makes sense for
sequences obtained for increasing values of k, we will for convenience sometimes
consider an individual approximately holomorphic map or curve, by which it should
be understood that the discussion applies to any map or curve belonging to an
approximately holomorphic sequence provided that k is large enough.

The topology of a branched covering of CP2 is mostly described by that of the
image D ⊂ CP2 of the branch curve ; this singular curve in CP2 is symplectic and
approximately holomorphic. In the case of a complex curve, the braid group tech-
niques developed by Moishezon and Teicher can be used to investigate its topology :
the idea is that, fixing a generic projection π : CP2 − {pt} → CP1, the monodromy
of π|D around its critical levels can be used to define a map from π1(CP1 − crit)
with values in the braid group Bd on d = degD strings, called braid monodromy
(see e.g. [16],[17],[20]).

The set of critical levels of π|D, denoted by crit = {p1, . . . , pr}, consists of the
images by π of the singular points of D (generically double points and cusps) and
of the smooth points of D where it becomes tangent to the fibers of π (“vertical”).
Recall that, denoting by D′ a closed disk in C and by L = {q1, . . . , qd} a set of d
points in D′, the braid group Bd can be defined as the group of equivalence classes
of diffeomorphisms of D′ which map L to itself and restrict as the identity map on
the boundary of D′, where two diffeomorphisms are equivalent if and only if they
define the same automorphism of π1(D

′ − {q1, . . . , qd}). Elements of Bd may also
be thought of as motions of d points in the plane.

Since the fibers of π are complex lines, every loop in CP1 − crit induces a motion
of the d points in a fiber of π|D, which after choosing a trivialization of π can be
considered as a braid. Since such a trivialization is only available over an affine
subset C ⊂ CP1, the braid monodromy should be considered as a group homomor-
phism from the free group π1(C − crit) to Bd. Alternately, the braid monodromy
can also be encoded by a factorization of the braid ∆2

d (the central element in Bd

corresponding to a full twist of the d points by an angle of 2π) as a product of
powers of half-twists in the braid group Bd (see below).
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In any case, it is not clear from the result in [3] that in our case the curve D
admits a nice projection to CP1. It is the aim of Sections 2 and 3 to explain how the
proofs of the main results in [3] can be modified in such a way that the existence
of a nice projection is guaranteed. The notations and techniques are those of [3].

More precisely, recall that in the result of [3] the branch curves D = f(R) are ap-
proximately holomorphic symplectic curves in CP2 which are immersed everywhere
except at a finite number of cusps. We now wish to add the following conditions :

1. (0 : 0 : 1) 6∈ D.
2. The curve D is everywhere transverse to the fibers of the projection π : CP2 −

{(0 : 0 : 1)} → CP1 defined by π(x : y : z) = (x : y), except at finitely many
points where it becomes nondegenerately tangent to the fibers. A local model
in approximately holomorphic coordinates is then z2

2 = z1 (with projection to
the z1 coordinate).

3. The cusps are not tangent to the fibers of π.
4. D is transverse to itself, i.e. its only singularities besides the cusps are trans-

verse double points, which may have either positive or negative self-intersection
number, and the projection of R to D is injective outside of the double points.

5. The “special points”, i.e. cusps, double points and tangency points, are all
distinct and lie in different fibers of the projection π.

6. In a 1-parameter family of curves obtained from an isotopy of branched cov-
erings as described in [3], the only admissible phenomena are creation or
cancellation of a pair of transverse double points with opposite orientations
(self-transversality is of course lost at the precise parameter value where the
cancellation occurs).

Definition 1. Approximately holomorphic symplectic curves satisfying these six
conditions will be called quasiholomorphic curves.

We will call quasiholomorphic covering an approximately holomorphic branched
covering f : X → CP2 whose branch curve is quasiholomorphic.

An isotopy of quasiholomorphic coverings is a continuous one-parameter family
of branched coverings, all of which are quasiholomorphic except for finitely many
parameter values where a pair of transverse double points is created or removed in
the branch curve.

Clearly the idea behind the definition of a quasiholomorphic covering is to imitate
the case of holomorphic coverings. Our main theorem is :

Theorem 1. For every compact symplectic 4-manifold X there exist quasiholomor-
phic coverings fk : X → CP2 defined by asymptotically holomorphic sections of the
bundle Lk for k � 0.

Moreover, we will show in Section 3.2 that, for large enough k, the quasiholomor-
phic coverings obtained by this procedure are unique up to isotopy (Theorem 5).

From the work of Moishezon and Teicher, we know that the braid monodromy
describing a branch curve in CP2 is given by a braid factorization. Namely, the
braid monodromy around the point at infinity in CP1, which is given by the central
element ∆2

d in Bd (because π determines a line bundle of degree 1 over CP1), de-
composes as the product of the monodromies around the critical levels p1, . . . , pr of



86 DENIS AUROUX AND LUDMIL KATZARKOV

the projection π. Easy computations in local coordinates show that each of these
factors is a power of a half-twist (a half-twist corresponds to the motion of two
points being exchanged along a certain path and rotating around each other by a
positive half-turn, while the d− 2 other points remain fixed).

More precisely, the braid monodromy around a point where D is smooth but
tangent to the fibers of π is given by a half-twist (the two sheets of the covering
π|D which come together at the tangency point are exchanged when one moves
around the tangency point) ; the braid monodromy around a double point of D
with positive self-intersection is the square of a half-twist ; the braid monodromy
around a cusp of D is the cube of a half-twist ; finally, the monodromy around a
double point with negative self-intersection is the square of a reversed half-twist.
Observing that any two half-twists in Bd are conjugate to each other, the braid
factorization can be expressed as

∆2
d =

r
∏

j=1

(Q−1
j X

rj

1 Qj),

where X1 is a positive half-twist exchanging q1 and q2, Qj is any braid, and rj ∈
{−2, 1, 2, 3}. The case rj = −2 corresponds to a negative self-intersection, rj = 1
to a tangency point, rj = 2 to a nodal point, and rj = 3 to a cusp. The braids
Qj are of course only determined up to left multiplication by an element in the
commutator of X

rj

1 .
For example, the standard factorization ∆2

d = (X1....Xd−1)
d of ∆2

d in terms of the
d−1 generating half-twists in Bd corresponds to the braid monodromy of a smooth
algebraic curve of degree d in CP2.

With this understood, there are four types of factorizations of ∆2
d that we can

consider (each class in contained in the next one) :
1) Holomorphic – coming from the braid monodromy of the branch curve of a

generic projection of an algebraic surface to CP2.
2) Geometric – if after complete regeneration, it is (Hurwitz and conjugation)

equivalent to the basic factorization ∆2
d = (X1 . . . Xd−1)

d.
3) Cuspidal – all factors are positive of degree 1, 2 or 3.
4) Cuspidal negative – all factors are of degree −2, 1, 2 or 3.

Moishezon has shown [17] that the geometric factorizations are a much larger class
than the holomorphic ones. We do not know examples of cuspidal factorizations that
are not geometric. We will prove in Section 4 that cuspidal negative factorizations
correspond to symplectic four-manifolds.

The braid factorization describing a curve D with cusps and (possibly negative)
nodes makes it possible to compute explicitly the fundamental group of its comple-
ment in CP2, an approach which has led to a series of papers by Moishezon and
Teicher in the algebraic case (see e.g. [20]). Consider a generic fiber C ⊂ CP2

of the projection π : CP2 − {pt} → CP1, and call once again q1, . . . , qd the d dis-
tinct points in which it intersects D. Then, the inclusion of C − {q1, . . . , qd} into
CP2 − D induces a surjective homomorphism on the fundamental groups. Small
loops γ1, . . . , γd around q1, . . . , qd in C generate π1(CP2 − D), with relations com-
ing from the cusps, nodes and tangency points of D. These d loops will be called
geometric generators of π1(CP2 −D).
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The fundamental group π1(CP2 −D) is generated by γ1, . . . , γd, with the relation
γ1 . . . γd ∼ 1 and one additional relation coming from each of the factors in the
braid factorization :

γ1 ∗Qj ∼ γ2 ∗Qj if rj = 1,

[γ1 ∗Qj, γ2 ∗Qj] ∼ 1 if rj = ±2,

(γ1γ2γ1) ∗Qj ∼ (γ2γ1γ2) ∗Qj if rj = 3,

where ∗ is the right action of Bd on the free group Fd = π1(C − {q1, . . . , qd}) =
〈γ1, . . . , γd〉, and Qj and rj are the braids and exponents appearing in the braid
factorization.

In order to describe a map X → CP2 we also need a geometric monodromy
representation, encoding the way in which the various sheets of the covering come
together along the branch curve. Recall the following definition [17] :

Definition 2. A geometric monodromy representation associated to the curve D ⊂
CP2 is a surjective group homomorphism θ from the free group Fd to the symmetric
group Sn of order n, such that the θ(γi) are transpositions (thus also the θ(γi ∗Qj))
and

θ(γ1 . . . γd) = 1,
θ(γ1 ∗Qj) = θ(γ2 ∗Qj) if rj = 1,
θ(γ1 ∗Qj) and θ(γ2 ∗Qj) are distinct and commute if rj = ±2,
θ(γ1 ∗Qj) and θ(γ2 ∗Qj) do not commute (and hence satisfy a relation of the type

στσ = τστ) if rj = 3.

In this definition, n corresponds to the number of sheets of the covering X →
CP2 ; the various conditions imposed on θ(γi ∗Qj) express the natural requirements
that the map θ : Fd → Sn should factor through the group π1(CP2 −D) and that
the branching phenomena should occur in disjoint sheets of the covering for a node
and in adjacent sheets for a cusp. Note that the surjectivity of θ corresponds to the
connectedness of the covering 4-manifold.

The braid factorization and the geometric monodromy representation are not en-
tirely canonical, because choices were made both when labelling the points p1, . . . , pr

in the base CP1 and when labelling the points q1, . . . , qd in the fiber of π.
A change in the ordering of the points q1, . . . , qd corresponds to the operation

called global conjugation : all the factors in the braid factorization are simultane-
ously conjugated by some braid Q ∈ Bd, and the geometric monodromy represen-
tation is affected accordingly. More algebraically, let Q ∈ Bd be any braid, and let
Q∗ ∈ Aut(Fd) be the automorphism of π1(C − {q1, . . . , qd}) induced by Q. Then,
given a pair ({(Qj, rj)}1≤j≤r, θ) consisting of a braid factorization and a geometric
monodromy representation, global conjugation by the braid Q leads to the pair
({(Q̃j, rj)}1≤j≤r, θ̃), where Q̃j = Qj Q

−1 and θ̃ = θ ◦Q∗.
A change in the ordering of the points p1, . . . , pr corresponds to the operation

called Hurwitz equivalence : the factors in the braid factorization are permuted. A
Hurwitz equivalence amounts to a sequence of Hurwitz moves, where two consecu-
tive factors A and B in the braid factorization are replaced respectively by ABA−1

and A (or B and B−1AB, depending on which way the move is performed). The
geometric monodromy representation is not affected.
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By Theorem 1 we have quasiholomorphic covering maps fk : X → CP2 and, as
noted above, the discriminant curves Dk might have negative intersections. Some
of these negative intersections are paired with positive ones : in this case, defor-
mations of the curve Dk make it possible to remove a pair of intersection points
with opposite orientations, which leads to a new curve D′

k. This operation affects
the braid monodromy, and even the fundamental group of the complement is mod-
ified : π1(CP2 − Dk) is the quotient of π1(CP2 − D′

k) by the subgroup generated
by the commutator of the two geometric generators which come together at the
intersection points.

Applying this procedure we can remove some pairs of positive and negative inter-
sections : this is what we call a cancellation operation, which amounts to removing
two consecutive factors which are the inverse of each other in the braid factorization
(necessarily one of these factors must have degree 2 and the other degree −2). The
geometric monodromy representation is not affected.

The opposite operation is the creation of a pair of intersections and corresponds
to adding (Q−1X−2

1 Q).(Q−1X2
1 Q) anywhere in the braid factorization. It can

only be performed if the new factorization remains compatible with the geometric
monodromy representation, i.e. if θ(γ1 ∗ Q) and θ(γ2 ∗ Q) are commuting disjoint
transpositions.

Definition 3. We will say that two pairs (F1, θ1) and (F2, θ2) (where Fi are braid
factorizations and θi are geometric monodromy representations) are m-equivalent if
there exists a sequence of operations which turn one into the other, each operation
being either a global conjugation, a Hurwitz move, or a pair cancellation or creation.

We will prove in Section 3 that the coverings obtained in Theorem 1 are unique up
to isotopies of quasiholomorphic coverings. This allows us to define new invariants
of symplectic manifolds in Section 4. As a result we get:

Theorem 2. Every compact symplectic 4-manifold with 1
2π

[ω] integral is uniquely
characterized by the sequence of cuspidal negative braid factorizations and geometric
monodromy representations corresponding to the quasiholomorphic coverings of CP2

canonically obtained for k � 0, up to m-equivalence.

If H2(X,Z) contains torsion, one must either specify a choice of the line bundle
L or consider the braid monodromy invariants obtained for all possible choices of
L. For general compact symplectic 4-manifolds, a perturbation of ω is required in
order to satisfy the integrality condition, so one only obtains a classification up to
symplectic deformation (pseudo-isotopy).

Theorem 2 transforms the classification of symplectic four-manifolds into a purely
algebraic problem (which is probably quite difficult), namely showing that two
words in the braid group (and the accompanying geometric monodromy represen-
tations) are m-equivalent.

Remark 1. A different way to state Theorem 2 is to say that 4-dimensional sym-
plectic manifolds are classified up to symplectic deformation (or up to isotopy if one
adds the integrality constraint on 1

2π
[ω]) by the sequence of braid factorizations and

geometric monodromy representations obtained for k � 0 up to m-equivalence.

The presence of negative nodes in the branch curves given by Theorem 1 seems
to be mostly due to the technique of proof. It seems plausible that these negative
nodes can be removed for large k, which gives the following conjecture :
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Conjecture 1. Every compact symplectic 4-manifold with 1
2π

[ω] integral is uniquely
characterized by a sequence of cuspidal braid factorizations and geometric mon-
odromy representations corresponding to quasiholomorphic coverings of CP2 canon-
ically obtained for k � 0, up to Hurwitz and conjugation equivalence.

This conjecture would make easier the algebraic problem raised by Theorem 2.

Conversely, given a cuspidal negative braid factorization and a geometric mon-
odromy representation one can reconstruct a quasiholomorphic curve and a quasi-
holomorphic covering. A similar result has also been obtained by F. Catanese ; see
also the remark in [17], p. 157, for a statement similar to the first part of this result.

Theorem 3. 1) To every cuspidal negative factorization of ∆2
d corresponds a quasi-

holomorphic curve, canonical up to smooth isotopy.
2) Let D be a quasiholomorphic curve of degree d and let θ : Fd → Sn be a

geometric monodromy representation. Then there exists a symplectic 4-manifold X
which covers CP2 and ramifies at D. Moreover the symplectic structure on X is
canonical up to symplectomorphism, and depends only on the smooth isotopy class
of the curve D.

We will also show in §4 that, when (X,ω) is a symplectic 4-manifold and D is
the branch curve of a quasiholomorphic covering X → CP2 given by three sections
of Lk as in Theorem 1, the symplectic structure ω′ on X given by assertion 2) of
Theorem 3 coincides with kω up to symplectomorphism : therefore the construction
of Theorem 3 is the exact converse of that of Theorem 2.

We also show (in Section 5) that quasiholomorphic coverings and symplectic
Lefschetz pencils are quite closely connected :

Theorem 4. The quasiholomorphic coverings of CP2 given by three asymptotically
holomorphic sections of Lk as in Theorem 1 determine symplectic Lefschetz pencils
in a canonical way.

Remark 2. This gives a different proof of Donaldson’s theorem of existence of
Lefschetz pencil structures on any symplectic 4-manifold with 1

2π
[ω] integral [8].

Since the Lefschetz pencils we obtain are actually given by two asymptotically
holomorphic sections of Lk, they are clearly identical to the ones constructed by
Donaldson (up to isotopy).

In Section 5 we will also provide a more topological version of this result, and
describe how the monodromy of the Lefschetz pencil can be derived quite easily
from that of the branched covering.
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Stern for their constant attention to this work. Special thanks to S. Donaldson –
without his suggestions this work could not be finished. We were also informed that
S. Donaldson and I. Smith have a different approach to some of the above-discussed
problems. We would like to thank V. Kulikov and M. Teicher for many discussions
and for sharing with us their preprint [15]. We also thank F. Catanese for sharing
with us ideas about Theorem 3. Finally, we thank the referee for the careful reading
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2. Compatibility of branch curves with a projection to CP1

We first prove a couple of technical propositions that allow us to extend the
results from [3] and prove Theorem 1.

Recall that the main results of [3] are obtained by constructing, for large enough
k, sections sk = (s0

k, s
1
k, s

2
k) of the vector bundles C3 ⊗Lk over X which are asymp-

totically holomorphic, γ-generic for some γ > 0, and satisfy a ∂̄-tameness condition.
One then shows that these properties imply that the corresponding projective maps
fk = (s0

k : s1
k : s2

k) : X → CP2 are approximately holomorphic branched coverings.
For the sake of completeness we briefly recall the definitions (see [3] for more de-
tails) :

Definition 4. Let (sk)k�0 be a sequence of sections of C3⊗Lk over X. The sections
sk are said to be asymptotically holomorphic if they are uniformly bounded in all
Cp norms by constants independent of k and if their antiholomorphic derivatives
∂̄sk = (∇sk)

(0,1) are bounded in all Cp norms by O(k−1/2). In these estimates the
norms of the derivatives have to be evaluated using the rescaled metrics gk = k g on
X.

Definition 5. Let sk be a section of a complex vector bundle Ek, and let γ > 0 be
a constant. The section sk is said to be γ-transverse to 0 if, at any point x ∈ X
where |sk(x)| < γ, the covariant derivative ∇sk(x) : TxX → (Ek)x is surjective and
has a right inverse of norm less than γ−1 w.r.t. the metric gk.

We will often omit the transversality estimate γ when considering a sequence of
sections (sk)k�0 : in that case the existence of a uniform transversality estimate
which does not depend on k will be implied.

Definition 6. Let sk be nowhere vanishing asymptotically holomorphic sections of
C3 ⊗ Lk, and fix a constant γ > 0. Define the projective maps fk = Psk from X
to CP2 as fk(x) = (s0

k(x) : s1
k(x) : s2

k(x)). Define the (2, 0)-Jacobian Jac(fk) =
det(∂fk), and let R(sk) be the set of points of X where Jac(fk) vanishes, i.e. where
∂fk is not surjective. We say that sk has the transversality property P3(γ) if |sk| ≥ γ
and |∂fk|gk

≥ γ at every point of X, and if Jac(fk) is γ-transverse to 0.
Assume that sk satisfies P3(γ) : if k is large enough this implies that R(sk) is

a smooth symplectic submanifold in X. At a point of R(sk), ∂fk has complex rank
one, so we can consider the quantity T (sk) = ∂fk ∧ ∂Jac(fk) as a section of a line
bundle over R(sk).

We say that sk is γ-generic if it satisfies P3(γ) and if T (sk) is γ-transverse to 0
over R(sk). We then define the set of cusp points C(sk) as the set of points of R(sk)
where T (sk) = 0.

Definition 7. Let sk be γ-generic asymptotically J-holomorphic sections of C3 ⊗
Lk. We say that the sections sk are ∂̄-tame if there exist ω-compatible almost
complex structures J̃k, such that |J̃k − J | = O(k−1/2), J̃k coincides with J away
from the cusp points, and J̃k is integrable over a small neighborhood of C(sk), with
the following properties :

(1) the map fk = Psk is J̃k-holomorphic over a small neighborhood of C(sk) ;
(2) at every point of R(sk), the antiholomorphic derivative ∂̄(Psk) vanishes over

the kernel of ∂(Psk).
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Note that γ-genericity is an open condition, and therefore stable under small
perturbations (up to decreasing γ). The existence of γ-generic sections of C3 ⊗ Lk

follows from Propositions 1, 4, 5 and 7 of [3] ; ∂̄-tameness is then enforced by a small
perturbation (O(k−1/2)), the aim of which is to cancel the antiholomorphic deriva-
tives of the projective map fk = Psk at the points of the branch curve R(sk) ⊂ X
and at the cusp points C(sk) ⊂ X. This process yields asymptotically holomorphic
sections of C3⊗Lk which simultaneously have genericity and ∂̄-tameness properties,
and therefore gives rise to branched coverings.

For the enhanced result we wish to obtain here, the beginning of the proof is the
same : one first constructs asymptotically holomorphic sections which are γ-generic
exactly as in [3]. However, we need to add an extra transversality requirement, in
order to prepare the ground for obtaining the properties 1, 2 and 3 of a quasiholo-
morphic covering (see Introduction).

Proposition 1. Let (sk)k�0 be asymptotically holomorphic sections of C3⊗Lk, and
fix a constant ε > 0. Then there exists a constant η > 0 such that, for all large
enough values of k, there exist asymptotically holomorphic sections σk of C3 ⊗ Lk

such that |σk−sk|C3,gk
≤ ε and that the sections (σ0

k, σ
1
k) of C2⊗Lk are η-transverse

to 0 over X. Moreover, the same statement holds for families of sections indexed
by a parameter t ∈ [0, 1].

This is precisely a restatement of the main result of [2], applied to the case of
the asymptotically holomorphic sections (s0

k, s
1
k) of C2 ⊗ Lk. The bound by ε is

stated here in C3 norm rather than C1 norm, but as explained in [3] this is not
relevant since such bounds automatically hold in all Cp norms (see the statement
of Lemma 2 in [3] : because the uniform decay properties of the sections sref

k,x hold

in C3 norm, the size of the perturbation is controlled in C3 norm as well).

By choosing ε much smaller than γ and applying this result to γ-generic sections,
one can therefore add the extra requirement that, decreasing γ if necessary, the
sections (s0

k, s
1
k) are γ-transverse to 0 for large enough k. This transversality result

means that, wherever s0
k and s1

k are both smaller in norm than γ
3
, the differential of

(s0
k, s

1
k) is surjective and larger than γ. Moreover, by the definition of γ-genericity

the section sk remains everywhere larger in norm than γ, so at such points one has
|s2

k| ≥ γ
3
. It is then easy to check that, because the derivatives of s2

k are uniformly
bounded, there exists of a constant γ̃ ∈ (0, γ

3
), independent of k, such that, at

any point of X where s0
k and s1

k are smaller than γ̃, the map fk = Psk is a local
diffeomorphism. As a consequence, the points where s0

k and s1
k are smaller than γ̃

cannot belong to the set of branch points R(sk) ; therefore, because |s2
k| is uniformly

bounded over X, there exists a constant ˜̃γ > 0 such that D(sk) = fk(R(sk)) remains
at distance more than ˜̃γ from (0 : 0 : 1). By requiring all perturbations in the
following steps of the proof to be sufficiently small (in comparison with ˜̃γ), one can
ensure that such a condition continues to hold in all the rest of the proof ; this
already gives the required property 1, and more importantly makes it possible to
obtain another transversality condition which is vital to obtain properties 2 and 3.

At all points where s0
k and s1

k do not vanish simultaneously, including (by the
above argument) a neighborhood of R(sk), define φk = (s0

k : s1
k) (φk is a function

with values in CP1). What we wish to require is that the restriction to TR(sk) of
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∂φk be transverse to 0 over R(sk), with some uniform estimates ; alternately this
can be expressed in the following terms :

Definition 8. A section sk ∈ Γ(C3⊗Lk) is said to be γ-transverse to the projection
if the quantity K(sk) = ∂φk ∧ ∂Jac(fk) is γ-tranverse to 0 over R(sk) (as a section
of a line bundle).

Another equivalent criterion (up to a change in the constants), by Lemma 6 of
[3], is the γ-transversality to 0 of the quantity Jac(fk) ⊕ K(sk) (as a section of a
rank 2 bundle) over a neighborhood of R(sk) ; this allows us to use the globalization
principle described in Proposition 3 of [3] in order to obtain the required property
by applying successive local perturbations (note that the property we have just
defined is local and C3-open in the terminology of [3]). The argument below is very
close to that in §3.2 of [3], except that the property first needs to be established
by hand near the cusp points before the machinery of [3] can be applied to obtain
transversality everywhere else.

Proposition 2. Let δ and γ be two constants such that 0 < δ < γ
4
, and let (sk)k�0

be asymptotically holomorphic sections of C3 ⊗ Lk which are γ-generic and such
that (s0

k, s
1
k) is γ-transverse to 0. Then there exists a constant η > 0 such that, for

all large enough values of k, there exist asymptotically holomorphic sections σk of
C3 ⊗Lk such that |σk − sk|C3,gk

≤ δ and that the sections σk are γ-transverse to the
projection. Moreover, the same statement holds for families of sections indexed by
a parameter t ∈ [0, 1].

Proof. Step 1. We first define, near a point x ∈ X which lies in a small neigh-
borhood of R(sk), an equivalent expression for K(sk) in local coordinates. First,
composing with a rotation in C2 (constant over X, and acting on the first two
components s0

k and s1
k), we can assume that s1

k(x) = 0 and therefore |s0
k(x)| ≥ γ̃

for some constant γ̃ > 0 independent of k (because of the transversality to 0 of
(s0

k, s
1
k)). Consequently s0

k remains bounded away from 0 over a ball of fixed radius
around x. It follows that over this small ball we can consider, rather than fk, the
map

hk(y) = (h1
k(y), h

2
k(y)) =

(s1
k(y)

s0
k(y)

,
s2

k(y)

s0
k(y)

)

.

In this setup, Jac(fk) can be replaced by Jac(hk) = ∂h1
k ∧ ∂h2

k, and φk can be
replaced by s1

k/s
0
k = h1

k. Therefore, set

K̂(sk) = ∂h1
k ∧ ∂Jac(hk).

The same argument as in §3.2 of [3] proves that the transversality to 0 of K(sk) over
a small ball Bgk

(x, r) ∩ R(sk) is equivalent, up to a change in constants, to that of

K̂(sk) : the key remark is that the ratio between Jac(fk) and Jac(hk) is the jacobian
of the map ι : (z1, z2) 7→ [1 : z1 : z2] from C2 to CP2 (which is a quasi-isometry
over a neighborhood of hk(x)), and therefore has bounded derivatives and remains
bounded both from below and above over a neighborhood of x ; and similarly for
the ratio between ∂φk and ∂h1

k, which is the jacobian of the locally quasi-isometric
map ι′ : z1 7→ [1 : z1] from C to CP1.

Therefore, in order to be able to apply Proposition 3 of [3] to obtain the desired
result, we only need to show that there exist constants p, c and c′ > 0 such that, if
k is large enough and if Bgk

(x, c) ∩R(sk) 6= ∅, then by adding to sk a perturbation
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smaller than δ and with gaussian decay away from x it is possible to ensure the
η-transversality to 0 of K̂(sk)|R(sk) over Bgk

(x, c) ∩R(sk), where η = c′δ(log δ−1)−p.

Step 2. In this step we wish to obtain transversality to 0 of K̂(sk)|R(sk) over a
neighborhood of the set of cusp points C(sk). For this, recall that, by the assumption
of γ-genericity, the quantity T (sk) = ∂fk ∧ ∂Jac(fk), which by definition vanishes
at the cusp points, is γ-transverse to 0 over R(sk). It follows that at any cusp
point x ∈ C(sk), using the notations of Step 1, at least one of the two quantities
∂h1

k ∧ ∂Jac(hk) and ∂h2
k ∧ ∂Jac(hk), which both vanish at x, has a derivative along

R(sk) larger than some constant γ ′ (independent of k). So there are two cases : the

first possibility is that K̂(sk) = ∂h1
k ∧ ∂Jac(hk) has a derivative at x along R(sk)

bounded away from zero by γ ′. In that case, i.e. when the derivative ∂hk(x) has
a sufficiently large first component, or equivalently when the limit tangent space
to D(sk) at the cusp point lies sufficiently away from the direction of the fibers of
π, no perturbation of sk is necessary to achieve the required property over a small
neighborhood of x. Note by the way that this geometric criterion is consistent
with the observation that the transversality to 0 of K̂(sk)|R(sk) at the cusp points
precisely corresponds to the required property 3, i.e. the cusps not being tangent
to the fibers of the projection to CP1.

The second case corresponds to the situation where the cusp of D(sk) at fk(x)
is nearly tangent to the fiber of π. In that case, a perturbation of sk is necessary
in order to move the direction of the cusp away from the fiber and achieve the
required transversality property. The norm of ∂h1

k(x) can be assumed to be as
small as needed (smaller than any given fixed constant independent of k, since if it
were larger the cusp at x would actually satisfy the first alternative for a suitable
choice of γ′ and no perturbation would be necessary). The transversality properties
of sk then imply that ∂h2

k(x) is bounded away from 0 by a fixed constant, and so
does the restriction to R(sk) of ∂(∂h2

k ∧ ∂Jac(hk))(x).
Consider local approximately holomorphic Darboux coordinates (z1

k, z
2
k) on a

neighborhood of x as given by Lemma 3 of [3], and let sref
k,x be an approximately

holomorphic section of Lk with gaussian decay away from x as given by Lemma 2
of [3]. Let λ be the polynomial function of degree 3 in z1

k, z
2
k and their complex

conjugates obtained by keeping the degree 1, 2 and 3 terms of the Taylor series
expansion of h2

k s
0
k/s

ref
k,x at x : λ vanishes at x, and the function λ̃ = λsref

k,x/s
0
k has the

property that ∂λ̃ = ∂h2
k + O(|z|3), where |z| is a notation for the norm of (z1

k, z
2
k)

or equivalently up to a constant factor the gk-distance to x. Moreover the asymp-
totic holomorphicity of sk implies that the antiholomorphic terms in λ are bounded
by O(k−1/2), which makes λsref

k,x an admissible perturbation as its antiholomorphic

derivatives are bounded by O(k−1/2). We now study the effect of replacing sk by
sk + wQ, where w ∈ C is a small coefficient and Q = (0, λsref

k,x, 0).
We first look at how this perturbation of sk affects R(sk) and the cusp point x.

Adding wQ to sk amounts to adding (w∂λ̃, 0) to (∂h1
k, ∂h

2
k), and therefore adding

w∆ to Jac(hk), where ∆ = ∂λ̃ ∧ ∂h2
k = O(|z|3). It follows in particular that

x still belongs to R(sk + wQ), and even the tangent spaces to R(sk + wQ) and
R(sk) coincide at x. Since for small w the submanifold R(sk + wQ) is a small
deformation of R(sk), it can locally be seen as a section of TX over R(sk). Recall
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that Jac(hk) is γ′-transverse to 0 over a ball of fixed gk-radius around x for some
γ′ > 0 independent of k : therefore, restricting to a smaller ball (whose size remains
independent of k and x) if necessary, the derivative ∇Jac(hk) admits everywhere a
right inverse ρ : Λ2,0T ∗X → TX. It is then easy to see that R(sk +wQ) is obtained
by shifting R(sk) by an amount equal to −ρ(w∆) + O(|w∆|2). It follows that the

value of K̂(sk +wQ) at a point of R(sk +wQ) differs from the value of K̂(sk) at the
corresponding point of R(sk) by an amount

Θ(w) = w ∂λ̃ ∧ ∂Jac(hk) + w ∂h1
k ∧ ∂∆ −∇(K̂(sk)).ρ(w∆) +O(w2|z|2).

Recall that ∂λ̃− ∂h2
k = O(|z|3), ∆ = O(|z|3) and ∂∆ = O(|z|2) : therefore

Θ(w) = w ∂h2
k ∧ ∂Jac(hk) +O(|z|2).

Recall that the restriction to TxR(sk) of ∂(∂h2
k ∧ ∂Jac(hk))(x) is bounded away

from 0 by a fixed constant : therefore, a suitable choice of the complex number w
ensures both that the perturbation wQ added to sk is much smaller than δ in C3

norm, and that the derivative

∂(K̂(sk + wQ))|TR(sk+wQ)(x) = ∂(K̂(sk))|TR(sk)(x) + ∂(Θ(w))|TR(sk)(x)

has norm bounded from below by a certain constant independently of k.
Because of the uniform bounds on all derivatives of sk, the quantity ∂(K̂(sk +

wQ))|TR(sk+wQ) remains bounded from below over the intersection of R(sk + wQ)
with a ball of fixed gk-radius centered at x. It follows that the restriction of K(sk +
wQ) to R(sk + wQ) is transverse to 0 over a neighborhood of x. Checking more
carefully the dependence of the estimates on the size of the maximum allowable
perturbation δ, one gets that there exist constants c and c′ ∈ (0, 1) (independent
of x, k and δ) such that a perturbation of sk smaller than δ in C3 norm and with
gaussian decay away from x can be used to achieve the cδ-transversality to 0 of
K(sk)|R(sk) over the ball Bgk

(x, c′δ).
This result is quite different from what is required to apply Proposition 3 of [3] (in

particular the size of the ball on which transversality is achieved is not independent
of δ) ; however a similar globalization argument can be applied, as we wish to cover
only a neighborhood of the set of cusp points rather than all of X. As in the usual
argument, the key observation is the existence of a constant D > 0 (independent of
k and δ) such that, if two cusp points x and x′ are mutually gk-distant of more than
D, then the perturbation applied at x becomes much smaller than 1

2
cδ in C3 norm

over a neighborhood of x′ (this is because the perturbations we use have uniform
gaussian decay properties). Therefore, as the required transversality property is
local and C3-open, it is possible to simultaneously add to sk the perturbations
corresponding to several cusp points xi which lie sufficiently far apart from each
other, without any risk of interference between the perturbations : denoting by σk

the perturbed section, 1
2
cδ-transversality to 0 holds for K(σk)|R(σk) over the union

of all balls Bgk
(xi, c

′δ).
Moreover the perturbation applied at xi preserves the property of xi being a cusp

point, so the positions of the cusp points are only affected by the perturbations
coming from the other points : therefore, because of the γ-genericity properties of
sk, the cusp point x′i of the perturbed section σk which corresponds to the cusp point
xi of the original section sk lies at gk-distance from xi bounded by a fixed multiple
of cδ. In particular, decreasing the value of c if necessary to make it much smaller
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than c′ (and increasing D consequently) one may assume that the cusp points xi

are moved by less than 1
2
c′δ, so that 1

2
cδ-transversality to 0 holds for K(σk)|R(σk)

over the union of all balls Bgk
(x′i,

1
2
c′δ).

Now notice that, because the sections sk are γ-generic, there exists a constant
r > 0 independent of k such that any two points of C(sk) are mutually gk-distant
of more than r (cusps are isolated). It follows that there exists an integer N
independent of k such that the set of cusps can be partitioned into at most N finite
subsets Cj(sk), 1 ≤ j ≤ N , such that any two points in a given subset are mutually
distant of more than D + 2. We can then proceed by induction : in the first step
one starts from sk,0 = sk and perturbs it by less than 1

2
δ over a neighborhood of

C1(sk,0) in order to achieve 1
4
cδ-transversality to 0 of K(sk,1)|R(sk,1) (where sk,1 is the

perturbed section) over the 1
4
c′δ-neighborhood of C1(sk,1) (where the partition of

C(sk,0) in N subsets is implicitly transferred to C(sk,1)).
In the (j + 1)-th step one starts from the section sk,j constructed at the previ-

ous step, which satisfies the property that K(sk,j)|R(sk,j) is (1
4
c)jδ-transverse to 0

over the 1
4
c′(1

4
c)j−1δ-neighborhood of

⋃

i≤j Ci(sk,j). A perturbation smaller than
1
2
(1

4
c)jδ at the points of Cj+1(sk,j) can be used to obtain a section sk,j+1 such

that K(sk,j+1)|R(sk,j+1) is (1
4
c)j+1δ-transverse to 0 over the 1

4
c′(1

4
c)jδ-neighborhood

of Cj+1(sk,j+1). Moreover, since the perturbation was chosen small enough and by
the assumption on sk,j, this transversality property also holds over the 1

4
c′(1

4
c)j−1δ-

neighborhood of
⋃

i≤j Ci(sk,j). Since the cusp points of sk,j+1 differ from those of

sk,j by a distance of at most a fixed multiple of ( 1
4
c)jδ, which is much less than

1
4
c′(1

4
c)j−1δ by an assumption made on c and c′ (c � c′, see above), the 1

4
c′(1

4
c)jδ-

neighborhood of
⋃

i≤j Ci(sk,j+1) is contained in the 1
4
c′(1

4
c)j−1δ-neighborhood of

⋃

i≤j Ci(sk,j). Therefore sk,j+1 satisfies the hypotheses needed for the following step
of the inductive process, and the construction can be carried out until all cusp
points have been taken care of.

The only point which one has to check carefully is that the points of Cj+1(sk,j) are
indeed mutually distant of more than D (otherwise one cannot proceed as claimed
above). However sk,j differs from sk,0 by at most

∑

i<j
1
2
(1

4
c)iδ, which is less than δ

since c < 1. Therefore the cusp points of sk,j differ from those of sk,0 by a gk-distance
which is at most a fixed multiple of δ, i.e. less than 1 if one takes δ sufficiently small
in the statement of Proposition 2 (decreasing the size of the maximum allowable
perturbation is obviously not a restriction). It follows immediately that, since the
points of Cj+1(sk,0) are mutually distant of at least D + 2, those of Cj+1(sk,j) are
mutually distant of at least D, and the inductive argument given above is indeed
valid.

This ends Step 2, as we have shown that a perturbation of sk smaller than δ can
be used to ensure the η-transversality to 0 of K(sk)|R(sk) over the c′′-neighborhood
of C(sk), where η = ( 1

4
c)Nδ and c′′ = 1

4
c′(1

4
c)N−1δ.

Step 3. In this step we wish to obtain the transversality to 0 of K̂(sk)|R(sk)

everywhere. As observed at the end of Step 1, we only need to show that there
exist constants p, c and c′ > 0 independent of δ such that, for large enough k, given
any point x ∈ X, if Bgk

(x, c) ∩ R(sk) 6= ∅ then by adding to sk a perturbation
smaller than δ and with gaussian decay away from x it is possible to ensure the
η-transversality to 0 of K̂(sk)|R(sk) over Bgk

(x, c) ∩R(sk), where η = c′δ(log δ−1)−p.
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By the result of Step 2, and restricting oneself to a choice of c smaller than half the
constant c′′ introduced in Step 2, one actually needs to obtain this result only in
the case where x lies at distance more than 1

2
c′′ from C(sk).

Recall that the γ-genericity of sk and the assumption that x lies away from the
cusp points imply that the quantity T (sk) = ∂fk ∧ ∂Jac(fk), which is γ-transverse
to 0, is bounded away from 0 at x. With the notations of Step 1, it follows that
at least one of the two quantities ∂h1

k ∧ ∂Jac(hk) and ∂h2
k ∧ ∂Jac(hk) has norm

bounded from below by a fixed constant α at x (depending only on γ and the
uniform bounds on sk). Therefore, two cases can occur : the first possibility is that

K̂(sk) = ∂h1
k ∧ ∂Jac(hk) has norm more than α at x, and therefore remains larger

than α
2

over a ball of fixed radius around x as its derivatives are uniformly bounded.
In that case, one gets α

2
-transversality to 0 over a ball of fixed gk-radius around x

without any perturbation.
The other case, which is the one where we need to perturb sk to obtain transver-

sality, is the one where ∂h1
k∧∂Jac(hk) is small (i.e. D(sk) is nearly tangent at fk(x)

to the fiber of π). In that case, however, the quantity X (sk) = ∂h2
k ∧ ∂Jac(hk) is

bounded from below by α
2

over a neighborhood of x.
As in Step 2, consider local approximately holomorphic Darboux coordinates

(z1
k, z

2
k) on a neighborhood of x as given by Lemma 3 of [3], and let sref

k,x be an

approximately holomorphic section of Lk with gaussian decay away from x as given
by Lemma 2 of [3]. Let λ be the polynomial function of degree 3 in z1

k, z
2
k and their

complex conjugates obtained by keeping the degree 1, 2 and 3 terms of the Taylor
series expansion of h2

k s
0
k/s

ref
k,x at x : λ vanishes at x, and the function λ̃ = λsref

k,x/s
0
k

has the property that ∂λ̃ = ∂h2
k + O(|z|3), where |z| is a notation for the norm

of (z1
k, z

2
k) or equivalently up to a constant factor the gk-distance to x. Moreover

the asymptotic holomorphicity of sk implies that the antiholomorphic terms in λ
are bounded by O(k−1/2), which makes λsref

k,x an admissible perturbation as its

antiholomorphic derivatives are bounded by O(k−1/2). We now study the effect of
replacing sk by sk + wQ, where w ∈ C is a small coefficient and Q = (0, λsref

k,x, 0).
As in Step 2, one computes that R(sk +wQ) is obtained by shifting R(sk) by an

amount equal to −ρ(w∆) + O(|w∆|2), where ρ is a right inverse of ∇Jac(hk) and

∆ = ∂λ̃ ∧ ∂h2
k = O(|z|3). It follows that the value of K̂(sk + wQ) at a point of

R(sk + wQ) differs from the value of K̂(sk) at the corresponding point of R(sk) by
an amount

Θ(w) = w ∂λ̃ ∧ ∂Jac(hk) + w ∂h1
k ∧ ∂∆ −∇(K̂(sk)).ρ(w∆) +O(w2|z|2).

As ∇(K̂(sk)) and ρ are approximately holomorphic, one has Θ(w) = wΘ0+O(|w|2)+
O(k−1/2), where

Θ0 = ∂λ̃ ∧ ∂Jac(hk) + ∂h1
k ∧ ∂∆ −∇(K̂(sk)).ρ(∆).

Recalling that ∂λ̃− ∂h2
k = O(|z|3), ∆ = O(|z|3) and ∂∆ = O(|z|2), one gets

Θ0 = ∂h2
k ∧ ∂Jac(hk) +O(|z|2) = X (sk) +O(|z|2).

In particular, it follows from the initial assumption |X (sk)(x)| ≥ α that Θ0 remains
larger than α

2
over a ball of fixed radius centered at x.

We now proceed as in Section 3.2 of [3] : first use Lemma 7 of [3] to find an
approximately holomorphic map θk : D+ → R(sk) (where D+ is the disk of radius
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11
10

in C), satisfying the estimates given in the statement of the lemma, whose image
is contained in a neighborhood of x over which Θ0 remains larger than α

2
, and such

that the image of the unit disk D contains R(sk)∩Bgk
(x, r′) for some fixed constant

r′ > 0. Define over D+ the complex valued function

vk(z) =
K̂(sk)(θk(z))

Θ0(θk(z))
.

Because Θ0 is bounded from below over θk(D
+), the function vk satisfies the hy-

potheses of Proposition 6 of [3] (or equivalently Proposition 3 of [2]) provided that
k is sufficiently large. Therefore, if C0 is a constant larger than |Q|C3,gk

, and if k is
large enough, there exists w ∈ C, with |w| ≤ δ

C0
, such that vk +w is ε-transverse to

0 over the unit disk D in C, where ε = δ
C0

log(( δ
C0

)−1)−p.

Multiplying again by Θ0 and recalling that θk(D) ⊃ R(sk)∩Bgk
(x, r′), we get that

the restriction to R(sk) of K̂(sk) +wΘ0 is ε′-transverse to 0 over R(sk)∩Bgk
(x, r′),

for some ε′ differing from ε by at most a constant factor. Recall that Θ(w) =
wΘ0 + O(|w|2) + O(k−1/2), and note that |w|2 is at most of the order of δ2 while
ε′ is of the order of δ log(δ−1)−p : so, if δ is small enough and k is large enough,

K̂(sk)+Θ(w) differs from K̂(sk)+wΘ0 by less than ε′

2
and is therefore ε′

2
-transverse

to 0 over R(sk) ∩Bgk
(x, r′).

The perturbation wQ is smaller than δ, and therefore moves R(sk) by at most
O(δ). So, if δ is chosen small enough, one can safely assume that the points of
R(sk) are shifted by a distance less than r′

2
, and therefore that the point of R(sk)

corresponding to any given point in R(sk + wQ) ∩ Bgk
(x, r′

2
) lies in Bgk

(x, r′). It

then follows immediately from the definition of Θ(w) that K̂(sk + wQ)|R(sk+wQ) is

ε′′-transverse to 0 over R(sk +wQ) ∩Bgk
(x, r′

2
) for some ε′′ > 0 differing from ε′ by

at most a constant factor.
This is precisely what we set out to prove, and it is then easy to combine Lemma 6

and Proposition 3 of [3] in order to show that the local perturbations of sk which give
transversality near a given point x can be fitted together to obtain a transversality
result over all X. The proof of Proposition 2 in the case of isolated sections is
therefore complete.

Step 4. We now consider the case of one-parameter families of sections, where
the argument still works similarly : we are now given sections st,k depending con-
tinuously on a parameter t ∈ [0, 1], and try to perform the same construction as
above for each value of t, in such a way that everything depends continuously on t.

The argument of Step 1 carries over to the case of 1-parameter families without
any change ; however one has to be very careful when carrying out the argument of
Step 2. As explained in Section 4.1 of [3], the transversality properties of st,k imply
that the cusp points (i.e. the points of CJt(st,k)) depend continuously on t and that
their number remains constant (actually, the gk-distance between two cusp points
remains uniformly bounded from below independently of k and t). Without loss of
generality, we can assume the maximum allowable perturbation size δ to be much
smaller than the constant γ ′ introduced in Step 2 (minimum size of the derivative
at xt along R(st,k) of ∂hk ∧ ∂Jac(hk) as given by the transversality estimates on
T (st,k)). Moreover, let us assume for now that when t varies over [0, 1], the cusp
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points move by no more than the unit distance in gk norm (i.e. two cusp points
which are far from each other at t = 0 retain this property for all t ∈ [0, 1]).

Let (xt)t∈[0,1] be a continuous path of points of CJt(st,k), and let Ω be the set

of all t such that the derivative at xt of K̂(st,k) along R(st,k) is smaller than γ ′

(i.e. all t such that a perturbation is necessary in order to ensure the required
transversality property). For t ∈ Ω, the same construction as in Step 2 still works,
since the technical results from [3] are also valid in the case of 1-parameter families :
therefore one can define, for all t ∈ Ω, approximately Jt-holomorphic sections Qt

of C3 ⊗Lk and complex numbers wt smaller than δ, which depend continuously on
t, in such a way that st,k + wtQt satisfies the desired transversality property on a
neighborhood of xt. We need to define a valid perturbation for all t ∈ [0, 1] rather
than only for t ∈ Ω : for this, define β : [0, γ ′] → [0, 1] to be a smooth cut-off
function which equals 1 over [0, 1

2
γ′] and vanishes over [ 3

4
γ′, γ′], and set ν(t) to be

the norm of ∇K̂(st,k)|R(st,k)(xt). Set

τt,k = β(ν(t))wtQt

for t ∈ Ω and τt,k = 0 for t 6∈ Ω : this section of C3 ⊗ Lk is approximately
holomorphic for all t (as the multiplicative coefficient is just a constant number
for any given t), and depends continuously on t by construction. When ν(t) is
less than 1

2
γ′, the perturbation τt,k coincides with wtQt, so adding it to st,k does

indeed provide the expected transversality properties. For all other values of t,
the bound |∇K̂(st,k)|R(st,k)(xt)| ≥ 1

2
γ′ implies that st,k already satisfies the required

transversality property over a neighborhood of xt : so it follows from the fact that
the required property is C3-open that, if δ is sufficiently small compared to γ ′,
then the transversality property still holds (with a slightly decreased transversality
estimate) for the perturbed section st,k + τt,k. Therefore, we have established the

transversality to 0 of K̂(st,k + τt,k)|R(st,k+τt,k) over a neighborhood of xt for all t ∈
[0, 1].

Recall that we have made the assumption that when t varies over [0, 1], the cusp
points move by no more than the unit distance in gk norm : this is necessary in order
to apply the globalization process described in Step 2. Indeed, this ensures that,
if one partitions C(s0,k) into a fixed number N of subsets Ci(s0,k) whose points are
mutually distant of at least D+4, then for all t ∈ [0, 1] the corresponding partition
of C(st,k) into subsets Ci(st,k) (1 ≤ i ≤ N) still has the property that any two points
of Ci(st,k) are distant of at least D + 2. Therefore, the globalization argument of
Step 2 can be applied for all t ∈ [0, 1] : as previously, successive perturbations make
it possible to ensure the expected transversality property for all t ∈ [0, 1] first near
the points of the first subset, then near the points of the second subset, and so on
until after N steps all the cusp points have been handled.

We now consider the general case, where the variations of the cusp points with
t are no longer bounded. In that case, a simple compactness argument allows one
to find a sequence of numbers 0 = t0 < t1 < . . . < t2I−1 < t2I = 1 such that,
over each interval [ti, ti+1], the cusp points move by a gk-distance no greater than
1
2

(the length 2I of the sequence cannot be controlled a priori). Over each of the
intervals [ti, ti+1] the previous argument can be applied. In particular, in a first
step we can find, for all t ∈ T1 =

⋃

i<I [t2i, t2i+1], sections τt,k of C3 ⊗ Lk, smaller
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than δ
2
, depending continuously on t, and such that K(st,k + τt,k)|R(st,k+τt,k) is η-

transverse to 0 over a neighborhood of the cusp points for all t ∈ T1 and for some
constant η > 0 independent of k. It is then clearly possible to define asymptotically
holomorphic sections τt,k of C3⊗Lk for t 6∈ T1 in such a way that the sections τt,k are
for all t ∈ [0, 1] smaller than δ

2
and depend continuously on t (e.g. by using cut-off

functions away from T1). Let s′t,k = st,k + τt,k : these sections depend continuously
on t, and K(s′t,k)|R(s′t,k) is η-transverse to 0 over a neighborhood of the cusp points

for all t ∈ T1.
Because the cusp points of s′t,k differ from those of st,k by O(δ), it can be ensured

(decreasing δ if necessary) that the cusp points of s′t,k move by a gk-distance no
greater than 1 over each interval [t2i+1, t2i+2]. Therefore the above procedure can
be applied again : one can find, for all t ∈ T2 =

⋃

i<I [t2i+1, t2i+2], sections τ ′t,k
of C3 ⊗ Lk, much smaller than η, depending continuously on t, and such that
K(s′t,k + τ ′t,k)|R(s′t,k+τ ′

t,k) is transverse to 0 over a neighborhood of the cusp points for

all t ∈ T2. As previously, one can define asymptotically holomorphic sections τ ′t,k of

C3 ⊗ Lk for all t 6∈ T2 in such a way that the sections τ ′t,k are for all t ∈ [0, 1] much
smaller than η and depend continuously on t. Let s′′t,k = s′t,k + τ ′t,k : these sections
depend continuously on t, and K(s′′t,k)|R(s′′t,k) is transverse to 0 over a neighborhood of

the cusp points not only for all t ∈ T2 by construction, but also for all t ∈ T1 because
they differ from s′t,k by less than η and transversality to 0 is an open property. This
ends the proof that the construction of Step 2 can be carried out in the case of
one-parameter families of sections.

We now consider the construction of Step 3, in order to complete the proof of
Proposition 2 for one-parameter families of sections. The argument is then similar
to the one at the end of Section 3.2 of [3]. We have to show that, near any point
x ∈ X, one can perturb st,k to ensure that, for all t such that x lies in a neighborhood
of R(st,k), K(st,k)|R(st,k) is transverse to 0 over the intersection of R(st,k) with a
ball centered at x : Proposition 3 of [3] also applies to one-parameter families of
sections and is then sufficient to conclude. As observed at the beginning of Step 3,
because we already know how to ensure the required transversality property over
a neighborhood of the cusp points, it is sufficient to restrict oneself to those values
of t such that x lies away from C(st,k). Even more, one only needs to handle the

case where the quantity K̂(st,k) is small at x (because, as explained in Step 3, the
transversality property otherwise holds near x without perturbing st,k).

When all these conditions hold, the argument of Step 3 can be used to provide
the required transversality property over a neighborhood of x for all suitable values
of t, because all the technical results involved in the construction, namely Lemma
2, Lemma 3, Lemma 7 and Proposition 6 of [3], also apply to the case of one-
parameter families of sections. More precisely, there exist constants c, c′, c′′, α and
α′ > 0 with the following properties : let Ω ⊂ [0, 1] be the set of all t such that
Bgk

(x, 2c) ∩ R(st,k) 6= ∅, Bgk
(x, 1

2
c′′) ∩ C(st,k) = ∅ and |K(st,k)(x)| < 2α. Let Ω̌ ⊂

[0, 1] be the set of all t such that either Bgk
(x, c)∩R(st,k) = ∅, Bgk

(x, c′′)∩C(st,k) 6= ∅
or |K(st,k)(x)| > α. Then for all t ∈ Ω̌ the restriction to R(st,k) of K(st,k) is α′-
transverse to 0 over Bgk

(x, c) ∩ R(st,k) (this comes from trivial remarks and from
having already obtained the transversality property near the cusp points) ; and,
provided that k is large enough, one can by the argument of Step 3 construct, for
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all t ∈ Ω, sections Qt of C3⊗Lk and complex numbers wt smaller than δ, depending
continuously on t, and such that K(st,k +wtQt)|R(st,k+wtQt) is η-transverse to 0 over
Bgk

(x, c) ∩R(st,k + wtQt), where η = c′δ(log δ−1)−p.
It is clear that Ω and Ω̌ cover [0, 1]. Let β : [0, 1] → [0, 1] be a continuous

function which equals 1 outside of Ω̌ and vanishes outside of Ω (such a β can e.g.
be constructed using cut-off functions and distance functions), and let τt,k be the
sections of C3⊗Lk defined by τt,k = β(t)wtQt for all t ∈ Ω, and τt,k = 0 for all t 6∈ Ω.
Then it is easy to check that the sections st,k + τt,k, which depend continuously on
t and differ from st,k by at most δ, satisfy the required transversality property over
Bgk

(x, 1
2
c) for all t ∈ [0, 1]. Indeed, for t ∈ Ω̌, one notices that st,k + τt,k differs

from st,k by at most δ, and therefore the α′-transversality to 0 of K(st,k)|R(st,k)

over Bgk
(x, c)∩R(st,k) implies the 1

2
α′-transversality to 0 of K(st,k + τt,k)|R(st,k+τt,k)

over Bgk
(x, c

2
) ∩ R(st,k + τt,k), provided that δ is sufficiently small compared to

α′ (decreasing δ if necessary is clearly not a problem). Meanwhile, for t 6∈ Ω̌,
one has τt,k = wtQt, so the η-transversality to 0 of K(st,k + τt,k)|R(st,k+τt,k) over
Bgk

(x, c
2
) ∩R(st,k + τt,k) follows immediately from the construction.

Therefore the required transversality property can be ensured locally by small
perturbations for one-parameter families of sections as well, which allows us to
complete the proof of Proposition 2 by the usual globalization argument (recall
that Lemma 6 and Proposition 3 of [3] also apply to one-parameter families of
sections).

3. Existence and uniqueness of quasiholomorphic coverings

3.1. Self-transversality and proof of Theorem 1. In this subsection we give
a proof of Theorem 1. Propositions 1 and 2, together with the results in Sections
2 and 3 of [3], allow us to construct, for some constant γ > 0 and for all large
k, asymptotically holomorphic sections (or 1-parameter families of sections) whose
first two components are γ-transverse to 0 and with the additional properties of
being γ-generic and γ-transverse to the projection to CP1. We now consider further
perturbation in order to obtain ∂̄-tameness (see Definition 7), enhanced by a similar
condition of tameness with respect to the projection (ensuring the second property
stated in the introduction), and simple self-transversality conditions (properties 4,
5 and 6 in the introduction). The procedure is the following.

Step 1. We first use Proposition 8 of [3] in order to obtain the correct picture
over a neighborhood of C(sk) : namely, the existence of perturbed almost-complex
structures J̃k, which differ from J by O(k−1/2), are integrable near the cusp points
and enable us to perturb the sections sk by O(k−1/2) to make them holomorphic over
a neighborhood of the set of cusp points (the same result also holds for 1-parameter
families of sections).

Step 2. We now add the property of tameness with respect to the projection :

Definition 9. Let sk be asymptotically holomorphic sections of C3⊗Lk, transverse
to the projection. Let T(sk) be the (finite) set of points of R(sk)−C(sk) where K(sk)
vanishes (these points will be called “tangency points”). We say that sk is tamed by
the projection π : CP2 − {pt} → CP1 if ∂̄(Psk) vanishes at every point of T(sk).
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Note that, since the gk-distance between a tangency point and a cusp point is
bounded from below (because of the transversality estimates), it doesn’t actually
matter whether one works with J or J̃k, as they coincide outside of a small neigh-
borhood of the cusp points whose size can be chosen freely (see Section 4.1 of [3]).

We now show that, by adding to sk a perturbation of size O(k−1/2), one can
ensure tameness with respect to the projection. Indeed, let x be a point of T(sk),
and let fk = Psk. Choose a constant δ > 0 smaller than half the gk-distance between
any two tangency points and than half the gk-distance between any tangency point
and any cusp point (these distances are uniformly bounded from below because of
the transversality estimates). Define a section χ of f ∗

kTCP2 over Bgk
(x, δ) by the

following identity : given any vector ξ ∈ TxX of norm less than δ,

χ(expx(ξ)) = β(|ξ|) ∂̄fk(x).ξ,

where β : [0, δ] → [0, 1] is a smooth cut-off function equal to 1 over [0, 1
2
δ] and

0 over [3
4
δ, δ], and where the fibers of f ∗

kTCP2 at x and at expx(ξ) are implicitly
identified using radial parallel transport. Repeating the same process at any point
of T(sk), one similarly defines χ over the δ-neighborhood of T(sk). Moreover, since
χ vanishes near the boundary of Bgk

(x, δ), it can be extended into a smooth global
section of f ∗

kTCP2 which vanishes outside of the δ-neighborhood of T(sk).
Recall that ∀x ∈ X the tangent space to CP2 at fk(x) = Psk(x) is canonically

identified with the space of complex linear maps from Csk(x) to (Csk(x))
⊥ ⊂ C3 ⊗

Lk
x. This allows us to define σk(x) = sk(x) − χ(x).sk(x). It follows from the

construction of χ that σk remains equal to sk outside the δ-neighborhood of T(σk) =
T(sk) and differs from sk by O(k−1/2) ; therefore σk satisfies the same holomorphicity
and transversality properties as sk provided that k is large enough. Moreover, σk is
tamed by the projection to CP1, since at any point x ∈ T(sk) one has ∂̄(Pσk)(x) =
∂̄fk(x) − ∂̄χ(x) = 0.

The construction clearly applies to one-parameter families without any change,
as the above construction is completely explicit and can be applied for all t ∈ [0, 1]
in order to obtain χt and σt,k depending continuously on t and satisfying for all t
the properties described above. Moreover it is easy to check that, if s0,k is already
tamed by the projection, then the construction yields σ0,k = s0,k, and similarly for
t = 1.

Step 3. Without losing the previous properties, we now perturb sk in order
to ensure that the images in CP2 of the cusp points and tangency points are all
mutually disjoint, and lie in different fibers of the projection to CP1.

Wherever s0
k and s1

k are not both zero, let φk(x) = (s0
k(x) : s1

k(x)) ∈ CP1. One
easily checks by a standard transversality argument that it is possible to choose for
all x ∈ T(sk)∪C(sk) an element wx ∈ Tφk(x)CP1 of norm smaller than k−1/2, in such

a way that the points expφk(x)(wx) are all different in CP1. Moreover, the differential

at the identity of the action of SU(2) on CP1 yields a surjective map from su(2) to
Tφk(x)CP1, so one can actually find elements ux ∈ su(2) of norm O(k−1/2) and such
that the infinitesimal action of ux at φk(x) coincides with wx.

Fix a constant δ > 0 smaller than the gk-distance between any two points of
T(sk)∪C(sk), and let β : [0, δ] → [0, 1] be a smooth cut-off function equal to 1 over
[0, 1

2
δ] and 0 over [3

4
δ, δ] : then let χ be the SU(2)-valued map defined over the ball
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of gk-radius δ around any point x ∈ T(sk) ∪ C(sk) by the formula

χ(y) = exp (β(dist(x, y))ux) .

As χ(y) becomes the identity near the boundary of Bgk
(x, δ), one can extend χ into

a map from X to SU(2) by setting χ(y) = Id for all y at distance more than δ from
T(sk) ∪ C(sk). Finally, let σk = χ.sk, where SU(2) acts canonically on the first two
components (s0

k, s
1
k) and acts trivially on the third component s2

k.
By construction σk differs from sk by O(k−1/2), so all asymptotic holomorphicity

and genericity properties of sk are preserved by the perturbation provided that k is
large enough. Moreover, over a ball of radius δ

2
around any point x ∈ T(sk)∪ C(sk)

the map Pσk differs from Psk by the mere rotation exp(ux) : therefore the cusp
points and tangency points of σk are exactly the same as those of sk, and the
properties of holomorphicity near the cusp points and of tameness with respect to
the projection to CP1 are satisfied by σk as well. Finally, given any point x ∈
T(sk) ∪ C(sk) the projection to CP1 of σk(x) is exp(ux).φk(x) = expφk(x)(wx), so

the images in CP1 of the various cusp and tangency points are by construction all
different, as desired.

The same result also holds for one-parameter families of sections. Indeed, as the
dimension of CP1 is strictly more than 1, the space of admissible choices for the
elements wx of Tφk(x)CP1 is always connected ; so one easily defines, for all t ∈ [0, 1]
and for all x ∈ T(st,k) ∪ C(st,k), tangent vectors wt,x such that the same properties
as above hold for all t, and such that along any continuous path (xt)t∈[0,1] of cusp or
tangency points the quantity wt,xt depends continuously on t. The tangent vectors
wt,x can then be lifted continuously to elements in su(2), and the same construction
as above yields sections σt,k which depend continuously on t and satisfy the desired
properties for all t ∈ [0, 1]. Moreover, if s0,k already satisfies the required property,
then one can clearly choose the vectors wt,x in such a way that all w0,x are zero,
and therefore one gets σ0,k = s0,k ; similarly for t = 1.

Step 4. Without losing the previous properties, we now perturb sk in order to
ensure that the curve D(sk) = fk(R(sk)) is transverse to itself, i.e. that all its self-
intersection points are transverse double points (requirement 4 of the introduction)
and no self-intersection occurs in the same fiber as a cusp point or a tangency point.

For this, we simply remark that there exists a section u of f ∗
kTCP2 over R(sk) (i.e.

a small deformation of D(sk) in CP2), smaller than k−1/2 in C3 norm, and which
vanishes identically near the cusp and tangency points, such that the deformed curve
{expfk(x)(u(x)), x ∈ R(sk)} is transverse to itself. This follows from elementary
results in transversality theory.

Use the exponential map to identify a tubular neighborhood of R(sk) with a
neighborhood of the zero section in the normal bundle NR(sk). Moreover, let θ be
the section of T ∗X⊗f ∗

kTCP2 over R(sk), vanishing at the cusp points, such that at
any point x ∈ R(sk)− C(sk) the 1-form θx satisfies the properties θx|TR(sk) = 0 and
θx|Kx

= −(∇u ◦ p)|Kx , where Kx = Ker ∂fk(x) and p is the orthogonal projection
to TR(sk).

Fix a constant δ > 0 sufficiently small, and define a section χ of f ∗
kTCP2 over

the δ-tubular neighborhood of R(sk) by the following identity : given any point
x ∈ R(sk) and any vector ξ ∈ NxR(sk) of norm less than δ,

χ(expx(ξ)) = β(|ξ|) (u(x) + θx(ξ)),
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where β : [0, δ] → [0, 1] is a smooth cut-off function which equals 1 over [0, 1
2
δ]

and vanishes over [ 3
4
δ, δ], and where the fibers of f ∗

kTCP2 at x and at expx(ξ)
are implicitly identified using radial parallel transport. Since χ vanishes near the
boundary of the chosen tubular neighborhood it can be extended into a smooth
section over all of X which vanishes away from R(sk).

We can then define σk = sk +χ.sk, where the action of χ on sk is as explained in
Step 2. The section σk differs from sk by O(k−1/2), so all asymptotic holomorphicity
and genericity properties of sk are preserved by the perturbation provided that k is
large enough. Moreover the perturbation vanishes identically over a neighborhood
of T(sk) ∪ C(sk), so the cusp and tangency points of σk coincide with those of sk,
and the properties we have obtained in Steps 1–3 above are not affected by the
perturbation and remain valid for σk.

We now show that the curve D(σk) is transverse to itself : indeed, we first notice
that R(sk) ⊂ R(σk), because at any point x ∈ R(sk) one has

∇(Pσk)(x) = ∇(Psk)(x) + ∇χ(x) = ∇(Psk)(x) + ∇u(x) ◦ p+ θx,

and therefore ∇(Pσk) and ∇(Psk) coincide over the complex subspaceKx ⊂ TxX, so
that ∂(Pσk) vanishes over Kx, and therefore Jac(Pσk) vanishes at x, and x ∈ R(σk).
Because σk is close to sk, R(σk) is contained in a neighborhood of R(sk), so it is easy
to prove that R(σk) = R(sk). Moreover, at a point x ∈ R(sk) one has χ(x) = u(x),
so the curve D(σk) is obtained from D(sk) by applying the deformation u : therefore
D(σk) is by construction transverse to itself.

In the case of one-parameter families of sections, elementary transversality theory
implies that one can still find, for all t ∈ [0, 1], sections ut of f ∗

t,kTCP2 over R(st,k),
depending continuously on t and vanishing identically near the cusps and tangency
points, which can be used as perturbations to ensure a generic behavior of the
curves D(st,k). The only additional generic phenomenon that we must allow is
the creation or cancellation of a pair of transverse double points with opposite
orientations ; apart from this phenomenon the curves D(st,k) are isotopic to each
other. Once the sections ut are obtained, the rest of the construction is explicit, so
defining θt, χt and σt,k as above for all t ∈ [0, 1] yields the desired result. Moreover,
if the curve D(s0,k) is already transverse to itself then one can safely choose u0 = 0,
which yields σ0,k = s0,k ; similarly for t = 1.

Step 5. We finally use Proposition 9 of [3] in order to construct sections σk

of C3 ⊗ Lk, differing from sk by O(k−1/2), and such that at any point of R(σk)
the derivative ∂̄(Pσk) vanishes over the kernel of ∂(Pσk). The construction of this
perturbation is described in Section 4.2 of [3]. It is very important to observe that
R(σk) = R(sk) as stated in [3] ; because σk coincides with sk over R(sk) one also
has D(σk) = D(sk). So this last perturbation, whose aim is to ensure that the
constructed sections are ∂̄-tame and therefore define approximately holomorphic
branched coverings of CP2, does not affect the branch curve in CP2 and therefore
preserves the various properties of R(sk) and D(sk) obtained in the previous steps.

The sections σk of C3⊗Lk we have constructed at this point satisfy all the required
properties : indeed, for sufficiently large k they are asymptotically holomorphic
and generic because they differ from the original sections by O(k−1/2) ; they are ∂̄-
tame by construction (the property of holomorphicity near the cusp points obtained
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in Step 1 was not affected by the later perturbations) ; therefore by Theorem 3
of [3] the corresponding projective maps are approximately holomorphic singular
branched coverings. Moreover, the first two components of σk are transverse to 0
(this open property is preserved by all our perturbations provided that k is large
enough), so (0 : 0 : 1) does not belong to the branch curve D(σk), which is the first
requirement stated in the introduction. Because our sections are γ-transverse to
the projection for some constant γ > 0 (see Definition 8 and Proposition 2), there
are only finitely many tangency points, and since the sections σk are tamed by the
projection (because of the construction carried out in Step 2) the local model at
the tangency points is as stated in the second requirement of the introduction.

The third requirement also follows directly from the property of γ-transversa-
lity to the projection (see the beginning of Step 2 in the proof of Proposition 2
for the geometric interpretation of K(sk) near a cusp point). The fourth require-
ment, namely the self-transversality of D(σk), has been obtained in Step 4 and is
not affected by the perturbation of Step 5. Moreover, the images in CP1 of the
cusp and tangency points are all disjoint, as obtained in Step 3 (this property is
preserved by the perturbations carried out in Steps 4 and 5), and the same prop-
erty for double points has been achieved in Step 4, so the fifth requirement stated
in the introduction holds as well. Therefore we have shown that the construction
of branched covering maps described in [3] can be improved in order to obtain
branched coverings whose branch curve satisfies the additional requirements stated
in the introduction. This proves Theorem 1.

3.2. Uniqueness up to isotopy. In the next section we will use Theorem 1 to
define invariants of the symplectic four-manifolds. We need the following result of
uniqueness up to isotopy.

Theorem 5. For large enough k, the coverings constructed following the proce-
dure described above are unique, up to isotopies of quasiholomorphic coverings (see
Definition 1).

This is a straightforward analogue of the result of uniqueness up to isotopy ob-
tained in [3], except that we must allow the cancellation of pairs of transverse dou-
ble points with opposite orientations. More precisely, consider sections s0,k and s1,k

(k � 0) which define quasiholomorphic coverings (the almost-complex structures J0

and J1 for which the approximate holomorphicity properties hold need not be the
same). Imitating the argument in Section 4.3 of [3], interpolating one-parameter
families of almost-complex structures Jt and asymptotically Jt-holomorphic sections
st,k of C3 ⊗Lk can be constructed for all large k in such a way that the sections st,k

satisfy the required transversality properties for all t ∈ [0, 1] : namely the sections
st,k are γ-generic for some constant γ > 0, their first two components are transverse
to 0, and they are transverse to the projection to CP1.

Without loss of generality we may assume that Jt = J0 and st,k = s0,k for all t in
some interval [0, ε], and similarly that Jt = J1 and st,k = s1,k for t ∈ [1− ε, 1]. This
makes it possible to perform Step 1 of §3.1 in such a way that s0,k and s1,k are not
affected by the perturbation (see the statement of Proposition 8 of [3]). Because s0,k

and s1,k already satisfy all the expected properties, it is then possible to carry out
Steps 2–5 of §3.1 in such a way that s0,k and s1,k are not modified by the successive
perturbations. The result of this construction is a one-parameter family of branched
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covering maps interpolating between the covering maps Ps0,k and Ps1,k ; moreover
all these covering maps are quasiholomorphic, except for finitely many values of
t which correspond to the cancellation or creation of a pair of transverse double
points in the branch curve (for these values of t requirement 4 no longer holds and
needs to be replaced by requirement 6 of the introduction).

4. New invariants of symplectic four-manifolds

As a consequence of Theorems 1 and 5, for large k the topology of the branch
curves D(sk) ⊂ CP2 and of the corresponding branched covering maps is, up to
cancellations and creations of pairs of double points, a topological invariant of the
symplectic manifold (X,ω).

As explained in the introduction, the topology of a quasiholomorphic curve D ⊂
CP2 of degree d is described by its braid monodromy, which can be expressed as a
group homomorphism ρ : π1(C − crit) → Bd, where crit = {p1, . . . , pr} consists of
the projections of the nodes, cusps and tangency points of the curve D. If one does
not want to restrict the description to an affine subset C ⊂ CP1, it is also possible
to consider the reduced braid group B ′

d = Bd/〈∆2
d〉 and view the braid monodromy

as a map ρ̄ : π1(CP1 − crit) → B′
d ; as soon as d > 2 one can easily recover ρ

from ρ̄, since the images by ρ̄ of loops around each of the points pj can be lifted in
only one way from B ′

d to Bd as powers of half-twists (this follows from easy degree
considerations in Bd). More importantly, the braid monodromy can be expressed
as a factorization of the full twist ∆2

d in Bd. This factorization is of the form

∆2
d =

r
∏

j=1

(Q−1
j X

rj

1 Qj),

where rj is equal to −2 for a negative self-intersection, 1 for a tangency point, 2
for a nodal point, and 3 for a cusp. For a given curve D any two factorizations
representing the braid monodromy of D are Hurwitz and conjugation equivalent
(see e.g. [17]).

Consider two symplectic 4-manifolds X1 and X2, and let f i
k : Xi → CP2, i ∈

{1, 2}, k � 0 be the maps given by Theorem 1, with discriminant curves Di
k.

Assume that D1
k and D2

k have the same degree dk. Denote by F i
k the braid fac-

torizations in Bdk
describing these curves, and by θi

k the corresponding geometric
monodromy representations (see the introduction). Recall from the introduction
that (F 1

k , θ
1
k) and (F 2

k , θ
2
k) are said to be m-equivalent if they differ by a sequence

of global conjugations, Hurwitz moves, and node cancellations or creations. The
above considerations and the uniqueness result obtained in the previous section
(Theorem 5) imply the following corollary :

Corollary 1. For any compact symplectic 4-manifold with 1
2π

[ω] integral, the se-
quence of braid factorizations and geometric monodromy representations describing
the coverings obtained in Theorem 1 is, up to m-equivalence, an invariant of the
symplectic structure.

In other words, given two symplectic manifolds X1 and X2, if the corresponding
sequences of braid factorizations and geometric monodromy representations are not
m-equivalent for large k then X1 and X2 are not symplectomorphic.
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The above invariants can be used to distinguish symplectic manifolds. There is a
technique developed by Moishezon and Teicher for doing that in some cases ; unfor-
tunately the fact that there might be negative intersections complicates everything.
Two approaches are possible :

1) If the negative intersections cannot be removed then we have :

Corollary 2. In the situation above, if the sequences of minimal numbers of neg-
ative half-twists in the factorizations F 1

k and F 2
k are different for large k then X1

and X2 are not symplectomorphic.

Remark 3. In this statement we have to take the minimal numbers of negative half
twists among the results of all possible sequences of node cancellations and creations.
For example it may happen that creating pairs of nodes allows cancellations which
were not possible initially.

Also note that all cancellation procedures are not equivalent : namely, there
might exist examples of positive cuspidal factorizations which are m-equivalent but
not Hurwitz and conjugation equivalent.

It will be interesting to find and study examples of symplectic manifolds that
can be told apart by the minimal numbers of negative half-twists in their braid fac-
torizations. Another interesting question is to study which properties of projective
surfaces remain valid for symplectic coverings of CP2 that correspond to cuspidal
positive factorizations – e.g. can they have arbitrary fundamental group ?

2) In case the negative intersections can be removed then we get Conjecture 1.
We now outline a possible approach to the elimination of negative intersections,
using the symplectic Lefschetz pencil structure associated to a quasiholomorphic
covering (see Section 5 below).

It seems possible to define a finite dimensional space Et of approximately holo-
morphic sections of Lk over each fiber Ct of the symplectic Lefschetz pencil. These
spaces determine a vector bundle E over CP1. Each space Et contains a divisor
Ft consisting of all sections of Lk such that two critical levels of the corresponding
projective map come together. A section σ of E determines a CP2-valued map,
and the nodes of the corresponding branch curve are given by the intersections of σ
with F . Our aim is therefore to find an approximately holomorphic section σ which
always intersects F positively.

It seems that, whatever the chosen connection on the bundle E, it should be
possible by computing the index of the ∂̄ operator to prove that E admits holomor-
phic sections. However, it appears that it is not possible to find a connection on E
which makes the divisor F pseudo-holomorphic : therefore the holomorphicity of
the section σ is not sufficient to ensure positive intersection.

On the other hand, it seems relatively easy to find a connection on E for which
the divisor F is approximately holomorphic. Unfortunately this does not guarantee
positive intersection with the section σ unless one manages to obtain some uniform
transversality estimates, and the techniques developped in this paper fall short of
applying to this situation.

The prospect of being able to remove all negative nodes and obtain Conjecture 1 is
very appealing for many reasons. Among these, one can note that the fundamental
group π1(CP2 −Dk) becomes a symplectic invariant in this situation.
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Remark 4. It is an interesting question to try to relate the braid monodromies
obtained from the same manifold X for different degrees k. One can actually show
using techniques similar to Sections 2 and 3 that, if N ≥ 2 is any integer and if k is
large enough, then the branch curve DNk can be obtained from Dk in the following
way.

Consider the Veronese map VN : P2 → P2 of degree N 2, and let R(VN) be the
corresponding smooth branch curve in the source P2. We can realize the covering
fk : X → P2 in such a way that the branch curve Dk is transverse to R(VN).
The covering fNk : X → P2 can then be seen as a small perturbation of VN ◦ fk.
The branch curve of VN ◦ fk in X is the union of the branch curve of fk and of
f−1

k (R(VN)), so a perturbation is necessary to remove its singularities and obtain
the generic covering fNk. The curve DNk can then be seen as a small deformation
of the union of VN(Dk) and deg(fk) copies of the branch curve of the Veronese map.
This construction will be described in detail in a separate paper [4].

We will now prove Theorem 3, namely that any cuspidal negative factorization
together with a geometric monodromy representation can be used to reconstruct a
symplectic manifold. We start with part 1) of the statement.

Proof. Let ρ : π1(C − {p1, . . . , pr}) → Bd be the representation corresponding to
the given cuspidal negative factorization of ∆2

d, and let C ′ be the universal covering
of C − {p1, . . . , pr}.

Recall that elements of Bd are equivalence classes of diffeomorphisms of the disk
D′ inducing the identity on the boundary of D′ and preserving a set of d points
{q1, . . . , qd} ⊂ D′ : therefore it is possible, at least from a purely topological point
of view, to construct the cross-product R of C ′ and D′ above ρ, i.e. the quotient of
C ′ ×D′ by the relations

γ(z, w) ∼ (γz, ρ(γ)w) ∀γ ∈ π1(C − {p1, . . . , pr}),
where z and w are the coordinates on C ′ and D′ respectively. Define Γ as the curve
in R consisting of all points (z, qi).

By construction, R is a disk bundle over C − {p1, . . . , pr} containing a curve Γ
whose braid monodromy is precisely given by ρ.

Since the monodromy of ρ around infinity is ∆2
d we can extend R to a P1-bundle

R′ over P1 − {p1, . . . , pr}. In order to extend R′ over all of P1 we need to define
the geometry near the singular fibers. If the fiber corresponds to an element of
degree 1 in Bd (half-twist), we can arrange that, in a suitable local trivialization
of R′ and choosing a local coordinate z ∈ C − {0} in the base, the two sheets of
Γ exchanged by the half-twist correspond to the two square roots of z in suitable
local coordinates on the fiber D′. Similarly, the two sheets should correspond to
±z respectively in the case of an element of degree 2 in the braid factorization, to
the two square roots of z3 in the case of an element of degree 3, and to ±z̄ for an
element of degree −2.

With this geometric picture it is now possible to glue in the missing fibers. More-
over we can arrange that all points q1, ..., qd lie close to the origin in D′, i.e. that
the curve Γ is contained in a neighboorhood of the zero section in R′. We can also
arrange that, near the singular fibers, the local models described above hold in local
approximately holomorphic complex coordinates. With such a choice of complex
structure, we get the Hirzebruch surface F 1, as well as a curve Γ′ ⊂ F 1 with the
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prescribed singularities and admitting a projection to P1, simply obtained as the
closure of Γ in F 1.

It now follows from the construction that Γ′ is a quasiholomorphic curve. Indeed,
recall that Γ′ lies in a neighborhood of the zero section in F 1 : this neighborhood
can be made as small as desired, and the curve Γ′ can be made as horizontal as
desired (except near its tangency points), simply by rescaling the vertical coordinate
in F 1. More explicitly, this vertical rescaling results from the automorphism of F 1

described in each fiber CP1 = C∪{∞} by the linear transformation z 7→ λz, where
λ > 0 is a small enough constant.

After this rescaling process, which clearly does not affect the topology of the
curve Γ′, the properties expected of a quasiholomorphic curve still hold near the
singular fibers, as it follows from the choice of the local models made above and from
the observation that the rescaling diffeomorphism preserves the complex structure.
Moreover, the tangent space to Γ′ is almost horizontal everywhere except near the
tangency points, and therefore Γ′ is symplectic (because its tangent space at every
point lies very close to a complex subspace – near a tangency point this follows
from the local model, and at other points from the almost horizontality property
of Γ′). Finally we need to observe that Γ′ remains away from the infinity section in
F 1, so we can blow down and recover a curve in CP2. This construction is clearly
canonical up to isotopy.

Remark 5. One can also try to prove assertion 1) of Theorem 3 in the following
way. To every cuspidal negative factorization corresponds a representation ρ̄ :
π1(P

1 − crit) → B′
d. This representation defines a bundle S → P1 − {p1, ....pr}

with a fiber St − ∆t, where St is the configuration space of d points in C and ∆t

is its diagonal. This is a bundle which is flat w.r.t. the nonabelian Gauss-Manin
connection [18]. The bundle S admits a section s, defined by the braid factorization
of the full twist (see [17]). The section s defines a covering of P1 − {p1, ....pr} by a
curve Γ. By construction this curve is in F 1, and one can proceed similarly to the
above argument in order to complete the proof. This second approach presents an
interesting way to look at the construction : if one can show that for k � 0 the
section s is pseudoholomorphic and has nice intersection properties then we obtain
Conjecture 1.

We now turn to the second part of Theorem 3, namely reconstructing a symplectic
4-manifold from a quasiholomorphic curve and a geometric monodromy represen-
tation. Note by the way that geometric monodromy representations are a very
restrictive class of maps from Fd to Sn : the existence of such a representation is a
non-trivial constraint on the braid factorization, and in many cases the geometric
monodromy representation is unique up to conjugation (see [7] and [14]).

Proof. By definition, the geometric monodromy representation θ : Fd → Sn factors
through π1(CP2 − D) and therefore makes it possible to define a smooth four-
dimensional manifold X (unique up to diffeomorphism). The projection X → P2 is
given everywhere by one of the three local models given in [3] for branched coverings
(local diffeomorphism, branched covering of order 2, or cusp). Moreover these
local models hold in orientation preserving coordinates on X and approximately
holomorphic coordinates on P2 (because the curveD is approximately holomorphic).
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Therefore the existence of a symplectic structure on X follows immediately from
Proposition 10 of [3].

In order to show that this symplectic structure is canonically determined up to
symplectomorphism we need to recall the argument more in detail. Proposition 10
of [3] is based on the following two observations. First, the local models describing
the map f : X → CP2 at any point of its branch set R ⊂ X make it possible to
construct an exact 2-form α onX such that, at any point x ∈ R, the restriction of αx

to the (2-dimensional) kernel Kx of the differential of f is nonzero and compatible
with the natural orientation of Kx (in other words, α induces a volume form on
Kx). Next, one observes that, calling ω0 the standard symplectic form on CP2, and
given any exact 2-form α which induces a volume form on Kx ∀x ∈ R, the 2-form
f ∗ω0 + εα is symplectic for any small enough ε > 0.

Although the construction of the 2-form α in [3] is far from being canonical,
the uniqueness of the resulting symplectic structure follows from a straightforward
argument : to start with, note that, because the 2-form α is exact, Moser’s theorem
implies that for a fixed α the symplectic structure does not depend on the chosen
value of ε (provided it is small enough). Therefore we can fix ε as small as needed
and just need to consider the dependence on α. For this, let α0 and α1 be two
exact 2-forms which induce volume forms on Kx at every point of R, and let αt =
tα1 + (1− t)α0. Then, for all t ∈ [0, 1], the 2-form αt is exact and induces a volume
form on Kx ∀x ∈ R. It follows easily that, for small enough ε > 0, the 2-forms
f ∗ω0 + εαt are symplectic for all t ∈ [0, 1]. Since the forms αt are exact, if follows
from Moser’s theorem that (X, f ∗ω0 + εα0) is symplectomorphic to (X, f ∗ω0 + εα1).
Therefore the symplectic structure on X is canonical.

Moreover, the symplectic structure does not depend either on the choice of D
inside its isotopy class : indeed, let (Dt)t∈[0,1] be a family of quasiholomorphic curves
and fix a geometric monodromy representation θ. It is clear that the corresponding
branched covers are all diffeomorphic. Moreover, for any t0 ∈ [0, 1] we can find an
exact 2-form αt0 which induces a volume form on Kx at every point of the branch
curve of the covering ft0 . However, this non-degeneracy condition is open, so there
exists an open subset Ut0 in [0, 1] such that αt0 induces a volume form at every
point of the branch curve of the covering ft for any t ∈ Ut0 . The compactness of
[0, 1] implies that finitely many subsets Ut1 , . . . , Utq cover [0, 1] ; for every t in [0, 1]
a proper linear combination of αt1 , . . . , αtq can be defined in such a way as to obtain
exact 2-forms which still have the required property but depend continuously on t.
Once this is done, the above construction yields a family ωt of symplectic forms on
X which depend continuously on t and all lie in the same cohomology class. The
desired uniqueness result is then a direct consequence of Moser’s theorem.

Note that, when X is already known to admit a symplectic form ω and f : X →
CP2 is a branched covering given by sections of Lk as in Theorem 1, the symplectic
structure we construct is actually symplectomorphic to kω. Indeed, in this case we
have [f ∗ω0] = k[ω]. Therefore, the 2-form α = kω − f ∗ω0 is exact. Since the local
models for the covering map hold in approximately holomorphic coordinates, the
restriction of ω to Kx is positive at any point x of R, so that α induces a volume
form on Kx : therefore the canonical symplectic structure given by Theorem 3
can be chosen to be f ∗ω0 + εα for any small ε > 0. However it is known from
Proposition 11 of [3] that the 2-forms f ∗ω0 + εα are symplectic for all ε ∈ (0, 1] and
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define the same structure up to symplectomorphism. In particular, for ε = 1 one
has f ∗ω0 + α = kω, so the symplectic form of Theorem 3 coincides with kω up to
symplectomorphism : therefore (X,ω) can be recovered from its braid monodromy
invariants.

As a consequence, the manifold (X,ω) is uniquely characterized by its braid
monodromy invariants ; this observation and Corollary 1 imply Theorem 2.

Remark 6. To obtain a symplectic structure onX we could also use the topological
Lefschetz pencil X → P1 corresponding to the branched covering (see Theorem 6
in §5) : the existence of a symplectic structure on X then follows from the results
of Gompf (see also [1]). The fact that the curve D is quasiholomorphic implies that
all Dehn twists in the Lefschetz pencil have the same orientation.

For braid factorizations which are not cuspidal negative, we do not get a quasi-
holomorphic curve and as consequence we cannot build the symplectic form on X
as above. Of course the manifold X might still be symplectic and admit a different
quasiholomorphic covering to P2.

Finally, the procedure of constructing invariants can be generalized in higher
dimensions and using projections to higher-dimensional projective spaces. Of course
describing the properties of the branch set and finding an analogue of the braid
factorizations presents a real challenge.

In the 6-dimensional setting and still considering maps to CP2 given by three
sections of Lk, we should get the following picture.

Given any compact 6-dimensional symplectic manifold X, three suitably chosen
asymptotically holomorphic sections of Lk for k � 0 determine a map fk from the
complement of a finite set Bk ⊂ X to CP2 which behaves like a generic projection
of a complex projective 3-fold to CP2.

In particular, the generic fibers of fk are smooth symplectic curves in X which
fill X and intersect each other at the points of Bk (the base points of the family
of curves). Moreover, there exists a singular symplectic curve Dk in CP2 which
parametrizes the singular fibers of fk. At a generic point p ∈ Dk, the fiber f−1

k (p)
is a singular symplectic curve where one loop is pinched into a point, and the
monodromy of the family of curves around Dk at p is given by a positive Dehn twist
along the corresponding geometric vanishing cycle, exactly as in a 4-dimensional
Lefschetz fibration.

Conjecture 2. For large enough k the topological data arising from these struc-
tures provides symplectic invariants : to every 6-dimensional symplectic manifold
corresponds a canonical sequence of braid factorizations (characterizing the curves
Dk) and maps from π1(CP2 − Dk) to Mapg (characterizing the family of sym-
plectic curves), with suitable properties (in particular every geometric generator
of π1(CP2 −Dk) is mapped to a Dehn twist).

Conversely, given a braid factorization with suitable properties and a map from
π1(CP2 −Dk) → Mapg which sends geometric generators to Dehn twists, we should
be able to reconstruct a symplectic 6-manifold.

In this setup, let L be a generic line in CP2, and let Wk = f−1
k (L) : Wk is a

symplectic hypersurface in X realizing the class k
2π

[ω] as in Donaldson’s construc-
tion ; the restriction to L of the family of curves coincides with the Lefschetz pencil
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structure obtained by Donaldson’s construction on Wk. We will consider the above
conjecture in a separate paper.

5. Projections to CP2 and Lefschetz pencils

5.1. Quasiholomorphic coverings and Lefschetz pencils. In this section we
prove Theorem 4, namely the fact that quasiholomorphic coverings determine Lef-
schetz pencils.

Proof. Let sk = (s0
k, s

1
k, s

2
k) ∈ Γ(C3 ⊗ Lk) be the sections which determine the

covering map fk = P(sk), and let φk be the CP1-valued map determined by s0
k and

s1
k outside of f−1

k (0 : 0 : 1). We use the notations and definitions of Section 2. By
assumption, the section sk is the result of the procedure described in Sections 2 and
3 for achieving Theorem 1, and therefore satisfies all the transversality properties
introduced in Section 2, as well as the tameness properties described in Section 3.1.

We claim that s0
k and s1

k define a structure of symplectic Lefschetz pencil on X.
For this we need to check that, for some γ > 0, (s0

k, s
1
k) is γ-tranverse to 0 as a

section of C2 ⊗ Lk, that ∂φk is γ-transverse to 0 as well, and that ∂̄φk vanishes at
the points where ∂φk = 0. By Proposition 12 of [3], these three properties imply
that s0

k and s1
k define a Lefschetz pencil (see also [8]) : the first property yields the

expected structure at the base points of the pencil, and the two other conditions
imply that φk is a complex Morse function.

The transversality to 0 of (s0
k, s

1
k) is granted by the construction carried out to

prove Theorem 1 : more precisely this property, which is one of the transversality
properties required at the very beginning of Section 3.1, is achieved in Proposition 1.
The other transversality properties which one requires in this construction are γ-
genericity (Definition 6) and γ-transversality to the projection (Definition 8) : we
now show that these properties imply the transversality to 0 of ∂φk with a transver-
sality estimate decreased by at most a constant factor. In other words, we show
that the (2,0)-Hessian ∂∂φk is non-degenerate (and has determinant bounded from
below) at any point where ∂φk is small.

Consider a point p ∈ X where |∂φk| is smaller than γ/C for some suitable constant
C. To start with, note that since ∂fk is uniformly bounded ∂φk cannot be smaller
than γ/C unless the (2,0)-Jacobian Jac(fk) = det(∂fk) is smaller than γ. Because
of the genericity property, Jac(fk) is γ-transverse to 0, and it follows immediately
that p must lie very close to the branch set R(sk). In particular, if C is chosen large
enough there exists a point p′ ∈ R(sk) which lies sufficiently close to p in order to
ensure that |∂φk(p

′)| is also much smaller than γ. This in turn implies that the
quantity K(sk) = ∂φk ∧∂Jac(fk) is smaller than γ at p′ ; since K(sk) is γ-transverse
to 0 over R(sk) (see Definition 8), p′ must lie very close to a point q ∈ R(sk) where
K(sk) vanishes, i.e. either a cusp or a tangency point (see Definition 9). Moreover,
cusp points are characterized by the transverse vanishing of ∂fk ∧ ∂Jac(fk), so,
as noted at the beginning of Step 2 in the proof of Proposition 2, the transverse
vanishing of K(sk) at the cusps implies that ∂φk cannot be too small at a cusp
point (in other words, the cusps are not close to being tangent to the fibers of the
projection to CP1). Therefore q is a tangency point, i.e. ∂φk(q) = 0.

Because sk is tamed by the projection π : CP2 − {pt} → CP1 we also have
∂̄φk(q) = 0 (see Definition 9). Therefore the image of dfk(q) is exactly the tangent
space to the fiber of π through fk(q). Let Z1 and Z2 be local complex coordinates on
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CP2 at fk(q) chosen in such a way that the projection π is given by (Z1, Z2) 7→ Z1

locally : it is then easy to check that z2 = f ∗
kZ2 has nonvanishing derivative at q and

that one can find a complex-valued function z1 such that (z1, z2) are approximately
holomorphic local complex coordinates on X. In these local coordinates the map
fk is given by

fk(z1, z2) = (ak,qz
2
1 + bk,qz1z2 + ck,qz

2
2 +O(k−1/2|z|2) +O(|z|3), z2).

One then has ∂φk = (2ak,qz1+bk,qz2) dz1+(bk,qz1+2ck,qz2) dz2+O(k−1/2|z|)+O(|z|2)
and Jac(fk) = 2ak,qz1 + bk,qz2 +O(k−1/2|z|) +O(|z|2), and therefore

K(sk) = ∂φk ∧ ∂Jac(fk) = (b2k,q − 4ak,qck,q)z2 dz1 ∧ dz2 +O(k−1/2|z|) +O(|z|2).
The transverse vanishing of K(sk) at q therefore implies that b2k,q − 4ak,qck,q is
bounded away from 0. However this quantity is exactly the determinant of the
Hessian ∂∂φk at q, so ∂φk vanishes transversely at q. Since the point p lies close
to q, the (2,0)-Hessian of φk at p is nondegenerate as well. This establishes the
γ′-transversality to 0 of ∂φk for some constant γ ′ > 0 (independently of k).

We also know that ∂̄fk vanishes at every tangency point, i.e. at every point
where ∂φk vanishes (this follows from the property of tameness with respect to the
projection, see Definition 9) : this immediately implies that ∂̄φk vanishes at all
points where ∂φk vanishes. The properties of s0

k and s1
k are therefore sufficient to

ensure by Proposition 12 of [3] that they define a symplectic Lefschetz pencil.

Even when a branched covering is not determined by three approximately holo-
morphic sections of a line bundle, it is still possible to recover a Lefschetz pencil.
This can actually be carried out in a setting more general than that of quasiholo-
morphic curves : starting with a braid factorization consisting of factors of degrees
ranging from −3 to +3, it is possible to construct a curve D ⊂ CP2 which real-
izes this factorization and whose only singularities are nodes and cusps (with either
positive or negative orientation), and which is transverse to the projection to CP1

except at finitely many points where a local model in complex coordinates is either
x2 = y (when the degree is +1) or x2 = ȳ (when the degree is −1). Given a geomet-
ric monodromy representation θ : Fd → Sn, we can then construct a 4-manifold X
which covers CP2 and ramifies at D (in general this manifold is not symplectic be-
cause we allow factors of degree −1 in the braid factorization). In this very general
setting we have :

Theorem 6. To every covering of CP2 ramified at a curve given by a factorization
of ∆2 into elements of degrees −3 to 3 there corresponds a topological Lefschetz
pencil whose singular fibers are given by the elements of degree ±1 in the braid
factorization. Moreover, if there are no elements of degree −1 then the Lefschetz
pencil is chiral and therefore admits a symplectic structure.

The easiest way to prove this result is to use local models in order to show that
the composition of the CP2-valued covering map with the projection to CP1 defines
a Lefschetz pencil. To start with, the branch curve in CP2 does not hit the point
(0 : 0 : 1) (the pole of the projection to CP1) ; this implies that the topological
structure near the base points (i.e. the preimages of (0 : 0 : 1)) is exactly that of a
pencil, because the covering map is a local diffeomorphism at each of these points.
Therefore one just needs to check that the CP1-valued map obtained by projection
of the covering map has isolated critical points and that the topological structure
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at these points is as expected. For this, observe that, when one restricts to the
preimage of any small ball in CP1, the branch curve in CP2 behaves exactly like in
the quasiholomorphic case (after reversing the orientation in the case of a negative
tangency point or a negative cusp) : this implies that, like in the proof of Theorem
4, the only critical points of the map to CP1 correspond to the tangency points. At
a positive tangency point (i.e. an element of degree +1 in the braid factorization)
the behavior is that of a complex Morse function, by local identification with the
quasiholomorphic model ; while at a negative tangency point (i.e. an element of
degree −1 in the braid factorization) the picture is mirrored and one needs to
reverse the orientation of CP1 in order to recover the correct local model. In any
case one gets a topological Lefschetz pencil, and in the absence of negative tangency
points this pencil structure is compatible with the orientation.

5.2. Braid groups and mapping class groups. This observation that branched
coverings determine Lefschetz pencils can also be made at the more algebraic level
of monodromy factorizations. Indeed, let us consider a negative cuspidal braid
factorization of ∆2

d in Bd, or equivalently the corresponding braid monodromy mor-
phism ρ : π1(C−{p1, . . . , pr}) → Bd. Denote by m the number of factors of degree
1 (we will assume that these correspond to the points p1, . . . , pm) ; the argument
also applies to the more general factorizations described in Theorem 6, in which
case one also needs to add the elements of degree −1. Let D ⊂ CP2 be the curve
determined by this braid factorization, and let us consider a geometric monodromy
representation θ : Fd → Sn (recall from the introduction that θ factors through the
natural surjection from Fd = π1(C − {q1, . . . , qd}) to π1(CP2 −D)).

Because a branched covering determines a Lefschetz pencil, the monodromies
ρ and θ of the branched covering should determine a monodromy representation
ψ : π1(C−{p1, . . . , pm}) →Mg, where Mg is the mapping class group of a Riemann
surface of genus g = 1 − n + (d/2), which describes the topology of the Lefschetz
pencil. The way in which ψ is related to ρ and θ can be described as follows ;
the reader may also refer to the work of Birman and Wajnryb [5] for a detailed
investigation of the case n = 3.

First, consider the set Cn(q1, . . . , qd) of all simple n-fold coverings of CP1 branched
at q1, . . . , qd whose sheets are labelled by integers between 1 and n. We just think
of coverings in combinatorial terms, i.e. up to isotopy, so this set is actually finite :
more precisely Cn(q1, . . . , qd) is the set of all surjective group homomorphisms Fd →
Sn which map each of the generators γ1, . . . , γd of Fd to a transposition and map their
product γ1 · · · γd to the identity element in Sn. In particular, the given geometric
monodromy representation θ : Fd → Sn determines an n-fold branched covering of
CP1, i.e. θ is an element of Cn(q1, . . . , qd).

Observe that the braid group Bd acts naturally on Cn(q1, . . . , qd). Indeed, recall
that braids can be considered as equivalence classes of diffeomorphisms of the disk
preserving the set {q1, . . . , qd} ; therefore, given a braid Q ∈ Bd, one can choose a
diffeomorphism φ representing it, and extend it to a diffeomorphism φ̄ of CP1 which
is the identity outside of the disk. The action of the braid Q on Cn(q1, . . . , qd) is
given by the map which to a given covering f : Σg → CP1 associates the covering
φ̄ ◦ f . It can be easily checked that the topology of the resulting covering does not
depend on the choice of φ̄ in its equivalence class. Alternately, viewing a braid as
a motion of the branch points q1, . . . , qd in the plane, the above-described action
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of the braid Q on Cn(q1, . . . , qd) simply corresponds to the natural transformation
that occurs when the branch points are moved along the given trajectories.

We now describe the action of Bd on Cn(q1, . . . , qd) in terms of morphisms from
Fd to Sn. Recall that the braid group Bd acts on the free group Fd = π1(C −
{q1, . . . , qd}), and denote by Q∗ : Fd → Fd the automorphism induced by a braid
Q ∈ Bd. Then, it can be easily checked that the action of Q on Cn(q1, . . . , qd) simply
corresponds to composition with Q∗ : the action of the braid Q on the covering
described by θ : Fd → Sn yields the covering described by θ ◦Q∗ : Fd → Sn.

We now define the subgroup B0
d(θ) of Bd as the stabilizer of θ for this action, i.e.

the set of all braids Q such that θ ◦ Q∗ = θ. These braids are exactly those which
preserve the covering structure defined by θ. Note by the way that B0

d(θ) is clearly
a subgroup of finite index in Bd.

Whenever Q ∈ B0
d(θ), its action on the covering determined by θ can be thought

of as an element θ∗(Q) of the mapping class group Mg, describing how the Riemann
surface Σg is affected when the branch points q1, . . . , qd are moved along the braid
Q. More precisely, choose as above a diffeomorphism φ of the disk representing
Q and extend it as a diffeomorphism φ̄ of CP1 preserving the branch points. It is
then possible to lift φ̄ via the branched covering as a diffeomorphism of the surface
Σg, whose class in the mapping class group does not depend on the choice of φ in
its equivalence class. This element in Mg is precisely θ∗(Q). Viewing the braid Q
as a motion of the branch points, the transformation θ∗(Q) can also be described
in terms of the monodromy that arises when the points q1, . . . , qd are moved along
their trajectories. The map θ∗ : B0

d(θ) →Mg is naturally a group homomorphism.

Remark 7. A more abstract definition of θ∗ is as follows. Denote by Xd the space of
configurations of d distinct points in the plane. The set of all n-fold coverings of CP1

with d branch points and such that no branching occurs above the point at infinity
can be thought of as a covering X̃d,n above Xd, whose fiber above the configuration
{q1, . . . , qd} identifies with Cn(q1, . . . , qd). The braid group Bd identifies with the
fundamental group of Xd, and the action of Bd on Cn(q1, . . . , qd) described above
is exactly the same as the action of π1(Xd) by deck transformations of X̃d,n. The

subgroup B0
d(θ) is then the set of all the loops in Xd whose lift at the point pθ ∈ X̃d,n

corresponding to the covering described by θ is a closed loop in X̃d,n.

There exists a natural (tautologically defined) bundle Yd,n over X̃d,n whose fiber

is a Riemann surface of genus g. Given an element Q of B0
d(θ), it lifts to X̃d,n as

a loop based at the point pθ, and the monodromy of the fibration Yd,n around this
loop is precisely the mapping class group element θ∗(Q).

It is easy to check that the image of the braid monodromy homomorphism ρ :
π1(C − {p1, . . . , pr}) → Bd is contained in B0

d(θ) : this is because the geometric
monodromy representation θ factors through π1(CP2 −D), on which the action of
the elements of Im ρ is clearly trivial. Therefore, we can define the composed map

ψ : π1(C − {p1, . . . , pr}) ρ−→ B0
d(θ)

θ∗−→Mg.

The group homomorphism ψ is naturally the monodromy of the Lefschetz pencil
corresponding to ρ and θ. Because the only singular fibers of the Lefschetz pencil
are those which correspond to elements of degree 1 in the braid factorization, this
map actually factors through the canonical surjection map π1(C − {p1, . . . , pr}) →
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π1(C − {p1, . . . , pm}), thus yielding the ordinary description of the monodromy of
a Lefschetz pencil as a factorization of the identity into a product of positive Dehn
twists in the mapping class group.

We now describe how the images of the various factors in the braid factorization
by the map θ∗ can be computed explicitly. Such an explicit description makes it very
easy to recover the monodromy of the Lefschetz pencil out of the braid factorization
and the geometric monodromy representation.

Proposition 3. The elements of degree ±2 and 3 in the braid factorization (i.e.
the nodes and cusps) lie in the kernel of the map θ∗ : B0

d(θ) →Mg.

Proof. This result is a direct consequence of the fact that the cusps and nodes in the
branch curve do not correspond to singular fibers of the Lefschetz pencil. From a
more topological point of view, the argument is as follows. Consider a braid Q ∈ Bd

which arises as an element of degree ±2 or 3 in the braid factorization. Since Q is a
power of a half-twist, it can be realized by a diffeomorphism φ of the disk D′ whose
support is contained in a small neighborhood U of an arc in D′−{q1, . . . , qd} joining
two of the branch points, say qi and qj. As explained above the element θ∗(Q) in
Mg is obtained by extending φ to the sphere and lifting it via the branched covering
f : Σg → CP1. In particular, θ∗(Q) can be represented by a diffeomorphism of Σg

whose support is contained in f−1(U).
In the case of a node (rj = ±2), the transpositions in Sn corresponding to loops

around the two branch points are disjoint, and therefore f−1(U) consists of n − 2
components : two of these components are double covers of the disk U branched at
one point (qi for one, qj for the other), and f restricts to each of the n − 4 other
components as an homeomorphism. Therefore, f−1(U) is topologically a disjoint
union of n−2 disks contained in the surface Σg ; since no non-trivial element of the
mapping class group can have support contained in a union of disks, we conclude
that θ∗(Q) is trivial, i.e. Q ∈ Ker θ∗.

In the case of a cusp (rj = 3), the transpositions in Sn corresponding to loops
around the two branch points are adjacent, and f−1(U) consists of n−2 components :
one of these components is a triple cover of the disk U branched at two points, and
f restricts to each of the n − 3 other components as an homeomorphism. By the
same argument as above, f−1(U) is still topologically a disjoint union of disks in
Σg, and therefore Q ∈ Ker θ∗.

We now turn to the case where Q is an element of degree 1 in the braid fac-
torization. We keep the same notation as above, letting U be a embedded disk
containing the two branch points qi and qj as well as the path joining them along
which the half-twist is performed. As previously, the mapping class group ele-
ment θ∗(Q) can be represented by a diffeomorphism whose support is contained
in f−1(U). However, since the transpositions in Sn arising in the picture are now
equal to each other, f−1(U) contains a topologically non-trivial component, namely
a double cover of U branched at the two points qi and qj, which is homeomorphic
to a cylinder. Since θ∗(Q) is necessarily trivial in the other components of f−1(U),
we can restrict ourselves to this cylinder and assume that n = 2.

Denote by γ the (oriented) boundary of U , and by γ1 and γ2 its two lifts to the
cylinder f−1(U), which are precisely the two components of its boundary.
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Proposition 4. The image of the half-twist Q by θ∗ : B0
d(θ) → Mg is the positive

Dehn twist along γ1 (or γ2).

Proof. Without loss of generality we can restrict ourselves to a neighborhood of
f−1(U), and assume that f is a two-fold covering. The mapping class group element
θ∗(Q) is supported in the cylinder f−1(U), and therefore it acts trivially on all loops
in Σg which admit a representative disjoint from f−1(U). It is then easy to check
that θ∗(Q) is necessarily a power of the Dehn twist along γ1 (or equivalently γ2).
This transformation is therefore completely determined by the way in which it
affects an arc δ joining γ1 to γ2 across the cylinder. The projections of γ1 and δ, as
well as their intersection point and the two branch points, are as represented below
(situation (A)).

γ2

γ1

δ
qj

qi

γ1 γ1

half-twist

(A) (B) (C)

γ1

δ δ′ δ′′
qj qj

qi qi

The half-twist Q has the effect of moving the curve δ to the new curve δ ′ rep-
resented in (B). Observing that the lift of a small loop going twice around qj is
homotopically trivial in f−1(U), the arc δ′ is homotopic to the curve δ′′ represented
in (C), which can be easily seen to differ from δ by a positive Dehn twist along γ1.
Therefore the transformation θ∗(Q) ∈Mg is the positive Dehn twist along γ1.

Example. Let X be a smooth algebraic surface of degree 3 in CP3, and let us
consider a generic projection of CP3 −{pt} to CP2. This makes X a 3-fold cover of
CP2 branched along a curve C of degree 6 with 6 cusps (there are no nodes in this
case). For a generic projection to CP1 the curve C has 12 tangency points, and the
corresponding braid group factorization in B6 has been computed by Moishezon in
[16]. For all 1 ≤ j < k ≤ 6, let Zjk = Xk−1. · · · .Xj+1.Xj.X

−1
j+1. · · · .X−1

k−1 be the

half-twist along the segment which joins qj and qk in D2 when the points q1, . . . , q6
are placed along a circle : then the braid group factorization is given by

∆2
6 =

(

Z35Z46Z13Z24Z
3
12Z

3
34Z

3
56

)2
Z35Z46Z13Z24,

and the corresponding geometric monodromy representation

θ : π1(D
2 − {q1, . . . , q6}) → S3

maps the geometric generators around q1, . . . , q6 to the transpositions (23), (12),
(23), (12), (23) and (12) respectively.

The corresponding Lefschetz pencil has 3 base points and consists of elliptic
curves ; after blowing up X three times it becomes the standard elliptic fibration of

CP2#9CP
2

over CP1 with 12 singular fibers. Its monodromy is therefore expected
to be given by the word (DaDb)

6 = 1 in the mapping class group M1 = SL(2,Z),
where Da and Db are the Dehn twists along the two generators a and b of π1(T

2).
We now check that this is indeed consistent with what one obtains from the above
braid monodromy.



BRANCHED COVERINGS OF CP2 AND INVARIANTS 117

We know that the braids Z3
12, Z

3
34 and Z3

56 lie in the kernel of θ∗, by Proposi-
tion 3. Moreover, by Proposition 4 the other elements which appear in the braid
factorization are mapped to Dehn twists along suitable curves γ35, γ46, γ13 and γ24

in T 2. The projections of these curves to P1 are as shown in the diagram below ;
their only intersections are the five points indicated by solid circles, and all these
intersections happen in the second sheet of the covering.

q4

q2

q3

(23)

(12)

(23) (12)

q5

(12)

q6

(23)

q1

2

γ13

γ24

γ46

γ35

γ13 and γ24 have intersection number +1, so they generate π1(T
2) = Z2 and will

be referred to as respectively a and b. One then easily checks that γ35 = b − a
and γ46 = −a (we use additive notation). Note that we don’t have to worry about
orientations as the positive Dehn twists Dγ and D−γ are the same for any loop γ.

It follows from these computations that the braid factorization given above is
mapped by θ∗ to the factorization (Db−aDaDaDb)

3 in M1. A Hurwitz operation
changes Db−aDa into DaDb, so the Lefschetz pencil monodromy we have just ob-
tained is indeed Hurwitz equivalent to the expected factorization (DaDb)

6.

We end with a couple of general remarks.

Remark 8. There should exist intrinsic restrictions on braid monodromies coming
from the very structure of the braid group, in a manner quite similar to the restric-
tions on the monodromy of a symplectic Lefschetz pencil coming from the structure
of the mapping class group. Since a braid factorization and a geometric monodromy
representation determine a word in the mapping class group, every known restriction
on the monodromy of Lefschetz fibrations should yield a corresponding restriction
on the braid group factorizations for which a geometric monodromy representation
exists.

For example, it is known [1] that the image of the monodromy of a symplectic
Lefschetz fibration cannot be contained in the Torelli group. It is also known that
there does not exist any non-trivial element in the fundamental group of the generic
fiber Σg which remains fixed by the monodromy of the Lefschetz fibration ([12], [11]).
It is an interesting question to study how these restrictions translate on the level of
braid factorizations. Another related question is to look for any specific constraints
on the separating vanishing cycles of a symplectic Lefschetz fibration coming from
the underlying braid factorization.

Remark 9. Both the braid factorizations arising from branched coverings and the
mapping class group factorizations arising in the Lefschetz pencil situation are quite
difficult to use directly. In the Lefschetz pencil situation Donaldson has introduced
the idea of dealing with an invariant which would be easier to handle although
containing less information. This invariant arises by considering cylinders joining
the geometric vanishing cycles and coning them to get immersed Lagrangian −2-
spheres in the symplectic manifold. Using the correspondence described above
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between branched coverings and Lefschetz pencils, we can see these cylinders as
corresponding to all possible degenerations of the branch curve where two tangency
points come together and form a double point. Hopefully these degenerations or
other related structures might help in deriving a more usable invariant from braid
monodromies.

6. Examples

We now consider the examples defined by Moishezon in [17]. These examples are
obtained by putting together several geometric projections of the Veronese surface
to CP2 and applying certain twists to the corresponding braid factorization. These
twists are performed in such a way that the braid factorization remains geometric,
so that one obtains new manifolds as branched coverings of CP2 ramified along the
curves constructed by this procedure (see [17]). Specializing to the case of Veronese
maps of degree 3, we obtain a infinite sequence of smooth four-dimensional manifolds
X3,i.

Proposition 5. The manifolds X3,i are all homeomorphic.

Proof. It was remarked by Moishezon in [17] that all X3,i are simply connected.
We will show that X3,i are not spin and therefore their homeomorphism type is
determined by their signature and Euler characteristic.

We now compute the signature and Euler characteristic of the manifolds Xp,i

obtained by Moishezon by twisting Veronese maps of degree p. All Xp,i are p2-
sheeted coverings of CP2 ramified at curves Dp,i of degree dp with κp cusps and νp

nodes, where dp = 9p(p− 1) and

κp = 27(p− 1)(4p− 5), νp =
27

2
(p− 1)((p− 1)(3p2 − 14) + 2)

(these values are computed in [17]). We get immediately that the genus gp of Dp,i

is given by 2gp − 2 = d2
p − 3dp − 2(κp + νp) = 27(p− 1)(5p− 6).

Let us denote by fp,i the covering map, and consider the homology class L =
f ∗

p,i(H) ∈ H2(Xp,i,Z) given by the pull-back of the hyperplane. Also, call K the
canonical class of Xp,i, and let R ⊂ Xp,i be the set of branch points of the covering
fp,i. Because we are in a quasiholomorphic situation we can consider R (or a
small perturbation of it) as the zero set of the (2, 0)-Jacobian Jac(fp,i), which is an
approximately holomorphic section of Λ2,0T ∗X ⊗ f ∗

p,i detTCP2, a line bundle over
Xp,i whose first Chern class is 3L+K. It follows that [R] = 3L+K.

We can now express the quantities dp, κp and 2gp − 2 in terms of the classes
L and K. To start with, note that the degree of the covering fp,i is given by
deg fp,i = L.L. Next, dp = [Dp,i].H = [R].L = 3L.L + K.L. Moreover, R is a
smooth connected symplectic curve, so its genus is given by the adjunction formula :
2gp − 2 = [R].[R] +K.[R] = 9L.L+9K.L+2K.K. Finally, the cusps are the points
where ∂fp,i∧∂Jac(fp,i) vanishes and ∂Jac(fp,i) does not vanish ; a quick computation
of the Euler classes yields that κp = 12L.L+ 9K.L+ 2K.K − ep,i, where ep,i is the
Euler-Poincaré characteristic of Xp,i. Comparing these values with those from [17]
one gets the equations
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













L.L = p2

3L.L+K.L = 9p(p− 1)
9L.L+ 9K.L+ 2K.K = 27(p− 1)(5p− 6)
12L.L+ 9K.L+ 2K.K − ep,i = 27(p− 1)(4p− 5)

This yields

L.L = p2 K.L = 6p2 − 9p
K.K = 36p2 − 108p+ 81 ep,i = 30p2 − 54p+ 27.

In the case p = 3 this implies that K2 = 81, and e(X3,i) = 135. Therefore
we conclude that the signature is σ(X3,i) = −63 and hence the manifolds X3,i are
not spin. Since they have the same Euler characteristic and signature they are all
homeomorphic.

It follows from [17] that the fundamental groups π1(CP2 −D3,i) are all different,
although the curves D3,i are in the same homology class and have the same numbers
of cusps and nodes.

This situation is a generalization of the well-known phenomenon of Zariski pairs.
Of course there are finitely many non-isotopic holomorphic curves of a given degree
with given numbers of nodes and cusps, so only finitely many of the curves D3,i are
holomorphic.

On the other hand, as a consequence from Theorem 3 we get that all smooth
four-manifolds X3,i are symplectic. It is then natural to ask the following :

Question : Are the manifolds X3,i symplectomorphic ?

We expect the answer to this question to be negative, because the braid fac-
torizations computed by Moishezon are quite different. If the manifolds X3,i are
not symplectomorphic, then other natural questions arise : are these manifolds
diffeomorphic ? Do they have the same Seiberg-Witten invariants ?

If the Seiberg-Witten invariants cannot tell apart the manifolds X3,i, then the
only way to show that the Moishezon manifolds are not symplectomorphic might
be to use the invariants arising from symplectic branched coverings or symplectic
Lefschetz pencils.
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SYMPLECTIC MAPS TO PROJECTIVE SPACES AND

SYMPLECTIC INVARIANTS

DENIS AUROUX

Abstract. After reviewing recent results on symplectic Lefschetz pencils and
symplectic branched covers of CP

2, we describe a new construction of maps from
symplectic manifolds of any dimension to CP

2 and the associated monodromy
invariants. We also show that a dimensional induction process makes it possible
to describe any compact symplectic manifold by a series of words in braid groups
and a word in a symmetric group.

1. Introduction

Let (X2n, ω) be a compact symplectic manifold. We will throughout this text
assume that the cohomology class 1

2π
[ω] ∈ H2(X,R) is integral. This assumption

makes it possible to define a complex line bundle L over X such that c1(L) = 1
2π

[ω].
We also endow X with a compatible almost-complex structure J , and endow L with
a Hermitian metric and a Hermitian connection of curvature −iω.

The line bundle L should be thought of as a symplectic version of an ample line
bundle over a complex manifold. Indeed, although the lack of integrability of J
prevents the existence of holomorphic sections, it was observed by Donaldson in
[8] that, for large k, the line bundles L⊗k admit many approximately holomorphic
sections.

Observe that all results actually apply as well to the case where 1
2π

[ω] is not
integral, with the only difference that the choice of the line bundle L is less natural :
the idea is to perturb ω into a symplectic form ω′ whose cohomology class is rational,
and then work with a suitable multiple of ω′. One chooses an almost-complex
structure J ′ which simultaneously is compatible with ω′ and satisfies the positivity
property ω(v, J ′v) > 0 for all tangent vectors. All the objects that we construct are
then approximately J ′-holomorphic, and therefore symplectic with respect to not
only ω′ but also ω.

Donaldson was the first to show in [8] that, among the many approximately holo-
morphic sections of L⊗k for k � 0, there is enough flexibility in order to obtain nice
transversality properties ; this makes it possible to imitate various classical topo-
logical constructions from complex algebraic geometry in the symplectic category.
Let us mention in particular the construction of smooth symplectic submanifolds
([8], see also [2] and [15]), symplectic Lefschetz pencils ([10], see also [9]), branched
covering maps to CP2 ([3],[5]), Grassmannian embeddings and determinantal sub-
manifolds ([15]).

Intuitively, the main reason why the approximately holomorphic framework is
suitable to imitate results from algebraic geometry is that, for large values of k,
the increasing curvature of L⊗k provides access to the geometry of X at very small

121
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scale ; as one zooms into X, the geometry becomes closer and closer to a standard
complex model, and the lack of integrability of J becomes negligible.

The introduction of approximately holomorphic sections was motivated in the
first place by the observation that, if suitable transversality properties are satisfied,
then every geometric object that can be defined from these sections automatically
becomes symplectic. Therefore, in order to perform a given construction using such
sections, the strategy is always more or less the same : starting with a sequence
of approximately holomorphic sections of L⊗k for all k � 0, the goal is to perturb
them in order to ensure uniform transversality properties that will guarantee the
desired topological features.

For example, the required step in order to construct symplectic submanifolds is
to obtain bounds of the type |∇sk|gk

> η along the zero set of sk for a fixed constant
η > 0 independent of k, while approximate holomorphicity implies a bound of the
type |∂̄sk|gk

= O(k−1/2) everywhere (see §3.1). Here gk = kg is a rescaled metric
which dilates everything by a factor of k1/2 in order to adapt to the decreasing
“characteristic scale” imposed by the increasing curvature −ikω of the line bundles
L⊗k. The desired topological picture, similar to the complex algebraic case, emerges
for large k as an inequality of the form |∂̄sk| � |∂sk| becomes satisfied at every point
of the zero set : this can easily be shown to imply that the zero set of sk is smooth,
approximately pseudo-holomorphic, and symplectic. Indeed, the surjectivity of ∇sk

implies the smoothness of the zero set, while the fact that |∂̄sk| � |∂sk| implies
that the tangent space to the zero set, given by the kernel of ∇sk = ∂sk + ∂̄sk, is
very close to the complex subspace Ker(∂sk), hence its symplecticity (see also [8]).

The starting points for the construction, in all cases, are the existence of very
localized approximately holomorphic sections of L⊗k concentrated near any given
point x ∈ X, and an effective transversality result for approximately holomorphic
functions defined over a ball in Cn with values in Cr due to Donaldson (see [8] for
the case r = 1 and [10] for the general case). These two ingredients imply that
a small localized perturbation can be used to ensure uniform transversality over a
small ball. Combining this local result with a globalization argument ([8], see also
[3] and [15]), one obtains transversality everywhere.

The interpretation of the construction of submanifolds as an effective transver-
sality result for sections extends verbatim to the more sophisticated constructions
(Lefschetz pencils, branched coverings) : in these cases the transversality properties
also concern the covariant derivatives of the sections, and this can be thought of as
an effective analogue in the approximately holomorphic category of the standard
generalized transversality theorem for jets.

This is especially clear when looking at the arguments in [15], [10] or [3] : the
perturbative argument is now used to obtain uniform transversality of the holo-
morphic parts of the 1-jets or 2-jets of the sections with respect to certain closed
submanifolds in the space of holomorphic jets. Successive perturbations are used to
obtain transversality to the various strata describing the possible singular models ;
one uses that each stratum is smooth away from lower dimensional strata, and that
transversality to these lower dimensional strata is enough to imply transversality
to the higher dimensional stratum near its singularities.

An extra step is necessary in the constructions : recall that desired topological
properties only hold when the antiholomorphic parts of the derivatives are much



SYMPLECTIC MAPS TO PROJECTIVE SPACES AND SYMPLECTIC INVARIANTS 123

smaller than the holomorphic parts. In spite of approximate holomorphicity, this
can be a problem when the holomorphic part of the jet becomes singular. Therefore,
a small perturbation is needed to kill the antiholomorphic part of the jet near the
singularities ; this perturbation is in practice easy to construct. The reader is
referred to [10] and [3] for details.

Although no general statement has yet been formulated and proved, it is com-
pletely clear that a very general result of uniform transversality for jets holds in
the approximately holomorphic category. Therefore, the observed phenomenon for
Lefschetz pencils and maps to CP2, namely the fact that near every point x ∈ X the
constructed maps are given in approximately holomorphic coordinates by one of the
standard local models for generic holomorphic maps, should hold in all generality,
independently of the dimensions of the source and target spaces. This approach
will be developed in a forthcoming paper [4].

In the remainder of this paper we focus on the topological monodromy invariants
that can be derived from the various available constructions. In Section 2 we study
symplectic Lefschetz pencils and their monodromy, following the results of Donald-
son [10] and Seidel [16]. In Section 3 we describe symplectic branched covers of CP2

and their monodromy invariants, following [3] and [5] ; we also discuss the connec-
tion with 4-dimensional Lefschetz pencils. In Section 4 we extend this framework
to the higher dimensional case, and investigate a new type of monodromy invari-
ants arising from symplectic maps to CP2. We finally show in Section 5 that a
dimensional induction process makes it possible to describe a compact symplectic
manifold of any dimension by a series of words in braid groups and a word in a
symmetric group.

Acknowledgement. The author wishes to thank Ludmil Katzarkov, Paul Seidel
and Bob Gompf for stimulating discussions, as well as Simon Donaldson for his
interest in this work.

2. Symplectic Lefschetz pencils

Let (X2n, ω) be a compact symplectic manifold as above, and let s0, s1 be suitably
chosen approximately holomorphic sections of L⊗k. Then X is endowed with a
structure of symplectic Lefschetz pencil, which can be described as follows.

For any α ∈ CP1 = C ∪ {∞}, define Σα = {x ∈ X, s0 + αs1 = 0}. Then
the submanifolds Σα are symplectic hypersurfaces, smooth except for finitely many
values of the parameter α ; for these parameter values Σα contains a singular point
(a normal crossing when dimX = 4). Moreover, the submanifolds Σα fill all of
X, and they intersect transversely along a codimension 4 symplectic submanifold
Z = {x ∈ X, s0 = s1 = 0}, called the set of base points of the pencil.

Define the projective map f = (s0 : s1) : X − Z → CP1, whose level sets
are precisely the hypersurfaces Σα. Then f is required to be a complex Morse
function, i.e. its critical points are isolated and non-degenerate, with local model
f(z1, . . . , zn) = z2

1 + · · · + z2
n in approximately holomorphic coordinates.

The following result due to Donaldson holds :

Theorem 2.1 (Donaldson [10]). For k � 0, two suitably chosen approximately
holomorphic sections of L⊗k endow X with a structure of symplectic Lefschetz pencil,
canonical up to isotopy.
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This result is proved by obtaining uniform transversality with respect to the strata
s0 = s1 = 0 (of complex codimension 2) and ∂f = 0 (of complex codimension
n) in the space of holomorphic 1-jets of sections of C2 ⊗ L⊗k, by means of the
techniques described in the introduction. A small additional perturbation ensures
the compatibility requirement that ∂̄f vanishes at the points where ∂f = 0. These
properties are sufficient to ensure that the structure is that of a symplectic Lefschetz
pencil. For details, the reader is referred to [10].

The statement that the constructed pencils are canonical up to isotopy for k � 0
is to be interpreted as follows. Consider two sequences (s0

k)k�0 and (s1
k)k�0 of

approximately holomorphic sections of C2 ⊗ L⊗k for increasing values of k. As-
sume that they satisfy the three above-described transversality and compatibility
properties and hence define symplectic Lefschetz pencils. Then, for large enough
k (how large exactly depends on the estimates on the given sections), there exists
an interpolating family (st

k)t∈[0,1] of approximately holomorphic sections, depending
continuously on the parameter t, such that for all values of t the sections st

k satisfy
the transversality and compatibility properties. In particular, for large enough k
the symplectic Lefschetz pencils defined by s0

k and s1
k are isotopic to each other.

Moreover, the same result remains true if the almost-complex structures J0 and
J1 with respect to which s0

k and s1
k are approximately holomorphic differ, so the

topology of the constructed pencils depends only on the topology of the symplectic
manifold X (and on k of course). However, because isotopy holds only for large
values of k, this is only a weak (asymptotic) uniqueness result.

A convenient way to study the topology of a Lefschetz pencil is to blow up X
along the submanifold Z. The resulting symplectic manifold X̂ is the total space of
a symplectic Lefschetz fibration f̂ : X̂ → CP1. Although in the following description
we work on the blown up manifold X̂, it is actually preferrable to work directly on
X ; verifying that the discussion applies to X itself is a simple task left to the
reader.

The fibers of f̂ can be identified with the submanifolds Σα, made mutually disjoint
by the blow-up process. It is then possible to study the monodromy of the fibration
f̂ around its singular fibers.

One easily checks that this monodromy consists of symplectic automorphisms
of the fiber Σα. Moreover, the exceptional divisor obtained by blowing up the
set of base points Z is a subfibration of f̂ , with fiber Z, which is unaffected by the
monodromy ; after restricting to an affine slice, the normal bundle to the exceptional
divisor can be trivialized, so that it becomes natural to consider that the monodromy
of f̂ takes values in the symplectic mapping class group Mapω(Σ, Z) = π0({φ ∈
Symp(Σ, ω), φ|U(Z) = Id}), i.e. the set of isotopy classes of symplectomorphisms of
the generic fiber Σ which coincide with the identity near Z.

In the four-dimensional case, Z consists of a finite number n of points, and Σ is
a compact surface with a certain genus g (note that Σ is always connected because
it satisfies a Lefschetz hyperplane type property) ; Mapω(Σ, Z) is then the classical
mapping class group Mapg,n of a genus g surface with n boundary components.

In fact, the image of the monodromy map is contained in the subgroup of exact
symplectomorphisms in Mapω(Σ, Z) : the connection on L⊗k induces over Σ−Z a
1-form α such that dα = ω. This endows Σ−Z with a structure of exact symplectic
manifold. Monodromy transformations are then exact symplectomorphisms in the
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sense that they preserve not only ω but also the 1-form α : every monodromy
transformation f satisfies f ∗α− α = dh for some function h vanishing near Z (see
[17] for details).

It is well-known (see e.g. [16], [17]) that the singular fibers of a Lefschetz fibration
are obtained from the generic fiber by collapsing a vanishing cycle to a point. The
vanishing cycle is an embedded closed loop in Σ in the four-dimensional case ; more
generally, it is an embedded Lagrangian sphere Sn−1 ⊂ Σ. Then, the monodromy
of f̂ around one of its singular fibers consists in a generalized Dehn twist in the
positive direction along the vanishing cycle.

The picture is the following :

monodromy =
(generalized) Dehn twist

�
CP1

X̂rγi

r
Because the normal bundle to the exceptional divisor is not trivial, the mon-

odromy map cannot be defined over all of CP1, and we need to restrict ourselves to
the preimage of an affine subset C (the fiber at infinity can be assumed regular).

The monodromy around the fiber at infinity of f̂ is given by a mapping class group
element δZ corresponding to a twist around Z. In the four-dimensional case Z con-
sists of n points, and δZ is the product of positive Dehn twists along n loops each
encircling one of the base points ; in the higher-dimensional case δZ is a positive
Dehn twist along the unit sphere bundle in the normal bundle of Z in Σ (i.e. it
restricts to each fiber of the normal bundle as a Dehn twist around the origin).

It follows from the above observations that the monodromy of the Lefschetz
fibration f̂ with critical levels p1, . . . , pd is given by a group homomorphism

ψ : π1(C − {p1, . . . , pd}) → Mapω(Σ2n−2, Z) (1)

which maps the geometric generators of π1(C−{p1, . . . , pd}), i.e. loops going around
one of the points pi, to Dehn twists.

Alternately, choosing a system of generating loops in C − {p1, . . . , pd}, we can
express the monodromy by a factorization of δZ in the mapping class group :

δZ =
d
∏

i=1

τγi
, (2)

where γi is the image in a chosen reference fiber of the vanishing cycle of the singular
fiber above pi and τγi

is the corresponding positive Dehn twist. The identity (2)
in Mapω(Σ, Z) expresses the fact that the monodromy of the fibration around the
point at infinity in CP1 decomposes as the product of the elementary monodromies
around each of the singular fibers.

The monodromy morphism (1), or equivalently the mapping class group fac-

torization (2), completely characterizes the topology of the Lefschetz fibration X̂.
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However, they are not entirely canonical, because two choices have been implicitly
made in order to define them.

First, a base point in C − {p1, . . . , pd} and an identification symplectomorphism

between Σ and the chosen reference fiber of f̂ are needed in order to view the mon-
odromy transformations as elements in the mapping class group of Σ. The choice
of a different identification affects the monodromy morphism ψ by conjugation by
a certain element g ∈ Mapω(Σ, Z). The corresponding operation on the mapping
class group factorization (2) is a simultaneous conjugation of all factors : each factor
τγi

is replaced by τg(γi) = g−1τγi
g.

Secondly, a system of generating loops has to be chosen in order to define a factor-
ization of δZ . Different choices of generating systems differ by a sequence of Hurwitz
operations, i.e. moves in which two consecutive generating loops are exchanged, one
of them being conjugated by the other in order to preserve the counterclockwise
ordering. On the level of the factorization, this amounts to replacing two consecu-
tive factors τ1 and τ2 by respectively τ2 and τ−1

2 τ1τ2 (or, by the reverse operation,
τ1τ2τ

−1
1 and τ1).

It is quite easy to see that any two factorizations of δZ describing the Lefschetz
fibration f̂ differ by a sequence of these two operations (simultaneous conjugation
and Hurwitz moves). Therefore, Donaldson’s uniqueness statement implies that,
for large enough values of k, the mapping class group factorizations associated
to the symplectic Lefschetz pencil structures obtained in Theorem 2.1 are, up to
simultaneous conjugation and Hurwitz moves, symplectic invariants of the manifold
(X,ω).

Conversely, given any factorization of δZ in Mapω(Σ, Z) as a product of positive
Dehn twists, it is possible to construct a symplectic Lefschetz fibration with the
given monodromy. It follows from a result of Gompf that the total space of such a
fibration is always a symplectic manifold. In fact, because the monodromy preserves
the symplectic submanifold Z ⊂ Σ, it is also possible to reconstruct the blown down
manifold X. More precisely, the following result holds :

Theorem 2.2 (Gompf). Let (Σ, ωΣ) be a compact symplectic manifold, and Z ⊂ Σ
a codimension 2 symplectic submanifold such that [Z] = PD([ωΣ]). Consider a
factorization of δZ as a product of positive Dehn twists in Mapω(Σ, Z). In the case
dim(Σ) = 2, assume moreover that all the Dehn twists in the factorization are along
loops that are not homologically trivial in Σ − Z.

Then the total space X of the corresponding Lefschetz pencil carries a symplectic
form ωX such that, given a generic fiber Σ0 of the pencil, [ωX ] is Poincaré dual to
[Σ0], and (Σ0, ωX|Σ0) is symplectomorphic to (Σ, ωΣ). This symplectic structure on
X is canonical up to symplectic isotopy.

The strategy of proof is to first construct a symplectic structure in the correct
cohomology class on a neighborhood of any fiber of the pencil, which is easily done
as Σ already carries a symplectic structure and the monodromy lies in the exact
symplectomorphism group. More precisely, the symplectic structure on Σ − Z is
exact, and Dehn twists along exact Lagrangian spheres are exact symplectomor-
phisms [17]. When dim Σ ≥ 4, the exactness condition is always trivially satisfied,
while in the case dim Σ = 2 it can be ensured by suitably choosing the vanishing
loop in its homotopy class provided that it does not separate Σ into connected com-
ponents without base points. With this understood, it is possible to define local
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symplectic structures over neighborhoods of the singular fibers, coinciding with a
fixed standard symplectic form near Z, and to combine them into a globally defined
symplectic form, singular near the base locus Z. Since the total monodromy is δZ ,
the structure of X near Z is completely standard, and so a non-singular symplec-
tic form on X can be recovered (this process can also be viewed as a symplectic
blow-down along the exceptional hypersurface CP1 × Z in the total space of the
corresponding Lefschetz fibration). This operation changes the cohomology class of
the symplectic form on X, but one easily checks that the resulting class is a nonzero
multiple of the Poincaré dual to a fiber ; scaling the symplectic form by a suitable
factor then yields ωX . The proof that this process is canonical up to symplectic
isotopy is a direct application of Moser’s stability theorem. The reader is referred
to [11] and references therein for details.

In conclusion, the study of the monodromy of symplectic Lefschetz pencils makes
it possible to define invariants of compact symplectic manifolds, which in principle
provide a complete description of the topology. However, the complexity of mapping
class groups and the difficulties in computing the invariants in concrete situations
greatly decrease their usefulness in practice. This motivates the introduction of
other similar topological constructions which may lead to more usable invariants.

3. Branched covers of CP2 and invariants of symplectic 4-manifolds

Throughout §3, we assume that (X,ω) is a compact symplectic 4-manifold. In
that case, three generic approximately holomorphic sections s0, s1 and s2 of L⊗k

never vanish simultaneously, and so they define a projective map f = (s0 : s1 : s2) :
X → CP2. It was shown in [3] that, if the sections are suitably chosen, this map is
a branched covering, whose branch curve R ⊂ X is a smooth connected symplectic
submanifold in X.

There are two possible local models in approximately holomorphic coordinates
for the map f near the branch curve. The first one, corresponding to a generic
point of R, is the map (x, y) 7→ (x2, y) ; locally, both the branch curve R and
its image by f are smooth. The other local model corresponds to the isolated
points where f does not restrict to R as an immersion. The model map is then
(x, y) 7→ (x3 − xy, y), and the image of the smooth branch curve R : 3x2 − y = 0
has equation f(R) : 27z2

1 = 4z3
2 and presents a cusp singularity. These two local

models are the same as in the complex algebraic setting.
It is easy to see by considering the two model maps that R is a smooth ap-

proximately holomorphic (and therefore symplectic) curve in X, and that f(R) is
an approximately holomorphic symplectic curve in CP2, immersed away from its
cusps. After a generic perturbation, we can moreover require that the branch curve
D = f(R) satisfies a self-transversality property, i.e. that its only singular points
besides the cusps are transverse double points (“nodes”). Even though D is approx-
imately holomorphic, it is not immediately possible to require that all of its double
points correspond to a positive intersection number with respect to the standard
orientation of CP2 ; the presence of (necessarily badly transverse) negative double
points is a priori possible.

It was also shown in [3] that the branched coverings obtained from sections of L⊗k

are, for large values of k, canonical up to isotopy (this weak uniqueness statement
holds in the same sense as that of Theorem 2.1). Therefore, the topology of the
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branch curve D = f(R) can be used to define symplectic invariants, provided that
one takes into account the possibility of cancellations or creations of pairs of nodes
with opposite orientations in isotopies of branched coverings.

Most of the results cited below were obtained in a joint work with L. Katzarkov [5].

3.1. Quasiholomorphic maps to CP2. In order to study the topology of the
singular plane curve D, it is natural to try to adapt the braid group techniques pre-
viously used by Moishezon and Teicher in the algebraic case (see e.g. [13], [14], [18]).
However, in order to apply this method it is necessary to ensure that the branch
curve satisfies suitable transversality properties with respect to a generic projec-
tion map from CP2 to CP1. This leads naturally to the notion of quasiholomorphic
covering introduced in [5], which we now describe carefully.

We slightly rephrase the conditions listed in [5] in such a way that they extend
naturally to the higher dimensional case ; the same definitions will be used again
in §4. It is important to be aware that these concepts only apply to sequences of
objects obtained for increasing values of the degree k ; the general strategy is always
to work simultaneously with a whole family of sections indexed by the parameter k,
in order to ultimately ensure the desired properties for large values of k. We start
with the following terminology :

Definition 3.1. A sequence of sections sk of complex vector bundles Ek over X
(endowed with Hermitian metrics and connections) is asymptotically holomorphic if
there exist constants Cj independent of k such that |∇jsk|gk

≤ Cj and |∇j−1∂̄sk|gk
≤

Cjk
−1/2 for all j, all norms being evaluated with respect to the rescaled metric

gk = kg on X.
The sections sk are uniformly transverse to 0 if there exists a constant γ > 0 such

that, at every point x ∈ X where |sk(x)| ≤ γ, the covariant derivative ∇sk(x) is
surjective and has a right inverse of norm less than γ−1 w.r.t. gk (we then say that
sk is γ-transverse to 0).

In the case where the rank of the bundle Ek is greater than the dimension ofX, the
surjectivity condition imposed by transversality is never satisfied ; γ-transversality
to 0 then means that the norm of the section is greater than γ at every point of X.

As mentioned in the introduction, it is easy to check that, if sections are asymp-
totically holomorphic and uniformly transverse to 0, then for large k their zero sets
are smooth approximately holomorphic symplectic submanifolds. This principle,
which plays a key role in Donaldson’s construction of symplectic submanifolds [8],
can also be applied to the Jacobian of the maps defined below and now implies the
symplecticity of their branch curves.

Definition 3.2. A sequence of projective maps fk : X → CP2 determined by
asymptotically holomorphic sections sk = (s0

k, s
1
k, s

2
k) of C3 ⊗ L⊗k for k � 0 is

quasiholomorphic if there exist constants Cj, γ, δ independent of k, almost-complex

structures J̃k on X, and finite sets Ck, Tk, Ik ⊂ X such that the following properties
hold (using J̃k to define the ∂̄ operator) :

(0) |∇j(J̃k − J)|gk
≤ Cjk

−1/2 for every j ≥ 0 ; J̃k = J outside of the 2δ-

neighborhood of Ck∪Tk∪Ik ; J̃k is integrable in the δ-neighborhood of Ck∪Tk∪Ik ;
(1) the section sk of C3 ⊗ L⊗k is γ-transverse to 0 ;
(2) |∇fk(x)|gk

≥ γ at every point x ∈ X ;
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(3) the (2, 0)-Jacobian Jac(fk) =
∧2 ∂fk is γ-transverse to 0 ; in particular it

vanishes transversely along a smooth symplectic curve Rk ⊂ X (the branch curve).
(3′) the restriction of ∂̄fk to Ker ∂fk vanishes at every point of Rk ;
(4) the quantity ∂(fk|Rk

), which can be seen as a section of a line bundle over
Rk, is γ-transverse to 0 and vanishes at the finite set Ck (the cusp points of fk) ;
in particular fk(Rk) = Dk is an immersed symplectic curve away from the image of
Ck ;

(4′) fk is J̃k-holomorphic over the δ-neighborhood of Ck ;
(5) the section (s0

k, s
1
k) of C2 ⊗ L⊗k is γ-transverse to 0 ; as a consequence Dk

remains away from the point (0 : 0 : 1) ;
(6) let π : CP2 − {(0 : 0 : 1)} → CP1 be the map defined by π(x : y : z) = (x : y),

and let φk = π ◦ fk. Then the quantity ∂(φk|Rk
) is γ-transverse to 0 over Rk, and

it vanishes over the union of Ck with the finite set Tk (the tangency points of the
branch curve Dk with respect to the projection π) ;

(6′) fk is J̃k-holomorphic over the δ-neighborhood of Tk ;
(7) the projection fk : Rk → Dk is injective outside of the singular points of Dk,

and the self-intersections of Dk are transverse double points. Moreover, all special
points of Dk (cusps, nodes, tangencies) lie in different fibers of the projection π,
and none of them lies in π−1(0 :1) ;

(8) the section s0
k of L⊗k is γ-transverse to 0 ;

(8′) Rk intersects the zero set of s0
k at the points of Ik ; fk is J̃k-holomorphic over

the δ-neighborhood of Ik.

Remark 3.1. Definition 3.2 is slightly stronger than the definition given in [5].
Most notably, property (8), which ensures that the fiber of π ◦ fk above (0 : 1)
enjoys suitable genericity properties, has been added for our purposes. Similarly,
condition (6′) is significantly stronger than in [5], where it was only required that ∂̄fk

vanish at the points of Tk. These extra conditions only require minor modifications
of the arguments, while allowing the inductive construction described in §5 to be
largely simplified.

Observe that, because of property (0), the notions of asymptotic holomorphicity
with respect to J or J̃k coincide. Moreover, even though J̃k is used implicitly
thoughout the definition, the choice of J or J̃k is irrelevant as far as transversality
properties are concerned since they differ by O(k−1/2).

Property (1) means that sk is everywhere bounded from below by γ ; this im-
plies that the projective map fk is well-defined, and that |∇jfk|gk

= O(1) and
|∇j−1∂̄fk|gk

= O(k−1/2) for all j. The second property can be interpreted in terms
of transversality to the codimension 4 submanifold in the space of 1-jets given by
the equation ∂f = 0. Properties (3) and (3′) yield the correct structure near generic
points of the branch curve : the transverse vanishing of Jac(fk) implies that the
branching order is 2, and the compatibility property (3′) ensures that ∂̄fk remains
much smaller than ∂fk in all directions, which is needed to obtain the correct local
model.

Properties (4) and (4′) determine the structure of the covering near the cusp
points. More precisely, observe that along Rk the tangent plane field TRk and the
plane field Ker ∂fk coincide exactly at the cusp points ; condition (4) expresses that
these two plane fields are transverse to each other (in [3] and [5] this condition
was formulated in terms of a more complicated quantity; the two formulations are
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easily seen to be equivalent). This implies that cusp points are isolated and non-
degenerate. The compatibility condition (4′) then ensures that the expected local
model indeed holds.

The remaining conditions are used to ensure the compatibility of the branch
curve Dk = fk(Rk) with the projection π to CP1. In particular, the transversality
condition (6) and the corresponding compatibility condition (6′) imply that the
points where the branch curve Dk fails to be transverse to the fibers of π are isolated
non-degenerate tangency points. Moreover, property (7) states that the curve Dk is
transverse to itself. This implies that Dk is a braided curve in the following sense :

Definition 3.3. A real 2-dimensional singular submanifold D ⊂ CP2 is a braided
curve if it satisfies the following properties : (1) the only singular points of D are
cusps (with positive orientation) and transverse double points (with either orienta-
tion) ; (2) the point (0 : 0 : 1) does not belong to D ; (3) the fibers of the projection
π : (x : y : z) 7→ (x : y) are everywhere transverse to D, except at a finite set of
nondegenerate tangency points where a local model for D in orientation-preserving
coordinates is z2

2 = z1 ; (4) the cusps, nodes and tangency points are all distinct
and lie in different fibers of π.

We will see in §3.2 that these properties are precisely those needed in order to ap-
ply the braid monodromy techniques of Moishezon-Teicher to the branch curve Dk.

The main result of [5] can be formulated as follows :

Theorem 3.1 ([3],[5]). For k � 0, it is possible to find asymptotically holomorphic
sections of C3 ⊗ L⊗k such that the corresponding projective maps fk : X → CP2

are quasiholomorphic branched coverings. Moreover, for large k these coverings
are canonical up to isotopy and up to cancellations of pairs of nodes in the branch
curves Dk.

The uniqueness statement is to be understood in the same weak sense as for The-
orem 2.1 : given two sequences of quasiholomorphic branched coverings (possibly
for different choices of almost-complex structures on X), for large k it is possible
to find an interpolating one-parameter family of quasiholomorphic coverings, the
only possible non-trivial phenomenon being the cancellation or creation of pairs of
nodes in the branch curve for certain parameter values.

The proof of Theorem 3.1 follows a standard pattern : in order to construct quasi-
holomorphic coverings, one starts with any sequence of asymptotically holomorphic
sections of C3⊗L⊗k and proceeds by successive perturbations in order to obtain all
the required properties, starting with uniform transversality. Since transversality is
an open condition, it is preserved by the subsequent perturbations.

So the first part of the proof consists in obtaining, by successive perturbation
arguments, the transversality properties (1), (2), (3) and (4) of Definition 3.2 as
in [3], (5) and (6) as in [5], and also (8) by a direct application of the result of
[8]. The argument is notably more technical in the case of (4) and (6) because the
transversality conditions involve derivatives along the branch curve, but these can
actually all be thought of as immediate applications of the general transversality
principle mentioned in the Introduction.

The second part of the proof, which is comparatively easier, deals with the
compatibility conditions. The idea is to ensure these properties by perturbing
the sections sk by quantities bounded by O(k−1/2), which clearly affects neither
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holomorphicity nor transversality properties. One first chooses suitable almost-
complex structures J̃k differing from J by O(k−1/2) and integrable near the finite
set Ck ∪ Tk ∪ Ik. It is then possible to perturb fk near these points in order to
obtain conditions (4′), (6′) and (8′), by the same argument as in §4.1 of [3]. Next,
a generic small perturbation yields the self-transversality of D (property (7)). Fi-
nally, a suitable perturbation yields property (3′) along the branch curve without
modifying Rk and Dk and without affecting the other compatibility properties.

The uniqueness statement is obtained by showing that, provided that k is large
enough, all the arguments extend verbatim to one-parameter families of sections.
Therefore, given two sequences of quasiholomorphic coverings, one starts with a
one-parameter family of sections interpolating between them in a trivial way and
perturbs it in such a way that the required properties hold for all parameter values
(with the exception of (7) when a node cancellation occurs). Since this construction
can be performed in such a way that the two end points of the one-parameter family
are not affected by the perturbation, the isotopy result follows immediately.

The reader is referred to [3] and [5] for more details (incorporating requirement
(8) in the arguments is a trivial task).

3.2. Braid monodromy invariants. We now describe the monodromy invariants
that naturally arise from the quasiholomorphic coverings described in the previous
section. This is a relatively direct extension to the symplectic framework of the
braid group techniques studied by Moishezon and Teicher in the algebraic case (see
[13], [14], [18]).

Recall that the braid group on d strings is the fundamental group Bd = π1(Xd)
of the space Xd of unordered configurations of d distinct points in the plane R2. A
braid can therefore be thought as a motion of d points in the plane. An alternate
description involves compactly supported orientation-preserving diffeomorphisms of
R2 which globally preserve a set of d given points : Bd = π0(Diff+

c (R2, {q1, . . . , qd})).
The group Bd is generated by half-twists, i.e. braids in which two of the d points
rotate around each other by 180 degrees while the other points are preserved. For
more details see [6].

Consider a braided curve D ⊂ CP2 (see Definition 3.3) of fixed degree d, for
example the branch curve of a quasiholomorphic covering as given by Theorem 3.1.
Projecting to CP1 via the map π makes D a singular branched covering of CP1.
The picture is the following :

?π : (x :y :z) 7→ (x :y)
CP1

CP2 − {∞} D

q q q

q q q

Let p1, . . . , pr be the images by π of the special points of D (nodes, cusps and
tangencies). Observing that the fibers of π are complex lines (or equivalently real
planes) which generically intersect D in d points, we easily get that the monodromy
of the map π|D around the fibers above p1, . . . , pr takes values in the braid group Bd.
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The monodromy around one of the points p1, . . . , pr is as follows. In the case of
a tangency point, a local model for the curve D is y2 = x (with projection to the
x factor), so one easily checks that the monodromy is a half-twist exchanging two
sheets of π|D. Since all half-twists in Bd are conjugate, it is possible to write this
monodromy in the form Q−1X1Q, where Q ∈ Bd is any braid and X1 is a fixed
half-twist (aligning the points q1, . . . , qd in that order along the real axis, X1 is the
half-twist exchanging the points q1 and q2 along a straight line segment). In the
case of a transverse double point with positive intersection, the local model y2 = x2

implies that the monodromy is the square of a half-twist, which can be written in the
form Q−1X2

1Q. The monodromy around a double point with negative intersection
is the mirror image of the previous case, and can therefore be written as Q−1X−2

1 Q.
Finally, the monodromy around a cusp (local model y2 = x3) is the cube of a
half-twist and can be expressed as Q−1X3

1Q.
However, in order to describe the monodromy automorphisms as braids, one

needs to identify up to compactly supported diffeomorphisms the fibers of π with
a reference plane R2. This implicitly requires a trivialization of the fibration π,
which is not available over all of CP1. Therefore, as in the case of Lefschetz pencils,
it is necessary to restrict oneself to the preimage of an affine subset C ⊂ CP1, by
removing the fiber above the point at infinity (which may easily be assumed to be
regular). So the monodromy map is only defined as a group homomorphism

ρ : π1(C − {p1, . . . , pr}) → Bd. (3)

Since the fibration π defines a line bundle of degree 1 over CP1, the monodromy
around the fiber at infinity is given by the full twist ∆2, i.e. the braid which cor-
responds to a rotation of all points by 360 degrees (∆2 generates the center of
Bd).

Therefore, choosing as in §2 a system of generating loops in C− {p1, . . . , pr}, we
can express the monodromy by a factorization of ∆2 in the braid group :

∆2 =
r
∏

j=1

Q−1
j X

rj

1 Qj, (4)

where the elements Qj ∈ Bd are arbitrary braids and the degrees rj ∈ {1,±2, 3}
depend on the types of the special points lying above pj.

As in the case of Lefschetz pencils, this braid factorization, which completely
characterizes the braided curve D up to isotopy, is only well-defined up to two
algebraic operations: simultaneous conjugation of all factors by a given braid in Bd,
and Hurwitz moves. As previously, simultaneous conjugation reflects the different
possible choices of an identification diffeomorphism between the fiber of π above
the base point and the standard plane (C, {q1, . . . , qd}), while Hurwitz moves arise
from changes in the choice of a generating system of loops in C − {p1, . . . , pr}.

Starting with any braid factorization of the form (4), it is possible to reconstruct
a braided curve D in a canonical way up to isotopy (see [5]; similar statements were
also obtained by Moishezon, Teicher and Catanese). Moreover, one easily checks
that factorizations which differ only by global conjugations and Hurwitz moves
lead to isotopic braided curves (each such operation amounts to a diffeomorphism
isotopic to the identity, obtained in the case of a Hurwitz move by lifting by π a
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diffeomorphism of CP1, and in the case of a global conjugation by a diffeomorphism
in each of the fibers of π).

Moreover, it is important to observe that every braided curve D can be made
symplectic by a suitable isotopy. In fact, it is sufficient to perform a radial con-
traction in all the fibers of π, which brings the given curve into an arbitrarily small
neighborhood of the zero section of π (the complex line {z = 0} in CP2). The
tangent space to D is then very close to that of the complex line (and therefore
symplectic) everywhere except near the tangency points; verifying that the prop-
erty also holds near tangencies by means of the local model, one obtains that D is
symplectic.

We now briefly describe the structure of the fundamental group π1(CP2 − D).
Consider a generic fiber of π, intersectingD in d points q1, . . . , qd. Then the inclusion
map i : C− {q1, . . . , qd} → CP2 −D induces a surjective homomorphism on funda-
mental groups. Therefore, a generating system of loops γ1, . . . , γd in C−{q1, . . . , qd}
provides a set of generators for π1(CP2 − D) (geometric generators). Because the
fiber of π can be compactified by adding the pole of the projection, an obvious re-
lation is γ1 . . . γd = 1. Moreover, each special point of the curve D, or equivalently
every term in the braid factorization, determines a relation in π1(CP2 − D) in a
very explicit way.

Namely, recall that there exists a natural right action of Bd on the free group Fd =
π1(C− {q1, . . . , qd}), that we shall denote by ∗, and consider a factor Q−1

j X
rj

1 Qj in
(4). Then, if rj = 1, the tangency point above pj yields the relation γ1∗Qj = γ2∗Qj

(the two elements γ1 ∗ Qj and γ2 ∗ Qj correspond to small loops going around the
two sheets of π|D that merge at the tangency point). Similarly, in the case of a
node (rj = ±2), the relation is [γ1 ∗Qj, γ2 ∗Qj] = 1. Finally, in the case of a cusp
(rj = 3), the relation becomes (γ1γ2γ1) ∗Qj = (γ2γ1γ2) ∗Qj. It is a classical result
that π1(CP2 − D) is exactly the quotient of Fd = 〈γ1, . . . , γd〉 by the above-listed
relations.

Given a branched covering map f : X → CP2 with branch curve D, it is easy to
see that the topology of X is determined by a group homomorphism from π1(CP2−
D) to the symmetric group Sn of order n = deg f . Considering a generic fiber of π
which intersects D in d points q1, . . . , qd, the restriction of f to its preimage Σ is a
n-sheeted branched covering map from Σ to C with branch points q1, . . . , qd. This
covering is naturally described by a monodromy representation

θ : π1(C − {q1, . . . , qd}) → Sn. (5)

Because the branching index is 2 at a generic point of the branch curve of f ,
the group homomorphism θ maps geometric generators to transpositions. Also, θ
necessarily factors through the surjective homomorphism i∗ : π1(C−{q1, . . . , qd}) →
π1(CP2 −D), because the covering f is defined everywhere, and the resulting map
from π1(CP2−D) to Sn is exactly what is needed to recover the 4-manifold X from
the branch curve D. The properties of θ are summarized in the following definition
due to Moishezon :

Definition 3.4. A geometric monodromy representation associated to a braided
curve D ⊂ CP2 is a surjective group homomorphism θ from the free group π1(C −
{q1, . . . , qd}) = Fd to the symmetric group Sn of order n, mapping the geometric
generators γi (and thus also the γi ∗Qj) to transpositions, and such that
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θ(γ1 . . . γd) = 1,
θ(γ1 ∗Qj) = θ(γ2 ∗Qj) if rj = 1,
θ(γ1 ∗Qj) and θ(γ2 ∗Qj) are distinct and commute if rj = ±2,
θ(γ1 ∗Qj) and θ(γ2 ∗Qj) do not commute if rj = 3.

Observe that, when the braid factorization defining D is affected by a Hurwitz
move, θ remains unchanged and the compatibility conditions are preserved. On the
contrary, when the braid factorization is modified by simultaneously conjugating
all factors by a certain braid Q ∈ Bd, the system of geometric generators γ1, . . . , γd

changes accordingly, and so the geometric monodromy representation θ should be
replaced by θ ◦Q∗, where Q∗ is the automorphism of Fd induced by the braid Q.

One easily checks that, given a braided curve D ⊂ CP2 and a compatible mon-
odromy representation θ : Fd → Sn, it is possible to recover a compact 4-manifold
X and a branched covering map f : X → CP2 in a canonical way. Moreover, as
observed above we can assume that the curve D is symplectic; in that case, the
branched covering map makes it possible to endow X with a symplectic structure,
canonically up to symplectic isotopy (see [3],[5] ; a similar result has also been
obtained by Catanese).

The above discussion leads naturally to the definition of symplectic invariants
arising from the quasiholomorphic coverings constructed in Theorem 3.1. However,
things are complicated by the fact that the branch curves of these coverings are
only canonical up to cancellations of double points.

On the level of the braid factorization, a pair cancellation amounts to removing
two consecutive factors which are the inverse of each other (necessarily one must
have degree 2 and the other degree −2); the geometric monodromy representation
is not affected. The opposite operation is the creation of a pair of nodes, in which
two factors (Q−1X−2

1 Q).(Q−1X2
1Q) are added anywhere in the factorization ; it

is allowed only if the new factorization remains compatible with the monodromy
representation θ, i.e. if θ(γ1∗Q) and θ(γ2∗Q) are commuting disjoint transpositions.

Definition 3.5. Two braid factorizations (along with the corresponding geometric
monodromy representations) are m-equivalent if there exists a sequence of opera-
tions which turns one into the other, each operation being either a global conjuga-
tion, a Hurwitz move, or a pair cancellation or creation.

In conclusion, we get the following result :

Theorem 3.2 ([5]). The braid factorizations and geometric monodromy represen-
tations associated to the quasiholomorphic coverings obtained in Theorem 3.1 are,
for k � 0, canonical up to m-equivalence, and define symplectic invariants of
(X4, ω).

Conversely, the data consisting of a braid factorization and a geometric mon-
odromy representation, or a m-equivalence class of such data, determines a sym-
plectic 4-manifold in a canonical way up to symplectomorphism.

3.3. The braid group and the mapping class group. Let f : X → CP2 be
a branched covering map, and let D ⊂ CP2 be its branch curve. It is a simple
observation that, if D is braided, then the map π ◦ f with values in CP1 obtained
by forgetting one of the components of f topologically defines a Lefschetz pencil.
This pencil is obtained by lifting via the covering f the pencil of lines on CP2 defined
by π, and its base points are the preimages by f of the pole of the projection π.
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Moreover, if one starts with the quasiholomorphic coverings given by Theorem
3.1, then the corresponding Lefschetz pencils coincide for k � 0 with those obtained
by Donaldson in [10] and described in §2.

As a consequence, in the case of a 4-manifold, the invariants described in §3.2
(braid factorization and geometric monodromy representation) completely deter-
mine those described in §2 (factorizations in mapping class groups). It is therefore
natural to look for a more explicit description of the relation between branched cov-
erings and Lefschetz pencils. This description involves the group of liftable braids,
which has been studied in a special case by Birman and Wajnryb in [7]. We recall
the following construction from §5 of [5].

Let Cn(q1, . . . , qd) be the (finite) set of all surjective group homomorphisms Fd →
Sn which map each of the geometric generators γ1, . . . , γd of Fd to a transposition
and map their product γ1 · · · γd to the identity element in Sn. Each element of
Cn(q1, . . . , qd) determines a simple n-fold covering of CP1 branched at q1, . . . , qd.

Let Xd be the space of configurations of d distinct points in the plane. The set of
all simple n-fold coverings of CP1 with d branch points and such that no branching
occurs above the point at infinity can be thought of as a covering X̃d,n above Xd,
in which the fiber above the configuration {q1, . . . , qd} identifies with Cn(q1, . . . , qd).
Therefore, the braid group Bd = π1(Xd) acts on the fiber Cn(q1, . . . , qd) by deck
transformations of the covering X̃d,n. In fact, the action of a braid Q ∈ Bd on
Cn(q1, . . . , qd) is given by θ 7→ θ ◦ Q∗, where Q∗ ∈ Aut(Fd) is the automorphism
induced by Q on the fundamental group of C − {q1, . . . , qd}.

Fix a base point {q1, . . . , qd} in Xd, and consider an element θ of Cn(q1, . . . , qd)
(i.e., a monodromy representation θ : Fd → Sn). Let pθ be the corresponding point
in X̃d,n.

Definition 3.6. The subgroup B0
d(θ) of liftable braids is the set of all the loops in

Xd whose lift at the point pθ is a closed loop in X̃d,n. Equivalently, B0
d(θ) is the set

of all braids which act on Fd = π1(C − {q1, . . . , qd}) in a manner compatible with
the covering structure defined by θ.

In other words, B0
d(θ) is the set of all braids Q such that θ ◦ Q∗ = θ, i.e. the

stabilizer of θ with respect to the action of Bd on Cn(q1, . . . , qd).
There exists a natural bundle Yd,n over X̃d,n (the universal curve) whose fiber is

a Riemann surface of genus g = 1− n+ (d/2) with n marked points. Each of these
Riemann surfaces naturally carries a structure of branched covering of CP1, and
the marked points are the preimages of the point at infinity.

Given an element Q of B0
d(θ) ⊂ Bd, it can be lifted to X̃d,n as a loop based at

the point pθ, and the monodromy of the fibration Yd,n along this loop defines an
element of Mapg,n (the mapping class group of a Riemann surface of genus g with n
boundary components), which we call θ∗(Q). This defines a group homomorphism
θ∗ : B0

d(θ) → Mapg,n.
More geometrically, viewing Q as a compactly supported diffeomorphism of the

plane preserving {q1, . . . , qd}, the fact that Q belongs to B0
d(θ) means that it can be

lifted via the covering map Σg → CP1 to a diffeomorphism of Σg ; the corresponding
element in the mapping class group is θ∗(Q).

It is easy to check that, when the given monodromy representation θ is compatible
with a braided curve D ⊂ CP2, the image of the braid monodromy homomorphism
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ρ : π1(C − {p1, . . . , pr}) → Bd describing D is entirely contained in B0
d(θ) : this is

because the geometric monodromy representation θ factors through π1(CP2 −D),
on which the braids in Im ρ act trivially. Therefore, we can take the image of the
braid factorization describing D by θ∗ and obtain a factorization in the mapping
class group Mapg,n. One easily checks that θ∗(∆

2) is, as expected, the twist δZ

around the n marked points.
As observed in [5], all the factors of degree ±2 or 3 in the braid factorization lie

in the kernel of θ∗ ; therefore, the only terms whose contribution to the mapping
class group factorization is non-trivial are those arising from the tangency points of
the branch curve D, and each of these is a Dehn twist. More precisely, the image
in Mapg,n of a half-twist Q ∈ B0

d(θ) can be constructed as follows. Call γ the path
joining two of the branch points naturally associated to the half-twist Q (i.e. the
path along which the twisting occurs). Among the n lifts of γ to Σg, only two
hit the branch points of the covering ; these two lifts have common end points,
and together they define a loop δ in Σg. Then the element θ∗(Q) in Mapg,n is the
positive Dehn twist along the loop δ (see Proposition 4 of [5]).

In conclusion, the following result holds :

Proposition 3.3. Let f : X → CP2 be a branched covering, and assume that its
branch curve D is braided. Let ρ : π1(C − {p1, . . . , pr}) → B0

d(θ) and θ : Fd → Sn

be the corresponding braid monodromy and geometric monodromy representation.
Then the monodromy map ψ : π1(C − {p1, . . . , pr}) → Mapg,n of the Lefschetz
pencil π ◦ f is given by the identity ψ = θ∗ ◦ ρ.

In particular, for k � 0 the symplectic invariants obtained from Theorem 2.1 are
obtained in this manner from those given by Theorem 3.2.

Remark 3.2. It is a basic fact that for n ≥ 3 the group homomorphism θ∗ :
B0

d(θ) → Mapg,n is surjective, and that for n ≥ 4 every Dehn twist is the image by
θ∗ of a half-twist. This makes it natural to ask whether every factorization of δZ in
Mapg,n as a product of Dehn twists is the image by θ∗ of a factorization of ∆2 in
B0

d(θ) compatible with θ. This can be reformulated in more geometric terms as the
classical problem of determining whether every Lefschetz pencil is topologically a
covering of CP2 branched along a curve with node and cusp singularities (a similar
question replacing pencils by Lefschetz fibrations and CP2 by ruled surfaces also
holds ; presently the answer is only known in the hyperelliptic case, thanks to the
results of Fuller, Siebert and Tian).

A natural approach to these problems is to understand the kernel of θ∗. For
example, if one can show that this kernel is generated by squares and cubes of half-
twists (factors of degree 2 and 3 compatible with θ), then the solution naturally
follows : given a decomposition of δZ as a product of Dehn twists in Mapg,n, any
lift of this word to B0

d(θ) as a product of half-twists differs from ∆2 by a product
of factors of degree 2 and 3 and their inverses. Adding these factors as needed, one
obtains a decomposition of ∆2 into factors of degrees 1, ±2 and ±3 ; the branch
curve constructed in this way may have nodes and cusps with reversed orientation,
but it can still be made symplectic.

Even if the kernel of θ∗ is not generated by factors of degree 2 and 3, it remains
likely that the result still holds and can be obtained by starting from a suitable lift
to B0

d(θ) of the word in Mapg,n. A better understanding of the structure of Ker θ∗
would be extremely useful for this purpose.
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4. The higher dimensional case

In this section we extend the results of §3 to the case of higher dimensional
symplectic manifolds. In §4.1 we prove the existence of quasiholomorphic maps
X → CP2 given by triples of sections of L⊗k for k � 0. The topological invariants
arising from these maps are studied in §4.2 and §4.3, and the relation with Lefschetz
pencils is described in §4.4.
4.1. Quasiholomorphic maps to CP2. Let (X2n, ω) be a compact symplectic
manifold, endowed with a compatible almost-complex structure J . Let L be the
same line bundle as previously (if 1

2π
[ω] is not integral one works with a perturbed

symplectic form as explained in the introduction). Consider three approximately
holomorphic sections of L⊗k, or equivalently a section of C3⊗L⊗k. Then the follow-
ing result states that exactly the same transversality and compatibility properties
can be expected as in the four-dimensional case :

Theorem 4.1. For k � 0, it is possible to find asymptotically holomorphic sec-
tions of C3 ⊗ L⊗k such that the corresponding CP2 valued projective maps fk are
quasiholomorphic (cf. Definition 3.2). Moreover, for large k these projective maps
are canonical up to isotopy and up to cancellations of pairs of nodes in the critical
curves Dk.

Before sketching a proof of Theorem 4.1, we briefly describe the behavior of
quasiholomorphic maps, which will clarify some of the requirements of Definition
3.2.

Condition (1) in Definition 3.2 implies that the set Zk of points where the three
sections s0

k, s
1
k, s

2
k vanish simultaneously is a smooth codimension 6 symplectic (ap-

proximately holomorphic) submanifold. The projective map fk = (s0
k : s1

k : s2
k) with

values in CP2 is only defined over the complement of Zk. The behavior near the set
of base points is similar to what happens for Lefschetz pencils : in suitable local ap-
proximately holomorphic coordinates, Zk is given by the equation z1 = z2 = z3 = 0,
and fk behaves like the model map (z1, . . . , zn) 7→ (z1 : z2 : z3). In fact, a map de-
fined everywhere can be obtained by blowing up X along the submanifold Zk. The
behavior near Zk being completely specified by condition (1), it is implicit that all
the other conditions on fk are only to be imposed outside of a small neighborhood
of Zk.

The correct statement of condition (3) of Definition 3.2 in the case of a manifold
of dimension greater than 4 is a bit tricky. Indeed, Jac(fk) =

∧2 ∂fk is a priori a
section of the vector bundle Λ2,0T ∗X ⊗ f ∗

k (Λ2,0TCP2) of rank n(n− 1)/2. However,
transversality to 0 in this sense is impossible to obtain, as the expected complex
codimension of Rk is n− 1 instead of n(n− 1)/2. Indeed, the section Jac(fk) takes
values in the non-linear subbundle Im(

∧2), whose fibers are of dimension n − 1
at their smooth points (away from the origin). However, transversality to 0 does
not have any natural definition in this subbundle, because it is singular along the
zero section. The problem is very similar to what happens in the construction of
determinantal submanifolds performed in [15].

In our case, a precise meaning can be given to condition (3) by the following
observation. Near any point x ∈ X, property (2) implies that it is possible to find
local approximately holomorphic coordinates on X and local complex coordinates
on CP2 in which the differential at x of the first component of fk can be written
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∂f 1
k (x) = λ dz1, with |λ| > γ/2. This implies that, near x, the projection of

∧2 ∂fk

to its components along dz1∧dz2, . . . , dz1∧dzn is a quasi-isometric isomorphism. In
other words, the transversality to 0 of Jac(fk) is to be understood as the transversal-
ity to 0 of its orthogonal projection to the linear subbundle of rank n− 1 generated
by dz1 ∧ dz2, . . . , dz1 ∧ dzn.

Another equivalent approach is to consider the (non-linear) bundle J 1(X,CP2)
of holomorphic 1-jets of maps from X to CP2. Inside this bundle, the 1-jets whose
differential is not surjective define a subbundle Σ of codimension n − 1, smooth
away from the stratum {∂f = 0}. Since this last stratum is avoided by the 1-jet
of fk (because of condition (2)), the transversality to 0 of Jac(fk) can be natu-
rally rephrased in terms of estimated transversality to Σ in the bundle of jets (this
approach will be developed in [4]).

With this understood, conditions (3) and (3′) imply, as in the four-dimensional
case, that the set Rk of points where the differential of fk fails to be surjective is a
smooth symplectic curve Rk ⊂ X, disjoint from Zk, and that the differential of fk

has rank 2 at every point of Rk. Also, as before, conditions (4) and (4′) imply that
fk(Rk) = Dk is a symplectic curve in CP2, immersed outside of the cusp points.

We now describe the proof of Theorem 4.1 ; most of the argument is identical to
the 4-dimensional case, and the reader is referred to [3] and [5] for notations and
details.

Proof of Theorem 4.1. The strategy of proof is the same as in the 4-dimensional
case. One starts with an arbitrary sequence of asymptotically holomorphic sections
of C3 ⊗ L⊗k over X, and perturbs it first to obtain the transversality properties.
Provided that k is large enough, each transversality property can be obtained over
a ball by a small localized perturbation, using the local transversality result of Don-
aldson (Theorem 12 in [10]). A globalization argument then makes it possible to
combine these local perturbations into a global perturbation that ensures transver-
sality everywhere (Proposition 3 of [3]). Since transversality properties are open,
successive perturbations can be used to obtain all the required properties : once
a transversality property is obtained, subsequent perturbations only affect it by at
most decreasing the transversality estimate.

Step 1. One first obtains the transversality statements in parts (1), (5) and (8)
of Definition 3.2 ; as in the 4-dimensional case, these properties are obtained e.g.
simply by applying the main result of [2]. Observe that all required properties now
hold near the base locus Zk of sk, so we can assume in the rest of the argument that
the points of X being considered lie away from Zk, and therefore that fk is locally
well-defined.

One next ensures condition (2), for which the argument is an immediate adapta-
tion of that in §2.2 of [3], the only difference being the larger number of coordinate
functions.

Step 2. The next property we want to get is condition (3). Here a significant
generalization of the argument in §3.1 of [3] is needed. The problem reduces, as
usual, to showing that the uniform transversality to 0 of Jac(fk) can be ensured over
a small ball centered at a given point x ∈ X by a suitable localized perturbation.
As in [3] one can assume that sk(x) is of the form (s0

k(x), 0, 0) and therefore locally
trivialize CP2 via the quasi-isometric map (x :y :z) 7→ (y/x, z/x) ; this reduces the
problem to the study of a C2-valued map hk. Because |∂fk| is bounded from below,
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we can assume (after a suitable rotation) that |∂h1
k(x)| is greater than some fixed

constant. Also, fixing suitable approximately holomorphic Darboux coordinates
z1

k, . . . , z
n
k (using Lemma 3 of [3], which trivially extends to dimensions larger than

4), we can after a rotation assume that ∂h1
k(x) is of the form λ dz1

k, where the
complex number λ is bounded from below.

By Lemma 2 of [3], there exist asymptotically holomorphic sections sref
k,x of L⊗k

with exponential decay away from x. Define the asymptotically holomorphic 2-
forms µj

k = ∂h1
k ∧ ∂(zj

ks
ref
k,x/s

0
k) for 2 ≤ j ≤ n. At x, the 2-form µj

k is proportional

to dz1
k ∧ dzj

k ; therefore, over a small neighborhood of x, the transversality to 0 of
Jac(fk) in the sense explained above is equivalent to the transversality to 0 of the
projection of Jac(hk) onto the subspace generated by µ2

k, . . . , µ
n
k . In terms of 1-jets,

the 2-forms µj
k define a local frame in the normal bundle to the stratum of non-

regular maps at J 1(fk). Now, express Jac(hk) in the form u2
kµ

2
k + · · · + un

kµ
n
k + αk

over a neighborhood of x, where u2
k, . . . , u

n
k are complex-valued functions and αk

has no component along dz1
k. Then, the transversality to 0 of Jac(fk) is equivalent

to that of the Cn−1-valued function uk = (u2
k, . . . , u

n
k).

Since the functions uk are asymptotically holomorphic, using suitable Darboux
coordinates at x we can use Theorem 12 of [10] to obtain, for large enough k, the
existence of constants w2

k, . . . , w
n
k smaller than any given bound δ > 0 and such that

(u2
k − w2

k, . . . , u
n
k − wn

k ) is η-transverse to 0 over a small ball centered at x, where

η = δ(log δ−1)−p (p is a fixed constant). Letting s̃k = (s0
k, s

1
k, s

2
k −

∑

wj
kz

j
ks

ref
k,x) and

calling f̃k and h̃k the projective map defined by s̃k and the corresponding local C2-
valued map, we get that Jac(h̃k) = Jac(hk) −

∑

wj
kµ

j
k, and therefore that Jac(f̃k)

is transverse to 0 near x. Since the perturbation of sk has exponential decay away
from x, we can apply the standard globalization argument to obtain property (3)
everywhere.

Step 3. The next properties that we want to get are (4) and (6). It is possible
to extend the arguments of [3] and [5] to the higher dimensional case ; however this
yields a very technical and lengthy argument, so we outline here a more efficient
strategy following the ideas of [4]. Thanks to the previously obtained transversality
properties (1) and (5), both fk and φk are well-defined over a neighborhood of Rk,
so the statements of (4) and (6) are well-defined. Moreover, observe that property
(6) implies property (4), because at any point where ∂(fk|Rk

) vanishes, ∂(φk|Rk
)

necessarily vanishes as well, and if it does so transversely then the same is true for
∂(fk|Rk

) as well. So we only focus on (6).
This property can be rephrased in terms of transversality to the codimension n

stratum S : {∂(φ|R) = 0} in the bundle J 2(X,CP2) of holomorphic 2-jets of maps

from X to CP2. However this stratum is singular, even away from the substratum
Snt corresponding to the non-transverse vanishing of Jac(f) ; in fact it is reducible
and comes as a union S1 ∪ S2, where S1 : {Jac(f) = 0, ∂(f|R) = 0} is the stratum
corresponding to non-immersed points of the branch curve, and S2 : {∂φ = 0} is the
stratum corresponding to tangency points of the branch curve. Therefore, one first
needs to ensure transversality with respect to S0 = S1 ∩ S2 : {∂φ = 0, ∂(f|R) = 0},
which is a smooth codimension n + 1 stratum (“vertical cusp points of the branch
curve”) away from Snt.

Step 3a. We first show that a small perturbation can be used to make sure that
the quantity (∂φk, ∂(fk|Rk

)) remains bounded from below, i.e. that given any point
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x ∈ X, either ∂φk(x) is larger than a fixed constant, or x lies at more than a fixed
distance from Rk, or x lies close to a point of Rk where ∂(fk|Rk

)) is larger than a
fixed constant. Since this transversality property is local and open, we can obtain
it by successive small localized perturbations, as for the previous properties.

Fix a point x ∈ X, and assume that ∂φk(x) is small (otherwise no perturbation
is needed). By property (5), we know that necessarily (s0

k, s
1
k) is bounded away

from zero at x ; a rotation in the first two coordinates makes it possible to assume
that s1

k(x) = 0 and s0
k is bounded from below near x. As above, we replace fk by

the C2-valued map hk = (h1
k, h

2
k), where hi

k = si
k/s

0
k. By assumption, we get that

∂h1
k(x) is small. This implies in particular that Jac(fk) is small at x, and therefore

property (3) gives a lower bound on its covariant derivative. Moreover, by property
(2) we also have a lower bound on ∂h2

k(x), which after a suitable rotation can be

assumed equal to λ dz1
k for some λ 6= 0. So, as above we can express

∧2 ∂fk by

looking at its components along dz1
k ∧ dzj

k for 2 ≤ j ≤ n ; we again define the 2-

forms µj
k = ∂h2

k∧∂(zj
ks

ref
k,x/s

0
k), and the functions u2, . . . , un are defined as previously.

Define a (n, 0)-form θ over a neighborhood of x by θ = ∂u2 ∧ · · · ∧ ∂un ∧ ∂h2
k : at

points of Rk, the vanishing of θ is equivalent to that of ∂h2
k|Rk

, or equivalently to

that of ∂fk|Rk
. So our aim is to show that the quantity (∂h1

k, θ), which is a section
of a rank n + 1 bundle E0 near x, can be made bounded from below by a small
perturbation.

For this purpose, we first show the existence of complex-valued polynomials
(P 1

j , P
2
j ) and local sections εj of E0, 1 ≤ j ≤ n+ 1, such that :

(a) for any coefficients wj ∈ C, replacing the given sections of L⊗k by (s0
k, s

1
k +

∑

wjP
1
j s

ref
k,x, s

2
k +

∑

wjP
2
j s

ref
k,x) affects (∂h1

k, θ) by the addition of
∑

wjεj +O(w2
j ) ;

(b) the sections εj define a local frame in E0, and ε1 ∧ · · · ∧ εn+1 is bounded from
below by a universal constant.

First observe that, by property (3), ∂u2 ∧ · · · ∧ ∂un is bounded from below near
x, whereas we may assume that θ = ∂u2 ∧ · · · ∧ ∂un ∧ ∂h2

k is small (otherwise no
perturbation is needed). Therefore, ∂h2

k (which at x is colinear to dz1
k) lies close

to the span of the ∂uj. In particular, after a suitable rotation in the n − 1 last
coordinates on X, we can assume that ∂u2 ∧ ∂h2

k is small at x. On the other hand,

we know that there exists j0 6= 1 such that dzj0
k lies far from the span of the ∂uj(x).

We then define P 1
n+1 = z2

kz
j0
k and P 2

n+1 = 0. Adding to s1
k a quantity of the form

w z2
kz

j0
k sref

k,x does not affect ∂hk(x), but affects ∂u2(x) by the addition of a non-

trivial multiple of dzj0
k , and similarly affects ∂uj0(x) by the addition of a non-trivial

multiple of dz2
k. The other ∂uj(x) are not affected. Therefore, θ(x) changes by an

amount of

cw dzj0
k ∧ ∂u3 ∧ · · · ∧ ∂un ∧ ∂h2

k + c′w ∂u2 ∧ · · · ∧ dz2
k ∧ · · · ∧ ∂un ∧ ∂h2

k +O(w2),

where the constants c and c′ are bounded from above and below. The first term
is bounded from below by construction, while the second term is only present if
j0 6= 2 (this requires n ≥ 3), and in that case it is small because ∂u2 ∧ ∂h2

k is
small. Therefore, the local section εn+1 of E0 naturally corresponding to such a
perturbation is of the form (0, ε′n+1) at x, where ε′n+1 is bounded from below.

Next, for 1 ≤ j ≤ n we define P 1
j = zj

k and P 2
j = 0, and observe that adding

w zj
k s

ref
k,x to s1

k affects ∂h1
k(x) by adding a nontrivial multiple of dzj

k. Therefore, the
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local section of E0 corresponding to this perturbation is at x of the form εj(x) =

(c′′dzj
k, ε

′
j), where c′′ is a constant bounded from below.

It follows from this argument that the chosen perturbations P 1
j and P 2

j for 1 ≤
j ≤ n + 1, and the corresponding local sections εj of E0, satisfy the conditions (a)
and (b) expressed above. Observe that, because εj define a local frame at x and
ε1 ∧ · · · ∧ εn+1 is bounded from below at x, the same properties remain true over a
ball of fixed radius around x.

Now that a local approximately holomorphic frame in E0 is given, we can write
(∂h1

k, θ) in the form
∑

ζjεj for some complex-valued functions ζj ; it is easy to
check that these functions are asymptotically holomorphic. Therefore, we can again
use Theorem 12 of [10] to obtain, if k is large enough, the existence of constants
w1, . . . , wn+1 smaller than any given bound δ > 0 and such that (ζ1−w1, . . . , ζn+1−
wn+1) is bounded from below by η = δ(log δ−1)−p (p is a fixed constant) over a
small ball centered at x. Letting s̃k = (s0

k, s
1
k −

∑

wjP
1
j s

ref
k,x, s

2
k −

∑

wjP
2
j s

ref
k,x) and

calling f̃k, h̃k and θ̃ the projective map defined by s̃k and the corresponding local
maps, we get that (∂h̃1

k, θ̃) is by construction bounded from below by c0η, for a fixed
constant c0 ; indeed, observe that the non-linear term O(w2) in the perturbation
formula does not play any significant role, as it is at most of the order of δ2 � η.
Since the perturbation of sk has exponential decay away from x, we can apply the
standard globalization argument to obtain uniform transversality to the stratum
S0 ⊂ J 2(X,CP2) everywhere.

Step 3b. We now obtain uniform transversality to the stratum S : {Jac(f) =
0, ∂(φ|R) = 0}. The strategy and notations are the same as above. We again fix
a point x ∈ X, and assume that x lies close to a point of Rk where ∂(φk|Rk

) is
small (otherwise, no perturbation is needed). As above, we can assume that s0

k(x)
is bounded from below and define a C2-valued map hk. Two cases can occur : either
∂h1

k(x) is bounded away from zero, or it is small and in that case by Step 3a we
know that ∂(h2

k|Rk
) is bounded from below near x.

We start with the case where ∂h1
k is bounded from below; in other words, we are

not dealing with tangency points but only with cusps. In that case, we can use an
argument similar to Step 3a, except that the roles of the two components of hk are
reversed. Namely, after a rotation we assume that ∂h1

k(x) = λdz1
k for some nonzero

constant λ, and we define components u2, . . . , un of Jac(fk) as previously (using ∂h1
k

rather than ∂h2
k to define the µj

k). Let θ = ∂u2 ∧ · · · ∧ ∂un ∧ ∂h1
k : along Rk, the

ratio between θ and ∂(h1
k|Rk

), or equivalently ∂(φk|Rk
), is bounded between two fixed

constants, so the transverse vanishing of θ is what we are trying to obtain. More
precisely, our aim is to show that the quantity (u2, . . . , un, θ), which is a section
of a rank n bundle E near x, can be made uniformly transverse to 0 by a small
perturbation.

For this purpose, we first show the existence of complex-valued polynomials
(P 1

j , P
2
j ) and local sections εj of E , 2 ≤ j ≤ n+ 1, such that :

(a) for any coefficients wj ∈ C, replacing the given sections of L⊗k by (s0
k, s

1
k +

∑

wjP
1
j s

ref
k,x, s

2
k +

∑

wjP
2
j s

ref
k,x) affects (u2, . . . , un, θ) by the addition of

∑

wjεj +

O(w2
j ) ;

(b) the sections εj define a local frame in E , and ε2 ∧ · · · ∧ εn+1 is bounded from
below by a universal constant.
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By the same argument as in Step 3a, we find after a suitable rotation an index
j0 6= 1 such that, letting P 1

n+1 = 0 and P 2
n+1 = z2

kz
j0
k , the corresponding local section

εn+1 of E is, at x, of the form (0, . . . , 0, ε′n+1), with ε′n+1 bounded from below by a
fixed constant.

Moreover, adding w zj
ks

ref
k,x to s2

k amounts to adding w to uj and does not affect

the other ui’s, by the argument in Step 2. So, letting P 1
j = 0 and P 2

j = zj
k, we get

that the corresponding local sections of E are of the form εj = (0, . . . , 1, . . . , 0, ε′j),
where the coefficient 1 is in j-th position.

So it is easy to check that both conditions (a) and (b) are satisfied by these per-
turbations. The rest of the argument is as in Step 3a : expressing (u2, . . . , un, θ) as
a linear combination of ε2, . . . , εn+1, one uses Theorem 12 of [10] to obtain transver-
sality to 0 over a small ball centered at x.

We now consider the second possibility, namely the case where ∂h1
k(x) is small,

which corresponds to tangency points. By property (2) we know that ∂h2
k(x) is

bounded from below, and we can assume that it is colinear to dz1
k. We then define

components u2, . . . , un of Jac(fk) as usual (as in Step 3a and unlike the previous
case, the µj

k are defined using ∂h2
k rather than ∂h1

k). Letting θ = ∂u2∧· · ·∧∂un∧∂h1
k,

we want as before to obtain the transversality to 0 of the quantity (u2, . . . , un, θ),
which is a local section of a rank n bundle E near x. For this purpose, as usual we
look for polynomials P 1

j , P 2
j and local sections εj satisfying the same properties (a)

and (b) as above.
In order to construct P i

n+1, observe that, by the result of Step 3a, the quantity
∂u2∧· · ·∧∂un∧∂h2

k is bounded from below at x. So, adding to s1
k a small multiple of

s2
k does not affect the uj’s, but it affects θ non-trivially. However, this perturbation is

not localized, so it is not suitable for our purposes (we can’t apply the globalization
argument). Instead, let P 1

n+1 be a polynomial of degree 2 in the coordinates zj
k

and their complex conjugates, such that P 1
n+1s

ref
k,x coincides with s2

k up to order two

at x. Note that the coefficients of P 1
n+1 are bounded by uniform constants, and

that its antiholomorphic part is at most of the order O(k−1/2) (because s2
k and

sref
k,x are asymptotically holomorphic); therefore, P 1

n+1s
ref
k,x is an admissible localized

asymptotically holomorphic perturbation. Also, define P 2
n+1 = 0. Then one easily

checks that the local section εn+1 of E corresponding to P 1
n+1 and P 2

n+1 is, at x, of
the form (0, . . . , 0, ε′n+1), where ε′n+1 is bounded from below.

Moreover, let P 1
j = zj

k and P 2
j = 0 : as above, this perturbation affects uj and

not the other ui’s, and we get that the corresponding local sections of E are of the
form εj = (0, . . . , 1, . . . , 0, ε′j), where the coefficient 1 is in j-th position.

Once again, these perturbations satisfy both conditions (a) and (b). Therefore,
expressing (u2, . . . , un, θ) as a linear combination of ε2, . . . , εn+1, Theorem 12 of [10]
yields transversality to 0 over a small ball centered at x by the usual argument. Now
that both possible cases have been handled, we can apply the standard globalization
argument to obtain uniform transversality to the stratum S ⊂ J 2(X,CP2). This
gives properties (4) and (6) of Definition 3.2.

Step 4. Now that all required transversality properties have been obtained, we
perform further perturbations in order to achieve the other conditions in Definition
3.2. These new perturbations are bounded by a fixed multiple of k−1/2, so the
transversality properties are not affected. The argument is almost the same as
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in the case of 4-manifolds (see §4 of [3] and §3.1 of [5]); the adaptation to the
higher-dimensional case is very easy.

One first defines a suitable almost-complex structure J̃k, by the same argument
as in §4.1 of [3] (except that one also considers the points of Tk and Ik besides
the cusps). As explained in §4.1 of [3], a suitable perturbation makes it possible to
obtain the local holomorphicity of fk near these points, which yields conditions (4′),
(6′) and (8′) ; the argument is the same in all three cases. Next, a generically chosen
small perturbation yields the self-transversality of D (property (7)). Finally, as
described in §4.2 of [3], a suitable perturbation yields property (3′) along the branch
curve without modifying Rk and Dk and without affecting the other compatibility
properties. This completes the proof of the existence statement in Theorem 4.1.

Uniqueness. The uniqueness statement is obtained by showing that, provided
that k is large enough, the whole argument extends to the case of families of sec-
tions depending continuously on a parameter t ∈ [0, 1]. Then, given two sequences
of quasiholomorphic maps, one can start with a one-parameter family of sections
interpolating between them in a trivial way and perturb it in such a way that the
required properties hold for all parameter values (with the exception of (7) when
a node cancellation occurs). If one moreover checks that the construction can be
performed in such a way that the two end points of the one-parameter family are
not affected by the perturbation, the isotopy result becomes an immediate corollary.
Observe that, in the one-parameter construction, the almost-complex structure is
allowed to depend on t.

Most of the above argument extends to 1-parameter families in a straightforward
manner, exactly as in the four-dimensional case ; the key observation is that all the
standard building blocks (existence of approximately holomorphic Darboux coordi-
nates zj

k and of localized approximately holomorphic sections sref
k,x, local transver-

sality result, globalization principle, ...) remain valid in the parametric case, even
when the almost-complex structure depends on t. The only places where the argu-
ment differs from the case of 4-manifolds are properties (3), (4) and (6), obtained
in Steps 2 and 3 above.

For property (3), one easily checks that it is still possible in the parametric case
to assume, after composing with suitable rotations depending continuously on the
parameter t, that s1

k(x) = s2
k(x) = 0 and that ∂h1

k(x) is bounded from below and

directed along dz1
k. This makes it possible to define µj

k and uj
k as in the non-

parametric case, and the parametric version of Theorem 12 of [10] yields a suitable
perturbation depending continuously on t.

The argument of Step 3a also extends to the parametric case, using the following
observation. Fix a point x ∈ X, and let ρk(t) = |∂φk,t(x)|. For all values of t such
that ρk(t) is small enough (smaller than a fixed constant α > 0), we can perform the
construction as in the non-parametric case, defining uj,t and θt. If ρ′k(t) = |θt(x)|
is small enough (smaller than α), then we can apply the same argument as in the
non-parametric case to define polynomials (P 1

j,t, P
2
j,t) and local sections εj,t of E0.

However the definition of P 1
n+1 needs to be modified as follows. Although it is

still possible after a suitable rotation depending continuously on t to assume that
∂u2 ∧ ∂h2

k(x) is small, the choice of an index j0 6= 1 such that dzj0
k lies far from

the span of the ∂uj(x) may depend on t. Instead, we define νk,t as a unit vector

in Cn−1 depending continuously on t and such that
∑n

j=2 ν
j
k,t dz

j
k lies far from the
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span of ∂uj(x), and let P 1
n+1,t =

∑n
j=2 ν

j
k,tz

2
kz

j
k. Then the required properties are

satisfied, and we can proceed with the argument. So, provided that ρk(t) and
ρ′k(t) are both smaller than α, we can use Theorem 12 of [10] to obtain a localized
perturbation τk,t depending continuously on t and such that sk,t + τk,t satisfies the
desired transversality property near x.

In order to obtain a well-defined perturbation for all values of t, we introduce a
continuous cut-off function β : R+ → [0, 1] which equals 1 over [0, α/2] and vanishes
outside of [0, α]. Then, we set τ̃k,t = β(ρk(t))β(ρ′k(t))τk,t, which is well-defined for
all t and depends continuously on t. Since sk,t + τ̃k,t coincides with sk,t + τk,t when
ρk(t) and ρ′k(t) are smaller than α/2, the required transversality holds for these
values of t ; moreover, for the other values of t we know that the 2-jet of sk,t already
lies at distance more than α/2 from the stratum S0, and we can safely assume that
τ̃k,t is much smaller than α/2, so the perturbation does not affect transversality.
Therefore we obtain a well-defined local perturbation for all t ∈ [0, 1], and the
one-parameter version of the result of Step 3a follows by the standard globalization
argument.

The argument of Step 3b is extended to one-parameter families in the same
way : given a point x ∈ X, the same ideas as for Step 3a yield, for all values of the
parameter t such that the 2-jet of sk,t at x lies close to the stratum S, small localized
perturbations τk,t depending continuously on t and such that sk,t + τk,t satisfies the
desired property over a small ball centered at x. As seen above, two different types
of formulas for τk,t arise depending on which component of the stratum S is being
hit; however, the result of Step 3a implies that, in any interval of parameter values
such that the jet of sk,t remains close to S, only one of the two components of S
has to be considered, so τk,t indeed depends continuously on t. The same type of
cut-off argument as for Step 3a then makes it possible to extend the definition of
τk,t to all parameter values and complete the proof.

4.2. The topology of quasiholomorphic maps. We now describe the topolog-
ical features of quasiholomorphic maps and the local models which characterize
them near the critical points.

Proposition 4.2. Let fk : X−Zk → CP2 be a sequence of quasiholomorphic maps.
Then the fibers of fk are codimension 4 symplectic submanifolds, intersecting at the
set of base points Zk, and smooth away from the critical curve Rk ⊂ X. The
submanifolds Rk and Zk of X are smooth and symplectic, and the image fk(Rk) =
Dk is a symplectic braided curve in CP2.

Moreover, given any point x ∈ Rk, there exist local approximately holomorphic
coordinates on X near x and on CP2 near fk(x) in which fk is topologically conjugate
to one of the two following models :

(i) (z1, . . . , zn) 7→ (z2
1 + · · · + z2

n−1, zn) (points where fk|Rk
is an immersion) ;

(ii) (z1, . . . , zn) 7→ (z3
1 + z1zn + z2

2 + · · · + z2
n−1, zn) (near the cusp points).

Proof. The smoothness and symplecticity properties of the various submanifolds
appearing in the statement follow from the observation made by Donaldson in
[8] that the zero sets of approximately holomorphic sections satisfying a uniform
transversality property are smooth and approximately J-holomorphic, and therefore
symplectic. In particular, the smoothness and symplecticity of the fibers of fk away
from Rk follow immediately from Definition 3.2 : since Jac(fk) is bounded from
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below away from Rk (because it satisfies a uniform transversality property), and
since the sections sk are asymptotically holomorphic, it is easy to check that the
level sets of fk are, away from Rk, smooth symplectic submanifolds. Symplecticity
near the singular points is an immediate consequence of the local models (i) and
(ii) that we will obtain later in the proof.

The corresponding properties of Zk and Rk are obtained by the same argument :
Zk and Rk are the zero sets of asymptotically holomorphic sections, both satisfy-
ing a uniform transversality property (by conditions (1) and (3) of Definition 3.2,
respectively), so they are smooth and symplectic.

We now study the local models at critical points of fk. We start with the case of
a cusp point x ∈ X. By property (2) of Definition 3.2, ∂fk has complex rank 1 at
x, so we can find local complex coordinates (Z1, Z2) on CP2 near fk(x) such that
Im ∂fk(x) is the Z2 axis. Pulling back Z2 via the map fk, we obtain, using property
(4′), a J̃k-holomorphic function whose differential does not vanish near x ; therefore,
we can find a J̃k-holomorphic coordinate chart (z1, . . . , zn) on X at x such that
zn = Z2 ◦ fk. In the chosen coordinates, we get fk(z1, . . . , zn) = (g(z1, . . . , zn), zn),
where g is holomorphic and ∂g(0) = 0.

Since x is by assumption a cusp point, the tangent direction to Rk at x lies
in the kernel of ∂fk(0), i.e. in the span of the n − 1 first coordinate axes ; after
a suitable rotation we may assume that TxRk is the z1 axis. Near the origin,
Jac(fk) is characterized by its n − 1 components (∂g/∂z1, . . . , ∂g/∂zn−1), and the
critical curve Rk is the set of points where these quantities vanish. Therefore,
at the origin, ∂2g/∂z2

1 = ∂2g/∂z1∂z2 = · · · = ∂2g/∂z1∂zn−1 = 0. Nevertheless,
Jac(fk) vanishes transversely to 0 at the origin, so the matrix of second derivatives
M = (∂2g/∂zi∂zj(0)), 2 ≤ i ≤ n, 1 ≤ j ≤ n − 1, is non-degenerate (invertible) at
the origin. In particular, the first column of M (corresponding to j = 1) is non-zero,
and therefore ∂2g/∂z1∂zn(0) is necessarily non-zero ; after a suitable rescaling of
the coordinates we may assume that this coefficient is equal to 1. Moreover, the
invertibility of M implies that the submatrix M ′ = (∂2g/∂zi∂zj(0)), 2 ≤ i, j ≤ n−1
is also invertible, i.e. it represents a non-degenerate quadratic form.

Diagonalizing this quadratic form, we can assume after a suitable linear change
of coordinates that the diagonal coefficients of M ′ are equal to 2 and the others are
zero. Therefore g is of the form g(z1, . . . , zn) = z1zn+

∑n−1
j=2 z

2
j +
∑n−1

j=2 αjzjzn+O(z3).

Changing coordinates on X to replace zj by zj + 1
2
αjzn for all 2 ≤ j ≤ n − 1,

and on CP2 to replace Z1 by Z1 + 1
4

∑

α2
jZ

2
2 , we can ensure that g(z1, . . . , zn) =

z1zn +
∑n−1

j=2 z
2
j +O(z3).

Observe that Rk can be described near the origin by expressing the coordi-
nates z2, . . . , zn as functions of z1. By assumption the expressions of z2, . . . , zn

are all of the form O(z2
1). Substituting into the formula for Jac(fk), and letting

gijk = ∂3g/∂zi∂zj∂zk(0), we get that local equations of Rk near the origin are zj =
−3

2
gj11z

2
1 +O(z3

1) for 2 ≤ j ≤ n−1, and zn = −3g111z
2
1 +O(z3

1). It follows that fk|Rk

is locally given in terms of z1 by the map z1 7→ (−2g111z
3
1 +O(z4

1),−3g111z
2
1 +O(z3

1)).
Therefore, the transverse vanishing of ∂(fk|Rk

) at the origin implies that g111 6= 0,
so after a suitable rescaling we may assume that the coefficient of z3

1 in the power
series expansion of g is equal to one.
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On the other hand, suitable coordinate changes can be used to kill all other
degree 3 terms in the expansion of g : if 2 ≤ i ≤ n−1 the coefficient of zizjzk can be
made zero by replacing zi by zi + c

2
zjzk ; similarly for z3

n (replace Z1 by Z1 + cZ3
2 ),

z1z
2
n and z2

1zn (replace z1 by z1 + cz2
n + c′z1zn). So we get that fk(z1, . . . , zn) =

(z3
1 + z1zn + z2

2 + · · · + z2
n−1 +O(z4), zn). It is then a standard result of singularity

theory that the higher order terms can be absorbed by suitable coordinate changes
(see e.g. [1]).

We now turn to the case of where x is a point of Rk which does not lie close to
any of the cusp points. Conditions (2) and (3′) imply that the differential of fk at x
has real rank 2 and that its image lies close to a complex line in the tangent plane to
CP2 at fk(x). Therefore, there exist local approximately holomorphic coordinates
(Z1, Z2) on CP2 such that Im∇fk(x) is the Z2 axis. Moreover, because Z2 ◦fk is an
approximately holomorphic function whose derivative at x satisfies a uniform lower
bound, it remains possible to find local approximately holomorphic coordinates
z1, . . . , zn on X such that zn = Z2 ◦ fk. As before, we can write fk(z1, . . . , zn) =
(g(z1, . . . , zn), zn), where g is an approximately holomorphic function such that
∇g(0) = 0.

By assumption fk restricts to Rk as an immersion at x, so the projection to the
zn axis of TxRk is non-trivial. In fact, property (4) implies that, if ∂(fk|Rk

) is very
small at x, then a cusp point lies nearby ; so we can assume that the zn component
of TxRk is larger than some fixed constant. As a consequence, one can show that
Rk is locally given by equations of the form zj = hj(zn), where the functions hj are
approximately holomorphic and have bounded derivatives. Therefore, a suitable
change of coordinates on X makes it possible to assume that Rk is locally given by
the equations z1 = · · · = zn−1 = 0. Similarly, a suitable approximately holomorphic
change of coordinates on CP2 makes it possible to assume that fk(Rk) is locally
given by the equation Z1 = 0.

As a consequence, we have that g|Rk
= 0 and, since the image of ∇fk at a point

of Rk coincides with the tangent space to fk(Rk), ∇g vanishes at all points of Rk.
In particular this implies that ∂2g/∂zj∂zn(0) = 0 for all 1 ≤ j ≤ n. Moreover,
property (3) implies that Jac(fk) vanishes transversely at the origin, and therefore
that the matrix (∂2g/∂zi∂zj(0)), 1 ≤ i, j ≤ n − 1 is invertible, i.e. it represents
a non-degenerate quadratic form. This quadratic form can be diagonalized by a
suitable change of coordinates ; because the transversality property (3) is uniform,
the coefficients are bounded between fixed constants. After a suitable rescaling, we
can therefore assume that ∂2g/∂zi∂zj(0) is equal to 2 if i = j and 0 otherwise.

In conclusion, we get that g(z1, . . . , zn) = z2
1 + · · · + z2

n−1 + h(z1, . . . , zn), where
h is the sum of a holomorphic function which vanishes up to order 3 at the origin
and of a non-holomorphic function which vanishes up to order 2 at the origin and
has derivatives bounded by O(k−1/2).

Let z be the column vector (z1, . . . , zn−1), and denote by z the vector (z1, . . . , zn).
Using the fact that g vanishes up to order 2 along Rk, we conclude that there exist
matrix-valued functions α, β and γ with the following properties :

(a) g(z) = tzα(z)z + tz̄β(z)z + tz̄γ(z)z̄ ; (α and γ are symmetric) ;
(b) α is approximately holomorphic and has uniformly bounded derivatives ;

α(0) = I ;
(c) β and γ and their derivatives are bounded by fixed multiples of k−1/2.
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The implicit function theorem then makes it possible to construct a C∞ approxi-
mately holomorphic change of coordinates of the form z 7→ λ(z)z+µ(z)z̄ (with λ(0)
orthogonal, λ approximately holomorphic, µ = O(k−1/2)), such that g becomes of
the form g(z) = tzz + tz̄γ̃(z)z̄.

Unfortunately, smooth coordinate changes are not sufficient to further simplify
this expression; instead, in order to obtain the desired local model one must use
as coordinate change an “approximately holomorphic homeomorphism”, which is
smooth away from Rk but admits only directional derivatives at the points of Rk.
More precisely, starting from g = tzz + h and using that h/|z|2 is bounded by
O(k−1/2) +O(z), we can write

g(z) =
n−1
∑

j=1

z̃2
j , z̃j = zj

(

1 +
z̄j

zj

h(z)

|z|2
)1/2

.

This gives the desired local model and ends the proof.

Remark 4.1. The local model at points of Rk only holds topologically (up to
an approximately holomorphic homeomorphism), which is not fully satisfactory.
However, by replacing (3′) by a stronger condition, it is possible to obtain the same
result in smooth approximately holomorphic coordinates. This new condition can
be formulated as follows. Away from the cusp points, the complex lines (Im ∂fk)

⊥

define a line bundle V ⊂ TCP2
|Dk

, everywhere transverse to TDk. A neighborhood
of the zero section in V can be sent via the exponential map of the Fubini-Study
metric onto a neighborhood of Dk (away from the cusps), in such a way that each
fiber Vx is mapped holomorphically to a subset Vx contained in a complex line in
CP2.

Lifting back to a neighborhood of Rk in X, we can define slices Wx = f−1
k (Vfk(x))

for all x ∈ Rk lying away from Ck. It is then possible to identify a neighborhood of
Rk (away from Ck) with a neighborhood of the zero section in the vector bundle W
whose fiber at x ∈ Rk is Ker ∂fk(x), in such a way that each fiber Wx gets mapped
to Wx. Observe moreover that, since Wx is a complex subspace in (TxX, J̃k), W
is endowed with a natural complex structure induced by J̃k. It is then possible to
ensure that the “exponential map” from Wx to Wx is approximately J̃k-holomorphic
for every x, and, using condition (4′), holomorphic when x lies at distance less than
δ/2 from a cusp point.

With this setup understood, and composing on both sides with the exponential
maps, fk induces a fiber-preserving map ψk between the bundles W and V ; this
map is approximately holomorphic everywhere, and holomorphic at distance less
than δ/2 from Ck. The condition which we impose as a replacement of (3′) is that
ψk should be fiberwise holomorphic over a neighborhood of the zero section in W .

The proof of existence of quasiholomorphic maps satisfying this strengthened
condition follows a standard argument : trivializing locally V and W for each
value of k, and given asymptotically holomorphic maps ψk, Lemma 8 of [3] (see

also [8]) implies the existence of a fiberwise holomorphic map ψ̃k differing from
ψk by O(k−1/2) over a neighborhood of the zero section. It is moreover easy to

check that ψ̃k = ψk near the cusp points. So, in order to obtained the desired
property, we introduce a smooth cut-off function and define a map ψ̂k which equals
ψ̃k near the zero section and coincides with ψk beyond a certain distance. Going
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back through the exponential maps, we obtain a map f̂k which differs from fk by
O(k−1/2) and coincides with fk outside a small neighborhood of Rk and near the
cusp points. The corresponding perturbations of the asymptotically holomorphic
sections sk ∈ Γ(C3 ⊗ L⊗k) are easy to construct. Moreover, we can always assume

that ψ̃k and ψk coincide at order 1 along the zero section, i.e. that f̂k and fk coincide
up to order 1 along the branch curve ; therefore, the branch curve of f̂k and its image
are the same as for fk, and so all properties of Definition 3.2 hold for f̂k.

Once this condition is satisfied, getting the correct local model at a point x ∈ Rk

in smooth approximately holomorphic coordinates is an easy task. Namely, we
can define, near fk(x), local approximately holomorphic coordinates Z2 on Dk and
Z1 on the fibers of V (Z1 is a complex linear function on each fiber, depending
approximately holomorphically on Z2). Using the exponential map, we can use

(Z1, Z2) as local coordinates on CP2. Lifting Z2 via f̂k yields a local coordinate zn on
Rk near x. Moreover, we can locally define complex linear coordinates z1, . . . , zn−1

in the fibers of W , depending approximately holomorphically on zn. Using again the
exponential map, (z1, . . . , zn) define local approximately holomorphic coordinates
on X. Then, by construction, local equations are z1 = · · · = zn−1 = 0 for Rk and
Z1 = 0 for Dk, and fk is given by fk(z1, . . . , zn) = (ψk(z1, . . . , zn), zn). Moreover,
we know that ψk is, for each value of zn, a holomorphic function of z1, . . . , zn−1,
vanishing up to order 2 at the origin. We can then use the argument in the proof
of Proposition 4.2 to obtain the expected local model in smooth approximately
holomorphic coordinates.

4.3. Monodromy invariants of quasiholomorphic maps. We now look at the
monodromy invariants naturally arising from quasiholomorphic maps to CP2. Let
f : X − Z → CP2 be one of the maps constructed in Theorem 3.1 for large enough
k. The fibers of f are singular along the smooth symplectic curve R ⊂ X, whose
image in CP2 is a symplectic braided curve. Therefore, we obtain a first interesting
invariant by considering the critical curve D ⊂ CP2.

As in the four-dimensional case, using the projection π : CP2−{(0 :0 :1)} → CP1

we can describe the topology of D by a braid monodromy map

ρn : π1(C − {p1, . . . , pr}) → Bd, (6)

where p1, . . . , pr are the images by π of the cusps, nodes and tangency points of D,
and d = degD. Alternately, we can also express this monodromy as a braid group
factorization

∆2 =
r
∏

j=1

Q−1
j X

rj

1 Qj. (7)

Like in the four-dimensional case, this braid factorization completely characterizes
the curve D up to isotopy, but it is only well-defined up to simultaneous conjugation
and Hurwitz equivalence.

We now turn to the second part of the problem, namely describing the topology
of the map f : X − Z → CP2 itself. As in the case of Lefschetz pencils, we blow
up X along Z in order to obtain a well-defined map f̂ : X̂ → CP2. The fibers of
f̂ are naturally identified with those of f , made mutually disjoint by the blow-up
process.



SYMPLECTIC MAPS TO PROJECTIVE SPACES AND SYMPLECTIC INVARIANTS 149

Denote by Σ2n−4 the generic fiber, i.e. the fiber above a point of CP2 −D. The
structure of the singular fibers of f̂ can be easily understood by looking at the local
models obtained in Proposition 4.2. The easiest case is that of the fiber above a
smooth point of D. This fiber intersects R transversely in one point, where the
local model is (z1, . . . , zn) 7→ (z2

1 + · · · + z2
n−1, zn), which can be thought of as a

one-parameter version of the model map for the singularities of a Lefschetz pencil
in dimension 2n − 2. Therefore, as in that case, the singular fiber is obtained by
collapsing a vanishing cycle, namely a Lagrangian sphere Sn−2, in the generic fiber
Σ, and the monodromy of f̂ maps a small loop around D to a positive Dehn twist
along the vanishing cycle.

The fiber of f̂ above a nodal point of D intersects R transversely in two points,
and is similarly obtained from Σ by collapsing two disjoint Lagrangian spheres. In
fact, the nodal point does not give rise to any specific local model in X, as it simply
corresponds to the situation where two points of R happen to lie in the same fiber.

Finally, in the case of a cusp point of D, the local model (z1, . . . , zn) 7→ (z3
1 +

z1zn + z2
2 + · · ·+ z2

n−1, zn) can be used to show that the singular fiber is a “fishtail”
fiber, obtained by collapsing two Lagrangian spheres which intersect transversely
in one point.

With this understood, the topology of f̂ is described by its monodromy around
the singular fibers. As in the case of Lefschetz fibrations, the monodromy consists
of symplectic automorphisms of Σ preserving the submanifold Z. However, as in
§2, defining a monodromy map with values in Mapω(Σ, Z) requires a trivialization
of the normal bundle of Z, which is only possible over an affine subset C2 ⊂ CP2.
So, the monodromy of f̂ is described by a group homomorphism

ψn : π1(C
2 −D) → Mapω(Σ, Z). (8)

A simpler description can be obtained by restricting oneself to a generic line
L ⊂ CP2 which intersects D transversely in d points q1, . . . , qd. In fact, Definition
3.2 implies that we can use the fiber of π above (0 :1) for this purpose. As in §3.2,
the inclusion i : C − {q1, . . . , qd} → C2 −D induces a surjective homomorphism on
fundamental groups. The relations between the geometric generators γ1, . . . , γd of
π1(C

2 −D) are again given by the braid factorization (one relation for each factor)
in the same manner as in §3.2. Note that the relation γ1 . . . γd = 1 only holds in
π1(CP2 −D), not in π1(C

2 −D).

It follows from these observations that the monodromy of f̂ can be described by
the monodromy morphism

θn−1 : π1(C − {q1, . . . , qd}) → Mapω(Σ, Z) (9)

defined by θn−1 = ψn ◦ i∗. We know from the above discussion on the structure

of f̂ near its critical points that θn−1 maps the geometric generators of π1(C −
{q1, . . . , qd}) to positive Dehn twists. Moreover, by considering the normal bundle

to the exceptional divisor in X̂ one easily checks that the monodromy around infinity
is again a twist along Z in Σ, i.e. θn−1(γ1 . . . γd) = δZ .

These properties of θn−1 are strikingly similar to those of the monodromy of
a symplectic Lefschetz pencil. In fact, let W = f−1(L) be the preimage of a
complex line L = CP1 ⊂ CP2 intersecting D transversely. Then the restriction of
f to the smooth symplectic hypersurface W ⊂ X endows it with a structure of
symplectic Lefschetz pencil with generic fiber Σ and base set Z ; for example, if
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one chooses L = π−1(0 : 1), then W is the zero set of s0
k and the restricted pencil

f|W : W − Z → CP1 is defined by the two sections s1
k and s2

k. The monodromy of
the restricted pencil is, by construction, given by the map θn−1.

The situation is summarized in the following picture :
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Remark 4.2. If a cusp point of D happens to lie close to the chosen line L, then
two singular points of the restricted pencil f|W lie close to each other. This is not
a problem here, but in general if we want to avoid this situation we need to impose
one additional transversality condition on f . Namely, we must require the uniform
transversality to 0 of ∂(f|W ), which is easily obtained by imitating Donaldson’s
argument from [10]. Another situation in which this property naturally becomes
satisfied is the one described in §5.

Given a braided curve D ⊂ CP2 of degree d described by a braid factorization as
in (7), and given a monodromy map θn−1 as in (9), certain compatibility conditions
need to hold between them in order to ensure the existence of a CP2-valued map
with critical curve D and monodromy θn−1. Namely, θn−1 must factor through
π1(C

2 −D), and the fibration must behave in accordance with the expected models
near the special points of D. We introduce the following definition summarizing
these compatibility properties :

Definition 4.1. A geometric (n − 1)-dimensional monodromy representation as-
sociated to a braided curve D ⊂ CP2 is a surjective group homomorphism θn−1

from the free group π1(C − {q1, . . . , qd}) = Fd to a symplectic mapping class group
Mapω(Σ2n−4, Z2n−6), mapping the geometric generators γi (and thus also the γi∗Qj)
to positive Dehn twists and such that

θn−1(γ1 . . . γd) = δZ ,
θn−1(γ1 ∗Qj) = θn−1(γ2 ∗Qj) if rj = 1,
θn−1(γ1 ∗ Qj) and θn−1(γ2 ∗ Qj) are twists along disjoint Lagrangian spheres if

rj = ±2,
θn−1(γ1 ∗Qj) and θn−1(γ2 ∗Qj) are twists along Lagrangian spheres transversely

intersecting in one point if rj = 3.

As in the four-dimensional case, θn−1 remains unchanged and the compatibility
conditions are preserved when the braid factorization defining D is affected by a
Hurwitz move. However, when all factors in the braid factorization are simultane-
ously conjugated by a certain braid Q ∈ Bd, the system of geometric generators
γ1, . . . , γd changes accordingly, and so the geometric monodromy representation
θn−1 should be replaced by θn−1 ◦Q∗, where Q∗ is the automorphism of Fd induced
by the braid Q. For example, conjugating the braid factorization by one of the
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generating half-twists in Bd affects the monodromy θn−1 of the restricted pencil by
a Hurwitz move.

One easily checks that, given a symplectic braided curve D ⊂ CP2 and a compat-
ible monodromy representation θn−1 : Fd → Mapω(Σ, Z), it is possible to recover
a compact 2n-manifold X and a map f : X − Z → CP2 in a canonical way up
to smooth isotopy. Moreover, it is actually possible to endow X with a symplectic
structure, canonically up to symplectic isotopy. Indeed, by first applying Theorem
2.2 to the monodromy map θn−1 we can recover a canonical symplectic structure
on the total space W of the restricted Lefschetz pencil ; furthermore, as will be
shown in §4.4 below, the braid monodromy of D and the compatible monodromy
representation θn−1 determine on X a structure of Lefschetz pencil with generic
fiber W and base set Σ, which implies by a second application of Theorem 2.2 that
X carries a canonical symplectic structure. The same result can also be obtained
more directly, by adapting the statement and proof of Theorem 2.2 to the case of
CP2-valued maps.

As in the four-dimensional case, we can naturally define symplectic invariants
arising from the quasiholomorphic maps constructed in Theorem 4.1. However, we
again need to take into account the possible presence of negative self-intersections in
the critical curves of these maps. Therefore, the braid factorizations we obtain are
only canonical up to global conjugation, Hurwitz equivalence, and pair cancellations
or creations. As in the four-dimensional case, a pair creation operation (inserting
two mutually inverse factors anywhere in the braid factorization) is only allowed if
the new factorization remains compatible with the monodromy representation θn−1,
i.e. if θn−1 maps the two corresponding geometric generators to Dehn twists along
disjoint Lagrangian spheres.

With this understood, we can introduce a notion of m-equivalence as in Definition
3.5. The following result then holds :

Theorem 4.3. The braid factorizations and geometric monodromy representations
associated to the quasiholomorphic maps to CP2 obtained in Theorem 4.1 are, for
k � 0, canonical up to m-equivalence (up to a choice of line bundle L when the
cohomology class [ω] is not integral), and define symplectic invariants of (X 2n, ω).

Conversely, the data consisting of a braid factorization and a geometric (n− 1)-
dimensional monodromy representation, or a m-equivalence class of such data, de-
termines a symplectic 2n-manifold in a canonical way up to symplectomorphism.

Remark 4.3. The invariants studied in this section are a very natural generaliza-
tion of those defined in §3.2 for 4-manifolds. Namely, when dimX = 4, we naturally
get that Z = ∅ and dim Σ = 0, i.e. the generic fiber Σ consists of a finite number of
points, as expected for a branched covering map. In particular, the mapping class
group Map(Σ) of the 0-manifold Σ is in fact the symmetric group of order card(Σ).
Finally, a Lagrangian 0-sphere in Σ is just a pair of points of Σ, and the associated
Dehn twist is simply the corresponding transposition. With this correspondence,
the results of §3 are the exact four-dimensional counterparts of those described here.

4.4. Quasiholomorphic maps and symplectic Lefschetz pencils. Consider
again a symplectic manifold (X2n, ω) and let f : X − Z → CP2 be a map with
the same topological properties as those obtained by Theorem 4.1 from sections of
L⊗k for k large enough. As in the four-dimensional case, the CP1-valued map π ◦ f
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defines a Lefschetz pencil structure on X, obtained by lifting via f a pencil of lines
on CP2. The base set of this pencil is the fiber of f above the pole (0 : 0 : 1) of the
projection π.

In fact, starting from the quasiholomorphic maps fk given by Theorem 4.1, the
symplectic Lefschetz pencils π ◦ fk coincide for k � 0 with those obtained by
Donaldson in [10] and described in §2 ; calling s0

k, s
1
k, s

2
k the sections of L⊗k defining

fk, the Lefschetz pencil π ◦ fk is the one induced by the sections s0
k and s1

k.
Therefore, as in the case of a 4-manifold, the invariants described in §4.3 (braid

factorization and (n − 1)-dimensional geometric monodromy representation) com-
pletely determine those discussed in §2 (factorizations in mapping class groups).
Once again, the topological description of the relation between quasiholomorphic
maps and Lefschetz pencils involves a subgroup of θn−1-liftable braids in the braid
group, and a group homomorphism from this subgroup to a mapping class group.

Consider a symplectic braided curve D ⊂ CP2, described by its braid monodromy
ρn : π1(C − {p1, . . . , pr}) → Bd, and a compatible (n− 1)-dimensional monodromy
representation θn−1 : Fd = π1(C − {q1, . . . , qd}) → Mapω(Σ2n−4, Z2n−6). Then we
can make the following definition :

Definition 4.2. The subgroup B0
d(θn−1) of liftable braids is the set of all braids

Q ∈ Bd such that θn−1 ◦ Q∗ = θn−1, where Q∗ ∈ Aut(Fd) is the automorphism
induced by the braid Q on π1(C − {q1, . . . , qd}).

A topological definition of B0
d(θn−1) can also be given in terms of universal fibra-

tions and coverings of configuration spaces, similarly to the description in §3.3.
More importantly, denote by W the total space of the symplectic Lefschetz pencil

LP (θn−1) with generic fiber Σ and monodromy θn−1. For example, if ρn and θn−1 are
the monodromy morphisms associated to a quasiholomorphic map given by sections
s0

k, s
1
k, s

2
k of L⊗k over X, then W is the smooth symplectic hypersurface in X given

by the equation s0
k = 0 ; indeed, as seen in §4.3, this hypersurface carries a Lefschetz

pencil structure with generic fiber Σ, induced by s1
k and s2

k, and the monodromy of
this restricted pencil is precisely θn−1. A braid Q ∈ Bd can be viewed as a motion
of the critical set {q1, . . . , qd} of the Lefschetz pencil LP (θn−1) ; after this motion
we obtain a new Lefschetz pencil with monodromy θn−1 ◦ Q∗. So the subgroup
B0

d(θn−1) precisely consists of those braids which preserve the monodromy of the
Lefschetz pencil LP (θn−1).

Viewing braids as compactly supported symplectomorphisms of the plane pre-
serving {q1, . . . , qd}, the fact that Q belongs to B0

d(θn−1) means that it can be lifted
via the Lefschetz pencil map W − Z → CP1 to a symplectomorphism of W . Since
the monodromy of the pencil LP (θn−1) preserves a neighborhood of the base set
Z, the lift to W of the braid Q coincides with the identity over a neighborhood
of Z. Even better, because Q is compactly supported, its lift to W coincides with
Id near the fiber above the point at infinity in CP1, which can be identified with
Σ. Therefore, the lift of Q to W is a well-defined element of the mapping class
group Mapω(W,Σ), which we call (θn−1)∗(Q). This construction defines a group
homomorphism

(θn−1)∗ : B0
d(θn−1) → Mapω(W 2n−2,Σ2n−4).

Since the geometric monodromy representation θn−1 is compatible with the brai-
ded curve D ⊂ CP2, the image of the braid monodromy homomorphism ρn : π1(C−
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{p1, . . . , pr}) → Bd describing D is entirely contained in B0
d(θn−1). Indeed, it follows

from Definition 4.1 that θn−1 factors through π1(C
2 − D), on which the braids of

Im ρn act trivially. As a consequence, we can use the group homomorphism (θn−1)∗
in order to obtain, from the braid monodromy ρn, a group homomorphism

θn = (θn−1)∗ ◦ ρn : π1(C − {p1, . . . , pr}) → Mapω(W,Σ).

If ρn and θn−1 describe the monodromy of a CP2-valued map f , then θn is by
construction the monodromy of the corresponding Lefschetz pencil π◦f . Therefore,
the following result holds :

Proposition 4.4. Let f : X − Z → CP2 be one of the quasiholomorphic maps
of Theorem 4.1. Let D ⊂ CP2 be its critical curve, and denote by ρn : π1(C −
{p1, . . . , pr}) → B0

d(θn−1) and θ : Fd → Mapω(Σ, Z) be the corresponding mon-
odromies. Then the monodromy map θn : π1(C − {p1, . . . , pr}) → Mapω(W,Σ) of
the Lefschetz pencil π ◦ f is given by the identity θn = (θn−1)∗ ◦ ρn.

In particular, for k � 0 the symplectic invariants given by Theorem 2.1 are
obtained in this manner from those defined in Theorem 4.3.

As in the four-dimensional case, all the factors of degree ±2 or 3 in the braid
monodromy (corresponding to the cusps and nodes ofD) lie in the kernel of (θn−1)∗ ;
the only terms which contribute non-trivially to the pencil monodromy θn are those
arising from the tangency points of the branch curve D, and each of these contri-
butions is a Dehn twist.

More precisely, the image in Mapω(W,Σ) of a half-twist Q ∈ B0
d(θn−1) arising as

the braid monodromy around a tangency point of D can be constructed as follows.
Consider the Lefschetz pencil LP (θn−1) with total space W , generic fiber Σ, critical
levels q1, . . . , qd and monodromy θn−1. Call γ the path joining two of the points
q1, . . . , qd (e.g., qi1 and qi2) and naturally associated to the half-twist Q (the path
along which the twisting occurs). By Definition 4.1, the monodromies of LP (θn−1)
around the two end points qi1 and qi2 are the same Dehn twists (using γ to identify
the two singular fibers). Even better, in this context one easily shows that the
vanishing cycles at the two end points of γ are isotopic Lagrangian spheres in Σ.
Then it follows from the work of Donaldson and Seidel that, above the path γ,
one can find a Lagrangian sphere L = Sn−1 ⊂ W , joining the singular points of
the fibers above qi1 and qi2 , and intersecting each fiber inbetween in a Lagrangian
sphere Sn−2 (there is in fact a hidden subtlety in the argument, but working on
pencils rather than fibrations it can be seen that the isotopy of the two vanishing
cycles is sufficient). The element (θn−1)∗(Q) in Mapω(W,Σ) is the positive Dehn
twist along the Lagrangian sphere L.

Remark 4.4. Let (X2n, ω) be a compact symplectic manifold, and consider the
symplectic Lefschetz pencils given by Donaldson’s result (Theorem 2.1) from pairs
of sections of L⊗k for k � 0 ; the monodromy of these Lefschetz pencils consists
of generalized Dehn twists around Lagrangian (n − 1)-spheres in the generic fiber
Wk. It follows from Proposition 4.4 that these Lagrangian spheres are not arbitrary.
Indeed, they can all be obtained by endowing Wk with a structure of symplectic
Lefschetz pencil induced by two sections of L⊗k (the existence of such a structure
follows from the results of this section), and by looking for Lagrangian (n − 1)-
spheres which join two mutually isotopic vanishing cycles of this pencil above a
path in the base.
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As observed by Seidel, this remarkable structure of vanishing cycles makes it
possible to hope for a purely combinatorial description of Lagrangian Floer homol-
ogy, at least for Lagrangian spheres : one can try to use the structure of vanishing
cycles in a 2n-dimensional Lefschetz pencil to reduce things first to the 2n − 2-
dimensional case, and then by induction eventually to the case of 0-manifolds, in
which the calculations are purely combinatorial.

5. Complete linear systems and dimensional induction

We now show how the results of §4 can be used in order to reduce in principle the
classification of compact symplectic manifolds to a purely combinatorial problem.

The idea behind this approach is to consider a linear system of rank greater than
3, using partial monodromy data to define invariants which allow a dimensional
reduction process. This strategy is somewhat complementary to the result obtained
by Gompf in [11], showing that the total space of a “hyperpencil” (a rank n − 1
linear system) carries a canonical symplectic structure.

Definition 5.1. Let (X2n, ω) be a compact symplectic manifold. We say that
asymptotically holomorphic (n+1)-tuples of sections of L⊗k define braiding complete
linear systems onX if, for large values of k, these sections s0, . . . , sn ∈ Γ(L⊗k) satisfy
the following properties :

(a) for 0 ≤ r ≤ n− 1, the section (sr+1, . . . , sn) of Cn−r ⊗L⊗k satisfies a uniform
transverslity property, and its zero set Σr = {sr+1 = · · · = sn = 0} is a smooth
symplectic submanifold of dimension 2r in X. We also define Σn = X and Σ−1 = ∅ ;

(b) for 1 ≤ r ≤ n, the pair of sections (sr, sr−1) ∈ Γ(C2 ⊗L⊗k) defines a structure
of symplectic Lefschetz pencil on Σr, with generic fiber Σr−1 and base set Σr−2 ;

(c) for 2 ≤ r ≤ n, the triple of sections (sr, sr−1, sr−2) ∈ Γ(C3 ⊗ L⊗k) defines a
quasiholomorphic map from Σr to CP2, with generic fiber Σr−2 and base set Σr−3.

One can think of a braiding complete linear system in the following way. First,
the two sections sn and sn−1 define a Lefschetz pencil structure on X. By adding
the section sn−2, this structure is refined into a quasiholomorphic map to CP2.
As observed in §4, by restricting to the hypersurface Σn−1 we get a symplectic
Lefschetz pencil defined by sn−1 and sn−2. This structure is in turn refined into a
quasiholomorphic map by adding the section sn−3 ; and so on.

Note that, except for the case r = 1, part (b) of Definition 5.1 is actually an
immediate consequence of part (c), because by composing CP2-valued quasiholo-
morphic maps with the projection π : CP2 − {(0 :0 :1)} → CP1 one always obtains
Lefschetz pencils. Also note that, in order to make sense out of these properties, one
implicitly needs to endow the submanifolds Σr with ω-compatible almost-complex
structures ; these restricted almost-complex structures can be chosen to differ from
the almost-complex structure J on X by O(k−1/2), so that asymptotic holomor-
phicity and transversality properties are not affected by this choice.

Theorem 5.1. Let (X2n, ω) be a compact symplectic manifold. Then for all large
enough values of k it is possible to find asymptotically holomorphic sections of
Cn+1 ⊗ L⊗k determining braiding complete linear systems on X. Moreover, for
large k these structures are canonical up to isotopy and up to cancellations of pairs
of nodes in the critical curves of the quasiholomorphic CP2-valued maps.
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Proof. We only give a sketch of the proof of Theorem 5.1. As usual, we need to
obtain two types of properties : uniform transversality conditions, which we en-
sure in the first part of the argument, and compatibility conditions, which are
obtained by a subsequent perturbation. As in previous arguments, the various
uniform transversality properties are obtained successively, using the fact that, be-
cause transversality is an open condition, it is preserved by any sufficiently small
subsequent perturbations.

The first transversality properties to be obtained are those appearing in part (a)
of Definition 5.1, i.e. the transversality to 0 of (sr+1, . . . , sn) for all 0 ≤ r ≤ n− 1 ;
this easy case is e.g. covered by the main result of [2].

One next turns to the transversality conditions arising from the requirement that
the three sections (sn, sn−1, sn−2) define quasiholomorphic maps from X to CP2 :
it follows immediately from the proof of Theorem 4.1 that these properties can be
obtained by suitable small perturbations.

Next, we try to modify sn−1, sn−2 and sn−3 in order to ensure that the restrictions
to Σn−1 = s−1

n (0) of these three sections satisfy the transversality properties of
Definition 3.2. A general strategy to handle this kind of situation is to use the
following remark (Lemma 6 of [3]) : if φ is a section of a vector bundle F over X,
satisfying a uniform transversality property, and if W = φ−1(0), then the uniform
transversality to 0 over W of a section ξ of a vector bundle E is equivalent to the
uniform transversality to 0 over X of the section ξ ⊕ φ of E ⊕ F , up to a change
in transversality estimates. This makes it possible to replace all transversality
properties to be satisfied over submanifolds of X by transversality properties to
be satisfied over X itself ; each property can then be ensured by the standard
type of argument, using the globalization principle to combine suitably chosen local
perturbations (see [4] for more details).

However, in our case the situation is significantly simplified by the fact that, no
matter how we perturb the sections sn−1, sn−2 and sn−3, the submanifold Σn−1 itself
is not affected. Moreover, the geometry of Σn−1 is controlled by the transversality
properties obtained on sn ; for example, a suitable choice of the constant ρ > 0
(independent of k) ensures that the intersection of Σn−1 with any ball of gk-radius ρ
centered at one of its points is topologically a ball (see e.g. Lemma 4 of [2]). There-
fore, we can actually imitate all steps of the argument used to prove Theorem 4.1,
working with sections of L⊗k over Σn−1. The localized reference sections of L⊗k over
Σn−1 that we use in the arguments are now chosen to be the restrictions to Σn−1 of
the localized sections sref

k,x of L⊗k over X ; similarly, the approximately holomorphic
local coordinates over Σn−1 in which we work are obtained as the restrictions to
Σn−1 of local coordinate functions on X. With these two differences understood, we
can still construct localized perturbations by the same algorithms as in §4.1 and,
using the standard globalization argument, achieve the desired transversality prop-
erties over Σn−1. Moreover, all these local perturbations are obtained as products
of the localized reference sections by polynomial functions of the local coordinates.
Therefore, they naturally arise as restrictions to Σn−1 of localized sections of L⊗k

over X, and so we actually obtain well-defined perturbations of the sections sn−1,
sn−2 and sn−3 over X which yield the desired transversality properties over Σn−1.

We can continue similarly by induction on the dimension, until we obtain the
transversality properties required of s2, s1 and s0 over Σ2, and finally the transver-
sality properties required of s1 and s0 over Σ1. Observe that, even though the
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perturbations performed over each Σr result in modifications of the submanifolds
Σj (j < r) lying inside them, these perturbations preserve the transversality prop-
erties of (sj+1, . . . , sn), and so the submanifolds Σj retain their smoothness and
symplecticity properties.

We now turn to the second part of the argument, i.e. obtaining the desired com-
patibility conditions. First observe that the proof of Theorem 4.1 shows how, by
a perturbation of sn, sn−1 and sn−2 smaller than O(k−1/2), we can ensure that the
various compatibility properties of Definition 3.2 are satisfied by the CP2-valued
map fn defined by these three sections.

Next, we proceed to perturb fn−1 = (sn−1 : sn−2 : sn−3) over a neighborhood of
its ramification curve Rn−1 ⊂ Σn−1, in order to obtain the required compatibility
properties for fn−1, but without losing those previously achieved for fn near its
ramification curve Rn ⊂ X. For this purpose, we first show that the curve Rn

satisfies a uniform transversality property with respect to the hypersurface Σn−1

in X.
The only way in which Rn can fail to be uniformly transverse to Σn−1 is if

∂(π◦fn|Rn) becomes small at a point of Rn near Σn−1. Because fn satisfies property
(6) in Definition 3.2, this can only happen if a cusp point or a tangency point of fn

lies close to Σn−1. However, property (7) of Definition 3.2 implies that this point
cannot belong to Σn−1. Therefore, two of the intersection points of Rn with Σn−1

must lie close to each other. Observe that the points of Rn ∩Σn−1 are precisely the
critical points of the Lefschetz pencil induced on Σn−1 by sn−1 and sn−2, i.e. the
tangency points of the map fn−1. The transversality properties already obtained
for fn−1 imply that two tangency points cannot lie close to each other ; we get a
contradiction, so the cusps and tangencies of fn must lie far away from Σn−1, and
Rn and Σn−1 are mutually transverse.

This implies in particular that a small perturbation of sn−1, sn−2 and sn−3 local-
ized near Σn−1 cannot affect properties (4′) and (6′) for fn, and also that the only
place where perturbing fn−1 might affect fn is near the tangency points of fn−1.

We now consider the set Cn−1 ∪ Tn−1 ∪ In−1 of points where we need to ensure
properties (4′), (6′) and (8′) for fn−1. The first step is as usual to perturb J into an
almost-complex structure which is integrable near these points ; once this is done,
we perturb fn−1 to make it locally holomorphic with respect to this almost-complex
structure.

We start by considering a point x ∈ Cn−1 ∪ In−1, where the issue of preserving
properties of fn does not arise. We follow the argument in §4.1 of [3]. First, it
is possible to perturb the almost-complex structure J over a neighborhood of x
in X in order to obtain an almost-complex structure J̃ which differs from J by
O(k−1/2) and is integrable over a small ball centered at x. Recall from [3] that J̃ is
obtained by choosing approximately holomorphic coordinates on X and using them
to pull back the standard complex structure of Cn ; a cut-off function is used to
splice J with this locally defined integrable structure. Since we can choose the local
coordinates in such a way that a local equation of Σn−1 is zn = 0, we can easily
ensure that Σn−1 is, over a small neighborhood of x, a J̃-holomorphic submanifold
of X. Next, we can perturb the sections sn−1, sn−2, sn−3 of L⊗k by O(k−1/2) in order
to make the projective map defined by them J̃-holomorphic over a neighborhood
of x in X (see [3]). This holomorphicity property remains true for the restrictions



SYMPLECTIC MAPS TO PROJECTIVE SPACES AND SYMPLECTIC INVARIANTS 157

to the locally J̃-holomorphic submanifold Σn−1. So, we have obtained the desired
compatibility property near x.

We now consider the case of a point x ∈ Tn−1, where we need to obtain property
(6′) for fn−1 while preserving property (8′) for fn. We first observe that, by the
construction of the previous step (getting property (8′) for fn at x), we have a
readily available almost-complex structure J̃ integrable over a neighborhood of x
in X. In particular, by construction fn is locally J̃-holomorphic and Σn−1 is locally
a J̃-holomorphic submanifold of X. We next try to make the projective map fn−1

holomorphic over a neighborhood of x, using once again the argument of [3]. The
key observation here is that, because one of the sections sn−1 and sn−2 is bounded
from below at x, we can reduce to a C2-valued map whose first component is already
holomorphic. Therefore, the perturbation process described in [3] only affects sn−3,
while the two other sections are preserved. This means that we can ensure the local
J̃-holomorphicity of fn−1 without affecting fn.

It is easy to combine the various localized perturbations performed near each
point of Cn−1 ∪ Tn−1 ∪ In−1 ; this yields properties (4′), (6′) and (8′) of Definition
3.2 for fn−1.

We now use a generically chosen small perturbation of sn−1, sn−2 and sn−3 in
order to ensure property (7), i.e. the self-transversality of the critical curve of fn−1.
It is important to observe that, because fn satisfies property (7), the images by
the projective map (sn−1 : sn−2) of the points of Rn ∩ Σn−1 = In = Tn−1 are all
distinct from each other, and because fn satisfies property (5) they are also distinct
from (0 : 1). Therefore, we can choose a perturbation which vanishes identically
over a neighborhood of Tn−1 ; this makes it possible to obtain property (7) for fn−1

without losing any property of fn.
Finally, by the process described in §4.2 of [3] we construct a perturbation yielding

property (3′) along the critical curve of fn−1 ; this perturbation is originally defined
only for the restrictions to Σn−1 but it can easily be extended outside of Σn−1 by
using a cut-off function. The two important properties of this perturbation are the
following : first, it vanishes identically near the points where fn−1 has already been
made J̃-holomorphic, and in particular near the points of Tn−1 ; therefore, none of
the properties of fn are affected, and properties (4′), (6′) and (8′) of fn−1 are not
affected either. Secondly, this perturbation does not modify the critical curve of
fn−1 nor its image, so property (7) is preserved. We have therefore obtained all
desired properties for fn−1.

We can continue similarly by induction on the dimension, until all required com-
patibility properties are satisfied. Observe that, because the ramification curve of
fr remains away from its fiber at infinity Σr−2, we do not need to worry about the
possible effects on fr of perturbations of fr−2. Therefore, the argument remains
the same at each step, and we can complete the proof of the existence statement in
Theorem 5.1 in this way.

The proof of the uniqueness statement relies, as usual, on the extension of the
whole construction to one-parameter families ; this is easily done by following the
same ideas as in previous arguments.

The structures of braiding complete linear systems given by Theorem 5.1 are
extremely rich, and lead to interesting invariants of compact symplectic manifolds.
Indeed, recall from Definition 5.1 that, for 1 ≤ r ≤ n, the sections sr and sr−1
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define a symplectic Lefschetz pencil structure on Σr, with generic fiber Σr−1 and
base set Σr−2. The monodromy of this pencil is given by a group homomorphism

θr : π1(C − {p1, . . . , pdr}) → Mapω(Σr−1,Σr−2). (10)

Moreover, for 2 ≤ r ≤ n, the sections sr, sr−1 and sr−2 define a quasiholomorphic
map from Σr − Σr−3 to CP2, with generic fiber Σr−2. Denote by Dr ⊂ CP2 the
critical curve of this map, and let dr−1 = degDr. As shown in §4.3, we obtain
two monodromy morphisms : on one hand, the braid monodromy homomorphism
characterizing Dr,

ρr : π1(C − {p1, . . . , psr}) → Bdr−1 , (11)

and on the other hand, a compatible (r−1)-dimensional monodromy representation,
which was shown in §4.3 to be none other than

θr−1 : π1(C − {p1, . . . , pdr−1}) → Mapω(Σr−2,Σr−3).

Finally, it was shown in §4.4 that Im(ρr) ⊆ B0
dr−1

(θr−1), and that the various
monodromies are related to each other by the identity

θr = (θr−1)∗ ◦ ρr. (12)

In particular, the manifold X is completely characterized by the braid mon-
odromies ρ2, . . . , ρn and by the map θ1 with values in Mapω(Σ0, ∅), which is a
symmetric group ; this data is sufficient to successively reconstruct all morphisms
θr and all submanifolds Σr by inductively using equation (12).

In other words, a symplectic 2n-manifold is characterized by n− 2 braid factor-
izations and a word in a symmetric group ; or, stopping at θ2, we can also consider
n − 3 braid factorizations and a word in the mapping class group of a Riemann
surface.

These results can be summarized by the following theorem :

Theorem 5.2. The braid monodromies ρ2, . . . , ρn and the symmetric group repre-
sentation θ1 associated to the braiding complete linear systems obtained in Theorem
5.1 are, for k � 0, canonical up to m-equivalence, and define symplectic invariants
of (X2n, ω).

Conversely, the data consisting of several braid factorizations and a symmetric
group representation satisfying suitable compatibility conditions, or a m-equivalence
class of such data, determines a symplectic 2n-manifold in a canonical way up to
symplectomorphism.

In principle, this result reduces the study of compact symplectic manifolds to
purely combinatorial questions about braid groups and symmetric groups ; however,
the invariants it introduces are probably quite difficult to compute as soon as one
considers examples which are not complex algebraic. Nevertheless, it seems that
this construction should be very helpful in improving our understanding of the
topology of Lefschetz pencils in dimensions greater than 4.
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[2] D. Auroux, Asymptotically Holomorphic Families of Symplectic Submanifolds, Geom. Funct.
Anal. 7 (1997), 971–995.



SYMPLECTIC MAPS TO PROJECTIVE SPACES AND SYMPLECTIC INVARIANTS 159

[3] D. Auroux, Symplectic 4-manifolds as Branched Coverings of CP
2, Invent. Math. 139 (2000),

551–602.
[4] D. Auroux, Estimated transversality in symplectic geometry and projective maps, to appear in

Proc. KIAS International Conference on Symplectic Geometry, Seoul (2000), World Scientific.
[5] D. Auroux, L. Katzarkov, Branched coverings of CP

2 and invariants of symplectic 4-manifolds,
to appear in Invent. Math.

[6] J. Birman, Braids, Links and Mapping class groups, Annals of Math. Studies 82, Princeton
Univ. Press, Princeton, 1974.

[7] J. Birman, B. Wajnryb, 3-fold branched coverings and the mapping class group of a surface,
Geometry and Topology (College Park, 1983/84), Lecture Notes in Math. 1167, Springer,
1985, 24–46.

[8] S.K. Donaldson, Symplectic Submanifolds and Almost-complex Geometry, J. Differential
Geom. 44 (1996), 666–705.

[9] S.K. Donaldson, Lefschetz Fibrations in Symplectic Geometry, Documenta Math., Extra
Volume ICM 1998, II, 309–314.

[10] S.K. Donaldson, Lefschetz Pencils on Symplectic Manifolds, preprint (1999).
[11] R.E. Gompf, The Topology of Symplectic Manifolds, Proc. 7th Gökova Geometry-Topology

Conference (2000), International Press.
[12] R.E. Gompf, A.I. Stipsicz, 4-Manifolds and Kirby Calculus, Graduate Studies in Math. 20,

Amer. Math. Soc., Providence, 1999.
[13] B. Moishezon, Stable Branch Curves and Braid Monodromies, Algebraic Geometry (Chicago,

1980), Lecture Notes in Math. 862, Springer, 1981, 107–192.
[14] B. Moishezon, The Arithmetic of Braids and a Statement of Chisini, Geometric Topology

(Haifa, 1992), Contemp. Math. 164, Amer. Math. Soc., Providence, 1994, 151–175.
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ESTIMATED TRANSVERSALITY IN SYMPLECTIC GEOMETRY

AND PROJECTIVE MAPS

DENIS AUROUX

1. Introduction

Since Donaldson’s original work [7], approximately holomorphic techniques have
proven themselves most useful in symplectic geometry and topology, and various
classical constructions from algebraic geometry have been extended to the case of
symplectic manifolds [3, 4, 8, 11]. All these results rely on an estimated transver-
sality statement for approximately holomorphic sections of very positive bundles,
obtained by Donaldson [7, 8]. However, the arguments require transversality not
only for sections but also for their covariant derivatives, which makes it necessary to
painstakingly imitate the arguments underlying Thom’s classical strong transver-
sality theorem for jets.

It is our aim in this paper to formulate and prove a general result of estimated
transversality with respect to finite stratifications in jet bundles. The transver-
sality properties obtained in the various above-mentioned papers then follow as
direct corollaries of this result, thus allowing some of the arguments to be greatly
simplified. The result can be formulated as follows (see §2 and §3 for definitions) :

Theorem 1.1. Let (Ek)k�0 be an asymptotically very ample sequence of locally
splittable complex vector bundles over a compact almost-complex manifold (X, J).
Let Sk be asymptotically holomorphic finite Whitney quasi-stratifications of the holo-
morphic jet bundles J rEk. Finally, let δ > 0 be a fixed constant. Then there exist
constants K and η such that, given any asymptotically holomorphic sections sk of Ek

over X, there exist asymptotically holomorphic sections σk of Ek with the following
properties for all k ≥ K :

(1) |σk − sk|Cr+1,gk
< δ ;

(2) the jet jrσk of σk is η-transverse to the quasi-stratification Sk.

We start by introducing in §2 a general notion of ampleness over an almost-
complex manifold. Then, in §3 we define the notion of approximately holomorphic
quasi-stratification of a jet bundle. Theorem 1.1 and its one-parameter version are
proved in §4. Finally, we discuss applications in §5.

2. Ample bundles over almost-complex manifolds

The most general setup in which one can try to define a notion of ampleness is the
following. Let X be a compact 2n-dimensional manifold (possibly with boundary),
endowed with an almost-complex structure J . In order to make estimates, we also
endowX with a Riemannian metric g compatible with J (i.e. J is g-antisymmetric).
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Definition 2.1. Given positive constants c and δ, a complex line bundle L over
X endowed with a Hermitian metric and a connection ∇L is (c, δ)-ample if its
curvature 2-form FL satisfies the inequalities iFL(v, Jv) ≥ c g(v, v) for every tangent
vector v ∈ TX, and sup |F 0,2

L | ≤ δ.
A sequence of complex line bundles Lk with metrics and connections is asymp-

totically very ample if there exist fixed constants δ and (Cr)r≥0, and a sequence
ck → +∞, such that the curvature Fk of Lk satisfies the following properties :

(1) iFk(v, Jv) ≥ ck g(v, v) for every tangent vector v ∈ TX; (2) sup |F 0,2
k | ≤ δ c

1/2
k ;

(3) sup |∇rFk| ≤ Cr ck ∀r ≥ 0.

Most of this definition is a natural extension to the almost-complex setup of
the classical notion of ampleness on a complex manifold. Because the notion of
holomorphic bundle is not relevant in the case of a non-integrable complex struc-
ture, one should allow the curvature to contain a non-trivial (0, 2)-part. However,
because F 0,2

L is an obstruction to the existence of holomorphic sections, we need uni-
form bounds on this quantity in order to hope for the existence of approximately
holomorphic sections.

The last condition in the definition seems less natural and should largely be con-
sidered as a technical assumption needed to obtain some control over the behavior of
sections; it is likely that a suitable argument, possibly involving plurisubharmonic
techniques, could allow the bounds to be significantly weakened.

Observe that the curvature of a (c, δ)-ample line bundle over X defines, after
multiplication by i

2π
, a J-tame symplectic structure on X with integral cohomology

class (J is compatible with this symplectic structure if and only if the curvature is
of type (1, 1)).

Conversely, assume thatX carries a J-compatible symplectic form ω with integral
cohomology class, and choose g to be the Riemannian metric induced by J and ω.
Then there exists a line bundle L with first Chern class c1(L) = [ω] and a connection
with curvature −2πiω on L. By construction the line bundle L is (2π, 0)-ample;
moreover, the line bundles L⊗k with the induced connections are (2πk, 0)-ample
and define an asymptotically very ample sequence of line bundles. This example is
by far the most interesting one for applications, but many other situations can be
considered as well.

In the rest of this section, we consider an asymptotically very ample sequence of
line bundles over X, and study the properties of Lk for large values of k. In order
to make the estimates below easier to understand, we rescale the metric by setting

gk = ck g, which amounts to dividing by c
r/2
k the norm of all r-tensors; the Levi-

Civita connection is not affected by this rescaling. The bounds of Definition 2.1

imply that : iFk(v, Jv) ≥ gk(v, v); |F 0,2
k |gk

= O(c
−1/2
k ); |Fk|gk

= O(1) ; |∇rFk|gk
=

O(c
−1/2
k ) ∀r ≥ 1. Also observe that |∇rJ |gk

= O(c
−1/2
k ) ∀r ≥ 1. Better bounds on

higher-order derivatives are trivially available but we won’t need them.

Lemma 2.1. Let Lk be a sequence of asymptotically very ample line bundles Lk

over X, and denote by Fk the curvature of Lk. Let ωk = iFk, and let ck be the
constants appearing in Definition 2.1. Denote by ∇ the Levi-Civita connection
associated to g. Then, for large enough k there exist ωk-compatible almost-complex

structures J̃k such that |∇r(J̃k − J)|gk
= O(c

−1/2
k ) ∀r ≥ 0.
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Proof. We construct J̃k locally; patching together the local constructions in order
to obtain a globally defined almost-complex structure still satisfying the same type
of bounds is an easy task left to the reader (recall that the space of ωk-compatible
almost-complex structures is pointwise contractible).

Let e1 be a local tangent vector field of unit gk-length and with |∇re1|gk
=

O(c
−1/2
k ) ∀r ≥ 1 (observe that, because of the rescaling process, (X, gk) is almost

flat for large k). We define e′1 = Je1, and observe that e′1 has unit gk-length (J is
g-unitary and hence gk-unitary) and ωk(e1, e

′
1) ≥ 1. Next, we proceed inductively,

assuming that we have defined local vector fields e1, e
′
1, . . . , em, e

′
m with the following

properties for all i, j ≤ m : e1, . . . , em have unit gk-length; ωk(ei, ej) = ωk(e
′
i, e

′
j) =

0; ωk(ei, e
′
j) = 0 if i 6= j; ωk(ei, e

′
i) ≥ 1; e′i − Jei ∈ span(e1, e

′
1, . . . , ei−1, e

′
i−1);

|e′i − Jei|gk
= O(c

−1/2
k ); |∇rei|gk

= O(c
−1/2
k ) and |∇re′i|gk

= O(c
−1/2
k ) ∀r ≥ 1.

We choose em+1 to be a gk-unit vector field which is ωk-orthogonal to e1, e
′
1, . . . , em,

e′m. The bound on |∇rωk|gk
implies that we can choose em+1 in such a way that

|∇rem+1|gk
= O(c

−1/2
k ). Next, we define

e′m+1 = Jem+1 +
m
∑

i=1

ωk(e
′
i, Jem+1)ei − ωk(ei, Jem+1)e

′
i

ωk(ei, e′i)
.

By construction, ωk(ei, e
′
m+1) = ωk(e

′
i, e

′
m+1) = 0 for all i ≤ m. Moreover, we have

ωk(em+1, e
′
m+1) = ωk(em+1, Jem+1) ≥ 1.

Since ωk(Jei, em+1) = 0, and because ωk(Jei, em+1) − ωk(ei, Jem+1) is a com-

ponent of ω0,2
k , we have ωk(ei, Jem+1) = O(c

−1/2
k ). Similarly, ωk(e

′
i, Jem+1) =

ωk(Jei, Jem+1) + ωk(e
′
i − Jei, Jem+1); the first term differs from ωk(ei, em+1) = 0

by a (0, 2)-term and is therefore bounded by O(c
−1/2
k ), while the bound on e′i − Jei

implies that the second term is also bounded by O(c
−1/2
k ). Therefore we have

ωk(e
′
i, Jem+1) = O(c

−1/2
k ). Finally, using the lower bound on ωk(ei, e

′
i) we obtain

that |e′m+1 − Jem+1|gk
= O(c

−1/2
k ). Finally, it is trivial that |∇re′m+1|gk

= O(c
−1/2
k ) ;

therefore we can proceed with the induction process.
We now define the almost-complex structure J̃k by the identities J̃k(ei) = e′i and

J̃k(e
′
i) = −ei. By construction, J̃k is compatible with ωk, and the corresponding Rie-

mannian metric g̃k admits e1, e
′
1, . . . , en, e

′
n as an orthonormal frame. The required

bounds on J̃k immediately follow from the available estimates. �

Remark. As suggested by the referee, Lemma 2.1 can also be proved more
efficiently using the following argument : J̃k is characterized by a linear map

µk : TX
(1,0)
J → TX

(0,1)
J , such that TX

(1,0)

J̃k
= {v + µk v, v ∈ TX

(1,0)
J } and TX

(0,1)

J̃k
=

{v + µ̄k v, v ∈ TX
(0,1)
J }. The compatibility of J̃k with ωk is expressed by the

condition ωk(u+ µk u, v + µk v) = 0 ∀u, v ∈ TX
(1,0)
J , i.e.

ω1,1
k (µk ·, ·) + ω1,1

k (·, µk ·) +O(|µk|2) = −ω2,0
k .

Since ω1,1
k defines a non-degenerate pairing between TX

(1,0)
J and TX

(0,1)
J , and be-

cause the first two terms of the left-hand side correspond to the antisymmetric part
of ω1,1

k (µk ·, ·), the existence of a small solution µk to this equation follows directly

from the smallness of ω2,0
k and the implicit function theorem. �
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Lemma 2.1 makes it possible to recover the main ingredients of Donaldson theory
in the more general setting described here. We now introduce some basic definitions
and results, imitating Donaldson’s original work and subsequent papers [7, 3].

In what follows, Lk is an asymptotically very ample sequence of line bundles over
X, ck are the same constants as in Definition 2.1, and gk = ck g.

Lemma 2.2. Near any point x ∈ X, and for any value of k, there exist local com-
plex Darboux coordinates (z1

k, . . . , z
n
k ) : (X, x) → (Cn, 0) for the symplectic struc-

ture ωk = iFk, such that, denoting by ψk the inverse of the coordinate map, the
following bounds hold uniformly in x and k over a ball of fixed g-radius around
x : |zi

k(y)| = O(distgk
(x, y)); |∇rψk|gk

= O(1) ∀r ≥ 1; and, with respect to
the almost-complex structure J on X and the canonical complex structure on Cn,

|∂̄ψk(z)|gk
= O(c

−1/2
k + c

−1/2
k |z|), and |∇r∂̄ψk(z)|gk

= O(c
−1/2
k ) for all r ≥ 1.

Proof. The argument is very similar to that used by Donaldson [7], except that
one needs to be slightly more careful in showing that the various bounds hold
uniformly in k. Fix a point x ∈ X : then we can find a neighborhood U of x
and a local coordinate map φ : U → Cn, such that U contains a ball of fixed
uniform g-radius around x, and such that the expressions of g and J in these local
coordinates satisfy uniform bounds independently of x (these uniformity properties
follow from the compactness of X). A linear transformation can be used to ensure
that the differential of φ at the origin is C-linear with respect to J . Next, we

rescale the coordinates by c
1/2
k to obtain a new coordinate map φk : U → Cn, in

which J coincides with the standard almost-complex structure at the origin and

has derivatives bounded by O(c
−1/2
k ), while the expression of gk is bounded between

fixed constants and has derivatives bounded by O(c
−1/2
k ).

Next, we observe that the bound on |ωk| and the lower bound on ωk(v, Jv) imply

that the expression of ω
(1,1)
k at the origin of the coordinate chart is bounded from

above and below by uniform constants. Therefore, after composing φk with a suit-
able element of GL(n,C), we can assume without affecting the bounds on J and gk

that (φ−1
k )∗(ω

(1,1)
k ) coincides with the standard Kähler form ω0 of Cn at the origin.

Define over φk(U) ⊂ Cn the symplectic form ω1 = (φ−1
k )∗ωk. By construction,

ω1(0)− ω0(0) = O(c
−1/2
k ). Observe that, in the chosen coordinates, the Levi-Civita

connection of gk differs from the trivial connection by O(c
−1/2
k ) ; therefore, the

bounds on |∇rωk|gk
imply that the derivatives of ω1 are also bounded by O(c

−1/2
k ),

and that |ω1(z) − ω0(z)| = O(c
−1/2
k + c

−1/2
k |z|).

In particular, decreasing the size of U by at most a fixed factor if necessary, we
obtain that the closed 2-forms ωt = tω1 + (1 − t)ω0 over φk(U) are all symplectic,
and we can apply Moser’s argument to construct in a controlled way a symplecto-
morphism between a subset of (φk(U), ω1) and a subset of (Cn, ω0). More precisely,
it follows immediately from Poincaré’s lemma that we can choose a 1-form α such

that ω1 − ω0 = dα, and such that α(0) = 0, |α(z)| = O(c
−1/2
k |z| + c

−1/2
k |z|2),

|∇α(z)| = O(c
−1/2
k + c

−1/2
k |z|) and |∇rα(z)| = O(c

−1/2
k ) ∀r ≥ 2. Next, we define

vector fields Xt by the identity iXtωt = α; clearly Xt and its derivatives satisfy the
same bounds as α.
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Integrating the flow of the vector fields Xt we obtain diffeomorphisms ρt, and it
is a classical fact that the map φ̃k = ρ1 ◦ φk is a local symplectomorphism between
(X,ωk) and (Cn, ω0) and therefore defines Darboux coordinates. Because |z| =

O(c
1/2
k ) over a ball of fixed g-radius around x, the vector fields Xt satisfy a uniform

bound of the type |Xt(z)| ≤ λ|z| for some constant λ, so that |ρt(z)| ≤ eλt|z|, and

therefore φ̃k is well-defined over a ball of fixed g-radius around x. Moreover, the

bounds |∇(ρ1 − Id)| = O(c
−1/2
k + c

−1/2
k |z|), obtained by integrating the bounds on

∇α, and |∂̄(φ−1
k )| = O(c

−1/2
k |z|), obtained from the bounds on the expression on J

in the local coordinates, imply that |∂̄(φ̃−1
k )| = O(c

−1/2
k + c

−1/2
k |z|). Similarly, the

bounds |∇r+1ρ1| = O(c
−1/2
k ) and |∇r∂̄(φ−1

k )| = O(c
−1/2
k ) for all r ≥ 1 imply that

|∇r∂̄(φ̃−1
k )| = O(c

−1/2
k ). This completes the proof of Lemma 2.2. �

Definition 2.2. A family of sections of Lk is asymptotically J-holomorphic for
k → ∞ if there exist constants (Cr)r≥0 such that every section s ∈ Γ(Lk) in the
family satisfies at every point of X the bounds |∇rs|gk

≤ Cr and |∇r∂̄Js|gk
≤

Cr c
−1/2
k for all r ≥ 0, where ∂̄J is the (0, 1)-part of the connection on Lk.

A family of sections of Lk has uniform Gaussian decay properties if there exist
a constant λ > 0 and polynomials (Pr)r≥0 with the following property : for every
section s of Lk in the family, there exists a point x ∈ X such that for all y ∈ X
and for all r ≥ 0, |∇rs(y)|gk

≤ Pr(dk(x, y)) exp(−λ dk(x, y)
2), where d(., .) is the

distance induced by gk.

Lemma 2.3. For all large enough values of k and for every point x ∈ X, there
exists a section sref

k,x of Lk with the following properties : (1) the family of sections

(sref
k,x)x∈X,k�0 is asymptotically J-holomorphic; (2) the family (sref

k,x)x∈X,k�0 has uni-

form Gaussian decay properties, each section sref
k,x being concentrated near the point

x; (3) there exists a constant κ > 0 independent of x and k such that |sref
k,x| ≥ κ at

every point of the ball of gk-radius 1 centered at x.

Proof. The argument is a direct adaptation of the proof of Proposition 11 in
Donaldson’s paper [7]. Pick a value of k and a point x ∈ X. We work in the
approximately J-holomorphic Darboux coordinates given by Lemma 2.2, and use
a trivialization of Lk in which the connection 1-form becomes 1

4

∑

(zjdz̄j − z̄jdzj).
Then, we define a local section of Lk by s(z) = exp(− 1

4
|z|2) and observe that s is

holomorphic with respect to the standard complex structure of Cn. Multiplying s

by a cut-off function which equals 1 over the ball of radius c
1/6
k around the origin,

we obtain a globally defined section of Lk; because of the estimates on the Darboux
coordinates one easily checks that the families of sections constructed in this way are
asymptotically holomorphic and have uniform Gaussian decay properties [7].

We are also interested in working with higher rank bundles. The definition of
ampleness becomes the following :

Definition 2.3. A sequence of complex vector bundles Ek with metrics and connec-
tions is asymptotically very ample if there exist constants δ, (Cr)r≥0, and ck → +∞,
such that the curvature Fk of Ek satisfies the following properties :

(1) 〈iFk(v, Jv).u, u〉 ≥ ck g(v, v) |u|2, ∀v ∈ TX, ∀u ∈ Ek;

(2) sup |F 0,2
k |g ≤ δr c

1/2
k ;
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(3) sup |∇rFk|g ≤ Cr ck ∀r ≥ 0.

A sequence of asymptotically very ample complex vector bundles Ek with metrics
|.|k and connections ∇k is locally splittable if, given any point x ∈ X, there exists
over a ball of fixed g-radius around x a decomposition of Ek as a direct sum Lk,1 ⊕
· · · ⊕ Lk,m of line bundles, such that the following properties hold :

(1) the |.|k-determinant of a local frame consisting of unit length local sections of
Lk,1, . . . , Lk,m is bounded from below by a fixed constant independently of x and k;

(2) denoting by ∇k,i the connection on Lk,i obtained by projecting ∇k|Lk,i
to Lk,i,

and by ∇′
k the direct sum of the ∇k,i, the 1-form αk = ∇k −∇′

k (the non-diagonal

part of ∇k) satisfies the uniform bounds |∇rαk|g = O(c
r/2
k ) ∀r ≥ 0 independently

of x.

For example, if E is a fixed complex vector bundle and Lk are asymptotically
very ample line bundles, then the vector bundles E ⊗ Lk are locally splittable and
asymptotically very ample; so are direct sums of vector bundles of this type.

Observe that, if Ek is an asymptotically very ample sequence of locally splittable
vector bundles, then near any given point x ∈ X the summands Lk,1, . . . , Lk,m

are asymptotically very ample line bundles. Therefore, by Lemma 2.3 they admit
asymptotically holomorphic sections sref

k,x,i with uniform Gaussian decay away from
x. Moreover, these sections, which define a local frame for Ek, are easily checked
to be asymptotically J-holomorphic not only as sections of Lk,i but also as sections
of Ek.

3. Estimated transversality in jet bundles

3.1. Asymptotically holomorphic stratifications. Throughout this section, we
will denote by Fk be a sequence of complex vector bundles over X, or more gen-
erally fiber bundles with almost-complex manifolds as fibers. We also fix, in a
manner compatible with the almost-complex structures J v of the fibers, metrics gv

on the fibers of Fk and a connection on Fk. Finally, we fix a sequence of constants
ck → +∞.

The connection on Fk induces a splitting TFk = T vFk ⊕T hFk between horizontal
and vertical tangent spaces ; this splitting makes it possible to define a metric ĝk and
an almost-complex structure Ĵk on the total space of Fk, obtained by orthogonal
direct sum of gv and Jv on T vFk together with the pullbacks of J and gk = ck g on
T hFk ' π∗TX.

We want to consider approximately holomorphic stratifications of the fibers of Fk,
depending in an approximately holomorphic way on the point in the base manifold
X. For simplicity, we assume that the topological picture is the same in every fiber
of Fk, i.e. we restrict ourselves to stratifications which are everywhere transverse to
the fibers. We will denote the strata by (Sa

k)a∈Ak
; we assume that the number of

strata is finite. Each Sa
k is a possibly non-closed submanifold in Fk, whose closure is

obtained by adding other lower dimensional strata : writing b ≺ a iff Sb
k is contained

in Sa
k , we have

∂Sa
k

def
= Sa

k − Sa
k =

⋃

b≺a

Sb
k.

We only consider Whitney stratifications ; in particular, transversality to a given
stratum Sa

k implies transversality over a neighborhood of Sa
k to all the strata whose
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closure contains Sa
k , i.e. all the Sb

k for b � a. Also note that we discard any open
strata, as they are irrelevant for transversality purposes ; so each Sa

k has codimension
at least 1.

Definition 3.1. Let (M,J) be an almost-complex manifold, with a Riemannian
metric, and let s be a complex-valued function over M or a section of an almost-
complex bundle with metrics and connection. Given two constants C and c, we say
that s is C2-approximately holomorphic with bounds (C, c), or C2-AH(C, c), if it
satisfies the following estimates :

|s| + |∇s| + |∇∇s| ≤ C, |∂̄s| + |∇∂̄s| ≤ C c−1/2.

Moreover, given constants ck → +∞, we say that a sequence (sk)k�0 of functions or
sections is C2-asymptotically holomorphic, or C2-AH, if there exists a fixed constant
C such that each section sk is C2-AH(C, ck).

Definition 3.2. Let Fk be a sequence of almost-complex bundles over X, endowed
with metrics and connections as above. For all values of k, let (Sa

k)a∈Ak
be finite

Whitney stratifications of Fk ; assume that the total number of strata is bounded by
a fixed constant independently of k, and that all strata are transverse to the fibers
of Fk.

We say that this sequence of stratifications is asymptotically holomorphic if, given
any bounded subset Uk ⊂ Fk, and for every ε > 0, there exist positive constants Cε

and ρε depending only on ε and on the size of the subset Uk but not on k, with the
following property. For every point x ∈ Uk lying in a certain stratum Sa

k and at
ĝk-distance greater than ε from ∂Sa

k = Sa
k −Sa

k , there exist complex-valued functions
f1, . . . , fp over the ball B = Bĝk

(x, ρε) with the following properties :
(1) a local equation of Sa

k over B is f1 = · · · = fp = 0 ;
(2) |df1 ∧ · · · ∧ dfp|ĝk

is bounded from below by ρε at every point of B ;
(3) the restrictions of fi to each fiber of Fk near x are C2-AH(Cε, ck) ;
(4) for any constant λ > 0, and for any local section s of Fk which is C2-AH(λ, ck)

with respect to the metric gk on X and which intersects non-trivially the ball B, the
function fi ◦ s is C2-AH(λCε, ck) ; moreover, given a local C2-AH(λ, ck) section θ
of s∗T vFk, the functions dfi ◦ θ are C2-AH(λCε, ck) ;

(5) at every point y ∈ B belonging to a stratum Sb
k such that Sa

k ⊂ ∂Sb
k, the norm

of the orthogonal projection onto the normal space NyS
b
k of any unit length vector

v ∈ TyFk such that df1(v) = · · · = dfp(v) = 0 is bounded by Cε distĝk
(y, Sa

k).

These conditions on the stratification can be reformulated more geometrically
as follows. First, the strata must be uniformly transverse to the fibers of Fk, i.e.
one requires the minimum angle [11] between TSa

k and T vFk to be bounded from

below. Second, the submanifolds Sa
k ⊂ Fk must be asymptotically Ĵk-holomorphic,

i.e. Ĵk(TS
a
k) and TSa

k lie within O(c
−1/2
k ) of each other. Third, the curvature of Sa

k

as a submanifold of Fk must be uniformly bounded. Finally, the quantity measuring
the lack of Ĵk-holomorphicity of Sa

k must similarly vary in a controlled way.
We finish this section by introducing the notion of estimated transversality be-

tween a section and a stratification. Observe that, given any submanifold N ⊂M ,
we can define over a neighborhood of N a “parallel” distribution DN ⊂ TM by
parallel transport of TN in the normal direction to N . Also recall that the mini-
mum angle between two linear subspaces U and V is defined as the minimum angle
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between a vector orthogonal to U and a vector orthogonal to V [11]. The minimum
angle between U and V is non-zero if and only if they are transverse to each other,
and in that case it can also be defined as the minimum angle between non-zero
vectors orthogonal to U ∩ V in U and V .

Definition 3.3. Given a constant η > 0, we say that a section s of a vector bundle
carrying a metric and a connection is η-transverse to 0 if, at every point x such that
|s(x)| ≤ η, the covariant derivative ∇s(x) is surjective and admits a right inverse
of norm less than η−1.

Fix a constant η > 0, and a section s of a bundle carrying a metric and a finite
Whitney stratification S = (Sa)a∈A everywhere transverse to the fibers. We say that
s is η-transverse to the stratification S if, at every point where s lies at distance less
than η from some stratum Sa, the graph of s is transverse to the parallel distribution
DSa, with a minimum angle greater than η.

Finally, we say that a sequence of sections is uniformly tranverse to 0 (resp. to
a sequence of stratifications) if there exists a fixed constant η > 0 such that all
sections in the sequence are η-transverse to 0 (resp. the stratifications).

Note that the above condition of transversality of the section s to each stratum
Sa is only well-defined outside of a small neighborhood of the lower-dimensional
strata contained in ∂Sa ; however, near these strata the assumption that S is
Whitney makes transversality to Sa a direct consequence of the η-transversality to
the lower-dimensional strata.

Another way in which uniform transversality to a stratification can be formulated
is to use local equations of the strata, as in Definition 3.2. One can then define
η-transversality as follows : at every point where s lies at distance less than η from
Sa, and considering local equations f1 = · · · = fp = 0 of Sa such that each |dfi| is
bounded by a fixed constant and |df1 ∧ · · · ∧ dfp| is bounded from below by a fixed
constant, the function (f1 ◦ s, . . . , fp ◦ s) with values in Cp must be η-transverse to
0. The two definitions are equivalent up to changing the constant η by at most a
bounded factor.

3.2. Quasi-stratifications in jet bundles. Let Ek be an asymptotically very
ample sequence of locally splittable rank m vector bundles over the compact almost-
complex manifold (X, J). We can introduce the holomorphic jet bundles

J rEk =
r
⊕

j=0

(

T ∗X(1,0)
)⊗j

sym
⊗ Ek.

More precisely, the holomorphic part of the r-jet of a section s of Ek is defined
inductively as follows : T ∗X(1,0) and Ek, as complex vector bundles carrying a con-
nection over an almost-complex manifold, are endowed with ∂ operators (the (1, 0)
part of the connection) ; the r-jet of s is jrs = (s, ∂Ek

s, ∂T ∗X(1,0)⊗Ek
(∂Ek

s)sym, . . . ).
Observe that, because the almost-complex structure J is not integrable and be-

cause the curvature of Ek is not necessarily of type (1, 1), the derivatives of or-
der ≥ 2 are not symmetric tensors, but rather satisfy equality relations involving
curvature terms and lower-order derivatives. However, we will only consider the
symmetric part of the jet ; for example, the 2-tensor component of jrs is defined
by (∂∂s)sym(u, v) = 1

2
(〈∂(∂s), u ⊗ v〉 + 〈∂(∂s), v ⊗ u〉). Note that, anyway, in the
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case of asymptotically holomorphic sections, the antisymmetric terms are bounded

by O(c
−1/2
k ), because the (2, 0) curvature terms and Nijenhuis tensor are bounded

by O(c
−1/2
k ).

The metrics and connections on TX and on Ek naturally induce Hermitian met-
rics and connections on J rEk (to define the metric we use the rescaled metric gk

on X). In fact, it is easy to see that the vector bundles J rEk are asymptotically
very ample.

Recall that, near any given point x ∈ X, there exist local approximately holo-
morphic coordinates ; besides a local identification of X with Cn, these coordinates
also provide an identification of T ∗X(1,0) with T ∗Cn(1,0). Moreover, by Lemma 2.3
there exist asymptotically holomorphic sections sref

k,x,i of Ek with Gaussian decay
away from x and defining a local frame in Ek. Using these sections to trivialize Ek,
we can locally identify J rEk with a space of jets of holomorphic Cm-valued maps
over Cn. Observe however that, when we consider the holomorphic parts of jets
of approximately holomorphic sections of Ek, the integrability conditions normally
satisfied by jets of holomorphic functions only hold in an approximate sense.

In general, the various possible choices of trivializations of J rEk differ by approx-
imately holomorphic diffeomorphisms of Cn and also by the action of approximately
holomorphic local sections of the automorphism bundle GL(Ek). However, when
Ek is of the form Cm ⊗Lk where Lk is a line bundle, the only automorphisms of Ek

which we need to consider are multiplications by complex-valued functions.
Denote by J r

n,m the space of r-jets of holomorphic maps from Cn to Cm : point-
wise, the identifications of the fibers of J rEk with J r

n,m given by local trivializations
differ from each other by the action of GLn(C) × GLm(C) (or GLn(C) × C∗ when
Ek = Cm ⊗ Lk), where GLn(C) corresponds to changes in the identification of

T ∗X(1,0) with T ∗Cn(1,0) and GLm(C) or C∗ corresponds to changes in the trivializa-
tion of Ek. Some stratifications of J r

n,m are invariant under the actions of GLn(C)
and GLm(C) (resp. C∗). Given such a stratification it becomes easy to construct
an asymptotically holomorphic sequence of finite Whitney stratifications of J rEk,
modelled in each fiber on the given stratification of J r

n,m. Many important exam-
ples of asymptotically holomorphic stratifications, and in a certain sense all the
geometrically relevant ones, are obtained by this construction (see Proposition 3.1
below).

We also wish to consider cases where the available structure is not exactly a
Whitney stratification but behaves in a similar manner with respect to transversal-
ity. We call such a structure a “Whitney quasi-stratification”. Given a submanifold
S ⊂ J r

n,m, one can introduce the subset ΘS of all points σ ∈ S such that there
exists a holomorphic (r + 1)-jet whose r-jet component is σ and which, considered
as a 1-jet of r-jets, intersects S transversely at σ. For example, if S is the subset of
all jets (σ0, . . . , σr) such that σ0 = 0, the subset ΘS consists of those jets such that
σ0 = 0 and σ1 is surjective.

Similarly, when S is a submanifold in J rEk, we can view an element of J r+1Ek

as the holomorphic 1-jet of a section of J rEk. More precisely, for any point
x ∈ X, we can associate to any σ = (σ0, . . . , σr+1) ∈ (J r+1Ek)x the 1-jet at
x of a local section σ̃ of J rEk, such that σ̃(x) = (σ0, . . . , σr), (∂σ̃(x))sym =
(σ1, . . . , σr+1), (∂σ̃(x))antisym = 0, and ∂̄σ̃(x) = 0 (in this definition, ∂σ̃(x) ∈
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T ∗X1,0 ⊗ (
⊕

(T ∗X1,0)⊗j
sym ⊗ E) is decomposed into a symmetric part and an an-

tisymmetric part). Then, we define ΘS as the set of points of S for which there
exists an element σ ∈ J r+1Ek such that the corresponding 1-jet σ̃ in J rEk in-
tersects S transversely at the given point. For example, if S is the set of r-jets
(σ0, . . . , σr) such that σ0 = 0, then ΘS is the set of r-jets such that σ0 = 0 and σ1

is surjective. Also observe that ΘS is always empty when the codimension of S is
greater than n.

Definition 3.4. Given a finite set (A,≺) carrying a binary relation without cycles
(i.e., a1 ≺ · · · ≺ ap ⇒ ap 6≺ a1), a finite Whitney quasi-stratification of J r

n,m indexed
by A is a collection (Sa)a∈A of smooth submanifolds of J r

m,n, not necessarily mutually

disjoint, with the following properties : (1) ∂Sa = Sa − Sa ⊆ ⋃

b≺a S
b ; (2) given

any point p ∈ ∂Sa, there exists b ≺ a such that p ∈ Sb and such that either p 6∈ ΘSb

or Sb ⊂ ∂Sa and the Whitney regularity condition is satisfied at all points of Sb.

Similarly, we can define the notion of asymptotically holomorphic finite Whitney
quasi-stratifications of J rEk. This is similar to Definition 3.2, except that the col-
lections (Sa

k) are quasi-stratifications rather than stratifications, i.e. ∂Sa
k ⊆ ⋃b≺a S

b
k,

and for every p ∈ ∂Sa
k there exists b ≺ a such that either p ∈ Sb

k − ΘSb
k

or

p ∈ Sb
k ⊂ ∂Sa

k ; in the latter case the Whitney condition is required. Also, ob-
serve that condition (5) in Definition 3.2 is only required in the second case, and
not for all b such that a ≺ b.

It is important to understand that the notion of quasi-stratification is merely an
attempt at simplifying the framework for applications of Theorem 1.1. In fact, most
quasi-stratifications can be refined into genuine stratifications by suitably subdivid-
ing the strata into smaller pieces. However, by definition these modifications occur
at points of J rEk that no generic jet can hit, thus making them utterly irrelevant
to transversality.

Proposition 3.1. Let S = (Sa)a∈A be a finite Whitney quasi-stratification of J r
n,m

by complex submanifolds, invariant under the action of GLn(C) × GLm(C) or
GLn(C) × C∗. Let Ek be an asymptotically very ample sequence of rank m com-
plex vector bundles over X, trivialized near every point by suitable choices of local
asymptotically holomorphic coordinates and sections. Assume that Sk = (Sa

k)a∈A

are quasi-stratifications of J rEk such that, in each local trivialization, the inter-
section of Sa

k with every fiber becomes identified with Sa. Then the sequence of
quasi-stratifications Sk is asymptotically holomorphic.

The proof of this result is easy and left to the reader ; the independence on k of the
model holomorphic quasi-stratification of J r

n,m and the availability of asymptotically
holomorphic local trivializations of J rEk (Lemma 2.2 and Lemma 2.3) immediately
yield the necessary estimates on the strata of Sk. The only important point to
observe is that, because the strata of S are GLm(C)-invariant (resp. C∗-invariant),
the local trivializations identifying Sa

k with Sa also identify ΘSa
k

with ΘSa . This is
e.g. due to the fact that, up to a suitable change in the choice of the local coordinates
on X and local reference sections of Lk, i.e. up to a local gauge transformation, we
can assume that the connection on J rEk agrees at a given point x ∈ X with the
trivial connection on J r

n,m ; above x, the identification of (r + 1)-jets with 1-jets of



ESTIMATED TRANSVERSALITY AND PROJECTIVE MAPS 171

r-jets then becomes the same in J rEk as in J r
n,m, so that the definitions of ΘS in

J r
n,m and in J rEk agree with each other.
Various examples of applications of Proposition 3.1 will be given in §5.
Finally, we state a one-parameter version of Theorem 1.1. Consider a continu-

ous one-parameter family (Jt)t∈[0,1] of almost-complex structures on X, and a one-
parameter family of asymptotically holomorphic finite Whitney (quasi)-stratifica-
tions (Sk,t)k�0,t∈[0,1] of almost-complex bundles Fk,t over (X, Jt). We say that the
(quasi)-stratifications Sk,t depend continuously on t if the following one-parameter
version of Definition 3.2 is true : for every ε > 0, there exist constants ρε and Cε

with the following property. Given any continuous path (xt)t∈[t1,t2] of points all
belonging to the fibers of Fk,t above a same point in X, and assuming that all the
points xt belong to certain strata Sa

k,t while lying at distance more than ε from ∂Sa
k,t,

there exist for all t ∈ [t1, t2] complex-valued functions f1,t, . . . , fp,t defined over the
ball Bĝk,t

(xt, ρε) and depending continuously on t, satisfying the various properties
of Definition 3.2 for all values of t.

With this understood, the result is the following :

Theorem 3.2. Let (Jt)t∈[0,1] be a continuous one-parameter family of almost-com-
plex structures on the compact manifold X, and let (Ek,t)k�0,t∈[0,1] be a family of
complex vector bundles over X endowed with metrics and connections depending
continuously on t and such that the sequence Ek,t is asymptotically very ample and
locally splittable over (X, Jt) for all t. Let Sk,t be asymptotically holomorphic finite
Whitney quasi-stratifications of J rEk,t depending continuously on t. Finally, let
δ > 0 be a fixed constant. Then there exist constants K and η such that, given
any one-parameter family of asymptotically holomorphic sections sk,t of Ek,t over
X depending continuously on t, there exist asymptotically holomorphic sections σk,t

of Ek,t, depending continuously on t, with the following properties for all k ≥ K
and for all t ∈ [0, 1] :

(1) |σk,t − sk,t|Cr+1,gk
< δ ;

(2) the jet jrσk,t of σk,t is η-transverse to Sk,t.

4. Proof of the main result

The proof of Theorem 1.1 is quite similar to the arguments in previous papers [3,
4, 7, 8, 11]. It relies heavily on the fact that the estimated transversality of the
r-jet of a section to a given submanifold of the jet bundle is a local and C r+1-open
property in the following sense [3]. Given a submanifold S of J rEk, a constant
η > 0 and a point x ∈ X, say that a section s of Ek satisfies the property P(S, η, x)
if either the r-jet jrs(x) lies at distance more than η from S or jrs is η-transverse to
S at x (in the sense of Definition 3.3, i.e. the minimum angle between the graph of
jrs and the parallel distribution to S is at least η). The property P(S, η, x) depends
only on the (r+1)-jet of s at x (“locality”). Moreover, if s satisfies P(S, η, x), then
any section σ such that |jr+1σ(x)− jr+1s(x)| < ε satisfies P(S, η−Cε, x), where C
is some fixed constant involving only the curvature bounds of S (“openness”).

A first consequence is that Theorem 1.1 can be proved by successively perturbing
the given sections sk in order to ensure transversality to the various strata. To
show this, we first remark that, given any index b, the uniform transversality of
jrsk to all the strata Sa

k with a ≺ b implies its uniform transversality to Sb
k over a

neighborhood of ∂Sb
k.



172 DENIS AUROUX

Indeed, first consider a pair of indices a ≺ b such that Sa
k ⊂ ∂Sb

k. By condition
(5) of Definition 3.2, near a point of Sa

k the tangent space to Sb
k almost contains the

parallel distribution to TSa
k ; therefore, there exists a constant κ (independent of

a and b) such that, for any small α > 0, the α-transversality of jrsk to Sa
k implies

its α
4
-transversality to Sb

k over the κα-neighborhood of Sa
k . Next, consider a pair

of indices a ≺ b and a point p ∈ ∂Sb
k ∩ (Sa

k − ΘSa
k
) : in this case, if the graph

of jrsk is α-transverse to Sa
k but intersects the ball of radius α

2
around p, we can

find an approximately holomorphic section σk of Ek differing from sk by less than
3α
4

and whose jet goes through p. By definition of ΘSa
k
, all lifts of p in J r+1Ek,

including jr+1σk, correspond to local sections which intersect Sa
k non-transversely;

because the antisymmetric and antiholomorphic terms in ∇(jrσk) are smaller than

O(c
−1/2
k ), the minimum angle between jrσk and Sa

k at p is bounded by O(c
−1/2
k ).

However, since σk is close to sk, its r-jet should be α
4
-transverse to Sa

k , which gives
a contradiction. Therefore, jrsk remains at distance more than α

2
from p; this

implies the α
4
-transversality to Sb

k of jrsk over the α
4
-neighborhood of every point of

(Sa
k − ΘSa

k
) ∩ ∂Sb

k. Since these are the only two possible cases near the boundary

of Sb
k, the uniform transversality of jrsk to Sa

k for all a ≺ b implies its uniform
transversality to Sb

k near ∂Sb
k.

Now, extend the binary relation ≺ on the set of strata of each Sk into a total
order relation <, so that the indices in Ak can be identified with integers and the
closure of a given stratum consists only of strata appearing before it. Assume that
a first perturbation by less than δ0 = δ

2
makes it possible to obtain for large k the

η1-transversality of jrsk to the first stratum S1
k , for some constant η1 independent

of k. Next, let δ1 be a constant sufficiently smaller than δ and η1 (but independent
of k), and assume that a perturbation by at most δ1 allows us to obtain the η2-
transversality of jrsk to the second stratum S2

k outside of the 1
4
κη1-neighborhood

of ∂S2
k , for some constant η2. Because this new perturbation is small enough, the

resulting sections remain η1

2
-transverse to S1

k ; also, by the above observation this
automatically implies the estimated transversality to S2

k of jrsk near the points of
∂S2

k ⊆ S1
k .

We can continue in this way until all strata have been considered ; each per-
turbation added to ensure estimated transversality to a new stratum outside of a
small fixed size neighborhood of its boundary is chosen small enough in order not
to affect the previously obtained transversality properties.

The fact that estimated transversality is local and open also makes it possible to
reduce to a purely local setup, using a globalization principle due to Donaldson [7]
and which can be formulated as follows (Proposition 3 of [3]) :

Proposition 4.1. Let Pk(η, x)x∈X,η>0,k�0 be local and Cr+1-open properties of sec-
tions of Ek over X. Assume that there exist constants c, c′ and ν such that, given
any x ∈ X, any small enough δ > 0, and asymptotically holomorphic sections sk

of Ek, there exist, for all large enough k, asymptotically holomorphic sections τk,x

of Ek with the following properties : (a) |τk,x|Cr+1,gk
< δ, (b) the sections 1

δ
τk,x

have uniform Gaussian decay away from x, and (c) the sections sk + τk,x satisfy the
property Pk(η, y) for all y ∈ Bgk

(x, c), with η = c′δ log(δ−1)−ν.
Then, given any α > 0 and asymptotically holomorphic sections sk of Ek, there

exist, for all large enough k, asymptotically holomorphic sections σk of Ek such that
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|sk − σk|Cr+1,gk
< α and the sections σk satisfy Pk(ε, x) ∀x ∈ X for some ε > 0

independent of k.

Proposition 4.1 is in fact slightly stronger than the previous results, as the notion
of asymptotic holomorphicity has been extended to a more general framework in
§2, but the argument remains strictly the same.

With this result, we are reduced to the problem of finding a localized perturbation
of sk near a given point x in order to ensure transversality to a given stratum. More
precisely, fix an index a ∈ Ak in each stratification, and remember that, from the
previous steps of the inductive argument, we can restrict ourselves to considering
only asymptotically holomorphic sections whose jet is γ-transverse to the strata Sb

k

for b < a, for some fixed constant γ (this constant γ is half of the transversality
estimate obtained in the previous step ; by assumption we only consider perturba-
tions which are small enough to preserve γ-transversality to the previous strata).
With this understood, say that a section sk satisfies Pk(η, x) if either jrsk(x) lies
at distance more than η from Sa

k , or jrsk(x) lies at distance less than 1
4
κγ − η from

∂Sa
k , or jrsk is η-transverse to Sa

k at x. We want to show that the assumptions of
Proposition 4.1 are satisfied by these properties.

Fix a point x ∈ X and a constant 0 < δ < 1
20
κγ, and consider asymptotically

holomorphic sections sk of Ek. First, if jrsk(x) lies at distance less than 3
20
κγ from

a point of ∂Sa
k ∩Sb

k for some b ≺ a, then the uniform bounds on covariant derivatives
of sk imply that the graph of jrsk remains within distance less than 1

5
κγ of this

point over a ball of fixed radius c1 (independent of k, x or δ) around x. So, the
property Pk(

1
20
κγ, y) holds at every point y ∈ Bgk

(x, c1), and no perturbation is
needed. In the rest of the argument, we can therefore assume that jrsk(x) lies at
distance at least 3

20
κγ from ∂Sa

k .
Let ε = 1

10
κγ, and let ρε be the radius appearing in Definition 3.2. Without loss

of generality we can assume that ρε < ε. Assume that jrsk(x) lies at distance more
than 1

2
ρε from Sa

k . Then, the bounds on covariant derivatives of sk imply that the

graph of jrsk remains at distance more than 1
4
ρε from Sa

k over a ball of fixed radius
c2 around x, and therefore that sk satisfies Pk(

1
4
ρε, y) at every point y ∈ Bgk

(x, c2).
No perturbation is needed.

Therefore, we may assume that jrsk(x) lies at distance less than 1
2
ρε from a

certain point u0 ∈ Sa
k . We may also safely assume that δ < 1

4
ρε. One easily checks

that u0 lies at distance more than ε from ∂Sa
k . So we can find complex-valued

functions f1, . . . , fp over the ball Bĝk
(u0, ρε) such that a local equation of Sa

k is
f1 = · · · = fp = 0 and satisfying the various properties listed in Definition 3.2. Let
c3 be a fixed positive constant (independent of k, x and δ) such that the graph of
jrsk over Bgk

(x, c3) is contained in Bĝk
(u0,

3
4
ρε), and define the Cp-valued function

h = (f1 ◦ jrsk, . . . , fp ◦ jrsk) over Bgk
(x, c3). By property (4) of Definition 3.2, the

function h is C2-approximately holomorphic.
Recall from Lemma 2.2 that there exist local approximately holomorphic ωk-

Darboux coordinates z1, . . . , zn over a neighborhood of x in X. Also recall from
Lemma 2.3 that there exist approximately holomorphic sections sref

k,x,i of Ek with
Gaussian decay away from x and defining a local frame in Ek. For any (n + 1)-
tuple I = (i0, i1, . . . , in) with 1 ≤ i0 ≤ m, i1, . . . , in ≥ 0, and i1 + · · · + in ≤ r,
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we define sref
k,x,I = zi1

1 . . . z
in
n s

ref
k,x,i0

. Clearly, these sections of Ek are asymptot-
ically holomorphic and have uniform Gaussian decay away from x ; moreover
it is easy to check that their r-jets define a local frame in J rEk near x. Af-
ter multiplication by a suitable fixed constant factor, we can also assume that
|sref

k,x,I |Cr+1,gk
≤ 1

p
. For each tuple I, define a Cp-valued function ΘI by ΘI(y) =

(df1(j
rsk(y)).j

rsref
k,x,I(y), . . . , dfp(j

rsk(y)).j
rsref

k,x,I(y)). The functions ΘI measure the

variations of the function h when small multiples of the localized perturbations sref
k,x,I

are added to sk ; by condition (4) of Definition 3.2, they are C2-asymptotically holo-
morphic.

The fact that the jets of sref
k,x,I define a frame of J rEk near x implies, by condition

(2) of Definition 3.2, that the values ΘI(x) generate all of Cp. Moreover, for 1 ≤
i ≤ p there exist complex constants λI,i with

∑

I |λI,i| ≤ 1 such that, defining
the linear combinations σk,x,i =

∑

I λI,is
ref
k,x,I and Θi =

∑

I λI,iΘI , the quantity
|Θ1(x) ∧ · · · ∧ Θp(x)| is larger than some fixed positive constant β > 0 depending
only on ε (and not on k, x or δ). The uniform bounds on derivatives imply that,
for some fixed constant 0 < c4 < c3, the norm of Θ1 ∧ · · · ∧ Θp remains larger than
1
2
β at every point of Bgk

(x, c4). Therefore, over this ball we can express h in the
form h = µ1Θ1 + · · · + µpΘp, and the Cp-valued function µ = (µ1, . . . , µp) is easily
checked to be C2-AH as well.

Finally, use once more the local approximately holomorphic coordinates to iden-
tify Bgk

(x, c4) with a neighborhood of the origin in Cn. After rescaling the coordi-
nates by a fixed constant factor, we can assume that this neighborhood contains the
ball B+ of radius 11

10
around the origin in Cn, and that there exists a fixed constant

0 < c5 < c4 such that the inverse image of the unit ball B in Cn contains Bgk
(x, c5).

Composing µ with the coordinate map, we obtain a Cp-valued function µ̃ over B+ ;
by construction µ̃ is C2-AH.

We may now use the following local result, due to Donaldson [8] (the case p = 1
is an earlier result of Donaldson [7]; the comparatively much easier case p > n is
handled in [3]) :

Proposition 4.2 (Donaldson [8]). Let f be a function with values in Cp defined
over the ball B+ of radius 11

10
in Cn. Let δ be a constant with 0 < δ < 1

2
, and

let η = δ log(δ−1)−ν where ν is a suitable fixed integer depending only on n and p.
Assume that f satisfies the following bounds over B+:

|f | ≤ 1, |∂̄f | ≤ η, |∇∂̄f | ≤ η.

Then, there exists w ∈ Cp, with |w| ≤ δ, such that f − w is η-transverse to 0 over
the interior ball B of radius 1.

Let η = δ log(δ−1)−ν as in the statement of the proposition, and observe that, if
k is large enough, the antiholomorphic derives of µ̃, which are bounded by a fixed

multiple of c
−1/2
k , are smaller than η. Therefore, if k is large enough we can apply

Proposition 4.2 (after a suitable rescaling to ensure that µ̃ is bouded by 1) and find
a constant w = (w1, . . . , wp) ∈ Cp, smaller than δ, such that µ̃ − w is η-transverse
to 0 over the unit ball B. Going back through the coordinate map, this implies that
µ−w is c′1η-transverse to 0 over Bgk

(x, c5) for some fixed constant c′1. Multiplying
by the functions Θ1, . . . ,Θp, we obtain that h−(w1Θ1+· · ·+wpΘp) is c′2η-transverse
to 0 over Bgk

(x, c5) for some fixed constant c′2.
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Let τk,x = −(w1σk,x,1 + · · ·+wpσk,x,p) : by construction, the sections τk,x of Ek are
asymptotically holomorphic, their norm is bounded by δ, and they have uniform
Gaussian decay properties. Let s̃k = sk + τk,x, and observe that by construction

the graph of jrs̃k over Bgk
(x, c3) is contained in Bĝk

(u0, ρε). Define h̃ = (f1 ◦
jrs̃k, . . . , fp◦jrs̃k) ; by construction, and because of the bounds on second derivatives

of f1, . . . , fp, we have the equality h̃ = h − (w1Θ1 + · · · + wpΘp) + O(δ2). If δ is
assumed to be small enough, the quadratic term in this expression is much smaller
than η ; therefore, under this assumption we get that h̃ is c′3η-transverse to 0
over Bgk

(x, c5) for some fixed constant c′3. Finally, recalling the characterization of
estimated transversality to a submanifold defined by local equations given at the
end of §3.1, we conclude that the graph of jrs̃k is c′4η-transverse to Sa

k over Bgk
(x, c5)

for some fixed constant c′4, i.e. s̃k satisfies the property Pk(c
′
4δ log(δ−1)−ν , y) at every

point y ∈ Bgk
(x, c5).

Putting together the various possible cases (according to the distance between
jrsk(x) and Sa

k or its boundary), we obtain that the properties Pk satisfy the as-
sumptions of Proposition 4.1. Therefore, for all large values of k a small perturba-
tion can be added to sk in order to achieve uniform transversality to Sa

k away from
∂Sa

k . The inductive argument described at the beginning of this section then makes
it possible to complete the proof of Theorem 1.1.

The proof of Theorem 3.2 follows the same argument, but for one-parameter
families of sections. One easily checks that the various results of §2 (Lemma 2.1,
2.2, 2.3) remain valid for families of objects depending continuously on a parameter
t ∈ [0, 1]. Moreover, Propositions 4.1 and 4.2 also extend to the one-parameter
case [8, 3]. So we only need to check that the argument used above to verify that
the properties Pk satisfy the assumptions of Proposition 4.1 extends to the case of
one-parameter families.

As before, fix a stratum Sa
k,t in each stratification, a constant δ > 0, a point x ∈ X,

and asymptotically holomorphic sections sk,t of Ek,t. With the same notations as
above, let Ωk ⊂ [0, 1] be the set of values of t such that jrsk,t(x) lies at distance more
than 3

20
κγ from ∂Sa

k,t, and within distance 1
2
ρε from Sa

k,t. Let Ω−
k ⊂ Ωk be the set of

values of t such that jrsk,t(x) lies at distance more than 1
5
κγ from ∂Sa

k,t and within

distance 1
4
ρε from Sa

k,t. Observe that, if t 6∈ Ω−
k , a certain uniform transversality

property with respect to Sa
k,t is already satisfied by jrsk,t over a small ball centered

at x, and therefore no specific perturbation is needed : if x lies within distance
1
5
κγ from ∂Sa

k,t, then Pk(
1
40
κγ, y) is satisfied at every point of a ball of fixed radius,

while if x lies at distance more than 1
4
ρε from Sa

k,t then Pk(
1
8
ρε, y) holds over a ball

of fixed radius around x. Even better, if δ is small enough compared to γ and ρε,
then any perturbation of sk,t by less than δ still satisfies a similar transversality
property (with decreased estimates).

For t in Ωk, the proximity of jrsk,t(x) to Sa
k,t makes it possible to locally define

complex-valued functions f1,t, . . . , fp,t depending continuously on t and such that a
local equation of Sa

k,t is f1,t = · · · = fp,t = 0 (recall the definition of the continuous
dependence of the stratifications Sk,t upon the parameter t given in §3.2). This
lets us define as above the function ht = (f1,t ◦ jrsk,t, . . . , fp,t ◦ jrsk,t), depending
continuously on t. As in the non-parametric case, we can construct asymptotically
holomorphic sections sref

k,x,t,I of Ek,t, with Gaussian decay away from x and defin-
ing local frames in J rEk,t, simply by multiplying the sections of Lemma 2.3 by
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polynomials of degree at most r in the local coordinates (all these sections depend
continuously on t). We can then find linear combinations σk,x,t,1, . . . , σk,x,t,p of the
sections sref

k,x,t,I , with constant coefficients depending continuously on t, such that,
denoting by Θt,i the Cp-valued functions expressing the variations of ht upon adding
small multiples of σk,x,t,i to sk,t, the norm of Θt,1 ∧ · · · ∧Θt,p is bounded from below
at x and over a small ball surrounding it.

Constructing the functions µ̃t as in the proof of Theorem 1.1 and applying the one-
parameter version of Proposition 4.2, we obtain, if k is large enough, a continuous
one-parameter family of constants wt ∈ Cp, depending continuously on t ∈ Ωk and
bounded by δ for all t, such that µ̃t − wt is η-transverse to 0 over the unit ball in
Cn. It follows that, denoting by τk,x,t the asymptotically holomorphic perturbations
−(wt,1σk,x,t,1 + · · · + wt,pσk,x,t,p), bounded by δ, with Gaussian decay away from x,
and depending continuously on t ∈ Ωk, the sections sk,t + τk,x,t satisfy the desired
transversality property over a small ball centered at x. However these perturbations
are only well-defined for t ∈ Ωk. In order to extend their definition to all values of
t, let χk : [0, 1] → [0, 1] be a continuous cut-off function such that χk(t) = 1 for all
t ∈ Ω−

k and χk(t) = 0 for all t 6∈ Ωk, and let τ̃k,x,t = χk(t)τk,x,t (for t 6∈ Ωk we set
τ̃k,x,t = 0). For t ∈ Ω−

k we have τ̃k,x,t = τk,x,t, so the sections sk,t + τ̃k,x,t satisfy the
required transversality property ; for t 6∈ Ω−

k , the sections sk,t already satisfy such a
property and, because we have assumed δ to be small enough, transversality is not
affected by adding τ̃k,x,t. Therefore, the assumptions of Proposition 4.1 are satisfied
even in the one-parameter setting, and we can conclude the argument in the same
way as in the non-parametric case.

Remark. In many cases, Theorems 1.1 and 3.2 can be proved without using
Proposition 4.2 (estimated Sard lemma) in its full generality. Indeed, given suitable
asymptotically holomorphic quasi-stratifications Sk of J rEk, we can define quasi-
stratifications S̃k of J r+1Ek in the following way. View each element of J r+1Ek as
a 1-jet in J rEk, as in §3.2; for each stratum Sa

k of Sk with codimension greater than

n in J rEk, let S̃a
k be the set of points in J r+1Ek whose r-jet component belongs

to Sa
k . For each stratum Sa

k of Sk with codimension p ≤ n, and for each value

0 ≤ i ≤ p−1, let S̃a,i
k be the set of points in J r+1Ek whose r-jet component belongs

to Sa
k and such that the corresponding element in T ∗X(1,0) ⊗J rEk, after projection

to the normal space to TSa
k , has rank equal to i. In other terms, the union of S̃a,i

k

is the set of (r + 1)-jets which intersect Sa
k non-transversely.

In a large number of examples, those of the S̃a,i
k which are not empty are ap-

proximately holomorphic submanifolds of J r+1Ek, transverse to the fibers and of
codimension at least n + 1. These submanifolds determine finite Whitney quasi-
stratifications S̃k of J r+1Ek, satisfying properties similar to those of Definition 3.2
but with C1 estimates only instead of C2 bounds. Still, the same argument as in
the proof of Theorem 1.1 shows that, given asymptotically holomorphic sections sk

of Ek, small perturbations can be added for large enough k in order to ensure the
uniform transversality of jr+1sk to S̃k ; the argument only uses Proposition 4.2 in
the case p > n, where the proof becomes much easier [3] and C1 bounds are suffi-
cient. Because all the strata are of codimension greater than n, the η-transversality
of jr+1sk to S̃k simply means that the graph of jr+1sk remains at distance more
than η from the strata of S̃k. By definition of S̃k, this is equivalent to the uniform
transversality of jrsk to Sk, which was the desired result.
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5. Examples and applications

We now consider various examples of (quasi)-stratifications to which we can apply
Theorems 1.1 and 3.2. The fact that they are asymptotically holomorphic is in all
cases a direct consequence of Proposition 3.1.

To make things more topological, we place ourselves in the case where the almost-
complex structure J on X is tamed by a given symplectic form ω. In this context,
the various approximately J-holomorphic submanifolds of X appearing in the con-
structions are automatically symplectic with respect to ω. Moreover, remember
that the space of ω-tame or ω-compatible almost-complex structures on X is con-
tractible. In most applications, asymptotically very ample bundles are constructed
from line bundles with first Chern class proportional to [ω] ; in that situation,
the ampleness properties of these bundles do not depend on the choice of an ω-
compatible almost-complex structure J . Theorem 3.2 then implies that all the
constructions described below are, for large enough values of k, canonical up to
isotopy, independently of the choice of J . In the general case, the constructions are
still canonical up to isotopy, but the space of possible choices for J is constrained
by the necessity for the bundles Ek to be ample.

The first application is the construction of symplectic submanifolds as zero sets of
asymptotically holomorphic sections of vector bundles over X, as initially obtained
by Donaldson [7] and later extended to a slightly more general setting [2].

Corollary 5.1. Let (X,ω) be a compact symplectic manifold endowed with an ω-
tame almost-complex structure J , and let Ek be an asymptotically very ample se-
quence of locally splittable vector bundles over (X, J). Then, for all large enough
values of k there exist asymptotically holomorphic sections sk of Ek which are uni-
formly transverse to 0 and whose zero sets are smooth symplectic manifolds in X.
Moreover these sections and submanifolds are, for large k, canonical up to isotopy,
indepedently of the chosen almost-complex structure on X.

Proof. Let Sk be the stratification of J 0Ek = Ek in which the only stratum is the
zero section of Ek (these stratifications are obviously asymptotically holomorphic).
By Theorem 1.1, starting from any asymptotically holomorphic sections of Ek (e.g.
the zero sections) we can obtain for large k asymptotically holomorphic sections of
Ek which are uniformly transverse to Sk, i.e. uniformly transverse to 0. It is then
a simple observation that the zero sets of these sections are, for large k, smooth
approximately J-holomorphic (and therefore symplectic) submanifolds of X [7].
Finally, the uniqueness of the construction up to isotopy is a direct consequence of
the one-parameter result Theorem 3.2 [2]. �

The next example is that of determinantal submanifolds as constructed by Muñoz,
Presas and Sols [11].

Corollary 5.2. Let (X,ω) be a compact symplectic manifold endowed with an ω-
tame almost-complex structure J , let Lk be an asymptotically very ample sequence of
line bundles over (X, J), and let E and F be complex vector bundles over X. Then,
for all large enough values of k there exist asymptotically holomorphic sections sk of
E∗ ⊗ F ⊗ Lk such that the determinantal loci Σi(sk) = {x ∈ X, rk(sk(x)) = i} are
stratified symplectic submanifolds in X. Moreover these sections and submanifolds
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are, for large k, canonical up to isotopy, indepedently of the chosen almost-complex
structure on X.

Proof. Let Ek = E∗ ⊗ F ⊗ Lk, and let Sk be the stratification of J 0Ek = Ek

consisting of strata Si
k, 0 ≤ i < min(rkE, rkF ), defined as follows : viewing the

points of Ek as elements of Hom(E,F ) with coefficients in Lk, each Si
k is the set of

all elements in Ek whose rank is equal to i. By Proposition 3.1, the stratifications
Sk are asymptotically holomorphic. Applying Theorem 1.1 to these stratifications
and starting from the zero sections, we obtain asymptotically holomorphic sections
of Ek which are uniformly transverse to Sk. The determinantal locus Σi(sk) is
precisely the set of points where the graph of sk intersects the stratum Si

k. The
result of uniqueness up to isotopy is obtained by applying Theorem 3.2. �

However, our main application is that of maps to projective spaces. Observe that,
given a section s = (s1, . . . , sm+1) of a vector bundle of the form Cm+1 ⊗ L, where
L is a line bundle over X, we can construct away from its zero set a projective map
Ps = (s1 : . . . :sm+1) : X − s−1(0) → CPm.

Recall that the space of jets of holomorphic maps from Cn to Cm carries a natural
partition into submanifolds, the Boardman “stratification” [1, 6]. Restricting oneself
to generic r-jets, the strata ΣI , labelled by r-tuples I = (i1, . . . , ir) with i1 ≥ · · · ≥
ir ≥ 0, are defined in the following way. Given a generic holomorphic map f ,
call Σi(f) the set of points where dim Ker df = i, and denote by Σi the set of
holomorphic 1-jets corresponding to such points (i.e., Σi is the set of 1-jets (σ0, σ1)
such that dim Kerσ1 = i). The submanifolds Σi determine a stratification of J 1

n,m.
For a generic holomorphic map f the critical loci ΣI(f) are smooth submanifolds
defining a partition of Cn. Therefore, we can define inductively Σi1,...,ir(f) as the set
of points of Σi1,...,ir−1(f) where the kernel of the restriction of df to TΣi1,...,ir−1(f) has
dimension ir (in particular, Σi1,...,ir−1,0(f) is open in Σi1,...,ir−1(f) and corresponds
to the set of points where f restricts to Σi1,...,ir−1(f) as an immersion).

It is easy to check that the r-jet of f at a given point of Cn completely determines
in which ΣI(f) it lies ; therefore, one can define ΣI ⊂ J r

n,m as the set of r-jets jrf(x)
of generic holomorphic maps f : Cn → Cm at points x ∈ ΣI(f). In other terms,
ΣI(f) = {x ∈ Cn, jrf(x) ∈ ΣI}. It is a classical result [6] that the ΣI ’s are smooth
submanifolds and define a partition of the space of generic holomorphic r-jets (an
open subset in J r

n,m whose complement has codimension ≥ n + 1), which can be
extended into a partition of J r

n,m by smooth submanifolds.
The Boardman classes ΣI play a fundamental role in singularity theory, and they

completely determine the classification of singularities in certain dimensions. For
low enough values of r, m or n, the submanifolds ΣI define a genuine stratification
of the jet space J r

n,m. However, as observed by Boardman, things become more
complicated as the dimension increases, and the boundary of ΣI is in general not a
union of entire strata ; in high dimensions Boardman classes do not even define a
quasi-stratification.

Still, there exist well-known methods that allow Boardman’s partitions to be
refined into finite Whitney stratifications of J r

n,m. An example of such a construction
can be found in the work of Mather [10] (the constructed object is tautologically
a finite Whitney stratification, and one easy checks that each Boardman class is a
union of several of its strata).
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We now consider the case of maps to projective spaces defined by asymptotically
holomorphic sections of Ek = Cm+1 ⊗ Lk over X. We want to construct a natu-
ral approximately holomorphic analogue of the Thom-Boardman stratifications, by
defining certain submanifolds in J rEk. In order to make things easier by avoiding a
lengthy analysis of the boundary structure at the points where the vanishing of the
section prevents the definition of a projective map, our aim will only be to construct
quasi-stratifications of J rEk rather than genuine stratifications.

We first define Z = {(σ0, . . . , σr) ∈ J rEk, σ0 = 0}, i.e. Z is the set of r-jets of
sections which vanish at the considered point. As observed in §3.2, ΘZ consists of
all points of Z such that σ1 is surjective. Next, observe that any point (σ0, . . . , σr) ∈
J rEk which does not belong to Z determines the (symmetric) holomorphic r-jet
(φ0, . . . , φr) of a map to CPm : φ0 ∈ CPm, φ1 ∈ T ∗

xX
1,0 ⊗ Tφ0CPm, . . . , φr ∈

(T ∗
xX

1,0)⊗r
sym ⊗ Tφ0CPm are defined in terms of σ0, . . . , σr by expressions involving

the projection map from Cm+1 −{0} to CPm and its derivatives. In fact, one easily
checks that, if (σ0, . . . , σr) = jrs is the symmetric holomorphic part of the r-jet of
a section of Ek, then (φ0, . . . , φr) = jrf is the symmetric holomorphic part of the
r-jet of the corresponding projective map. Using this notation, define

Σi = {(σ0, . . . , σr) ∈ J rEk, σ0 6= 0, dim Kerφ1 = i}.
For max(0, n −m) < i ≤ n, one easily checks that Σi is a smooth submanifold of
J rEk, and that ∂Σi is the union of

⋃

j>i Σj and a subset of Z−ΘZ : indeed, observe

that if n ≥ m, then for any (σ0, . . . , σr) ∈ Σi ∩ Z we have dim Ker σ1 ≥ i − 1 >
n− (m+ 1) and therefore σ1 is not surjective, while in the case n < m dimensional
reasons prevent σ1 from being surjective.

Next, we assume that r ≥ 2, and observe that ΘΣi
is the set of points (σ0, . . . , σr) ∈

Σi such that

Ξi;(σ0,...,σr) = {u ∈ TxX
1,0, (ιuσ1, . . . , ιuσr, 0) ∈ T(σ0,...,σr)Σi}

has the expected codimension in TxX
1,0 (i.e., the same codimension as Σi in J rEk).

Indeed, by definition (σ0, . . . , σr) belongs to ΘΣi
if and only if the (r + 1)-jet

(σ0, . . . , σr, 0), viewed as a 1-jet in J rEk, intersects Σi transversly (because the def-
inition of Σi involves only σ0 and σ1, the choice of a lift in J r+1Ek does not matter,
so we can choose the (r+1)-tensor component to be zero). By convention (see §3.2),
this element of J r+1Ek corresponds to the 1-jet of a local section σ of J rEk satis-
fying, at the given point x ∈ X, σ(x) = (σ0, . . . , σr) and ∇σ(x) = (σ1, . . . , σr+1) :
the covariant derivative contains no antiholomorphic or antisymmetric terms. The
graph of σ intersects Σi transversely if and only if {u ∈ TX, ∇σ(x).u ∈ Tσ(x)Σi}
has the expected dimension, hence the above criterion.

With this understood, we can define inductively, for p+ 1 ≤ r,

Σi1,...,ip+1 = {σ ∈ ΘΣi1,...,ip
, dim(Kerφ1 ∩ Ξ(i1,...,ip);σ) = ip+1},

where ΞI;σ = {u ∈ TxX
1,0, (ιuσ1, . . . , ιuσr, 0) ∈ T(σ0,...,σr)ΣI} as above, and ΘΣI

again consists of all points σ ∈ ΣI such that ΞI;σ has the same codimension in
TxX

1,0 as ΣI in J rEk.
For i1 ≥ · · · ≥ ip+1 ≥ 1, Σi1,...,ip+1 is a smooth submanifold in J rEk, and its

closure inside Σi1,...,ip is obtained by adding
⋃

j>ip+1
Σi1,...,ip,j and a subset of Σi1,...,ip−

ΘΣi1,...,ip
. However, it is quite difficult to fully understand the boundary structure

of Σi1,...,ip+1 ; the situation is exactly the same as in standard Boardman theory
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for holomorphic jets, except that, besides pieces of Σj1,...,jq where q ≤ p + 1 and
(j1, . . . , jq) ≥ (i1, . . . , iq) for the lexicographic order, the boundary of Σi1,...,ip+1 also
contains a subset of Z − ΘZ .

In low dimensions and/or for low values of r, it can be checked that the sub-
manifolds Z,Σi,Σi1,i2 , . . . ,Σi1,...,ir determine a finite Whitney quasi-stratification of
J rEk ; for example when r = 1 this is an immediate consequence of the above
discussion.

However, in larger dimensions it is necessary to refine Boardman’s construction
as in the holomorphic case. The important observation is that, when J rEk is
trivialized by choosing local asymptotically holomorphic coordinates and sections,
the partition of J rEk − Z described above corresponds exactly to the partition
of the space of r-jets of maps to CPm given by Boardman classes. Therefore,
we can circumvent the problem by refining Boardman’s partition of J r

n,m into a
genuine stratification as explained above, lifting it by the projectivization map to a
stratification of the space of non-vanishing jets in J r

n,m+1, and finally pull it back to
obtain a stratification of J rEk −Z. As in the holomorphic case, the ΣI classes are
realized as unions of strata ; therefore, transversality to this stratification implies
transversality to the ΣI ’s. Moreover, all strata (except for the open one which we
discard anyway) are contained in the closure of Σ1, so that the boundary structures
near Z are entirely contained in Z − ΘZ ; therefore adding Z to this stratification
yields a quasi-stratification of J rEk.

Definition 5.1. Given asymptotically very ample line bundles Lk over (X2n, J),
and setting Ek = Cm+1 ⊗ Lk, the Boardman stratification of J rEk is the quasi-
stratification given by the submanifold Z and by a refined Thom-Boardman stratifi-
cation of J rEk − Z.

Corollary 5.3. Let (X,ω) be a compact symplectic manifold endowed with an ω-
tame almost-complex structure J , let Lk be an asymptotically very ample sequence
of line bundles over (X, J), and let Ek = Cm+1 ⊗ Lk. Then, for all large enough
values of k there exist asymptotically holomorphic sections sk of Ek such that the
r-jets jrsk are uniformly transverse to the Boardman stratifications of J rEk.

In particular, the zero sets Zk = s−1
k (0) are smooth symplectic codimension 2m

submanifolds in X, and the holomorphic r-jets of the projective maps fk = Psk :
X − Zk → CPm behave at every point in a manner similar to those of generic
holomorphic maps from a complex n-fold to CPm. Moreover, the singular loci
ΣI(fk) = {x ∈ X − Zk, j

rfk(x) ∈ ΣI} are smooth symplectic submanifolds of
the expected codimension and define a partition of X − Zk. Finally, the sections
sk and the maps fk are, for large k, canonical up to isotopy, independently of the
chosen almost-complex structure on X.

Proof. By construction the Boardman stratifications of J rEk satisfy the assump-
tions of Proposition 3.1, as in every fiber of J rEk they can be identified with the
same holomorphic quasi-stratification of J r

n,m+1. As a consequence, they are asymp-
totically holomorphic, and the existence of asymptotically holomorphic sections of
Ek with the desired transversality properties is an immediate consequence of The-
orem 1.1. The properties of Zk follow immediately from the uniform transversality
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to the stratum Z of vanishing sections, while the properties of fk are direct conse-
quences of the uniform transversality to the Boardman strata (recall that each ΣI

is smooth and is a union of strata). Finally, the uniqueness result is obtained by
applying Theorem 3.2. �

Corollary 5.3 is, in a certain sense, a fundamental result of asymptotically holo-
morphic singularity theory. Still, it falls short of the natural goal that one may
have in mind at this point, namely the construction of approximately holomorphic
projective maps which are near every point of X topologically conjugate in approx-
imately holomorphic coordinates to generic holomorphic maps between complex
manifolds.

Indeed, in order to achieve such a result, one needs to obtain some control on
the antiholomorphic part of the jet of fk at the points of the singular loci ΣI(fk) :
roughly speaking, ∂̄fk must be much smaller than ∂fk in every direction and at
every point, and when ∂fk is singular this is no longer an immediate consequence
of asymptotic holomorphicity and transversality. Note however that the behavior
of fk near the set of base points Zk is always the expected one.

In many cases, it is possible to perturb slightly the sections sk (by less than

a fixed multiple of c
−1/2
k , which affects neither holomorphicity nor transversality

properties) along the singular loci in order to obtain the proper topological picture
for fk.

The easiest case is m ≥ 2n, where it is enough to consider 1-jets, and all the
strata turn out to be of codimension greater than n ; the uniform transversality of
sk to the Boardman stratification then implies that the maps fk are approximately
holomorphic immersions. Moreover, when m ≥ 2n+1 an arbitrarily small perturba-
tion is enough to get rid of multiple points, thus giving approximately holomorphic
embeddings into projective spaces, a result already obtained by Muñoz, Presas and
Sols [11].

Next, we can consider the case m = 1, where 1-jets are again sufficient, and the
only interesting Boardman stratum is Σn, of complex codimension n, corresponding
to critical points of CP1-valued maps. The sections of C2⊗Lk given by Corollary 5.3
vanish along smooth codimension 4 base loci ; moreover, the differential ∂fk of the
CP1-valued map fk only vanishes at isolated points, and does so in a non-degenerate
way. These transversality properties are precisely those imposed by Donaldson in
his construction of symplectic Lefschetz pencils [8]; the only missing ingredient is an
extra perturbation near the zeroes of ∂fk in order to get rid of the antiholomorphic
terms and therefore ensure that they are genuine non-degenerate critical points,
thus making fk a complex Morse function.

The last case we will consider is when m = 2. In this case, we need to consider
2-jets, and the relevant Boardman strata are Σn−1, of complex codimension n− 1,
and Σn−1,1, of complex codimension n (the other strata have codimension greater
than n). The sections of C3 ⊗Lk constructed by Corollary 5.3 vanish along smooth
codimension 6 base loci. The CP2-valued maps fk are submersions outside of the
smooth symplectic curves Rk = Σn−1(fk), and the restriction of fk to Rk is an
immersion except at the points of Ck = Σn−1,1(fk). After a suitable perturbation in
order to ensure the vanishing of some antiholomorphic derivatives of fk along Rk,
one obtains a situation similar to that described in previous papers [3, 4]: at every
point of Rk − Ck, a local model for fk in approximately holomorphic coordinates
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is (z1, . . . , zn) 7→ (z2
1 + · · · + z2

n−1, zn), while at the points of Ck the local model
becomes (z1, . . . , zn) 7→ (z3

1 + z1zn + z2
2 + · · · + z2

n−1, zn) and the symplectic curve

fk(Rk) ⊂ CP2 presents an isolated cusp singularity.
In the general case, the most promising strategy to achieve topological conjugacy

to generic holomorphic local models is to perturb the sections sk in order to make
sure that, along each stratum ΣI(fk), the germ of fk is holomorphic along the normal
directions to ΣI(fk). Such perturbations should be relatively easy to construct by
methods similar to those in the above-mentioned papers [3, 4], provided that one
starts from the strata of lowest dimension. This approach will be developped in a
forthcoming paper.

Finally, let us formulate some natural extensions of Corollary 5.3 to more general
situations. First, we mention the case when the asymptotically very ample line
bundles Lk are replaced by vector bundles of rank ν ≥ 2. In that case, and provided
that m ≥ ν, the projective maps defined by sections sk of Cm+1⊗Lk are replaced by
maps Gr(sk) taking values in the Grassmannian Gr(ν,m+ 1) of ν-planes in Cm+1,
defined at every point of X where the m+1 chosen sections generate the whole fiber
of Lk. More precisely, at every such point there exist m+ 1− ν independent linear
relations between the m + 1 components s1

k, . . . , s
m+1
k , and these m + 1 − ν linear

equations in m + 1 variables determine a ν-dimensional complex subspace Gr(sk)
in Cm+1. By adapting Corollary 5.3 to this situation, it is for example possible to
recover the Grassmannian embedding result of Muñoz, Presas and Sols [11].

Another direction in which Corollary 5.3 can be improved is by adding extra
transversality requirements to the projective maps fk. For example, given a strat-
ified holomorphic submanifold D = (Da)a∈A in CPm, we can require the transver-
sality of the map fk to D. Indeed, D induces a stratification D̃k of J rEk, in which
each stratum consists of the jets (σ0, . . . , σr) such that Pσ0 belongs to a certain
stratum Da of D (in fact, this stratification only involves the 0-jet part). Starting
from sections sk of Ek given by Corollary 5.3, we can apply Theorem 1.1 to the
stratifications D̃k (which one easily shows to to be asymptotically holomorphic by
Proposition 3.1) ; this yields asymptotically holomorphic sections s̃k which are uni-
formly transverse to D̃k but differ from sk by an amount small enough to ensure that
the transversality of the jets to the Boardman stratification is preserved. In this
way, one obtains projective maps which have the same properties as in Corollary
5.3 and additionally are uniformly transverse to the stratified submanifold D. This
extends a result of Muñoz, Presas and Sols [11] where asymptotically holomorphic
embeddings are made transverse to a given submanifold of CPm.

Another class of stratifications of J rEk that we can consider are those obtained
from lower-dimensional Boardman stratifications by linear projections. Namely,
fix q < m, and let π : Cm+1 → Cq+1 be a linear projection ; π induces maps
π̃ : J r(Cm+1⊗Lk) → J r(Cq+1⊗Lk), and the inverse images by π̃ of the Boardman
stratifications of J r(Cq+1⊗Lk) are asymptotically holomorphic quasi-stratifications
of J r(Cm+1 ⊗Lk). The transversality of jrsk to these quasi-stratifications is equiv-
alent to that of jr(π(sk)) to the Boardman stratifications ; denoting by π̄ the map
from CPm to CPq induced by π, this is also equivalent to the genericity of the holo-
morphic jets of the projective maps π̄ ◦ fk. Therefore, by applying Theorem 1.1 as
in the previous example, we can obtain projective maps fk with the same genericity
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properties as in Corollary 5.3 and such that the maps π̄ ◦fk also enjoy similar prop-
erties. Even better, by iteratedly applying Theorem 1.1 we can obtain the same
property for any given finite family of linear projections. For example, when m = 2
and considering projections of C3 to C2 along coordinate axes, one obtains exactly
the transversality properties which are needed in order to extend Moishezon-Teicher
braid group techniques to the study of symplectic manifolds [5, 4].

To conclude, let us mention a different class of potential applications of Theorem
1.1, following the ideas of Donaldson and Smith. As shown by Donaldson [8], any
compact symplectic 4-manifold carries structures of symplectic Lefschetz pencils
obtained from pairs of sections of asymptotically very ample line bundles Lk ; after
blowing up the base points, we obtain Lefschetz fibrations over CP1, which may also
be thought of as maps from CP1 to the moduli space M̄g of stable curves of a certain
genus g. These maps become asymptotically holomorphic as one considers pencils
given by sections of Lk for k → +∞. In a largely unexplored class of constructions,
one considers certain vector bundles over CP1 naturally arising from the Lefschetz
fibrations : for example, spaces of holomorphic sections of certain bundles over
each fiber, or pull-backs by the maps from CP1 to M̄g of vector bundles over M̄g. It
often turns out that these bundles over CP1 either are naturally asymptotically very
ample or become so after tensor product by the line bundles O(k). Theorem 1.1
can then used in order to obtain sections with suitable genericity properties, which
in turn give rise to interesting geometric or topological structures. In some cases
the objects naturally arising are sheaves rather than bundles, but the same type of
argument should remain valid. It is to be expected that some interesting results
about symplectic 4-manifolds and Lefschetz pencils can be obtained in this way, as
similar considerations (but at a much more sophisticated level) have for example
led to Donaldson and Smith’s proof of the existence of a pseudo-holomorphic curve
realizing the canonical class via Lefschetz fibrations [9].
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SYMPLECTIC HYPERSURFACES IN THE COMPLEMENT OF

AN ISOTROPIC SUBMANIFOLD

DENIS AUROUX, DAMIEN GAYET, AND JEAN-PAUL MOHSEN

Abstract. Using Donaldson’s approximately holomorphic techniques, we con-
struct symplectic hypersurfaces lying in the complement of any given compact
isotropic submanifold of a compact symplectic manifold. We discuss the connec-
tion with rational convexity results in the Kähler case and various applications.

1. Introduction

It was first observed by Duval (see e.g. [Du]) that, in Kähler geometry, the notions
of isotropy and rational convexity are tightly related to each other. Recall that
a compact subset N of Cn or more generally of a complex algebraic manifold is
said to be rationally convex if there exists a complex algebraic hypersurface passing
through any given point in the complement of N and avoiding N . Among the results
motivating the interest in this notion, one can mention the classical theorem of Oka
and Weil (further improved by subsequent work) stating that every holomorphic
function over a neighborhood of a rationally convex compact subset N ⊂ Cn can
be uniformly approximated over N by rational functions.

It was shown in 1995 by Duval and Sibony that, if a smooth compact submanifold
of Cn is isotropic with respect to some Kähler structure on Cn, then it is rationally
convex [DS]. This result was extended in 1999 by Guedj to the context of complex
projective manifolds :

Theorem 1 (Guedj [Gu]). Let (X,ω, J) be a closed Kähler manifold, such that the
cohomology class 1

2π
[ω] ∈ H2(X,R) is integral. Then any smooth compact isotropic

submanifold L ⊂ X (possibly with boundary) is rationally convex, i.e. there exist
complex hypersurfaces in X passing through any given point in the complement of
L and avoiding L.

Because the concept of isotropic submanifold originates in symplectic geometry, it
is natural to seek an analogue of this result for symplectic manifolds. Although the
lack of an integrable almost-complex structure prevents the existence of holomorphic
hypersurfaces in a general symplectic manifold, a suitable analogue may be found in
Donaldson’s construction of approximately holomorphic symplectic hypersurfaces.

Let (X,ω) be a closed compact symplectic manifold of real dimension 2n. Unless
otherwise stated, we will always assume that the cohomology class 1

2π
[ω] ∈ H2(X,R)

is integral ; this does not restrict the diffeomorphism type of X in any way. A
compatible almost-complex structure J on X and the corresponding Riemannian
metric g are also fixed.

Let L be a complex line bundle onX with first Chern class c1(L) = 1
2π

[ω], endowed
with a Hermitian structure and a Hermitian connection ∇L whose curvature 2-form
is −iω. It was shown by Donaldson in [D1] that, when the integer k is large enough,
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the line bundles L⊗k admit many approximately J-holomorphic sections, some of
which possess remarkable transversality properties ensuring that their zero sets are
smooth symplectic submanifolds inX. Many interesting constructions in symplectic
topology have recently been obtained by using the same techniques (see e.g. [A2],
[D2] and [S]).

Let us recall the following definitions. The almost-complex structure J and the
Hermitian connection on L⊗k induced by that on L yield ∂ and ∂̄ operators on
L⊗k. Since the connection on L⊗k has curvature −ikω, we introduce the rescaled
metric gk = k g on X, in order to be able to consider uniform bounds for covariant
derivatives of sections of L⊗k. As a consequence of this rescaling, the diameter of
X is multiplied by k1/2, and all derivatives of order p are divided by kp/2.

Definition 1. Let (sk)k�0 be a sequence of sections of L⊗k over X. The sections sk

are said to be asymptotically holomorphic if there exists a constant C > 0 such that,
for all k and at every point of X, |sk| + |∇sk| + |∇∇sk| ≤ C and |∂̄sk| + |∇∂̄sk| ≤
Ck−1/2, where the norms of the derivatives are evaluated with respect to the metrics
gk = k g.

The sections sk are said to be uniformly transverse to 0 if there exists a constant
η > 0 (independent of k) such that the sections sk are η-transverse to 0, i.e. such
that, for any k and at any point x ∈ X where |sk(x)| < η, the covariant derivative
∇sk(x) : TxX → L⊗k

x is surjective and satisfies the bound |∇sk(x)|gk
> η.

With these definitions, Donaldson’s construction amounts to showing the exis-
tence of a sequence of sections sk of L⊗k which are at the same time asymptotically
holomorphic and uniformly transverse to 0 [D1]. It then follows easily from these
properties that, for large enough k, the zero sets Wk of sk are smooth symplectic
hypersurfaces in X.

Let L be a compact isotropic submanifold in X, not necessarily connected : we
wish to show that one can get the symplectic hypersurfaces Wk to lie in X−L. The
fundamental reason why it is reasonable to expect such a result is that, since ω van-
ishes over L, the line bundle L|L comes equipped with a flat connection. However
L⊗k admits non-vanishing sections over L only when its restriction to L is topolog-
ically trivial ; if L is not simply connected, this can restrict the admissible values
of the parameter k. For example, if X = CP2 and L = RP2, an easy calculation
in homology with Z/2 coefficients shows that any symplectic submanifold of odd
degree must intersect L. Our main result is the following :

Theorem 2. Let L be a compact isotropic submanifold in X, and let N be the
order of the torsion part of H1(L,Z). Then, for all large enough values of k, there
exist asymptotically holomorphic sections sk of L⊗k over X whose zero sets Wk are
smooth symplectic submanifolds, disjoint from L whenever k is a multiple of N .
Moreover, Wk can be assumed to pass through any given point x0 ∈ X − L.

This result is mildly surprising when one considers the results obtained in [D1]
and [A1] indicating that, when k increases, the submanifolds Wk tend to fill all of
X. There is no contradiction, though, as the distance by which the submanifolds
Wk given by Theorem 2 stay away from L actually decreases like k−1/2.

Remark 1. (a) Theorem 2 remains valid when L has non-empty boundary ; see
[M] for details.
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(b) When X is a Kähler manifold, one can perform the construction in such a
way that the sections sk are holomorphic. The submanifolds Wk are then complex
hypersurfaces ; this provides a new proof of Guedj’s rational convexity result.

(c) When the cohomology class 1
2π

[ω] is no longer assumed to be integral, the line
bundle L is no longer defined, but it is still possible to obtain symplectic hyper-
surfaces in X which avoid the submanifold L and pass through any given point in
X − L.

Additional motivation for these results can be found in the work of Biran [B],
where the notion of Lagrange skeleton of a symplectic manifold of Kähler type with
respect to a hypersurface of Donaldson type is defined. As will be explained in §3,
Theorem 2 can be interpreted in this context as a flexibility result for Lagrange
skeleta in large degrees.

More importantly, it was observed by Seidel and Viterbo that Theorem 2 im-
plies that if L is Lagrangian then its homology class is a primitive element of
Hn(X −Wk) (see §3) ; this remark might lead to obstructions to the existence of
certain Lagrangian embeddings.

Note. Different proofs of Theorem 2 were obtained independently by the three au-
thors ; the curious reader is referred to [M] and [Ga] for various alternate arguments
and generalizations.

The authors wish to thank Claude Viterbo, Paul Seidel and Paul Biran for mo-
tivating discussions and for suggesting applications of Theorem 2. The authors are
respectively thankful to Ivan Smith, Julien Duval, Bruno Sévennec and Emmanuel
Giroux for discussions and advice.

2. Proof of Theorem 2

We first define the notion of concentrated sections of L⊗k :

Definition 2. Asymptotically holomorphic sections sk of L⊗k are said to be con-
centrated over a subset N ⊂ X if there exist positive constants λ, c and C (inde-
pendent of k) such that for all y ∈ N , |sk(y)| ≥ c, and, for all y ∈ X, |sk(y)| ≤
C exp(−λ d(y,N)2), where d(., .) is the distance induced by gk. When the subset N
consists of a single point x ∈ X, we say that the sections sk are concentrated at x.

With this terminology, recall the following result (Proposition 11 of [D1]) :

Lemma 1 (Donaldson). For all large enough k the line bundles L⊗k admit asymp-
totically holomorphic sections σk,x concentrated at any given point x ∈ X.

As the properties of the sections σk,x play an important role in the argument, let
us recall briefly their construction.

Remember that, at any point x ∈ X, it is possible to find a local approx-
imately holomorphic Darboux coordinate chart, i.e. a local symplectomorphism
ψ : (X, x, ω) → (Cn, 0, ω0) such that, with respect to J and the standard complex
structure of Cn, ∂̄ψ(x) = 0 and |∇∂̄ψ|g is bounded uniformly by a constant C. The
compactness of X implies that the size of the neighborhood over which ψ is de-
fined and the value of the constant C can be assumed not to depend on the chosen
point x.

In our case, we will moreover require that, whenever the point x belongs to the
given isotropic submanifold L, the coordinate map ψ locally sends L to a linear
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subspace in Cn (obviously isotropic). The existence of Darboux coordinate charts
with this property is a very classical result of Weinstein ([W], see also [McS]) ; it
is an immediate observation that the coordinate map can still be chosen to satisfy
∂̄ψ(x) = 0, and the compactness of L implies the existence of uniform estimates on
|∇∂̄ψ| and on the size of the coordinate chart.

In a Darboux coordinate chart, a suitable unitary gauge transformation leads to
a local trivialization of L⊗k in which the connection 1-form is given by k

4

∑

(zjdz̄j −
z̄jdzj). The local section defined by fk(z) = exp(−k|z|2/4) is then holomorphic over
a neighborhood of 0 in Cn. Pulling back fk via the coordinate chart ψ, one obtains
sections σ̂k,x of L⊗k over a neighborhood of x in X, and it easily follows from the
estimates on ∂̄ψ that these sections are asymptotically holomorphic.

Finally, multiplying σ̂k,x by a smooth cut-off function vanishing at distance k−1/6

from x yields the desired asymptotically holomorphic sections σk,x, easily shown to
be concentrated at the point x (see [D1]).

Recall from [D1] (see also [A1]) that asymptotically holomorphic sections with
uniform transversality estimates are constructed by an iterative process, where one
starts with any given asymptotically holomorphic sections sk of L⊗k (e.g. sk = 0)
and perturbs them over small open subsets of X in order to achieve transversality
over those subsets ; successive smaller and smaller perturbations are performed in
such a way that the transversality property gained at each step is preserved by all
subsequent perturbations, until transversality holds over all of X. In particular,
given any constant C > 0 it is possible to ensure that the constructed sections s̃k

differ from the given sections sk by less than C in C1 norm (i.e., at every point of
X we have |s̃k − sk| + |∇s̃k −∇sk|gk

≤ C) [A1].
Therefore, in order to prove Theorem 2 (without requiring yet the submanifolds

to pass through a given point of X −L), it is sufficient to construct asymptotically
holomorphic sections σk,L of L⊗k, concentrated over L for k ranging over all large
enough multiples of N = |TorH1(L,Z)|. By definition these sections satisfy a
uniform lower bound over L by some constant c > 0, and perturbing them by less
than c/2 we get (for large enough k) uniformly transverse sections which do not
vanish over L. Our next ingredient is the following observation :

Lemma 2. Given any compact isotropic submanifold L ⊂ X, there exists a con-
stant CL > 0 such that, whenever k is a multiple of N = |TorH1(L,Z)|, the restric-
tion of L⊗k to L admits a section τk such that |τk(x)| = 1 and |∇τk(x)|g ≤ CL, i.e.
|∇τk(x)|gk

≤ CL k
−1/2, at every point x ∈ L.

Proof. Since L is isotropic, the restriction to L of the connection ∇L on L is flat ;
therefore the first Chern class c1(L|L), although not necessarily trivial, belongs to
the kernel of the natural map ι : H2(L,Z) → H2(L,R). By the universal coefficients
theorem (see e.g. [BT], page 194), Ker(ι) = TorH2(L,Z) ' TorH1(L,Z). It follows
that the order of c1(L|L) divides N , so that the complex line bundle L⊗k

|L has zero

first Chern class and hence is topologically trivial whenever k is a multiple of N .
Fix a trivialization of L⊗k over L, and consider the 1-form αk ∈ Ω1(L, iR) rep-

resenting the connection on L⊗k induced by ∇L. We work with the metric on L
induced by g, and observe that a suitable choice of trivialization of L⊗k ensures
that the 1-form αk and its derivatives satisfy uniform bounds which depend only
on the geometry of L and not on k.
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Indeed, it is well-known that the moduli space of flat unitary connections on the
trivial complex line bundle over L up to U(1) gauge transformations is compact and
isomorphic to H1(L,R)/H1(L,Z). Therefore, a well-chosen gauge transformation
makes it possible to obtain uniform bounds on the 1-form αk and its derivatives,
independently of k. More precisely, a first gauge transformation in the identity
component can be used to make the closed 1-form αk harmonic, while the flexibility
coming from the connected components of the gauge group makes it possible to
ensure that αk lies in a fixed bounded subset of H1(L,R).

Let τk be the section of L⊗k over L which identifies with the constant function 1
in the chosen trivialization : clearly, |τk| = 1 at every point of L and the derivatives
of τk are bounded by uniform constants independently of k with respect to the
metric g.

Remark. The bounds satisfied by αk and ∇τk depend on the minimum g-length
δ(L) of a homotopically non-trivial loop in L ; in fact CL must be at least of the
order of δ(L)−1. This is one of the reasons why the submanifold L cannot be
allowed to vary with k, another one being that we need to control the size of the
balls centered at points of L which can be trivialized by Weinstein’s theorem.

Throughout the remainder of this section we assume that k is a multiple of N .
For each such k, let Pk be a finite set of points of L such that the balls of gk-radius
1 centered at the points of Pk cover L and any two points of Pk are at gk-distance
at least 2

3
from each other. Such a set can be constructed by covering L by finitely

many balls of gk-radius 1
3

and iteratedly removing the points that are too close to
each other (see also [D1]).

Define the sections

σk,L =
∑

p∈Pk

τk(p)

σk,p(p)
σk,p

of L⊗k over X. The sections σk,L are linear combinations of the asymptotically
holomorphic sections σk,p, with coefficients unitary complex numbers (recall that
|τk(p)| = |σk,p(p)| = 1). Therefore, because any two points of Pk are mutually
gk-distant of at least 2

3
and because the sections σk,p are concentrated at points, a

standard argument ([D1],[S]) shows that the sections σk,L are uniformly bounded
and asymptotically holomorphic.

We now show that the sections σk,L are concentrated over L. The decay properties
of σk,L away from L follow from the following lemma :

Lemma 3. Let Pk ⊂ X be a finite set of points whose mutual gk-distance is bounded
from below by a constant δ > 0. Let (αk,p)p∈Pk

be a family of complex numbers such
that |αk,p| ≤ 1 ∀p ∈ Pk, and let sk =

∑

p∈Pk
αk,pσk,p. Then there exist constants

Cδ and λδ, independent of k and Pk, such that |sk(x)| ≤ Cδ exp(−λδdgk
(x, Pk)

2) at
every point of X.

Proof. Because σk,p is supported in Bg(p, 2k
−1/6), we can restrict ourselves to only

considering points in a fixed ball around the given point x ∈ X ; since the gk-
distance between any two points of Pk is greater than δ, this implies that the
number of points p ∈ Pk lying within a given fixed gk-distance ρ of x is bounded by
Q(ρ), where Q is a polynomial depending only on δ. Therefore, using the existence
of a bound |σk,p(x)| ≤ C ′ exp(−λ′d(x, p)2) for σk,p and ordering the points of Pk
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according to their distance from x, we get the desired bound on |sk(x)| by summing
over concentric slices.

We immediately conclude that |σk,L(x)| ≤ C2/3 exp(−λ2/3dgk
(x,L)2). It remains

to be shown that the norm of σk,L at a point of L admits a uniform lower bound.
For this, we first prove the following result :

Lemma 4. If k is large enough, and if p and x are two points of L such that
dgk

(p, x) ≤ k1/10, then σk,p(x) 6= 0 and
∣

∣

∣

∣

arg

(

σk,p(x)

τk(x)

)

− arg

(

σk,p(p)

τk(p)

)∣

∣

∣

∣

≤ π

4
.

Proof. Since the g-distance between x and p is less than k−2/5, the cut-off function
used to define σk,p is equal to 1 at x, and therefore σk,p(x) 6= 0.

We work in the same local coordinate chart ψ and local trivialization of L⊗k

that were used to define σk,p ; we write ψ(x) = u, and consider the radial path
γ(t) = ψ−1(tu) from p to x. Recall that the connection on L⊗k is expressed as d+
Ak = d+ k

4

∑

(zjdz̄j − z̄jdzj), while σk,p is locally given by the function exp(− k
4
|z|2).

Therefore one easily checks that
∫ 1

0

(∇σk,p

σk,p

)

γ(t)

· γ′(t) dt =

∫ 1

0

d(−k
4
|z|2)(tu) · u dt = −k

4
|u|2 ∈ R.(1)

Recall that by construction we require that ψ locally maps L to a linear subspace
of Cn. Therefore the radial path γ is contained in L, and we can use the bound on
∇τk given by Lemma 2 to obtain that

∣

∣

∣

∫ 1

0

(∇τk
τk

)

γ(t)

· γ′(t) dt
∣

∣

∣
≤
∫ 1

0

|(∇τk)γ(t)| · |γ′(t)| dt = O(k−2/5).(2)

Therefore,

arg

(

σk,p(x)

τk(x)

)

− arg

(

σk,p(p)

τk(p)

)

= Im

[

∫ 1

0

(∇σk,p

σk,p

− ∇τk
τk

)

γ(t)

· γ′(t) dt
]

is bounded by a constant times k−2/5, which gives the result.

Lemma 4 implies the existence of a uniform lower bound on σk,L at any point of
L. Indeed, consider a point x ∈ L, and let p be the point of Pk closest to x. By
construction dgk

(x, p) ≤ 1, and therefore there exists a constant c > 0 (independent
of x, p and k) such that |σk,p(x)| ≥ c. By Lemma 4 we know that the contributions
of the various points q ∈ Pk whose gk-distance to x is less than k1/10 cannot cancel
each other, and we have

∣

∣

∣

∣

∣

∑

q∈Pk

d(x,q)≤k1/10

τk(q)

σk,q(q)
σk,q(x)

∣

∣

∣

∣

∣

≥ |σk,p(x)| ≥ c.

On the other hand, Lemma 3 implies that the contribution of the remaining points
of Pk decreases exponentially with k. Therefore, when k is large enough we get
that |σk,L(x)| ≥ c/2 at any point x of L ; in fact, the argument also implies that
supx∈L | arg(σk,L(x)/τk(x))| becomes arbitrarily small for large k.
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We conclude that the asymptotically holomorphic sections σk,L are concentrated
over L, which ends the argument : perturbing σk,L by less than c/4 we obtain asymp-
totically holomorphic sections σ̃k,L satisfying a uniform transversality property, and
by construction their zero sets are (asymptotically holomorphic) symplectic sub-
manifolds which do not intersect L.

The final step to complete the proof of Theorem 2 is to show that these asymp-
totically holomorphic hypersurfaces can be made to pass through a given point
x0 ∈ X − L. Considering the sections uk,x0 = k1/2z1 σk,x0 , where z1 is a local
approximately holomorphic coordinate function at x0, the idea is to work with
σk,L + uk,x0 instead of σk,L. Indeed, observing that for large k the support of uk,x0

is disjoint from L, a small perturbation of σk,L + uk,x0 yields asymptotically holo-
morphic hypersurfaces Wk avoiding L and passing through a point x within unit
gk-distance of x0. It is then possible to find a Hamiltonian diffeomorphism φ pre-
serving L, mapping x to x0, and sufficiently close to the identity in order to ensure
the asymptotic holomorphicity of φ(Wk).

Remark. When L is Lagrangian, Theorem 2 can also be proved by arguing along
the following lines. By Weinstein’s Lagrangian neighborhood theorem, a neighbor-
hood V of L in X is symplectomorphic to a neighborhood of the zero section in
T ∗L with its standard symplectic structure dp∧ dq ; the fibers of π : T ∗L → L can
be chosen g-orthogonal to L at every point of L. Consider the trivialization of L⊗k

over L given by the section τk of Lemma 2, and extend it over V in such a way
that the connection 1-form is given by βk = π∗αk − ik p dq, where αk is the same
1-form on L as in Lemma 2. It can then be checked that the sections of L⊗k over
V defined by sk = exp(−1

2
k|p|2g) (where | · |g is the metric induced by g|L on the

fibers of T ∗L) are asymptotically holomorphic ; multiplying sk by a suitable cut-off
function we obtain asymptotically holomorphic sections concentrated over L, from
where Theorem 2 is easily obtained.

3. Remarks and applications

3.1. The Kähler case. We consider the case where (X,ω, J) is a Kähler manifold,
and show how the construction can be performed in the holomorphic category (Re-
mark 1 (b)) using the ideas of Donaldson (see pp. 696–700 of [D1]). The first observa-
tion is that near any point x ∈ X there exists a local holomorphic section of L which,
in the same local trivialization of L as in the proof of Lemma 1, is given by a function
f such that f(z) = 1− 1

4
|z|2 +O(|z|3) and df(z) = − 1

4

∑

j(zjdz̄j + z̄jdzj)+O(|z|2) ;

see the proof of Lemma 36 of [D1].
Multiplying f(z)k by a smooth cut-off function at distance k−1/6 from x yields

asymptotically holomorphic sections σk,x of L⊗k, concentrated at x as in Lemma 1 ;
moreover, as observed by Donaldson in [D1], there exist holomorphic sections σ̃k,x

of L⊗k such that sup |σ̃k,x −σk,x| ≤ C exp(−ak1/3), with a and C positive constants
(independent of k and x).

We now proceed as in §2.1, using the new sections σk,x instead of those obtained
in Lemma 1. The argument remains the same, the only difference being in the proof
of Lemma 4 where the l.h.s. of (1) becomes equal to

∫ 1

0

(d+ Ak)f(z)k
(tu)

f(tu)k
· u dt =

∫ 1

0

k
(df

f

)

(tu)
· u dt = −k

4
|u|2 +O(k|u|3).
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Since |u| is at most of the order of k−2/5 the imaginary part of this quantity is
bounded by O(k−1/5), which is enough to prove Lemma 4 and hence construct σk,L

as in §2.1.
Replacing σk,x by σ̃k,x in the definition of σk,L, we obtain holomorphic sections

σ̃k,L which differ from σk,L by at most C exp(−ak1/3) card(Pk) and therefore also
satisfy a uniform lower bound over L. It is then possible to conclude as usual, by
adding a linear combination of the sections σ̃k,x to σ̃k,L in order to achieve uniform
transversality.

Alternately, given a point x0 ∈ X − L, one can add a multiple of σ̃k,x0 to σ̃k,L

in order to obtain holomorphic sections σ̃k,L,x0 which vanish at x0 while remaining
bounded away from zero over L. In terms of the projective embeddings i : X →
PH0(L⊗k)∗, these sections correspond to hyperplanes passing through i(x0) while
avoiding i(L). A small generic perturbation yields a hyperplane passing through
i(x0) which intersects i(X) transversely and still avoids i(L) ; this gives smooth
complex hypersurfaces passing through x0 and avoiding L, giving a new proof of
Guedj’s result.

3.2. The non-integral case. In this section we no longer assume that the coho-
mology class 1

2π
[ω] is integral, as in Remark 1 (c). As in [D1] the idea is to perturb

the symplectic form ω into a symplectic form ω′ such that 1
2π

[ω′] is proportional to
an integral class, and work with a multiple of ω′. It is however necessary to ensure
that L remains isotropic.

Because 1
2π

[ω] lies in the kernel of the restriction map from H2(X,R) to H2(L,R),
it is the image of a class α ∈ H2(X,L; R). Moreover, H2(X,L; Q) contains elements
lying arbitrarily close to α in H2(X,L; R). Therefore, by adding to ω an arbitrarily
small closed 2-form vanishing over L, we obtain a symplectic form ω ′ such that
1
2π

[ω′] is the image of a class in H2(X,L; Q) and hence belongs to H2(X,Q). By
construction, ω′ satisfies up to multiplication by a constant factor the required
integrality condition, and L is ω′-isotropic.

The symplectic form ω′ admits a compatible almost-complex structure J ′, C0-
close to J ; since ω(v, J ′v) > 0 ∀v ∈ TX, any J ′-complex subspace is ω-symplectic.
So, if a sequence of submanifolds Wk ⊂ X is asymptotically J ′-holomorphic, then
Wk is a symplectic submanifold of (X,ω) for large enough k. One then concludes
by applying Theorem 2 to (X,ω′, J ′).

3.3. Uniqueness up to isotopy. It was shown in [A1] that the symplectic sub-
manifolds constructed by Donaldson in [D1] are, for each large enough value of k,
canonical up to symplectic isotopy, independently of the almost-complex structure
J . One may ask whether in our case the submanifolds Wk are canonical up to a
symplectic isotopy of X preserving L ; such a uniqueness property does not hold in
general, because the homotopy class of the non-vanishing section sk of L⊗k over L
plays a determining role.

Let γ be a non-contractible loop in L bounding a discD inX : the homotopy class
of the non-vanishing section (sk)|γ over γ determines the number of zeroes of sk over
D, i.e. the linking number of Wk with γ, which can be modified by choosing different
trivializations of L⊗k over L. Still, when L is simply connected the homotopy classes
of the nowhere vanishing sections (sk)|L are uniquely determined.
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Even though it seems reasonable to expect that the isotopy class of asymptotically
holomorphic hypersurfaces in X − L should only depend on the homotopy class of
(sk)|L, our techniques do not allow us to prove so strong a statement ; we are
only able to prove that the submanifolds constructed in §2 (using either the given
proof or the alternate argument sketched at the end) are canonical up to symplectic
isotopy in X − L. For this, we use the control on the complex argument of (sk)|L
given by the construction : it follows directly from Lemma 4 and the subsequent
discussion that for large k the argument of sk/τk remains small at every point of L.

Proposition 1. Let τ 0
k and τ 1

k be sections of L⊗k over L belonging to the same
homotopy class and such that |τ i

k| ≡ 1 and |∇τ i
k|g = O(1). Let s0

k and s1
k be asymp-

totically holomorphic sections of L⊗k over X, uniformly transverse to 0, uniformly
bounded from below over L, and such that the bound | arg(si

k/τ
i
k)| ≤ π

3
holds at ev-

ery point of L. Then for large enough k their zero sets W 0
k and W 1

k differ by a
symplectic isotopy preserving L.

Proof. We use the same one-parameter argument as in [A1] in order to construct for
large k a one-parameter family of asymptotically holomorphic sections st

k, bounded
from below on L, interpolating between s0

k and s1
k. First, choosing a trivialization

of L⊗k over L to express τ i
k in the form exp(φi

k) for i ∈ {0, 1}, we define sections
τ t
k of L⊗k

|L for t ∈ [0, 1] by τ t
k = exp((1 − t)φ0

k + tφ1
k). Observing that |τ t

k| ≡ 1 and

|∇τ t
k|g = O(1) for all t, we can define sections σt

k,L =
∑

p∈Pk
(τ t

k(p)/σk,p(p))σk,p of

L⊗k over X which are asymptotically holomorphic and concentrated over L.
Define st

k to be equal to (1 − 3t)s0
k + 3tσ0

k,L for t ∈ [0, 1
3
], to σ3t−1

k,L for t ∈ [1
3
, 2

3
]

and to (3 − 3t)σ1
k,L + (3t− 2)s1

k for t ∈ [2
3
, 1]. All these sections are asymptotically

holomorphic ; observing that for i ∈ {0, 1} the arguments of si
k and σi

k,L both remain

within π
3

of that of τ i
k at every point of L, they also satisfy a uniform lower bound

by some constant c > 0 at every point of L.
Let γ > 0 be the uniform transversality estimate satisfied by si

k for i ∈ {0, 1}.
Applying the main theorem of [A1], we obtain, provided that k is large enough,
uniformly transverse sections s̃t

k of L⊗k depending continuously on t and differing
from st

k by at most 1
2
inf(c, γ) in C1 norm ; slightly modifying this 1-parameter family

near its extremities we can safely assume that s̃0
k = s0

k and s̃1
k = s1

k (see Corollary
2 in [A1]). The zero sets of s̃t

k are then symplectic hypersurfaces W t
k ⊂ X − L

realizing a smooth isotopy between W 0
k and W 1

k . The argument in §4.2 of [A1] then
shows that this smooth isotopy can be turned into a symplectic isotopy preserving L
(observe that all the quantities appearing in the argument can be chosen to vanish
over a neighborhood of L).

A final remark about the homotopy class of the sections we construct in the non
simply connected case : the homotopy class of (sk)|L as given by our construction
is in fact related to the evaluation of ω on elements of π2(X,L). More precisely,
given a loop γ ⊂ L bounding a disc D in X, the trivialization of L⊗k over γ which
minimizes the norm of the connection 1-form differs from the one which extends
over D by an amount of twisting approximately equal to 1

2π

∫

D
kω ; therefore, in

the construction of Wk we obtain a linking number differing from this amount by
at most a bounded quantity.
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3.4. Behavior of concentrated sections along normal slices. For any point
x ∈ L, let Nx be the image by the exponential map of the metric g of a small disc
in the normal space to L at x. Let σk,L be the asymptotically holomorphic sections
concentrated over L constructed in §2. The following Lemma will be useful for
applications.

Lemma 5. There exist constants δ > 0 and γ > 0, independent of k, such that the
restriction of |σk,L|2 to the intersection of Nx with Bgk

(x, δ) is strictly concave, with
second derivatives bounded from above by −γ w.r.t. gk, and reaches its maximum at
a point within gk-distance o(1) from x. The set of all these maxima is a smooth sub-
manifold L′

k, C
0-converging towards L as k increases. Moreover, when X is Kähler

the same properties remain true for the holomorphic sections σ̃k,L constructed in
§3.1.
Proof. Fix a value of k and a point p ∈ Pk such that dgk

(x, p) ≤ k1/10, and work
in the approximately holomorphic Darboux coordinate chart used to define σk,p ;
recalling that L is locally mapped to a linear subspace, let N ′

x be the affine subspace
through x orthogonal to L in these coordinates. Since x lies at g-distance less than
k−2/5 from p where the coordinate map is an isometry, Nx and N ′

x are very close
to each other (their angle at x is at most O(k−2/5)). Moreover, the restriction to
N ′

x of the function f(z) = exp(− 1
4
|z|2) is strictly concave (with a uniform upper

bound on its second derivatives) and admits a maximum at x ; therefore, f|Nx is

also strictly concave and admits a maximum within g-distance O(k−4/5) from x.
Since σk,p coincides with f k near x, the same property holds for |σk,p|2, except that
the upper bound on second derivatives depends on dgk

(p, x) and only holds over a
ball of fixed gk-radius around x.

Next, recall from the proof of Lemma 4 that the contributions to σk,L coming
from the various points of Pk lying within gk-distance k1/10 from x do not cancel
each other at x, and more precisely their complex arguments at x differ from each
other by at most O(k−2/5). Of course this no longer remains true as soon as one
moves away from L ; still, by a computation similar to the proof of Lemma 4 we
can obtain control on the manner in which the complex arguments of the various
contributions to σk,L differ from each other at a point close to x.

More precisely, consider a geodesic arc γ joining x to a nearby point y in Nx, and
let p be a point of Pk within gk-distance k1/10. Then

Im

∫ 1

0

(∇σk,p

σk,p

)

γ(t)

· γ′(t) dt =

∫ 1

0

− ik
4

∑

zjdz̄j − z̄jdzj · γ′(t) dt

is equal to −k
2
ω0(x − p, y − x) + O(k dg(x, p)

2dg(x, y)), where ω0 is the standard
symplectic form on Cn and the error term comes from the non-linearity of Nx in the
Darboux coordinate chart. In particular, if p, p′ and y are at bounded gk-distance
from x then the difference of complex arguments between the contributions of σk,p

and σk,p′ to σk,L(y) is given by φp,p′(y) = k
2
ω0(p − p′, y − x) + O(k−2/5), where the

first term is bounded by a fixed constant times dgk
(y, x).

Fix a large constant D > 0 (independent of k and x), and let us first restrict
ourselves to the sum σk,L,x,D of the contributions of the points of Pk within gk-
distance D from x. It follows from the above remarks that there exists a constant
δ(D) > 0 (of the order of D−1) such that |σk,L,x,D|2 is a strictly concave function at
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every point of Nx ∩ Bgk
(x, δ(D)), with a uniform upper bound (independent of k,

D and x) on its second derivatives. Indeed,

|σk,L,x,D(y)|2 =
∑

p

|σk,p(y)|2 +
∑

p6=p′

|σk,p(y)| |σk,p′(y)| cosφp,p′(y).

When dgk
(y, x) is not too large, cosφp,p′ has second derivatives bounded from above

by o(1) (by the above expression of φp,p′ and the corresponding bounds on its first
and second derivatives) ; therefore, using the lower bounds on |σk,p|, |σk,p′ | and
cosφp,p′ , the upper bounds on their second derivatives and the estimates on their
first derivatives near x, we obtain that all the terms in the sum are strictly concave
functions, thus yielding the desired concavity property for |σk,L,x,D|2.

Moreover, since the total contribution of the remaining points of Pk to the section
σk,L decreases exponentially fast as a function of D, it cannot affect the concavity
property provided that D is chosen large enough.

The contributions of the points within distance k1/10 from x reach their maxima
over Nx within g-distance O(k−4/5) from x and their arguments at x differ by
O(k−2/5), while the remaining terms decrease exponentially fast with k. Therefore,
the value of |σk,L(x)|2 is sufficiently close to the maximal possible one in order to
guarantee that the maximum of |σk,L|2 over Nx is reached within gk-distance o(1)
from x.

Finally, the smoothness of the set L′
k of all maxima is an immediate consequence

of the smoothness of σk,L and of the uniform concavity property.
In the Kähler case, recall from §3.1 that the sections σk,p are now constructed us-

ing the local holomorphic section f(z) = 1− 1
4
|z|2+O(|z|3), for which the maximum

over N ′
x is reached not necessarily at x but at an arbitrary point within g-distance

O(k−4/5) from x ; however this does not affect the properties of |σk,p|2|Nx
that we

have used. Similarly, the fact that f is no longer real-valued affects the complex
arguments of the various contributions to σk,L, both at a point x ∈ L (bound by
O(k−1/5) instead of O(k−2/5) in Lemma 4, see §3.1) and outside L (but it turns out
that these extra contributions do not affect the estimates) ; still, the argument re-
mains valid without modification. Finally, since the holomorphic section σ̃k,L differs
from σk,L by an amount decreasing exponentially fast with k, it enjoys the same
concavity and maximum properties as σk,L, so that the conclusion remains valid in
this case as well.

Remark. The assertions of Lemma 5 are also trivially satisfied by the concentrated
sections obtained in the alternate proof of Theorem 2 outlined at the end of §2.
3.5. Relations with Lagrange skeleta. Let X be a compact Kähler manifold,
let s be a holomorphic section of L⊗k, transverse to 0, and consider the smooth
hypersurface W = s−1(0). It is a result of Biran [B] that the section s determines a
splitting X = B t ∆, where B is a “standard” symplectic disc bundle over W and
∆ is an isotropic CW-complex called the Lagrange skeleton of (X,W ). The skeleton
∆ is obtained as the union of the ascending varieties of all the critical points of the
plurisubharmonic function log |s|2 ; it is well-known that these critical points are
all of index at least n. Combined with standard results in Lagrangian intersection
theory, this result provides powerful restrictions on Lagrangian embeddings. For
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example, any simply connected embedded Lagrangian submanifold in X must in-
tersect either W or ∆ (otherwise it could be disjointed from itself by a Hamiltonian
flow in B −W ).

Biran’s result is generally expected to remain valid in the more general case of a
symplectic manifold and a symplectic hypersurface “of Donaldson type”. However,
to be on the safe side we will assume throughout this section that X is Kähler,
considering only the construction of §3.1.
Proposition 2. Let L be a compact isotropic submanifold of X. Then for large
k there exist holomorphic sections sk of L⊗k, transverse to 0 and non-vanishing
over L, such that L is contained in arbitrarily small neighborhoods of the Lagrange
skeleta ∆k corresponding to their zero sets Wk.

Proof. We use the notations of §3.1, and consider the local behavior near L of
the transverse sections sk constructed as small perturbations of the concentrated
holomorphic sections σ̃k,L. By Lemma 5 we know that the restriction of |σ̃k,L|2
to each normal slice Nx is locally concave and reaches its maximum close to L.
Therefore, choosing the transverse sections sk close enough to σ̃k,L we conclude
that the restriction of hk = log |sk|2 to Nx admits a unique local maximum at gk-
distance less than 1

2
δ from x ; as in Lemma 5, the set of these local maxima is a

smooth submanifold L′′
k in X, obtained from L by an arbitrarily small deformation.

Observe that, by construction, every critical point of hk|L′′

k
is also a critical point

of hk, with index increased by codimL. Moreover, although the union Λk of the
ascending varieties of these critical points is not exactly L′′

k, one expects it to be
a small deformation of L as well. More precisely, observe that the gradient of hk

is directed inwards at every point of the boundary of the δ-tubular neighborhood
Tδ(L) of L (w.r.t. gk). This implies, first, that every point of Λk lies at gk-distance
less than δ from L, since all ascending trajectories remain in Tδ(L). Conversely,
consider the disc Dx = Nx ∩Bgk

(x, δ) and its image by the downward gradient flow
of hk : since no trajectory can re-enter Tδ(L), the algebraic intersection number
of the disc with L′′

k constantly remains equal to 1, which implies that Dx ∩ Λk is
non-empty. In particular L is contained in the δ-neighborhood of Λk, which is itself
contained in the Lagrange skeleton.

3.6. Obstructions to Lagrangian embeddings. In this section, we no longer
assume that X is Kähler, but we assume that L is Lagrangian (i.e., dimL = n).
It was suggested to us by Seidel, Viterbo and Biran that Theorem 2 might provide
obstructions to the existence of certain Lagrangian embeddings by arguing along
the following lines.

Consider the asymptotically holomorphic sections sk of L⊗k, bounded from below
over L and uniformly transverse to 0, given by Theorem 2, and their zero sets
Wk. It follows from Lemma 5 that, if the sections constructed in §2 are chosen
sufficiently close to the concentrated sections σk,L, their norms reach local maxima
over the transverse slices Nx along smooth submanifolds L′′

k obtained by slightly
deforming L. Moreover, after an arbitrarily small perturbation we can assume that
hk = log |sk|2 is a generic Morse function over X −Wk, without affecting the other
properties.
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Consider a point x ∈ L′′
k where the restriction of hk to L′′

k reaches a local mini-
mum : it is a critical point of index n of hk. However the sections sk are asymp-
totically holomorphic and uniformly transverse to 0, so it follows from a result of
Donaldson [D1] that the critical points hk are all of index at least n. Therefore,
the genericity condition on hk implies that the stable manifold ∆x is a topological
disc in X −Wk, with boundary mapped to Wk, and intersecting L′′

k transversely
at x. Observe that ∆x is the image by the downward gradient flow of hk of the
small disc ∆x ∩ Tδ(L), where Tδ(L) is the δ-tubular neighborhood of L. However,
the downward gradient flow is pointing outwards at every point of the boundary of
Tδ(L), so that x is the only intersection between L′′

k and ∆x, and the intersection
pairing between these two cycles evaluates to 1. This implies that the homology
class [L′′

k] ∈ Hn(X−Wk) is a primitive element. Since L′′
k is isotopic to L, we obtain

the following

Proposition 3. The element [L] ∈ Hn(X −Wk) is primitive.

Moreover, when L is not connected we can apply the same argument to the
minima of hk over each component individually, obtaining that the fundamental
classes of the various components of L are linearly independent primitive classes in
Hn(X −Wk).

When X is a complex projective manifold, working with the holomorphic sections
of §3.1 and assuming moreover that L is simply connected, it is an interesting
question to ask whether the smooth complex hypersurfaces Wk are always isotopic
in X − L to hypersurfaces Hk arbitrarily close to a given hyperplane section H of
X avoiding L. A positive answer would imply that [L] is primitive in Hn(X −H)
as well, providing a new proof of a theorem of Gromov.

However, even though no problem with homotopy classes of sections over L is to
be feared in the simply connected case, the isotopy result of §3.3 does not apply in
this context, as we have no control over the complex argument of the holomorphic
section of L⊗k defining Hk. Whether a refinement of Proposition 1 can handle this
case or not remains an open question.
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A REMARK ABOUT DONALDSON’S CONSTRUCTION OF

SYMPLECTIC SUBMANIFOLDS

D. AUROUX

Abstract. We describe a simplification of Donaldson’s arguments for the con-
struction of symplectic hypersurfaces [4] or Lefschetz pencils [5] that makes it
possible to avoid any reference to Yomdin’s work on the complexity of real alge-
braic sets.

1. Introduction

Donaldson’s construction of symplectic submanifolds [4] is unquestionably one
of the major results obtained in the past ten years in symplectic topology. What
sets it apart from many of the results obtained during the same period is that
it appeals neither to Seiberg-Witten theory, nor to pseudo-holomorphic curves;
in fact, most of Donaldson’s argument is a remarkable succession of elementary
observations, combined in a particularly clever way. One ingredient of the proof that
does not qualify as elementary, though, is an effective version of Sard’s theorem for
approximately holomorphic complex-valued functions over a ball in Cn (Theorem 20
in [4]). The proof of this result, which occupies a significant portion of Donaldson’s
paper (§4 and §5 of [4]), appeals to very subtle considerations about the complexity
of real algebraic sets, following ideas of Yomdin [6].

Methods similar to those in [4] were subsequently used to perform various other
constructions, leading in particular to Donaldson’s result that symplectic manifolds
carry structures of symplectic Lefschetz pencils [5], or to the result that symplectic
4-manifolds can be realized as branched coverings of CP2 [2]. It was observed in [3]
that, whereas Donaldson’s construction of submanifolds can be thought of in terms
of an estimated transversality result for sections of line bundles, the subsequent
constructions can be interpreted in terms of estimated transversality with respect
to stratifications in jet bundles.

As remarked at the end of §4 in [3], the transversality of the r-jet of a section
to a given submanifold in the bundle of r-jets is equivalent to the non-intersection
of the (r + 1)-jet of the section with a certain (possibly singular) submanifold of
greater codimension in the bundle of (r + 1)-jets. This is of particular interest
because the effective Sard theorem for approximately holomorphic functions from
Cn to Cm admits a conceptually much easier proof in the case where m > n [2].
In the case of the construction of symplectic submanifolds, the formalism of jet
bundles can be completely eliminated from the presentation; the purpose of this
note is to present the resulting simplified argument for Donaldson’s result (§§2–3).
We also observe (see §4) that a similar simplification is possible for the higher-rank
local result required for the construction of symplectic Lefschetz pencils [5].
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2. Overview of Donaldson’s argument

We first review Donaldson’s construction of symplectic submanifolds [4], using
the terminology and notations of [2]. Let (X2n, ω) be a compact symplectic man-
ifold, and assume that the cohomology class 1

2π
[ω] is integral. Endow X with an

ω-compatible almost-complex structure J and the corresponding Riemannian met-
ric g = ω(·, J ·). Consider a Hermitian line bundle L over X such that c1(L) = 1

2π
[ω],

equipped with a Hermitian connection ∇ having curvature −iω. The almost-
complex structure J induces a splitting of the connection into ∇ = ∂ + ∂̄. We are
interested in approximately holomorphic sections of the line bundles L⊗k (k � 0)
satisfying a certain estimated transversality property: indeed, if we can find a sec-
tion s such that |∂̄s| � |∂s| at every point where s vanishes, then the zero set of s is
automatically a smooth symplectic submanifold in X (cf. e.g. Proposition 3 of [4]).
The philosophical justification of the construction is that, as the twisting parameter
k increases, one starts probing the geometry of X at very small scales, where the
effects due to the non-integrability of J become negligible. This phenomenon is
due to the curvature −ikω of the connection on L⊗k, and leads us to work with a
rescaled metric gk = k g (the metric induced by J and kω).

Let (sk)k�0 be a sequence of sections of Hermitian vector bundles Ek equipped
with Hermitian connections over X. We make the following definitions:

Definition 1. The sections sk are asymptotically holomorphic if there exist con-
stants (Cp)p∈N such that, for all k and at every point of X, |sk| ≤ C0, |∇psk|gk

≤ Cp

and |∇p−1∂̄sk|gk
≤ Cpk

−1/2 for all p ≥ 1.

Definition 2. The sections sk are uniformly transverse to 0 if there exists a con-
stant η > 0 independent of k such that the sections sk are η-transverse to 0, i.e. if
at any point x ∈ X where |sk(x)| < η, the linear map ∇sk(x) : TxX → (Ek)x is
surjective and has a right inverse of norm less than η−1 w.r.t. the metric gk.

When rank(Ek) > n, uniform transversality means that |sk(x)| ≥ η at every
point of X; on the other hand, when Ek is a line bundle and the sections sk are
asymptotically holomorphic, uniform transversality can be rephrased as a uniform
lower bound on |∂sk| at all points where |sk| < η (which by the above observation
is enough to ensure the symplecticity of s−1

k (0) for large k). With this terminology,
Donaldson’s result can be reformulated as follows (cf. Theorem 5 of [4]):

Theorem 1. For large values of k, the line bundles L⊗k admit sections sk that are
asymptotically holomorphic and uniformly transverse to 0.

The proof of Theorem 1 starts with a couple of preliminary lemmas about the
existence of approximately holomorphic rescaled Darboux coordinates on X and of
large families of well-concentrated asymptotically holomorphic sections of L⊗k.

Lemma 1. There exists a constant c > 0 such that near any point x ∈ X, for any
integer k, there exist local complex Darboux coordinates zk = (z1

k, . . . , z
n
k ) : (X, x) →

(Cn, 0) for the symplectic structure kω, such that the following estimates hold uni-

formly in x and k at every point of the ball Bgk
(x, c

√
k): |zk(y)| = O(distgk

(x, y)),
|∂̄zk(y)|gk

= O(k−1/2distgk
(x, y)), |∇r∂̄zk|gk

= O(k−1/2), |∇rzk|gk
= O(1) ∀r ≥ 1;

and denoting by ψk : (Cn, 0) → (X, x) the inverse map, the estimates |∂̄ψk(z)|gk
=

O(k−1/2|z|), |∇r∂̄ψk|gk
= O(k−1/2) and |∇rψk|gk

= O(1) hold ∀r ≥ 1 at every point
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of the ball BCn(0, c
√
k), where ∂̄ψk is defined with respect to the almost-complex

structure J on X and the standard complex structure on C2.

Lemma 1 is identical to Lemma 3 of [2], or to the discussion on pp. 674–675 of
[4] if one keeps track carefully of the available estimates; the idea is simply to start
with usual Darboux coordinates for ω, compose them with a linear transformation
to ensure holomorphicity at the origin, and then rescale them by a factor of

√
k.

Definition 3. A section s of Ek has Gaussian decay in Cr norm away from a point
x ∈ X if there exist a polynomial P and a constant λ > 0 such that for all y ∈ X,
|s(y)|, |∇s(y)|gk

, . . . , |∇rs(y)|gk
are all bounded by P (d(x, y)) exp(−λ d(x, y)2),

where d(., .) is the distance induced by gk. The decay properties of a family of
sections are said to be uniform if P and λ can be chosen independently of k and of
the point x at which decay occurs for a given section.

Lemma 2. Given any point x ∈ X, for all large enough k, there exist asymptoti-
cally holomorphic sections sref

k,x of L⊗k over X, such that |sref
k,x| ≥ c0 at every point of

the ball of gk-radius 1 centered at x, for some universal constant c0 > 0, and such
that the sections sref

k,x have uniform Gaussian decay away from x in C2 norm.

Lemma 2 is essentially Proposition 11 of [4]. Considering a local trivialization
of L⊗k where the connection 1-form is 1

4

∑

(zj
kdz̄

j
k − z̄j

kdz
j
k), the sections sref

k,x are

constructed by multiplication of the function exp(−|zk|2/4) by a suitable cut-off
function at distance k1/6 from the origin.

The central ingredient is the following result about the near-critical sets of ap-
proximately holomorphic functions (used in the special case m = 1):

Proposition 1. Let f be a function defined over the ball B+ of radius 11
10

in Cn

with values in Cm. Let δ be a constant with 0 < δ < 1
4
, and let η = δ log(δ−1)−p

where p is a fixed integer depending only on n and m. Assume that f satisfies the
bounds |f |C0(B+) ≤ 1 and |∂̄f |C1(B+) ≤ η. Then there exists w ∈ Cm with |w| ≤ δ
such that f − w is η-transverse to 0 over the interior ball B of radius 1.

The case m = 1 is Theorem 20 of [4]; the comparatively much easier case m > n
is Proposition 2 of [2]; the general case is proved in [5]. In all cases the proof begins
with an approximation of f first by a holomorphic function (using general elliptic
theory), then by a polynomial g of degree O(log(η−1)) (by truncating the power
series expansion at the origin). The proof in the case m = 1 then appeals to a
rather sophisticated result on the complexity of real algebraic sets to control the
size of the set of points where ∂g is small (the near-critical points) [4]. Meanwhile,
in the case m > n, since we only have to find w such that |f − w| ≥ η at every
point of B, it is sufficient to observe that the image of the polynomial map g is
contained in a complex algebraic hypersurface H in Cm; the result then follows
from a standard result about the volume of a tubular neighborhood of H, which
can be estimated using an explicit bound on the degree of H [2].

Given asymptotically holomorphic sections sk of L⊗k and a point x ∈ X, one can
apply Proposition 1 to the complex-valued functions fk = sk/s

ref
k,x (defined over a

neighborhood of x) in order to find constants wk such that the functions fk − wk

are uniformly transverse to 0 near x; multiplying by sref
k,x, it follows that the sections

sk − wks
ref
k,x are uniformly transverse to 0 near x. Therefore, we have:
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Proposition 2. There exist constants c, c′, p, δ0 > 0 such that, given a real number
δ ∈ (0, δ0), a sequence of asymptotically holomorphic sections sk of L⊗k and a point
x ∈ X, for large enough k there exist asymptotically holomorphic sections τk,x of
L⊗k with the following properties: (a) |τk,x|C1,gk

< δ, (b) the sections 1
δ
τk,x have

uniform Gaussian decay away from x in C1 norm, and (c) the sections sk + τk,x are
η-transverse to 0 at every point of the ball Bgk

(x, c), with η = c′δ log(δ−1)−p.

This result lets us achieve estimated transversality over a small ball in X by
adding to sk a small well-concentrated perturbation. Uniform transversality over
the entire manifold X is achieved by proceeding iteratively, adding successive per-
turbations to the sections in order to obtain transversality properties over larger
and larger subsets of X. The key observation is that estimated transversality is
an open property (preserved under C1-small perturbations). Since the transver-
sality estimate decreases after each perturbation, it is important to obtain global
uniform transversality after a number of steps that remains bounded independently
of k; this is made possible by the uniform decay properties of the perturbations,
using a beautiful observation of Donaldson. The reader is referred to §3 of [4] or to
Proposition 3 of [2] for details.

3. The simplified argument

Keeping the same general strategy, the proof of Theorem 1 can be simplified by
appealing to a result weaker than Proposition 1, namely the following statement:

Proposition 3. Let f be a function defined over the ball B+ of radius 11
10

in Cn

with values in C. Let δ be a constant with 0 < δ < 1
4
, and let η = δ log(δ−1)−p′

where p′ is a fixed integer depending only on n. Assume that f satisfies the bounds
|f |C1(B+) ≤ 1 and |∂̄f |C2(B+) ≤ η. Then there exists w = (w0, w1, . . . , wn) ∈ Cn+1

with |w| ≤ δ such that the function f − w0 −
∑

wizi is η-transverse to 0 over the
interior ball B of radius 1.

Proof. Let g = (g0, . . . , gn) : B+ → Cn+1 be the function defined by gi = ∂f/∂zi

for 1 ≤ i ≤ n and g0 = f −∑n
i=1 zigi. The bounds on f immediately imply that

|g|C0(B+) ≤ Cn and |∂̄g|C1(B+) ≤ Cnη, for some constant Cn depending only on the
dimension. We can safely choose the constant p′ appearing in the definition of η to
be larger than the constant p appearing in Proposition 1. Therefore we can apply
Proposition 1 in its easy version (m = n+1) to the function g, after scaling down by
the constant factor Cn. This gives us a constant w = (w0, . . . , wn) ∈ Cn+1, bounded
by δ, and such that |g − w| ≥ α at every point of B, where α = δ log((δ/Cn)−1)−p.

Define f̃ = f − w0 −∑wizi and g̃ = g − w, and observe that ∂f̃/∂zi = g̃i

for 1 ≤ i ≤ n and f̃ −∑n
i=1 zig̃i = g̃0. Let z ∈ B be a point where |∂f̃ | < 1

4
α.

Since ∂f̃/∂zi = g̃i, and since |g̃(z)| ≥ α by construction, we have the inequality

|g̃0(z)| > 3
4
α. However, |f̃(z) − g̃0(z)| = |∑ zig̃i(z)| ≤ |z| |∂f̃(z)| < 1

4
α (recall that

z belongs to the unit ball). Therefore |f̃(z)| > 1
2
α.

Conversely, at any point z ∈ B where |f̃ | ≤ 1
2
α we must have |∂̄f̃(z)| ≥ 1

4
α.

However, because of the bound on ∂̄f̃ = ∂̄f , if we assume that η < 1
8
α then this

inequality implies that ∇f̃(z) is surjective and admits a right inverse of norm at most

(1
8
α)−1. Hence we conclude from the previous discussion that f̃ is 1

8
α-transverse to

0 over B. Finally, we observe that, because δ < 1
4
, if the constant p′ is chosen large
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enough then η = δ log(δ−1)−p′ < 1
8
α = 1

8
δ log((δ/Cn)−1)−p, so that f̃ is η-transverse

to 0 over B.

Although it is weaker, Proposition 3 is in practice interchangeable with the case
m = 1 of Proposition 1, in particular for the purpose of proving Proposition 2.

Proof of Proposition 2. We use the same argument as Donaldson [4]: we work in
approximately holomorphic Darboux coordinates on a neighborhood of the given
point x, using Lemma 1. Using the sections sref

k,x given by Lemma 2 to define local

trivializations of L⊗k, the sections sk can be identified with complex-valued func-
tions fk = sk/s

ref
k,x. The estimates on sk and sref

k,x imply that the functions fk are

approximately holomorphic near the origin (in particular |∂̄fk|C2 = O(k−1/2)); after
a suitable rescaling of the coordinates and of the functions by uniform constant
factors, we can assume additionally that |fk|C1 ≤ 1 near the origin, and that the
estimates hold over a neighborhood of the origin that contains the ball B+. There-
fore, the assumptions of Proposition 3 are satisfied provided that k is sufficiently
large to ensure that k−1/2 � η.

By Proposition 3, we can find wk = (wk,0, . . . , wk,n) ∈ Cn+1, with |wk| ≤ δ,

such that f̃k = fk − wk,0 −
∑

wk,izi is γ-transverse to 0 over the unit ball, where
γ = δ log(δ−1)−p′ . Define τk,x = −wk,0s

ref
k,x −

∑

wk,iz
i
ks

ref
k,x. The estimates on zi

k from

Lemma 1 and on sref
k,x from Lemma 2 imply that the sections zk,is

ref
k,x of L⊗k are

asymptotically holomorphic and have uniform Gaussian decay away from x. There-
fore, it is easy to check that the sections 1

δ
τk,x are asymptotically holomorphic and

have uniform Gaussian decay. Moreover, because there exist uniform bounds on sref
k,x

and zi
ks

ref
k,x, one easily checks that |τk,x|C1,gk

is bounded by some constant multiple
of δ; decreasing the required bound on |wk|, we can assume that the constant is
equal to 1, to the expense of inserting a constant factor in the above expression
for γ. Finally, observing that sk + τk,x = f̃ks

ref
k,x over a neighborhood of x, it is

straightforward to check that the γ-transversality to 0 of f̃k and the lower bound
satisfied by sref

k,x imply a uniform transversality property of the desired form for the
section sk + τk,x.

Remark 1. Proposition 3 also admits a version for one-parameter families of func-
tions: given functions ft : B+ → C depending continuously on a parameter t ∈ [0, 1]
and satisfying the assumptions of Proposition 3 for all values of t, we can find con-
stants wt ∈ Cn+1, depending continuously on t, such that the conclusion holds for all
values of t. This is because the auxiliary functions gt : B+ → Cn+1 introduced in the
proof also depend continuously on t, which allows us to appeal to the one-parameter
version of Proposition 1 (cf. e.g. Proposition 2 of [2]). We can therefore simplify
the argument proving the asymptotic uniqueness of the constructed submanifolds
[1] in the same manner as the construction itself.

Remark 2. The idea behind the modified argument can be interpreted as follows
in terms of 1-jets of sections: let J 1L⊗k = L⊗k ⊕ (T ∗X1,0 ⊗ L⊗k), and define the
1-jet of a section sk ∈ Γ(L⊗k) as j1sk = (sk, ∂sk) ∈ Γ(J 1L⊗k). The jet bundles
carry natural Hermitian metrics (induced by those on L⊗k and the metrics gk on
the cotangent bundle), and natural Hermitian connections for which the 1-jets of
asymptotically holomorphic sections of L⊗k are asymptotically holomorphic sections
of J 1L⊗k. It is worth noting that the natural connection on J 1L⊗k is not the
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connection ∇ induced by the connection on L⊗k and the Levi-Civita connection,
because ∂̄∇(sk, ∂sk) = (∂̄sk, ∂̄∂sk) differs from (∂̄sk,−∂∂̄sk) (which is bounded by
O(k−1/2)) by the curvature term −ikωsk. Therefore, we must instead work with

the Hermitian connection ∇̃ characterized by the formula ∂̄∇̃(σ0, σ1) = ∂̄∇(σ0, σ1)+
(0, ikωσ0), where ω is viewed as a (0, 1)-form with values in T ∗X1,0.

Observe that the 1-jets j1σk,x,0, . . . , j
1σk,x,n, where σk,x,0 = sref

k,x and σk,x,i = zi
ks

ref
k,x

for 1 ≤ i ≤ n, are asymptotically holomorphic sections of J 1L⊗k, with uniform
Gaussian decay away from x, which form a local frame of the jet bundle over a
neighborhood of x. Therefore, given asymptotically holomorphic sections sk and
a point x ∈ X, there exist local complex-valued functions gk,0, . . . , gk,n such that
j1sk =

∑

gk,i j
1σk,x,i. Moreover, remark that a section of L⊗k is uniformly trans-

verse to 0 if and only if its 1-jet satisfies a uniform lower bound. Therefore, our
argument actually amounts to a local perturbation of j1sk, using the given local
frame {j1σk,x,i}, in order to bound it away from 0; because the rank of the jet
bundle is n+ 1 > n, the easy version of Proposition 1 is sufficient for that purpose.
The curious reader is referred to [3] for a more detailed discussion of estimated
transversality using the formalism of jet bundles.

4. The higher-rank local result

We now formulate and prove an analogue of Proposition 3 for functions with
values in Cm (m ≤ n); as in the casem = 1, the statement differs from Proposition 1
by allowing the extra freedom of affine perturbations rather than restricting oneself
to constants.

Proposition 4. Let f be a function defined over the ball B+ of radius 11
10

in Cn

with values in Cm, m ≤ n. Let δ be a constant with 0 < δ < 1
4
, and let η =

δ log(δ−1)−p′ where p′ is a fixed integer depending only on m and n. Assume that
f satisfies the bounds |f |C0(B+) ≤ 1 and |∂̄f |C1(B+) ≤ η. Then there exists w =

(w0, w1, . . . , wn) ∈ Cm(n+1) (each wi is an element of Cm) with |w| ≤ δ such that the
function f − w0 −

∑

wizi is η-transverse to 0 over the interior ball B of radius 1.
Moreover, given a one-parameter family of functions ft : B+ → C depending

continuously on a parameter t ∈ [0, 1] and satisfying the above assumptions for all
t, we can find constants wt ∈ Cm(n+1), depending continuously on t, such that the
conclusion holds for all values of t.

This statement is essentially interchangeable with Proposition 1 for all practical
applications, and in particular the case m = n allows us to simplify noticeably
the argument for Donaldson’s construction of symplectic Lefschetz pencils [5]. In-
deed, the main problem to be solved is the following: given pairs of asymptotically
holomorphic sections (s0

k, s
1
k) of L⊗k, defining CP1-valued maps fk = [s0

k : s1
k] away

from the base loci, one must perturb them so that the differentials ∂fk (which are
sections of rank n vector bundles) become uniformly transverse to 0. This ensures
the non-degeneracy of the singular points of the pencil. The manner in which the
problem reduces to the m = n case of Proposition 1 is explained in detail in [5],
and the reduction to Proposition 4 is essentially identical except that the result-
ing perturbations of (s0

k, s
1
k) are products of sref

k,x by quadratic (rather than linear)
polynomials.
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Proof. Although for technical reasons we cannot use directly the case m > n of
Proposition 1, the argument presents many similarities with §2.3 of [2]; we accord-
ingly skip the details whenever the two arguments parallel each other in an obvious
manner. As in the case of Proposition 1, we first use the bounds on f to find an
approximation by a polynomial h : Cn → Cm of degree d = O(log(η−1)) such that
|h− f |C1(B) ≤ c η for some constant c (see Lemmas 27 and 28 of [4]). Observe that,
if we can perturb h by less than δ to make it (c+ 1)η-transverse to 0 over B, then
because transversality is an open property the desired result on f will follow imme-
diately. So we are reduced to the case of a polynomial function h = (h1, . . . , hm) of
degree d = O(log(η−1)).

If w = (w0, . . . , wn) is a vector in Cm(n+1), denote by (wj
i )1≤j≤m the components

of wi, and let ~w = (w1, . . . , wn) ∈ Cm×n. The set of choices to be avoided for w is

S = {w ∈ Cm(n+1), ∃z ∈ B s.t. h(z) − w0 −
∑

wizi = 0,
∧m(∂h(z) − ~w) = 0}.

Indeed, observe that h−w0−
∑

wizi is transverse to 0 over B (without any estimate)
if and only if w 6∈ S. We now define a polynomial function g : CN−1 → CN ,
where N = m(n + 1), which parametrizes a dense subset of S. Given elements
z = (zi)1≤i≤n ∈ Cn, θ = (θj

i )1≤i≤n, 1≤j≤m−1 ∈ C(m−1)n and λ = (λj)1≤j≤m−1 ∈ Cm−1,
we define g(z, θ, λ) ∈ Cm(n+1) by the formulas































gj
i (z, θ, λ) =

∂hj

∂zi

(z) + θj
i for 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1,

gm
i (z, θ, λ) =

∂hm

∂zi

(z) +
m−1
∑

j=1

λjθ
j
i for 1 ≤ i ≤ n,

gj
0(z, θ, λ) = hj(z) −

n
∑

i=1

gj
i (z, θ, λ)zi for 1 ≤ j ≤ m.

One easily checks that the image by g of the subset {(z, θ, λ) ∈ CN−1, z ∈ B} is
contained in S, in which it is a dense subset. Observe that g is a polynomial map
with the same degree d as h (provided that d ≥ 2). Therefore, the image g(CN−1) is
contained in an algebraic surface H ⊂ CN , of degree at most D = N dN−1. Indeed,
denoting by E the space of polynomials of degree at most D in N variables and
by E ′ the space of polynomials of degree at most dD in N − 1 variables, we have
dimE =

(

D+N
N

)

>
(

dD+N−1
N−1

)

= dimE ′, so that the map from E to E ′ defined by
P 7→ P ◦ g cannot be injective, and a non-zero element of its kernel provides an
equation for the hypersurface H (see §2.3 of [2] for details).

Since g(B × C(m−1)n × Cm−1) is dense in S, we conclude that S ⊂ H. From this
point on, the argument is very similar to §2.3 of [2], to which the reader is referred for
details. Standard results on complex algebraic hypersurfaces, essentially amounting
to the well-known monotonicity formula, allow us to bound the size of S and of its
tubular neighborhoods (cf. e.g. Lemma 4 of [2]). In particular, denoting by B̄ the
ball of radius δ centered at the origin in CN and by V0 the volume of the unit ball
in dimension 2N − 2, we have vol2N−2(H ∩ B̄) ≤ DV0δ

2N−2, while given any point
x ∈ H we have vol2N−2(H ∩ B(x, η)) ≥ V0η

2N−2. Therefore, choosing a suitable
covering of B̄ by balls of radius η, one can show that H∩B̄ is contained in the union
of M = C D δ2N−2η−(2N−2) balls of radius η, where C is a constant depending only
on N . As a consequence, the neighborhood Z = {w ∈ CN , |w| ≤ δ, dist(w, S) ≤
(3c+ 3)η} is contained in the union of M balls of radius (3c+ 4)η.
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A simple comparison of the volumes implies that, if the constant p′ is chosen
suitably large, then the volume of Z is much smaller than that of the ball B̄, and
therefore B̄ − Z is not empty, i.e. B̄ contains an element w which lies at distance
more than (3c + 3)η from S. Moreover, using a standard isoperimetric inequality
we can show that B̄ − Z contains a unique large connected component; it follows
that, in the case where the data depends continuously on a parameter t ∈ [0, 1], the
subset

⊔{t}×(B̄−Zt) ⊂ [0, 1]×B̄ contains a preferred large connected component,
in which we can choose elements wt depending continuously on t.

To complete the proof of Proposition 4, we only need to show that, if w ∈ B̄ lies
at distance more than (3c+ 3)η from S, then f̃ = f − w0 −

∑

wizi is η-transverse

to 0 over B. In fact, it is sufficient to show that h̃ = h − w0 −
∑

wizi is (c + 1)η-

transverse to 0 over B, because |h̃− f̃ |C1(B) = |h− f |C1(B) ≤ cη and transversality
is an open property. We conclude using the following lemma:

Lemma 3. If w lies at distance more than 3α from S for some constant α > 0,
then h̃ = h− w0 −

∑

wizi is α-transverse to 0 over B.

To prove Lemma 3, we first provide an alternative definition of α-transversality:

Lemma 4. Let L : E → F be a linear map between Hermitian complex vector
spaces, and choose a constant α > 0. The two following properties are equivalent:

(i) L is surjective and has a right inverse R : F → E of norm at most α−1,
(ii) for every unit vector v in F , the component 〈v, L〉 = v∗L of L along v is a

linear form on E such that |v∗L| ≥ α.

Proof. If (i) holds, then given any unit vector v ∈ F , the vector u = Rv is such
that |u| ≤ α−1 and 〈v, Lu〉 = |v|2 = 1. Therefore the linear form 〈v, L〉 has norm
at least α, and (ii) holds.

Conversely, assume (ii) holds. Then for any v ∈ F we have |v∗L| ≥ α|v|, i.e.
v∗LL∗v ≥ α2|v|2. Therefore, the Hermitian endomorphism LL∗ of F is positive
definite and has eigenvalues ≥ α2. It follows that it admits an inverse U = (LL∗)−1

of operator norm at most α−2. We have LL∗U = Id, and |L∗Uv|2 = 〈v, ULL∗Uv〉 =
〈v, Uv〉 ≤ α−2|v|2, so that R = L∗U is a right inverse of norm at most α−1.

Proof of Lemma 3. Assume that h̃ is not α-transverse to 0 over B: using the def-
inition and Lemma 4, there exists a point z ∈ B and a unit vector v ∈ Cm such
that |h̃(z)| < α and |〈v, ∂h̃(z)〉| < α. Let u = (u0, u1, . . . , un) ∈ Cm(n+1) be such

that ui = 〈v, ∂h̃/∂zi〉 v and u0 = h̃(z)−∑ ziui. We clearly have |(u1, . . . , un)| < α,
and |u0| < 2α, so that |u| < 3α. On the other hand, if we consider the function

ĥ = h− (w0 +u0)−
∑

(wi +ui)zi, then by construction ĥ(z) = 0 and 〈v, ∂ĥ(z)〉 = 0.
Therefore w + u ∈ S, and so w is within distance 3α of S.
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FIBER SUMS OF GENUS 2 LEFSCHETZ FIBRATIONS

D. AUROUX

Abstract. Using the recent results of Siebert and Tian about the holomor-
phicity of genus 2 Lefschetz fibrations with irreducible singular fibers, we show
that any genus 2 Lefschetz fibration becomes holomorphic after fiber sum with a
holomorphic fibration.

1. Introduction

Symplectic Lefschetz fibrations have been the focus of a lot of attention since
the proof by Donaldson that, after blow-ups, every compact symplectic manifold
admits such structures [3]. Genus 2 Lefschetz fibrations, where the first non-trivial
topological phenomena arise, have been particularly studied. Most importantly, it
has recently been shown by Siebert and Tian that every genus 2 Lefschetz fibration
without reducible fibers and with “transitive monodromy” is holomorphic [9]. The
statement becomes false if reducible singular fibers are allowed, as evidenced by the
construction by Ozbagci and Stipsicz [7] of genus 2 Lefschetz fibrations with non-
complex total space (similar examples have also been constructed by Ivan Smith;
the reader is also referred to the work of Amorós et al [1] and Korkmaz [5] for
related constructions).

It has been conjectured by Siebert and Tian that any genus 2 Lefschetz fibration
should become holomorphic after fiber sum with sufficiently many copies of the
rational genus 2 Lefschetz fibration with 20 irreducible singular fibers. The purpose
of this paper is to prove this conjecture by providing a classification of genus 2
Lefschetz fibrations up to stabilization by such fiber sums. The result is the following
(see §2 and Definition 4 for notations):

Theorem 1. Let F be any factorization of the identity element as a product of
positive Dehn twists in the mapping class group Map2. Then there exist integers ε ∈
{0, 1}, k ≥ 0 and m ≥ 0 such that, for any large enough integer n, the factorization
F · (W0)

n is Hurwitz equivalent to (W0)
n+k · (W1)

ε · (W2)
m.

Corollary 2. Let f : X → S2 be a genus 2 Lefschetz fibration. Then the fiber sum
of f with sufficiently many copies of the rational genus 2 Lefschetz fibration with 20
irreducible singular fibers is isomorphic to a holomorphic fibration.

2. Mapping class group factorizations

Recall that a Lefschetz fibration f : X → S2 is a fibration admitting only isolated
singularities, all lying in distinct fibers of f , and near which a local model for
f in orientation-preserving complex coordinates is given by (z1, z2) 7→ z2

1 + z2
2 .

We will only consider the case dimX = 4, where the smooth fibers are compact
oriented surfaces (of genus g = 2 in our case), and the singular fibers present nodal
singularities obtained by collapsing a simple closed loop (the vanishing cycle) in the

209
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smooth fiber. The monodromy of the fibration around a singular fiber is given by
a positive Dehn twist along the vanishing cycle.

Denoting by q1, . . . , qr ∈ S2 the images of the singular fibers and choosing
a reference point in S2, we can characterize the fibration f by its monodromy
ψ : π1(S

2 − {q1, . . . , qr}) → Mapg, where Mapg = π0Diff+(Σg) is the mapping
class group of an oriented genus g surface. It is a classical result (cf. [4]) that the
monodromy morphism ψ is uniquely determined up to conjugation by an element of
Mapg and a braid acting on π1(S

2 −{qi}), and that it determines the isomorphism
class of the Lefschetz fibration f .

While all positive Dehn twists along non-separating curves are mutually conju-
gate in Mapg, there are different types of twists along separating curves, according
to the genus of each component delimited by the curve. When g = 2, only two cases
can occur: either the curve splits the surface into two genus 1 components, or it is
homotopically trivial and the corresponding singular fiber contains a sphere compo-
nent of square −1. The latter case can always be avoided by blowing down the total
space of the fibration; if the blown-down fibration can be shown to be holomorphic,
then by performing the converse blow-up procedure we conclude that the original
fibration was also holomorphic. Therefore, in all the following we can assume that
our Lefschetz fibrations are relatively minimal, i.e. have no homotopically trivial
vanishing cycles.

The monodromy of a Lefschetz fibration can be encoded in a mapping class
group factorization by choosing an ordered system of generating loops γ1, . . . , γr for
π1(S

2 − {qi}), such that each loop γi encircles only one of the points qi and
∏

γi

is homotopically trivial. The monodromy of the fibration along each of the loops
γi is a Dehn twist τi; we can then describe the fibration in terms of the relation
τ1 · . . . · τr = 1 in Map2. The choice of the loops γi (and therefore of the twists τi)
is of course not unique, but any two choices differ by a sequence of Hurwitz moves
exchanging consecutive factors: τi · τi+1 → (τi+1)τ−1

i
· τi or τi · τi+1 → τi+1 · (τi)τi+1

,

where we use the notation (τ)φ = φ−1τφ, i.e. if τ is a Dehn twist along a loop δ
then (τ)φ is the Dehn twist along the loop φ(δ).

Definition 3. A factorization F = τ1 ·. . .·τr in Mapg is an ordered tuple of positive
Dehn twists. We say that two factorizations are Hurwitz equivalent (F ∼ F ′) if
they can be obtained from each other by a sequence of Hurwitz moves.

It is well-known that a Lefschetz fibration is characterized by a factorization of
the identity element in Mapg, uniquely determined up to Hurwitz equivalence and
simultaneous conjugation of all factors by a same element of Mapg.

Let ζi (1 ≤ i ≤ 5) and σ be the Dehn twists represented in Figure 1. It is
well-known (cf. e.g. [2], Theorem 4.8) that Map2 admits the following presentation:

��
��

��
��

ζ1

ζ2

ζ3

ζ4
ζ5

σ

Figure 1
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– generators: ζ1, . . . , ζ5.
– relations: ζiζj = ζjζi if |i− j| ≥ 2; ζiζi+1ζi = ζi+1ζiζi+1;

(ζ1ζ2ζ3ζ4ζ5)
6 = 1; I = ζ1ζ2ζ3ζ4ζ

2
5ζ4ζ3ζ2ζ1 is central; I2 = 1.

It is easy to check that σ can be expressed in terms of the generators ζ1, . . . , ζ5
as σ = (ζ1ζ2)

6 = (ζ4ζ5)
6 = (ζ1ζ2)

3(ζ4ζ5)
3I.

We can fix a hyperelliptic structure on the genus 2 surface Σ, i.e. a double covering
map Σ → S2 (with 6 branch points), in such a way that ζ1, . . . , ζ5 become the lifts
of standard half-twists exchanging consecutive branch points in S2. The element I
then corresponds to the hyperelliptic involution (i.e. the non-trivial automorphism
of the double covering). The fact that I is central means that every diffeomorphism
of Σ is compatible with the hyperelliptic structure, up to isotopy. In fact, Map2 is
closely related to the braid group B6(S

2) acting on the branch points of the double
covering. The group B6(S

2) admits the following presentation (cf. Theorem 1.1
of [2]):

– generators: x1, . . . , x5 (half-twists exchanging two consecutive points).
– relations: xixj = xjxi if |i− j| ≥ 2; xixi+1xi = xi+1xixi+1;

x1x2x3x4x
2
5x4x3x2x1 = 1.

Consider a S2-bundle π : P → S2, and a smooth curve B ⊂ P intersecting a
generic fiber in 6 points, everywhere transverse to the fibers of π except for isolated
nondegenerate complex tangencies. The curve B can be characterized by its braid
monodromy, or equivalently by a factorization in the braid group B6(S

2), with each
factor a positive half-twist, defined by considering the motion of the 6 intersection
points of B with the fiber of π upon moving around the image of a tangency
point. As before, this factorization is only defined up to Hurwitz equivalence and
simultaneous conjugation (see also [6] for the case of plane curves).

There exists a lifting morphism from B6(S
2) to Map2/〈I〉, defined by xi 7→ ζi.

Given a half-twist in B6(S
2), exactly one of its two possible lifts to Map2 is a Dehn

twist about a non-separating curve. This allows us to lift the braid factorization
associated to the curve B ⊂ P to a mapping class group factorization; the product
of the resulting factors is equal to 1 if the homology class represented by B is
divisible by two, and to I otherwise. In the first case, we can construct a genus 2
Lefschetz fibration by considering the double covering of P branched along B, and
its monodromy is exactly the lift of the braid monodromy of the curve B. This
construction always yields Lefschetz fibrations without reducible singular fibers;
however, if we additionally allow some blow-up and blow-down operations (on P
and its double covering respectively), then we can also handle the case of reducible
singular fibers (see §3 below and [8]). It is worth mentioning that Siebert and Tian
have shown the converse result: given any genus 2 Lefschetz fibration, it can be
realized as a double covering of a S2-bundle over S2 (with additional blow-up and
blow-down operations in the case of reducible singular fibers) [8].

3. Holomorphic genus 2 fibrations

We are interested in the properties of certain specific factorizations in Map2.

Definition 4. Let W0 = (T )2, W1 = (ζ1 · ζ2 · ζ3 · ζ4 · ζ5)6, and W2 = σ · (ζ3 · ζ4 · ζ5 ·
ζ2 · ζ3 · ζ4 · ζ1 · ζ2 · ζ3)2 · (T ), where T = ζ1 · ζ2 · ζ3 · ζ4 · ζ5 · ζ5 · ζ4 · ζ3 · ζ2 · ζ1.
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Figure 2

In this definition the notation (· · · )n means that the sequence of Dehn twists is
repeated n times. It is fairly easy to check that W0, W1 and W2 are all factorizations
of the identity element of Map2 as a product of 20, 30, and 29 positive Dehn twists
respectively (forW0 andW1 this follows immediately from the presentation of Map2;
see below for W2).

Lemma 5. The factorization W0 describes the genus 2 Lefschetz fibration f0 on the
rational surface obtained as a double covering of F0 = CP1 ×CP1 branched along a
smooth algebraic curve B0 of bidegree (6, 2). The factorization W1 corresponds to
the genus 2 Lefschetz fibration f1 on the blown-up K3 surface obtained as a double
covering of F1 = CP2#CP2 branched along a smooth algebraic curve B1 in the linear
system |6L|, where L is a line in CP2 avoiding the blown-up point.

Proof. B0 can be degenerated into a singular curve D0 consisting of 6 sections and
2 fibers intersecting in 12 nodes (see Figure 2). We can recover B0 from D0 by
first smoothing the intersections of the first section with the two fibers, giving us a
component of bidegree (1, 2), and then smoothing the remaining 10 nodes, each of
which produces two vertical tangencies. The braid factorization corresponding to
B0 can therefore be expressed as ((x1)

2 · (x2)
2
x1

· (x3)
2
x2x1

· (x4)
2
x3x2x1

· (x5)
2
x4x3x2x1

)2,
or equivalently after suitable Hurwitz moves, (x1 ·x2 ·x3 ·x4 ·x5 ·x5 ·x4 ·x3 ·x2 ·x1)

2.
Lifting this braid factorization to the mapping class group, we obtainW0 as claimed.
Alternately, it is easy to check that the braid factorization for a smooth curve of
bidegree (6, 1) is x1 · x2 · x3 · x4 · x5 · x5 · x4 · x3 · x2 · x1; we can then conclude by
observing that B0 is the fiber sum of two such curves.

In the case of the curve B1, by definition the braid monodromy is exactly that of
a smooth plane curve of degree 6 as defined by Moishezon in [6]; it can be computed
e.g. by degenerating B1 to a union of 6 lines in generic position (D1 in Figure 2),
and is known to be given by the factorization (x1 ·x2 ·x3 ·x4 ·x5)

6. Lifting to Map2,
we obtain that the monodromy factorization for the corresponding double branched
covering is exactly W1.

Lemma 6. Let τ ∈ Map2 be a Dehn twist, and let F be a factorization of a central
element (1 or I) of Map2. If F ∼ τ · F ′ for some F ′, then the factorization (F )τ

obtained from F by simultaneous conjugation of all factors by τ is Hurwitz equivalent
to F .

Proof. We have: (F )τ ∼ τ · (F ′)τ ∼ F ′ · τ ∼ (τ)F ′ · F ′ = τ · F ′ ∼ F . The first and
last steps follow from the assumption; the second step corresponds to moving τ to
the right across all the factors of (F ′)τ , while in the third step all the factors of F ′

are moved to the right across τ . Also observe that (τ)F ′ = τ because the product
of all factors in F ′ commutes with τ .
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Lemma 7. The factorizations T , W0 and W1 are fully invariant, i.e. for any ele-
ment γ ∈ Map2 we have (T )γ ∼ T , (W0)γ ∼ W0, and (W1)γ ∼ W1.

Proof. It is obviously sufficient to prove that (T )ζi
∼ T and (W1)ζi

∼ W1 for all
1 ≤ i ≤ 5. By moving the first ζi factor in T or W1 to the left, we obtain a Hurwitz
equivalent factorization of the form ζi · . . . ; therefore the result follows immediately
from Lemma 6.

A direct consequence of Lemma 7 is that all fiber sums of the holomorphic fibra-
tions f0 and f1 (with monodromies W0 and W1) are untwisted. More precisely, when
two Lefschetz fibrations with monodromy factorizations F and F ′ are glued to each
other along a fiber, the resulting fibration normally depends on the isotopy class φ
of a diffeomorphism between the two fibers to be identified, and its monodromy is
given by a factorization of the form (F ) · (F ′)φ. However, when the building blocks
are made of copies of f0 and f1, Lemma 7 implies that the result of the fiber sum
operation is independent of the chosen identification diffeomorphisms; e.g., we can
always take φ = 1.

Lemma 8. (W1)
2 ∼ (W0)

3.

Proof. Let ρ = ζ1ζ2ζ3ζ4ζ5ζ1ζ2ζ3ζ4ζ1ζ2ζ3ζ1ζ2ζ1 be the reflection of the genus 2 surface
Σ about its central axis. It follows from Lemma 7 that (W1)

2 ∼ W1 · (W1)ρ =
(ζ1 · ζ2 · ζ3 · ζ4 · ζ5)6 · (ζ5 · ζ4 · ζ3 · ζ2 · ζ1)6. The central part of this factorization
is exactly T ; after moving it to the right, we obtain the new identity (W1)

2 ∼
(ζ1 · ζ2 · ζ3 · ζ4 · ζ5)5 · (ζ5 · ζ4 · ζ3 · ζ2 · ζ1)5 · (T )(ζ5ζ4ζ3ζ2ζ1)5 . Repeating the same operation

four more times, we get (W1)
2 ∼ ∏5

j=0(T )(ζ5ζ4ζ3ζ2ζ1)j . Using the full invariance

property of T (Lemma 7), it follows that (W1)
2 ∼ (T )6 = (W0)

3.
A more geometric argument is as follows: (W1)

2 is the monodromy factorization
of the fiber sum f1#f1 of two copies of f1, which is a double covering of the fiber
sum of two copies of (F1, B1). Therefore f1#f1 is a double covering of (F2, B

′) where
F2 = P(O ⊕ O(2)) is the second Hirzebruch surface and B ′ is a smooth algebraic
curve in the linear system |6S|, where S is a section of F2 (S ·S = 2). On the other
hand (W0)

3 is the monodromy factorization of the fiber sum f0#f0#f0, which is a
double covering of the fiber sum of three copies of (F0, B0), i.e. a double covering
of (F0, B

′′) where B′′ is a smooth algebraic curve of bidegree (6, 6). The conclusion
follows from the fact that (F2, B

′) and (F0, B
′′) are deformation equivalent.

We can now reformulate the holomorphicity result obtained by Siebert and Tian [9]
in terms of mapping class group factorizations. Say that a factorization is transi-
tive if the images of the factors under the morphism Map2 → S6 mapping ζi to the
transposition (i, i+ 1) generate the entire symmetric group S6.

Theorem 9 (Siebert-Tian [9]). Any transitive factorization of the identity element
as a product of positive Dehn twists along non-separating curves in Map2 is Hurwitz
equivalent to a factorization of the form (W0)

k · (W1)
ε for some integers k ≥ 0 and

ε ∈ {0, 1}.
What Siebert and Tian have shown is in fact that any such factorization is the

monodromy of a holomorphic Lefschetz fibration, which can be realized as a double
covering of a ruled surface branched along a smooth connected holomorphic curve
intersecting the generic fiber in 6 points. However, we can always assume that
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the ruled surface is either F0 or F1 (either by the topological classification of ruled
surfaces or using Lemma 8). In the first case, the branch curve has bidegree (6, 2k)
for some integer k, and the corresponding monodromy is (W0)

k, while in the second
case the branch curve realizes the homology class 6[L] + 2k[F ] for some integer k
(here F is a fiber of F1), and the corresponding monodromy is (W0)

k ·W1.
We now look at examples of genus 2 fibrations with reducible singular fibers.

Definition 10. Let B2 ⊂ F1 be an algebraic curve in the linear system |6L + F |,
presenting two triple points in the same fiber F0. Let P2 be the surface obtained by
blowing up F1 at the two triple points of B2, and denote by B̂2 and F̂0 the proper
transforms of B2 and F0 in P2. Consider the double covering π : X̂2 → P2 branched
along B̂2 ∪ F̂0, and let X2 be the surface obtained by blowing down the −1-curve
π−1(F̂0) in X̂2.

Let us check that this construction is well-defined. The easiest way to construct
the curve B2 is to start with a curve C of degree 7 in CP2 with two triple points
p1 and p2. If we choose C generically, we can assume that the three branches of
C through pi intersect each other transversely and are transverse to the line L0

through p1 and p2. Therefore the line L0 intersects C transversely in another point
p, and by blowing up CP2 at p we obtain the desired curve B2 (see also below).
Next, we blow up the two triple points p1 and p2, which turns B2 into a smooth
curve B̂2, disjoint from F̂0. Denoting by E1 and E2 the exceptional divisors of the
two blow-ups, we have [B̂2] = 6[L]+ [F ]−3[E1]−3[E2] and [F̂0] = [F ]− [E1]− [E2],

so that [B̂2]+[F̂0] = 6[L]+2[F ]−4[E1]−4[E2] is divisible by 2; therefore the double

covering π : X̂2 → P2 is well-defined.
The complex surface X̂2 is equipped with a natural holomorphic genus 2 fibration

f̂2, obtained by composing π : X̂2 → P2 with the natural projections to F1 and then
to S2. The fiber of f̂2 corresponding to F0 ⊂ F1 consists of three components: two
elliptic curves of square −2 obtained as double coverings of the exceptional curves
E1 and E2 in P2, with 4 branch points in each case (three on B̂2 and one on F̂0),

and a rational curve of square −1, the preimage of F̂0. After blowing down the
rational component, we obtain on X2 a holomorphic genus 2 fibration f2, with one
reducible fiber consisting of two elliptic components. It is easy to check that near
this singular point f2 presents the local model expected of a Lefschetz fibration,
and that the vanishing cycle for this fiber is the loop obtained by lifting any simple
closed loop that separates the two triple points of B2 inside the fiber F0 of F1.

Lemma 11. The complex surface X2 carries a natural holomorphic genus 2 Lef-
schetz fibration, with monodromy factorization W2.

Proof. We need to calculate the braid monodromy factorization associated to the
curve B2 ⊂ F1. For this purpose, observe that B2 can be degenerated to a union
D2 of 6 lines in two groups of three, L1, L2, L3 and L4, L5, L6, and a fiber F , with
two triple points and 15 nodes (cf. Figure 2). The monodromy around the fiber
containing the two triple points is given by the braid δ = (x1x2)

3(x4x5)
3. The 9

nodes corresponding to the mutual intersections of the two groups of three lines
give rise to 18 vertical tangencies in B2, and the corresponding factorization is

x2
3 · (x4)

2
x3

· (x5)
2
x4x3

· [x2
2 · (x3)

2
x2

· (x4)
2
x3x2

](x5x4x3) · [x2
1 · (x2)

2
x1

· (x3)
2
x2x1

](x4x3x2x5x4x3).
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After suitable Hurwitz moves, this expression can be rewritten as

x3 ·x4 · (x5)
2 ·x4 ·x3 · [x2 ·x3 · (x4)

2 ·x3 ·x2](x5x4x3) · [x1 ·x2 · (x3)
2 ·x2 ·x1](x4x3x2x5x4x3),

or equivalently as x3 ·x4 ·x5 ·x2 ·x3 ·x4 ·x1 ·x2 ·x3 ·x3 ·x2 ·x1 ·x4 ·x3 ·x2 ·x5 ·x4 ·x3,
which is in turn equivalent to (x3 · x4 · x5 · x2 · x3 · x4 · x1 · x2 · x3)

2. Finally, the
six intersections of the lines L1, . . . , L6 with the fiber F give rise to 10 vertical
tangencies, for which the same argument as for Lemma 5 gives the monodromy
factorization x1 · x2 · x3 · x4 · x5 · x5 · x4 · x3 · x2 · x1. We conclude by lifting the
monodromy of B2 to the mapping class group, observing that the contribution δ of
the fiber containing the triple points lifts to the Dehn twist σ.

Theorem 12. Fix integers m ≥ 0, ε ∈ {0, 1} and k ≥ 3
2
m+1. Then the Hirzebruch

surface Fm+ε = P(O⊕O(m+ε)) contains a complex curve Bk,ε,m in the linear system
|6S + (m+ 2k)F | (where S is a section of square (m+ ε) and F is a fiber), having
2m triple points lying in m distinct fibers of Fm+ε as its only singularities.

Moreover, after blowing up Fm+ε at the 2m triple points, passing to a double
covering, and blowing down m rational −1-curves, we obtain a complex surface and
a holomorphic genus 2 fibration fk,ε,m : Xk,ε,m → S2 with monodromy factorization
(W0)

k · (W1)
ε · (W2)

m.

Proof. We first construct the curve Bk,ε,m by perturbation of a singular configuration
Dk,ε,m consisting of 6 sections of Fm+ε together with m + 2k fibers. Since the case
of smooth curves is a classical result, we can assume that m ≥ 1. Also observe
that, since the intersection number of Bk,ε,m with a fiber is equal to 6, the 2m triple
points must come in pairs lying in the same fiber: p2i−1, p2i ∈ Fi, 1 ≤ i ≤ m.

Let u0 and u1 be generic sections of the line bundle OCP
1(m+ε), without common

zeroes. Define six sections Sα,β (α ∈ {0, 1}, β ∈ {0, 1, 2}) of Fm+ε as the projec-
tivizations of the sections (1, (−1)αu0 + cαβu1) of OCP

1 ⊕ OCP
1(m + ε), where cαβ

are small generic complex numbers. The three sections S0,β intersect each other in
(m + ε) triple points, in the fibers F1, . . . , Fm+ε above the points of CP1 where u1

vanishes, and similarly for the three sections S1,β; generic choices of parameters en-
sure that all the other intersections between these six sections are transverse and lie
in different fibers of Fm+ε. We define Dk,ε,m to be the singular configuration consist-
ing of the six sections Sα,β together with m+ 2k generic fibers of Fm+ε intersecting
the sections in six distinct points.

Let s ∈ H0(Fm+ε, O(mF )) be the product of the sections of O(F ) defining the
fibers F1, . . . , Fm containing 2m of the triple points of Dk,ε,m. Let s′ be a generic
section of the line bundle L = O(Dk,ε,m − 4mF ) = O(6S + (2k− 3m)F ) over Fm+ε.
Because k ≥ 3

2
m+ 1, the linear system |L| is base point free, and so we can assume

that s′ does not vanish at any of the double or triple points of Dk,ε,m. Finally, let
s0 be the section defining Dk,ε,m.

We consider the section sλ = s0 + λs4s′ ∈ H0(Fm+ε, O(6S + (2k +m)F )), where
λ 6= 0 is a generic small complex number. Because the perturbation s4s′ vanishes at
order 4 at each of the triple points p1, . . . , p2m of Dk,ε,m in the fibers F1, . . . , Fm, it is
easy to check that all the curves D(λ) = s−1

λ (0) present triple points at p1, . . . , p2m.
On the other hand, since s4s′ does not vanish at any of the other singular points of
Dk,ε,m, for generic λ the curve D(λ) presents no other singularities than the triple
points p1, . . . , p2m (this follows e.g. from Bertini’s theorem); this gives us the curve
Bk,ε,m with the desired properties. Moreover, generic choices of the parameters
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ensure that the vertical tangencies of Bk,ε,m all lie in distinct fibers of Fm+ε; in that
case, the double covering construction will give rise to a Lefschetz fibration.

The braid monodromy of the curve Bk,ε,m can be computed using the existence
of a degeneration to the singular configuration Dk,ε,m (taking λ → 0 in the above
construction); a calculation similar to the proofs of Lemma 5 and Lemma 11 yields
that it consists of k copies of the braid factorization of the curve B0, ε copies of the
braid factorization of B1, and m copies of the braid factorization of B2. Another
way to see this is to observe that the surface Fm+ε admits a decomposition into
a fiber sum of k copies of F0 and m + ε copies of F1, in such a way that the
singular configuration Dk,ε,m naturally decomposes into k copies of D0, ε copies of a
degenerate version of D1 presenting some triple points, and m copies of D2. After
a suitable smoothing, we obtain that the pair (Fm+ε, Bk,ε,m) splits as the untwisted
fiber sum k (F0, B0)#ε (F1, B1)#m (F1, B2).

By the same process as in the construction of the surface X2, we can blow up
the 2m triple points of Bk,ε,m, take a double covering branched along the proper
transforms of Bk,ε,m and of the fibers through the triple points, and blow down m
rational components, to obtain a complex surface Xk,ε,m equipped with a holomor-
phic genus 2 Lefschetz fibration fk,ε,m : Xk,ε,m → S2. Because of the structure of
Bk,ε,m, it is easy to see that fk,ε,m splits into an untwisted fiber sum of k copies of
f0, ε copies of f1, and m copies of f2. Therefore, its monodromy is described by the
factorization (W0)

k · (W1)
ε · (W2)

m.

4. Proof of the main result

In order to prove Theorem 1, we will use the following lemma which allows us to
trade one reducible singular fiber against a collection of irreducible singular fibers:

Lemma 13. (ζ1 · ζ2)3 · (ζ4 · ζ5)3 · (T ) · (W2) ∼ σ · (W0) · (W1).

Proof. Let Φ = ζ3 · ζ4 · ζ5 · ζ2 · ζ3 · ζ4 · ζ1 · ζ2 · ζ3, and observe that (ζi)Φ = ζ6−i for
i ∈ {1, 2, 4, 5}. Therefore, we have

(ζ4 · ζ5)3 · (Φ)2 ∼ (Φ) · ζ1 · ζ2 · ζ1 · (Φ) · ζ5 · ζ4 · ζ5 ∼ (Φ) · (ζ1 · ζ2 · ζ3 · ζ4 · ζ5)3.

Moreover, (ζ1 · ζ2)3 · (Φ) ∼ ζ1 · ζ2 · ζ1 · (Φ) · ζ5 · ζ4 · ζ5 ∼ (ζ1 · ζ2 · ζ3 · ζ4 · ζ5)3. It
follows that (ζ1 · ζ2)3 · (ζ4 · ζ5)3 · (Φ)2 ∼ W1. Recalling that (ζ1ζ2)

3(ζ4ζ5)
3 = σI and

W2 = σ · (Φ)2 · (T ), and using the invariance property of T (Lemma 7), we have

(ζ1 ·ζ2)3 ·(ζ4 ·ζ5)3 ·(T )·(W2) ∼ σ ·(T )·(ζ1 ·ζ2)3 ·(ζ4 ·ζ5)3 ·(Φ)2 ·(T ) ∼ σ ·(T )·(W1)·(T ),

which is Hurwitz equivalent to σ · (T )2 · (W1) = σ · (W0) · (W1).

Proof of Theorem 1. We argue by induction on the number m of reducible singular
fibers. If there are no separating Dehn twists, then after summing with at least one
copy of W0 to ensure transitivity, we obtain a transitive factorization of the identity
element into Dehn twists along non-separating curves, which by Theorem 9 is of
the expected form.

Assume that Theorem 1 holds for all factorizations with m− 1 separating Dehn
twists, and consider a factorization F with m separating Dehn twists. By Hurwitz
moves we can bring one of the separating Dehn twists to the right-most position in
F and assume that F = (F ′) · σ̃, where σ̃ is a Dehn twist about a loop separating
two genus 1 components. Clearly, there exists an element φ ∈ Map2 such that
σ̃ = (σ)φ−1 . Using the relation I2 = 1, we can express each ζ−1

i as a product of the
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generators ζ1, . . . , ζ5, and therefore φ can be expressed as a positive word involving
only the generators ζ1, . . . , ζ5 (and not their inverses).

Starting with the factorization σ̃ · (W0)
n, we can selectively move σ to the right

across the various factors W0, sometimes conjugating the factors of W0 and some-
times conjugating σ̃. If we choose the factors by which we conjugate σ̃ according
to the expression of φ in terms of ζ1, . . . , ζ5, and if n is sufficiently large, we obtain
that σ̃ · (W0)

n ∼ (F ′′) · σ, for some factorization F ′′ involving only non-separating
Dehn twists. Therefore, using Lemma 8 and Lemma 13 we have

F · (W0)
n+4 ∼ F ′ · σ̃ · (W0)

n ·W0 · (W1)
2 ∼ F ′ · F ′′ · σ ·W0 · (W1)

2 ∼ F̃ ·W2,

where F̃ = F ′ ·F ′′ ·(ζ1 ·ζ2)3 ·(ζ4 ·ζ5)3 ·T ·W1. Next we observe that F̃ is a factorization
of the identity element with m−1 separating Dehn twists, therefore by assumption
there exist integers ñ, k, ε such that F̃ · (W0)

ñ ∼ (W0)
k · (W1)

ε · (W2)
m−1. It follows

that F · (W0)
n+ñ+4 ∼ F̃ ·W2 · (W0)

ñ ∼ F̃ · (W0)
ñ ·W2 ∼ (W0)

k · (W1)
ε · (W2)

m. This
concludes the proof, since it is clear that the splitting remains valid after adding
extra copies of W0.

Proof of Corollary 2. First of all, as observed at the beginning of §2 we can assume
that f is relatively minimal, i.e. all vanishing cycles are homotopically non-trivial.
Let F be a monodromy factorization corresponding to f , and observe that by The-
orem 1 we have a splitting of the form F · (W0)

n ∼ (W0)
n+k · (W1)

ε · (W2)
m. If n

is chosen large enough then n+ k ≥ 3
2
m+ 1, and so by Theorem 12 the right-hand

side is the monodromy of the holomorphic fibration fn+k,ε,m, while the left-hand
side corresponds to the fiber sum f#n f0.

Remark. Pending a suitable extension of the result of Siebert and Tian to higher
genus hyperelliptic Lefschetz fibrations with transitive monodromy and irreducible
singular fibers, the techniques described here can be generalized to higher genus
hyperelliptic fibrations almost without modification. The main difference is the
existence of different types of reducible fibers, classified by the genera h and g − h
of the two components; this makes it necessary to replace W2 with a larger collection
of building blocks, obtained e.g. from complex curves in F1 that intersect the generic
fiber in 2g+2 points and present two multiple points with multiplicities 2h+1 and
2(g − h) + 1 in the same fiber.
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FUNDAMENTAL GROUPS OF COMPLEMENTS OF PLANE

CURVES AND SYMPLECTIC INVARIANTS

D. AUROUX, S. K. DONALDSON, L. KATZARKOV, AND M. YOTOV

Abstract. Introducing the notion of stabilized fundamental group for the com-
plement of a branch curve in CP

2, we define effectively computable invariants of
symplectic 4-manifolds that generalize those previously introduced by Moishezon
and Teicher for complex projective surfaces. Moreover, we study the structure
of these invariants and formulate conjectures supported by calculations on new
examples.

1. Introduction

Using approximately holomorphic techniques first introduced in [5], it was shown
in [2] (see also [1]) that compact symplectic 4-manifolds with integral symplectic
class can be realized as branched covers of CP2 and can be investigated using the
braid group techniques developed by Moishezon and subsequently by Moishezon
and Teicher for the study of complex surfaces (see e.g. [13]):

Theorem 1.1 ([2]). Let (X,ω) be a compact symplectic 4-manifold, and let L be
a line bundle with c1(L) = 1

2π
[ω]. Then there exist branched covering maps fk :

X → CP2 defined by approximately holomorphic sections of L⊗k for all large enough
values of k; the corresponding branch curves Dk ⊂ CP2 admit only nodes (both
orientations) and complex cusps as singularities, and give rise to well-defined braid
monodromy invariants. Moreover, up to admissible creations and cancellations of
pairs of nodes in the branch curve, for large k the topology of fk is a symplectic
invariant.

This makes it possible to associate to (X,ω) a sequence of invariants (indexed by
k � 0) consisting of two objects: the braid monodromy characterizing the branch
curve Dk, and the geometric monodromy representation θk : π1(CP2 − Dk) → Sn

(n = deg fk) characterizing the n-fold covering of CP2 − Dk induced by fk [2].
These invariants are extremely powerful (from them one can recover (X,ω) up to
symplectomorphism) but too complicated to handle in practical cases.

In the study of complex surfaces, Moishezon and Teicher have shown that the
fundamental group π1(CP2−D) (or, restricting to an affine subset, π1(C

2−D)) can
be computed explicitly in some simple examples; generally speaking, this group has
been expected to provide a valuable invariant for distinguishing diffeomorphism
types of complex surfaces of general type. However, in the symplectic case, it
is affected by creations and cancellations of pairs of nodes and cannot be used
immediately as an invariant.

We will introduce in §2 a certain quotient Gk (resp. Ḡk) of π1(C
2 − Dk) (resp.

π1(CP2 − Dk)), the stabilized fundamental group, which remains invariant under
creations and cancellations of pairs of nodes. As an immediate corollary of the
construction and of Theorem 1.1, we obtain the following

219
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Theorem 1.2. For large enough k, the stabilized groups Gk = Gk(X,ω) (resp.
Ḡk(X,ω)) and their reduced subgroups G0

k = G0
k(X,ω) are symplectic invariants of

the manifold (X,ω).

These invariants can be computed explicitly in various examples, some due to
Moishezon, Teicher and Robb, others new; these examples will be presented in §4,
and a brief overview of the techniques involved in the computations is given in §6
and §7. The new examples include double covers of CP1×CP1 branched along arbi-
trary complex curves (Theorem 4.6 and §7); similar methods should apply to other
double covers as well, thus providing results for both types of so-called Horikawa
surfaces. The calculations described in §7, which rely on various innovative tools
in addition to a suitable reformulation of the methods developed by Moishezon
and Teicher, go well beyond the scope of results accessible using only the previ-
ously known techniques, and may present interest of their own for applications in
algebraic geometry.

The available data suggest several conjectures about the structure of the stabi-
lized fundamental groups.

First of all, it appears that in most examples the stabilization operation does
not actually affect the fundamental group. The only known exceptions are given
by “small” linear systems with insufficient ampleness properties, where the stabi-
lization is a quotient by a non-trivial subgroup (see §4). Therefore we have the
following

Conjecture 1.3. Assume that (X,ω) is a complex surface, and let Dk be the branch
curve of a generic projection to CP2 of the projective embedding of X given by the
linear system |kL|. Then, provided that k is large enough, the stabilization operation
is trivial, i.e. Gk(X,ω) ' π1(C

2 −Dk) and Ḡk(X,ω) ' π1(CP2 −Dk).

An important class of fundamental groups for which the conjecture holds will be
described in §3.

Moreover, the structure of the stabilized fundamental groups seems to be re-
markably simple, at least when the manifold X is simply connected; in all known
examples they are extensions of a symmetric group by a solvable group, while there
exist plane curves with much more complicated complements [4, 6]. In fact these
groups seem to be largely determined by intersection pairing data in H2(X,Z).
More precisely, the following result will be proved in §5:
Definition 1.4. Let Λk be the image of the map λk : H2(X,Z) → Z2 defined by
λk(α) = (α ·Lk, α ·Rk), where Lk = k c1(L) and Rk = c1(KX) + 3Lk are the classes
in H2(X,Z) Poincaré dual to a hyperplane section and to the ramification curve
respectively.

Theorem 1.5. If the symplectic manifold X is simply connected, then there ex-
ists a natural surjective homomorphism φk : AbG0

k(X,ω) → (Z2/Λk) ⊗ Rnk
'

(Z2/Λk)
nk−1, where nk = deg fk = Lk ·Lk, and Rnk

is the reduced regular represen-
tation of Snk

(isomorphic to Znk−1).

The map φk is (Gk, Snk
)-equivariant, in the sense that φk(g

−1γg) = θk(g) · φk(γ)
for any elements g ∈ Gk(X,ω) and γ ∈ AbG0

k(X,ω) (cf. also Lemma 5.2).
In the examples discussed in §4, the group G0

k is always close to being abelian,
and φk is always an isomorphism. It seems likely that the injectivity of φk can be
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proved using techniques similar to those described in §6–7. Therefore, it makes
sense to formulate the following

Conjecture 1.6. If the symplectic manifold X is simply connected and k is large
enough, then AbG0

k(X,ω) ' (Z2/Λk)⊗Rnk
, and the commutator subgroup [G0

k, G
0
k]

is a quotient of (Z2)
2.

Conjectures 1.3 and 1.6 provide an almost complete tentative description of the
structure of fundamental groups of branch curve complements in high degrees. In
relation with the property (∗) introduced in §3, they also provide a framework to
explain various observations and conjectures made in [14] and [12].

The obtained results seem to indicate that fundamental groups of branch curve
complements cannot be used as invariants to symplectically distinguish homeomor-
phic manifolds. This is in sharp contrast with the braid monodromy data, which
completely determines the symplectomorphism type of (X,ω) [2] ; how to introduce
effectively computable invariants retaining more of the information contained in the
braid monodromy remains an open question.

2. Braid monodromy and stabilized fundamental groups

Let Dk be the branch curve of a covering map fk : X → CP2 as in Theorem
1.1. Braid monodromy invariants are defined by considering a generic projection
π : CP2 − {pt} → CP1: the pole of the projection lies away from Dk, and a generic
fiber of π intersects Dk in d = degDk distinct points, the only exceptions being
fibers through cusps or nodes of Dk, or fibers that are tangent to Dk at one of its
smooth points (“vertical tangencies”). Moreover we can assume that the special
points (cusps, nodes and vertical tangencies) of Dk all lie in different fibers of π.

By restricting ourselves to an affine subset C2 ⊂ CP2, choosing a base point
and trivializing the fibration π, we can view the monodromy of π|Dk

as a group
homomorphism from π1(C − {qi}) (where qi are the images by π of the special
points of Dk) to the braid group Bd. More precisely, the monodromy around a
vertical tangency is a half-twist (a braid that exchanges two of the d intersection
points of the fiber with Dk by rotating them around each other counterclockwise
along a certain path); the monodromy around a positive (resp. negative) node is
the square (resp. the inverse of the square) of a half-twist; the monodromy around
a cusp is the cube of a half-twist [13, 2].

It is sometimes convenient to choose an ordered system of generating loops for
π1(C − {qi}) (one loop going around each qi), and to express the monodromy as a
braid factorization, i.e. a decomposition of the central braid ∆2 (the monodromy
around the fiber at infinity, due to the non-triviality of the fibration π over CP1)
into the product of the monodromies along the chosen generating loops. However,
this braid factorization is only well-defined up to simultaneous conjugation of all
factors (i.e., a change in the choice of the identification of the fibers with R2) and
Hurwitz equivalence (i.e., a rearrangement of the factors due to a different choice of
the system of generating loops).

The braid monodromy determines in a very explicit manner the fundamental
groups π1(C

2 − Dk) and π1(CP2 − Dk). Indeed, consider a generic fiber ` ' C ⊂
CP2 of the projection π (e.g. the fiber containing the base point), intersecting Dk

in d distinct points. The free group π1(` − (` ∩ Dk)) = Fd is generated by a



222 D. AUROUX, S. K. DONALDSON, L. KATZARKOV, AND M. YOTOV

system of d loops going around the various points in ` ∩ Dk. The inclusion map
i : `−(`∩Dk) → C2−Dk induces a surjective homomorphism i∗ : Fd → π1(C

2−Dk).

Definition 2.1. The images of the standard generators of the free group Fd and
their conjugates are called geometric generators of π1(C

2 −Dk); the set of all geo-
metric generators will be denoted by Γk.

By the Zariski-Van Kampen theorem, π1(C
2 − Dk) is realized as a quotient of

Fd by relations corresponding to the various special points (vertical tangencies,
nodes, cusps) of Dk; these relations express the fact that the action of the braid
monodromy on Fd induces a trivial action on π1(C

2 − Dk). To each factor in
the braid factorization one can associate a pair of elements γ1, γ2 ∈ Γk (small loops
around the two portions ofDk that meet at the special point), well-determined up to
simultaneous conjugation. The relation corresponding to a tangency is γ1 ∼ γ2; for
a node (of either orientation) it is [γ1, γ2] ∼ 1; for a cusp it becomes γ1γ2γ1 ∼ γ2γ1γ2.
Taking into account all the special points of Dk (i.e. considering the entire braid
monodromy), we obtain a presentation of π1(C

2 −Dk). Moreover, π1(CP2 −Dk) is
obtained from π1(C

2 −Dk) just by adding the extra relation g1 . . . gd ∼ 1, where gi

are the images of the standard generators of Fd under the inclusion.

It follows from this discussion that the creation or cancellation of a pair of nodes
in Dk may affect π1(C

2−Dk) and π1(CP2−Dk) by adding or removing commutation
relations between geometric generators. Although it is reasonable to expect that
negative nodes can always be cancelled in the branch curves given by Theorem 1.1,
the currently available techniques are insufficient to prove such a statement. Instead,
a more promising approach is to compensate for these changes in the fundamental
groups by considering certain quotients where one stabilizes the group by adding
commutation relations between geometric generators. The resulting group is in
some sense more natural than π1(C

2 −Dk) from the symplectic point of view, and
as a side benefit it is often easier to compute (see §7). Moreover, it also turns out
that, in many cases, no information is lost in the stabilization process (see §3).

In order to define the stabilized group Gk, first observe that, because the branch-
ing index of fk above a smooth point of Dk is always 2, the geometric monodromy
representation morphism θk : π1(CP2 − Dk) → Sn describing the topology of the
covering above CP2 − Dk maps all geometric generators to transpositions in Sn.
As seen above, to each nodal point of Dk one can associate geometric generators
γ1, γ2 ∈ Γk, one for each of the two intersecting portions of Dk, so that the cor-
responding relation in π1(C

2 − Dk) is [γ1, γ2] ∼ 1. Since the branching occurs in
disjoint sheets of the cover, the two transpositions θk(γ1) and θk(γ2) are necessarily
disjoint (i.e. they are distinct and commute). Therefore, adding or removing pairs of
nodes amounts to adding or removing relations given by commutators of geometric
generators associated to disjoint transpositions.

Definition 2.2. Let Kk (resp. K̄k) be the normal subgroup of π1(C
2 − Dk) (resp.

π1(CP2 −Dk)) generated by all commutators [γ1, γ2] where γ1, γ2 ∈ Γk are such that
θk(γ1) and θk(γ2) are disjoint transpositions. The stabilized fundamental group is
defined as Gk = π1(C

2 −Dk)/Kk, resp. Ḡk = π1(CP2 −Dk)/K̄k.

Certain natural subgroups of Gk and Ḡk will play an important role in the follow-
ing sections. Define the linking number homomorphism δk : π1(C

2 − Dk) → Z by
δk(γ) = 1 for every γ ∈ Γk; similarly one can define δ̄k : π1(CP2 − Dk) → Zd.
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When Dk is irreducible (which is the general case), these can also be thought
of as abelianization maps from the fundamental groups to the homology groups
H1(C

2 −Dk,Z) ' Z and H1(CP2 −Dk,Z) ' Zd.

Lemma 2.3. Ker δk ' Ker δ̄k.

Proof. Since π1(CP2 − Dk) = π1(C
2 − Dk)/〈g1 . . . gd〉 and δk(g1 . . . gd) = d, it is

sufficient to show that the product g1 . . . gd belongs to the center of π1(C
2 − Dk).

Observe that the relation in π1(C
2 − Dk) coming from a special point of Dk can

be rewritten in the form g ∼ b∗g ∀g ∈ Fd, where b ∈ Bd is the braid monodromy
around the given special point, acting on Fd. In particular, if we consider the braid
monodromy as a factorization ∆2 =

∏

bi, we obtain that g ∼ (
∏

bi)∗g = (∆2)∗g
for any element g. However the action of the braid ∆2 on Fd is exactly conjugation
by g1 . . . gd; we conclude that g1 . . . gd commutes with any element of π1(C

2 −Dk),
hence the result.

The homomorphisms δk and δ̄k are obviously surjective. Moreover, θk is also
surjective, because of the connectedness of X: the subgroup Im θk ⊆ Sn is generated
by transpositions and acts transitively on {1, . . . , n}, so it is equal to Sn. However,
the image of θ+

k = (θk, δk) : π1(C
2 − Dk) → Sn × Z is the index 2 subgroup

{(σ, i) : sgn(σ) ≡ imod 2}, and similarly for θ̄+
k = (θk, δ̄k) : π1(CP2−Dk) → Sn×Zd

(note that d is always even). Since Kk ⊆ Ker θ+
k , we can make the following

definition:

Definition 2.4. Let H0
k = Ker θ+

k ' Ker θ̄+
k . The reduced subgroup of Gk is G0

k =
H0

k/Kk. We have the following exact sequences:

1 −→ G0
k −→ Gk −→ Sn × Z −→ Z2 −→ 1,

1 −→ G0
k −→ Ḡk −→ Sn × Zd −→ Z2 −→ 1.

Theorem 1.2 is now obvious from the definitions and from Theorem 1.1: since
creating a pair of nodes amounts to adding a relation of the form [γ1, γ2] ∼ 1 where
[γ1, γ2] ∈ Kk (resp. K̄k), by construction it does not affect the groups Gk, Ḡk and
G0

k, which are therefore symplectic invariants for k large enough.

3. B̃n-groups and their stabilizations

Denote by Bn (resp. Pn, Pn,0) the braid group on n strings (resp. the subgroups of
pure braids and pure braids of degree 0), and denote by X1, . . . , Xn−1 the standard
generators of Bn. Recall that Xi is a half-twist along a segment joining the points i
and i+1, and that the relations among these generators are [Xi, Xj] = 1 if |i−j| ≥ 2
and XiXi+1Xi = Xi+1XiXi+1.

Let B̃n be the quotient of Bn by the commutator of half-twists along two paths
intersecting transversely in one point: B̃n = Bn/[X2, X

−1
3 X−1

1 X2X1X3]. The maps
σ : Bn → Sn (induced permutation) and δ : Bn → Z (degree) factor through B̃n,
so one can define the subgroups P̃n = Kerσ and P̃n,0 = Ker (σ, δ). The structure of

B̃n and its subgroups is described in detail in §1 of [9]; unlike Pn and Pn,0 which are

quite complicated, these groups are fairly easy to understand: P̃n,0 is solvable, its

commutator subgroup is [P̃n,0, P̃n,0] ' Z2 and its abelianization is Ab(P̃n,0) ' Zn−1

(it can in fact be identified naturally with the reduced regular representation Rn of
Sn). More precisely, we have:
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Lemma 3.1 (Moishezon). Let xi be the image of Xi in B̃n, and define s1 = x2
1,

η = [x2
1, x

2
2], ui = [x−1

i , x2
i+1] for 1 ≤ i ≤ n− 2, and un−1 = [x2

n−2, xn−1]. Then P̃n,0

is generated by u1, . . . , un−1, and P̃n is generated by s1, u1, . . . , un−1.
The relations among these elements are [ui, uj] = 1 if |i − j| ≥ 2, [ui, ui+1] = η,

[s1, ui] = 1 if i 6= 2, and [s1, u2] = η. The element η is central in B̃n, has order 2
(i.e. η2 = 1), and generates the commutator subgroups [P̃n,0, P̃n,0] = [P̃n, P̃n] ' Z2

(in particular, for any two adjacent half-twists x and y we have [x2, y2] = η). As a
consequence, Ab(P̃n) ' Zn and Ab(P̃n,0) ' Zn−1.

Moreover, the action of B̃n on P̃n by conjugation is given by the following for-
mulas: x−1

i s1xi = s1 if i 6= 2, x−1
2 s1x2 = s1u

−1
2 ; x−1

i ujxi = uj if |i − j| ≥ 2,
x−1

i ujxi = uiuj if |i− j| = 1, and x−1
i uixi = u−1

i η.

Proof. Most of the statement is a mere reformulation of Definition 8 and Theorem 1
in §1.5 of [9]. The only difference is that we define ui directly in terms of the
generators of B̃n, while Moishezon defines u1 = (x2x

2
1x

−1
2 )x−2

2 = x−1
1 x2

2x1x
−2
2 and

constructs the other ui by conjugation. In fact, ui = x2y−2 whenever x and y are
two adjacent half-twists having respectively i and i+ 1 among their end points and
such that xyx−1 = xi; our definition of ui corresponds to the choice x = x−1

i xi+1xi

and y = xi+1 for i ≤ n − 2, and x = xn−2 and y = xn−1xn−2x
−1
n−1 for i = n − 1.

Also note that Moishezon’s formula for x−1
2 s1x2 is inconsistent, due to a mistake in

equation (1.25) of [9]; the formula we give is corrected.

Intuitively speaking, the reason why B̃n is a fairly small group is that, due to the
extra commutation relations, very little is remembered about the path supporting a
given half-twist, namely just its two endpoints and the total number of times that it
circles around the n−2 other points. This can be readily checked on simple examples
(e.g., half-twists exchanging the first two points along a path that encircles only one
of the n−2 other points: since these differ by conjugation by half-twists along paths
presenting a single transverse intersection, they represent the same element in B̃n).
More generally, we have the following fact:

Lemma 3.2. The elements of B̃n corresponding to half-twists exchanging the first
two points are exactly those of the form x1u

k
1η

k(k−1)/2 for some integer k.

Proof. Any half-twist exchanging the first two points can be put in the form γx1γ
−1,

where γ ∈ P̃n can be expressed as γ = sα
1u

β1

1 · · · uβn−1

n−1 η
ε. Using Lemma 3.1, we have

x−1
1 γx1 = sα

1 (u−1
1 η)β1(u1u2)

β2uβ3

3 · · · uβn−1

n−1 η
ε. Since (u1u2)

β2 = ηβ2(β2−1)/2uβ2

1 u
β2

2 , we

can rewrite this equality as x−1
1 γx1 = u−2β1

1 ηβ1uβ2

1 η
β2(β2−1)/2γ = uk

1η
k(k−1)/2γ, where

k = β2 − 2β1. Multiplying by x1 on the left and γ−1 on the right we obtain
γx1γ

−1 = x1u
k
1η

k(k−1)/2.

Lemma 3.3. Let x, y ∈ B̃n be elements corresponding to half-twists along paths
with mutually disjoint endpoints. Then [x, y] = 1.

Proof. The result is trivial when the paths corresponding to x and y are disjoint or
intersect only once. In general, after conjugation we can assume that x = γx1γ

−1

for some γ ∈ P̃n, and y = x3. By Lemma 3.2, x = x1u
k
1η

k(k−1)/2 for some integer k.
Since x1, u1 and η all commute with x3, we conclude that [x, y] = 1 as desired.

Lemma 3.4. Let x, y ∈ B̃n be elements corresponding to half-twists along paths
with one common endpoint. Then xyx = yxy.
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Proof. After conjugation we can assume that x = x1 and y = γx2γ
−1 for some

γ ∈ P̃n. By the classification of half-twists in B̃n (Lemma 3.2), there exists an
integer k such that y = x2u

k
2η

k(k−1)/2 = x2(s1u
−1
2 )−ksk

1 = s−k
1 x2s

k
1. Therefore xyx =

x1s
−k
1 x2s

k
1x1 = s−k

1 (x1x2x1)s
k
1 = s−k

1 (x2x1x2)s
k
1 = yxy.

It must be noted that Lemmas 3.3 and 3.4 have also been obtained by Robb [12].

Lemma 3.5. The group B̃n admits automorphisms εi such that εi(xi) = xiui and
εi(xj) = xj for every j 6= i. Moreover, εi(ui) = uiη and εi(uj) = uj ∀j 6= i.

Proof. By Lemmas 3.3 and 3.4, the half-twists x1, . . . , xi−1, (xiui), xi+1, . . . , xn−1

satisfy exactly the same relations as the standard generators of B̃n. So εi is a well-
defined group homomorphism from B̃n to itself, and it is injective. The formulas for
εi(ui) and εi(uj) are easily checked. The surjectivity of εi follows from the identity
εi(xiu

−1
i η) = xi.

The following definition is motivated by the very particular structure of the fun-
damental groups of branch curve complements computed by Moishezon for generic
projections of CP1 × CP1 and CP2 [9, 10], which seems to be a feature common to
a much larger class of examples (see §4):
Definition 3.6. Define B̃

(2)
n = {(x, y) ∈ B̃n × B̃n, σ(x) = σ(y) and δ(x) = δ(y)}.

We say that the group π1(C
2 − Dk) satisfies property (∗) if there exists an iso-

morphism ψ from π1(C
2 − Dk) to a quotient of B̃

(2)
n such that, for any geometric

generator γ ∈ Γk, there exist two half-twists x, y ∈ B̃n such that σ(x) = σ(y) = θk(γ)
and ψ(γ) = (x, y).

In other words, π1(C
2 −Dk) satisfies property (∗) if there exists a surjective ho-

momorphism from B̃
(2)
n to π1(C

2−Dk) which maps pairs of half-twists to geometric
generators, in a manner compatible with the Sn-valued homomorphisms σ and θk.

Remark 3.7. If π1(C
2 − Dk) satisfies property (∗), then the kernel of the homo-

morphism θ+
k : π1(C

2 −Dk) → Sn × Z is a quotient of P̃n,0 × P̃n,0 and therefore a
solvable group; in particular its commutator subgroup is a quotient of (Z2)

2, and its
abelianization is a quotient of Z2 ⊗Rn ' (Z ⊕ Z)n−1.

As an immediate consequence of Definition 3.6 and Lemma 3.3, we have:

Proposition 3.8. If π1(C
2 − Dk) satisfies property (∗), then the stabilization op-

eration is trivial, i.e. Kk = {1}, Gk = π1(C
2 −Dk), and G0

k = Ker θ+
k .

Proof. Let γ, γ ′ ∈ Γk be such that θk(γ) and θk(γ
′) are disjoint transpositions. Con-

sider the isomorphism ψ given by Definition 3.6: there exist half-twists x, x′, y, y′ ∈
B̃n such that ψ(γ) = (x, y) and ψ(γ ′) = (x′, y′). Since θk(γ) = σ(x) = σ(y) and
θk(γ

′) = σ(x′) = σ(y′) are disjoint transpositions, x and x′ have disjoint endpoints,
and similarly for y and y′. Therefore, by Lemma 3.3 we have [x, x′] = 1 and
[y, y′] = 1, so that [ψ(γ), ψ(γ ′)] = 1, and therefore [γ, γ ′] = 1. We conclude that
Kk = {1}, which ends the proof.

Let Dp,q be the branch curve of a generic polynomial map CP1 × CP1 → CP2 of
bidegree (p, q), p, q ≥ 2. As will be shown in §4, it follows from the computations
in [9] that π1(C

2 − Dp,q) satisfies property (∗). This property also holds for the
complement of the branch curve of a generic polynomial map from CP2 to itself in
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degree ≥ 3, as follows from the calculations in [10] (see also [15]), and in various
other examples as well (see §4). It is an interesting question to determine whether
this remarkable structure of branch curve complements extends to generic high-
degree projections of arbitrary algebraic surfaces; this would tie in nicely with a
conjecture of Teicher about the virtual solvability of these fundamental groups [14],
and would also imply Conjecture 1.3.

4. Examples

As follows from pp. 696–700 of [5], if the symplectic manifold X happens to be
Kähler, then all approximately holomorphic constructions can actually be carried
out using genuine holomorphic sections of L⊗k over X, and as a consequence the
CP2-valued maps given by Theorem 1.1 coincide up to isotopy with projective maps
defined by generic holomorphic sections of L⊗k; therefore, in the case of complex
projective surfaces all calculations can legitimately be performed within the frame-
work of complex algebraic geometry.

The fundamental groups of complements of branch curves have already been
computed for generic projections of various complex projective surfaces. In many
cases, these computations only hold for specific linear systems, and do not apply to
the high degree situation that we wish to consider.

Nevertheless, it is worth mentioning that, if D ⊂ CP2 is the branch curve of a
generic linear projection of a hypersurface of degree n in CP3, then it has been
shown by Moishezon that π1(C

2 −D) ' Bn [7]. In fact, in this specific case there
is a well-defined geometric monodromy representation morphism θB with values
in the braid group Bn rather than in the symmetric group Sn as usual, because
the n preimages of any point in CP2 − D lie in a fiber of the projection CP3 −
{pt} → CP2, which after trivialization over an affine subset can be identified with C.
Moishezon’s computations then show that θB : π1(C

2−D) → Bn is an isomorphism.
An attempt to quotient out Bn by commutators as in the definition of stabilized
fundamental groups yields B̃n: in this case the stabilization operation is non-trivial.
However this situation is specific to the linear system O(1), and one expects the
fundamental groups of branch curve complements to behave differently when one
instead considers projections given by sections of O(k) for k � 0.

Moishezon’s result about hypersurfaces in CP3 has been extended by Robb to the
case of complete intersections (still considering only linear projections to CP2 rather
than arbitrary linear systems) [12]. The result is that, if D is the branch curve for
a complete intersection of degree n in CPm (m ≥ 4), then the group π1(C

2 − D)
is isomorphic to B̃n. It is worth noting that, in this example, the stabilization
operation is trivial. In fact, the groups π1(C

2 −D) can be shown to have property

(∗) (observe that B̃n is the quotient of B̃
(2)
n by its subgroup 1 × P̃n,0).

Conjecture 1.6 holds for k = 1 in these two families of examples: we have AbG0 '
Zn−1 and [G0, G0] ' Z2 in both cases, while Z2/Λ1 ' Z because the canonical class
is proportional to the hyperplane class which is primitive.

More interestingly for our purposes, the calculations have also been carried out
in the case of arbitrarily positive linear systems by Moishezon for two fundamental
examples: CP1 ×CP1 [9], and CP2 [10] (unpublished, see also [15] for a summary).

Theorem 4.1 (Moishezon). Let Dp,q be the branch curve of a generic polynomial
map CP1 × CP1 → CP2 of bidegree (p, q), p, q ≥ 2. Then the group π1(C

2 −Dp,q)
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satisfies property (∗), and its subgroup H0
p,q = Ker θ+

p,q has the following structure:

AbH0
p,q is isomorphic to (Z2 ⊕ Zp−q)

n−1 if p and q are even, and (Z2(p−q))
n−1 if p

or q is odd (here n = 2pq); the commutator subgroup [H0
p,q, H

0
p,q] is isomorphic to

Z2 ⊕ Z2 when p and q are even, and Z2 if p or q is odd.

In fact, Moishezon identifies π1(C
2 − Dp,q) with a quotient of the semi-direct

product B̃nnP̃n,0, where B̃n acts from the right on P̃n,0 by conjugation [9]. However

it is easy to observe that the map κ : B̃n n P̃n,0 → B̃
(2)
n defined by κ(x, u) =

(x, xu) is a group isomorphism (recall the group structure on B̃n n P̃n,0 is given

by (x, u)(x′, u′) = (xx′, x′−1ux′u′)). The factor P̃n,0 of the semi-direct product

corresponds to the normal subgroup 1×P̃n,0 of B̃
(2)
n , while the factor B̃n corresponds

to the diagonally embedded subgroup B̃n = {(x, x)} ⊂ B̃
(2)
n .

Moreover, by carefully going over the various formulas identifying a set of geo-
metric generators for π1(C

2 − Dp,q) with certain specific elements in B̃n n P̃n,0

(Propositions 8 and 10 of [9]; cf. also §1.4, Definition 24 and Remarks 28–29 of

[9]), or equivalently in B̃
(2)
n after applying the isomorphism κ, it is relatively easy

to check that each geometric generator corresponds to a pair of half-twists with the

expected end points in B̃
(2)
n (see also §6 for more details). Therefore, property (∗)

and Conjecture 1.3 hold for these groups.
Conjecture 1.6 also holds for CP1 ×CP1. Indeed, H2(CP1 ×CP1,Z) is generated

by classes α and β corresponding to the two factors; the hyperplane section class is
L = pα+ qβ, while the ramification curve is R = 3L+K = (3p− 2)α+ (3q − 2)β.
Therefore, the subgroup Λp,q of Z2 is generated by (α · L, α · R) = (q, 3q − 2)
and (β · L, β · R) = (p, 3p − 2). An easy computation shows that the quotient
Z2/Λp,q = Z2/〈(q, 3q−2), (p, 3p−2)〉 ' Z2/〈(q, 2), (p, 2)〉 is isomorphic to Z2⊕Zp−q

when p and q are even, and to Z2(p−q) otherwise.
It is worth noting that this nice description for p, q ≥ 2 completely breaks down

in the insufficiently ample case p = 1, where it follows from computations of Zariski
[17] that π1(C

2 −D1,q) ' B2q. So both Conjecture 1.3 and Conjecture 1.6 require
a sufficient amount of ampleness in order to hold (p, q ≥ 2).

Theorem 4.2 (Moishezon). Let Dk be the branch curve of a generic polynomial
map CP2 → CP2 of degree k ≥ 3. Then the group π1(C

2 − Dk) satisfies property
(∗), and its subgroup H0

k = Ker θ+
k has the following structure: AbH0

k is isomorphic
to (Z ⊕ Z3)

n−1 if k is a multiple of 3, and to Zn−1 otherwise (here n = k2); the
commutator subgroup [H0

k , H
0
k ] is trivial for k even and isomorphic to Z2 for k odd.

In this case too, Moishezon in fact identifies π1(C
2 − Dk) with a quotient of

B̃n n P̃n,0 [10] (see also [15]). Property (∗) and Conjecture 1.3 hold for CP2 when
k ≥ 3, but for k = 2 the group π1(C

2 −D2) is much larger.
Since H2(CP2,Z) is generated by the class of a line, Λk is the subgroup of Z2

generated by (k, 3k − 3), and Z2/Λk is isomorphic to Z ⊕ Z3 when k is a multiple
of 3 and to Z otherwise. Therefore Conjecture 1.6 holds for CP2 when k ≥ 3.

Results for certain projections of Del Pezzo and K3 surfaces have also been an-
nounced by Robb in [12].

Theorem 4.3 (Robb). Let X be either a cubic hypersurface in CP3 or a (2, 2)
complete intersection in CP4, and let Dk be the branch curve of a generic algebraic
map X → CP2 given by sections of O(kH), where H is the hyperplane section
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and k ≥ 2. Then the subgroup H0
k = Ker θ+

k of π1(C
2 − Dk) has abelianization

AbH0
k ' Zn−1.

Theorem 4.4 (Robb). Let X be a K3 surface realized either as a degree 4 hypersur-
face in CP3, a (3, 2) complete intersection in CP4 or a (2, 2, 2) complete intersection
in CP5, and let Dk be the branch curve of a generic algebraic map X → CP2 given
by sections of O(kH), where H is the hyperplane section and k ≥ 2. Then the
subgroup H0

k = Ker θ+
k of π1(C

2 −Dk) has abelianization AbH0
k ' (Z ⊕ Zk)

n−1.

Although to our knowledge no detailed proofs of Theorems 4.3 and 4.4 have
appeared yet, it appears very likely from the sketch of argument given in [12] that
property (∗) and Conjecture 1.3 will hold for these examples as well. In any case
we can compare Robb’s results with the answers predicted by Conjecture 1.6.

In the case of the Del Pezzo surfaces, the hyperplane class H is primitive, and
K = −H (so Rk = (3k − 1)H), so that the subgroup Λk ⊂ Z2 is generated by
(k, 3k − 1), and Z2/Λk ' Z, which is in agreement with Theorem 4.3. In the
case of the K3 surfaces, the hyperplane class H is again primitive, but K = 0
and Rk = 3kH, so that Λk is now generated by (k, 3k), and Z2/Λk ' Z ⊕ Zk, in
agreement with Theorem 4.4.

The following result for the Hirzebruch surface F1 = P(OCP
1 ⊕ OCP

1(1)) is new
to our knowledge; however partial results about this surface have been obtained
by Moishezon, Robb and Teicher [11, 16], and an ongoing project of Teicher and
coworkers is expected to yield another proof of the same result.

Theorem 4.5. Let Dp,q be the branch curve of a generic algebraic map F1 → CP2

given by three sections of the linear system O(pF + qE), where F is the class of a
fiber, E is the exceptional section, and p > q ≥ 2. Then the group π1(C

2 − Dp,q)
satisfies property (∗), and its subgroup H0

p,q = Ker θ+
p,q has the following struc-

ture: AbH0
p,q ' (Z3q−2p)

n−1, where n = (2p − q)q, and the commutator subgroup

[H0
p,q, H

0
p,q] is isomorphic to Z2 if p is odd and q even, and trivial in all other cases.

The proof relies on the observation that F1 is the blow-up of CP2 at one point.
Recalling the interpretation of a symplectic (or Kähler) blow-up as the collapsing
of an embedded ball, it is easy to check that F1 can be degenerated to a union
of planes in a manner similar to CP2, only with some components missing; most
of the calculations performed by Moishezon in [10] for CP2 can then be re-used in
this context, with the only changes occurring along the exceptional curve E. More
details are given in §6.2.

As a consequence of property (∗), Conjecture 1.3 holds for this example. So
does Conjecture 1.6: indeed, H2(F1,Z) is generated by F and E. Recalling that
F · F = 0, F · E = 1, E · E = −1, and letting Lp,q = pF + qE and Rp,q =
3Lp,q + K = (3p − 3)F + (3q − 2)E, we obtain that Λp,q ⊂ Z2 is generated by
(F ·Lp,q, F ·Rp,q) = (q, 3q−2) and (E ·Lp,q, E ·Rp,q) = (p−q, 3p−3q−1). Therefore
Z2/Λk ' Z2/〈(q, 3q − 2), (p− q, 3p− 3q − 1)〉 ' Z3q−2p.

A much wider class of examples, including an infinite family of surfaces of gen-
eral type, can be investigated if one brings approximately holomorphic techniques
into the picture, although this makes it only possible to obtain results about the
stabilized fundamental groups of branch curve complements (cf. §2) rather than the
actual fundamental groups.
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Theorem 4.6. For given integers a, b ≥ 1 and p, q ≥ 2, let Xa,b be the double cover
of CP1 × CP1 branched along a smooth algebraic curve of degree (2a, 2b), and let
Lp,q be the linear system over Xa,b defined as the pullback of OP1×P1(p, q) via the
double cover. Let Dp,q be the branch curve of a generic approximately holomorphic
perturbation of an algebraic map Xa,b → CP2 given by three sections of Lp,q. Then
the stabilized fundamental group Gp,q(Xa,b) = π1(C

2 −Dp,q)/Kp,q satisfies property
(∗), and its reduced subgroup G0

p,q(Xa,b) = Ker θ+
p,q/Kp,q has the following structure:

AbG0
p,q(Xa,b) ' (Z2/〈(p, a− 2), (q, b− 2)〉)n−1, where n = 4pq, and the commutator

subgroup [G0
p,q(Xa,b), G

0
p,q(Xa,b)] is isomorphic to Z2 ⊕ Z2 if a, b, p, q are all even,

trivial if a or b is odd and a+ p or b+ q is odd, and isomorphic to Z2 in all other
cases.

More precisely, the setup that we consider starts with a holomorphic map from
Xa,b to CP2 that factors through the double cover Xa,b → CP1 × CP1. Such a
map is of course not generic in any sense; however there is a natural explicit way
to perturb it in the approximately holomorphic category (see §7), giving rise to
the branch curves Dp,q that we consider. The map can also be perturbed in the
holomorphic category, which at least for p and q large enough yields a branch curve
that is equivalent to Dp,q up to creations and cancellations of pairs of nodes. So, on
the level of stabilized groups, our result does give an answer that is relevant from
both the symplectic and algebraic points of view. Moreover, it is expected that,
at least for p and q large enough, the fundamental groups themselves (rather than
their stabilized quotients) should satisfy property (∗).

Theorem 4.6 implies that Conjecture 1.6 holds for the manifolds Xa,b. Indeed,
Xa,b can also be described topologically as follows: in CP1×CP1 consider 2a curves
of the form CP1 × {pt} and 2b curves of the form {pt} × CP1, and blow up their
4ab intersection points to obtain a manifold Ya,b containing disjoint rational curves
C1, . . . , C2a (of square −2b) and C ′

1, . . . , C
′
2b (of square −2a). Then Xa,b is the

double cover of Ya,b branched along C1 ∪ · · · ∪ C2a ∪ C ′
1 ∪ · · · ∪ C ′

2b. Now, consider

the preimages C̃i = π−1(Ci) and C̃ ′
i = π−1(C ′

i), and let Lp,q = pπ∗α + qπ∗β and
Rp,q = 3Lp,q + KXa,b

= (3p + a − 2)π∗α + (3q + b − 2)π∗β, where α and β are

the homology generators corresponding to the two factors of CP1 × CP1. We have
(C̃i · Lp,q, C̃i · Rp,q) = (q, 3q + b − 2) and (C̃ ′

i · Lp,q, C̃
′
i · Rp,q) = (p, 3p + a − 2). It

is easily shown that these two elements of Z2 generate the subgroup Λp,q; therefore
Z2/Λp,q = Z2/〈(q, 3q + b− 2), (p, 3p+ a− 2)〉 ' Z2/〈(p, a− 2), (q, b− 2)〉.

The techniques involved in the proof of Theorem 4.6, which will be discussed
in §7, extend to double covers of other examples for which the answer is known,
possibly including iterated double covers of CP1 × CP1. One example of particular
interest is that of double covers of Hirzebruch surfaces branched along disconnected
curves, for which we make the following conjecture:

Conjecture 4.7. Given integers m, a ≥ 1, let X2m,a be the double cover of the
Hirzebruch surface F2m branched along the union of the exceptional section ∆∞ and
a smooth algebraic curve in the homology class (2a − 1)[∆0] (where ∆0 is the zero
section, of square 2m). Given integers p, q ≥ 2 such that p > 2mq, let Lp,q be the
linear system over X2m,a defined as the pullback of OF2m(pF + q∆∞) via the double
cover. Let Dp,q be the branch curve of a generic approximately holomorphic pertur-
bation of an algebraic map X2m,a → CP2 given by three sections of Lp,q. Then the
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reduced stabilized fundamental group G0
p,q(X2m,a) = Ker θ+

p,q/Kp,q has abelianization

AbG0
p,q(X2m,a) ' (Z2/〈(p− 2mq,m− 2), (2q, 2a− 4)〉)n−1.

5. Stabilized fundamental groups and homological data

Consider a compact symplectic 4-manifold X such that H1(X,Z) = 0 and a
branched covering map fk : X → CP2 determined by three sections of L⊗k,
with branch curve Dk ⊂ CP2 and geometric monodromy representation morphism
θk : π1(C

2 −Dk) → Sn. The purpose of this section is to construct a natural mor-
phism ψk : Ker θk → (Z2/Λk) ⊗ R̄n ' (Z2/Λk)

n (where R̄n ' Zn is the regular
representation of Sn) and use its properties to prove Theorem 1.5.

Fix a base point p0 in C2 − Dk, and let p1, . . . , pn be its preimages by fk. Let
γ ∈ π1(C

2 − Dk) be a loop in the complement of Dk such that θk(γ) = Id. Since
the monodromy of the branched cover fk along γ is trivial, f−1

k (γ) is the union of
n disjoint closed loops in X. Denote by γi the lift of γ that starts at the point pi.
Since H1(X,Z) = 0, there exists a surface (or rather a 2-chain) Si ⊂ X such that
∂Si = γi. Since γ ⊂ C2 −Dk, the loop γi intersects neither the ramification curve
Rk nor the preimage Lk of the line at infinity in CP2. Therefore, there exist well-
defined algebraic intersection numbers λi = Si · Lk and ρi = Si · Rk ∈ Z. However,
there are various possible choices for the surface Si, and the relative cycle [Si] is
only well-defined up to an element of H2(X,Z). Therefore, the pair (λi, ρi) ∈ Z2 is
only defined up to an element of the subgroup Λk.

Definition 5.1. With the above notations, we denote by ψk : Ker θk → (Z2/Λk)
n

the morphism defined by ψk(γ) = ((Si · Lk, Si ·Rk))1≤i≤n.

In fact, there is no canonical ordering of the preimages of p0, and ψk more natu-
rally takes values in (Z2/Λk) ⊗ R̄n, as evidenced by Lemma 5.2 below.

Definition 5.1 can naturally be extended to the case H1(X,Z) 6= 0 by instead

considering the morphism ψ̃k : Ker θk → H1(X − Lk − Rk,Z)n which maps a loop
γ to the homology classes of its lifts γi in X −Lk −Rk. However, the properties to
be expected of this morphism in general are not entirely clear, due to the lack of
available non-simply connected examples (even though the techniques in §6–7 could
probably be applied to the 4-manifold Σ × CP1 for any Riemann surface Σ).

We now investigate the various properties of ψk.

Lemma 5.2. For every γ ∈ Ker θk and g ∈ π1(C
2−Dk), ψk(g

−1γg) = θk(g)·ψk(γ),
where Sn acts on (Z2/Λk)

n by permuting the factors (i.e., ψk is equivariant).

Proof. Denoting by σ the permutation θk(g), observe that the lifts of g−1γg are
freely homotopic to those of γ, and more precisely that the lift of g−1γg through
pσ(i) is freely homotopic to the lift of γ through pi. Therefore, the σ(i)-th component
of ψk(g

−1γg) is equal to the i-th component of ψk(γ).

Lemma 5.3. Kk ⊂ Kerψk, i.e. ψk factors through the stabilized group.

Proof. Recall from Definition 2.2 that Kk is generated by commutators [γ1, γ2] of
geometric generators that are mapped to disjoint transpositions by θk. If γ1 is a
geometric generator, then n − 2 of its lifts to X are contractible closed loops in
X−Lk −Rk, while the two other lifts are not closed; and similarly for γ2. However,
if θk(γ1) and θk(γ2) are disjoint, then all the lifts of [γ1, γ2] are contractible loops in
X − Lk −Rk; therefore [γ1, γ2] ∈ Kerψk.
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It is worth noting that, similarly, if γ1 and γ2 are geometric generators mapped by
θk to adjacent (non-commuting) transpositions, then (γ1γ2γ1)(γ2γ1γ2)

−1 ∈ Kerψk

(only one of the lifts of this loop is possibly non-trivial, but its algebraic linking
numbers with Lk and Rk are both equal to zero).

Lemma 5.4. For any γ ∈ Ker θk, the n-tuple ψk(γ) = ((λi, ρi))1≤i≤n has the prop-
erty that (

∑

λi,
∑

ρi) ≡ (0, δk(γ)) mod Λk.

Proof. γ ∈ π1(C
2 −Dk) is homotopically trivial in C2, so there exists a topological

disk ∆ ⊂ C2 such that ∂∆ = γ. Now observe that ∂(f−1
k (∆)) =

∑

γi; therefore
(
∑

λi,
∑

ρi) is equal (mod Λk) to the algebraic intersection numbers of f−1
k (∆)

with Lk and Rk. We have f−1
k (∆) · Lk = 0 since f−1

k (∆) ⊂ f−1
k (C2) = X − Lk, and

f−1
k (∆) ·Rk = ∆ ·Dk = δk(γ).

Lemma 5.5. For any geometric generator γ ∈ Γk, ψk(γ
2) = ((λi, ρi))1≤i≤n is given

by (λi, ρi) = (0, 1) if i is one of the two indices exchanged by the transposition θk(γ),
and (λi, ρi) = (0, 0) otherwise.

Proof. All lifts of γ2 are homotopically trivial, except for two of them which are
freely homotopic to each other and circle once around the ramification curve Rk.

Lemma 5.6. There exist two geometric generators γ1, γ2 ∈ Γk such that θk(γ1) =
θk(γ2) and ψk(γ1γ2) = ((−1, 0), (1, 2), (0, 0), . . . , (0, 0)).

Proof. Consider a generic line ` ⊂ CP2 intersecting Dk transversely in d = degDk

points, and let Σ = f−1
k (L). The restriction fk|Σ : Σ → ` = CP1 is a connected

simple branched cover of degree n with d branch points, with monodromy described
by the morphism θk ◦ i∗ : π1(` − {d points}) → Sn. It is a classical fact that the
moduli space of all connected simple branched covers of CP1 with fixed degree
and number of branch points is connected, i.e. up to a suitable reordering of the
branch points we can assume that the monodromy of fk|Σ is described by any given
standard Sn-valued morphism.

So we can find an ordered system of generators γ1, . . . , γd of the free group
π1(` ∩ (C2 − Dk)) such that θk(γ1) = θk(γ2) = (12) and all the other transposi-
tions θk(γi) for i ≥ 3 are elements of Sn−1 = Aut {2, . . . , n}. The loop γ1γ2 then
belongs to Ker θk, and admits only two non-trivial lifts g1 and g2 in Σ, those which
start in the first two sheets of the branched cover. The loops g1 and g2 bound a
topological annulus A which intersects Rk in two points (projecting to the first two
intersection points of ` with Dk). This annulus separates Σ into two components, a
“large” component consisting of the sheets numbered from 2 to n, and a disk ∆ cor-
responding to the first sheet of the cover, which does not intersect Rk but contains
one of the n preimages of the intersection point of ` with the line at infinity in CP2.
The lift g1 bounds ∆ with reversed orientation; since ∆ ·Rk = 0 and ∆ ·Lk = 1, the
first component of ψk(γ1γ2) is (−1, 0). The lift g2 bounds ∆ ∪ A; since A · Rk = 2
and A · Lk = 0, the second component of ψk(γ1γ2) is (1, 2).

Proof of Theorem 1.5. By Lemma 5.4, ψk maps the kernel of θ+
k : π1(C

2 − Dk) →
Sn × Z into the subgroup Γ = {(λi, ρi),

∑

λi =
∑

ρi = 0} ' (Z2/Λk) ⊗ Rn of
(Z2/Λk)

n. By Lemma 5.3, ψk factors through the quotient Ker θ+
k /Kk = G0

k(X,ω),
and gives rise to a map φk : G0

k(X,ω) → Γ ' (Z2/Λk)⊗Rn ' (Z2/Λk)
n−1. Since Γ

is abelian, [G0
k, G

0
k] ⊂ Kerφk, so φk factors through the abelianization AbG0

k(X,ω),
as announced in the statement of Theorem 1.5.
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We now show that φk is surjective, i.e. that ψk maps Ker θ+
k onto Γ. First, let

γ and γ′ be two geometric generators of π1(C
2 − Dk) corresponding to adjacent

transpositions in Sn: then γ2γ′−2 ∈ Ker θ+
k , and Lemma 5.5 implies that ψk(γ

2γ′−2)
has only two non-zero entries, one equal to (0, 1) and the other equal to (0,−1).
Recalling from §2 that θk is surjective, and using Lemma 5.2, by considering suitable
conjugates of γ2γ′−2 we can find elements gij of Ker θ+

k such that ψk(gij) has only
two non-zero entries, (0, 1) at position i and (0,−1) at position j.

Next, consider the geometric generators γ1, γ2 given by Lemma 5.6: the ele-
ment γ1γ

−1
2 belongs to Ker θ+

k , and ψk(γ1γ
−1
2 ) = ((−1,−1), (1, 1), (0, 0), . . . , (0, 0)).

Therefore ψk(g12γ1γ
−1
2 ) = ((−1, 0), (1, 0), (0, 0), . . . , (0, 0)). So, using the surjectiv-

ity of θk and Lemma 5.2, we can find elements g′ij of Ker θ+
k such that ψk(g

′
ij) has

only two non-zero entries, (1, 0) at position i and (−1, 0) at position j. We now
conclude that ψk(Ker θ+

k ) = Γ by observing that the 2n − 2 elements ψk(gin) and
ψk(g

′
in), 1 ≤ i ≤ n− 1, generate Γ.

We finish this section by mentioning two conjectures related to Conjecture 1.6.
First of all, we mention that Conjecture 1.6 implies a result about the fundamental
groups of Galois covers associated to branched covers of CP2. More precisely, given
a complex surface X and a generic projection X → CP2 of degree n with branch
curve Dk, the associated Galois cover X̃k is obtained by compactification of the
n-fold fibered product of X with itself above CP2: the complex surface X̃k is a
degree n! cover of CP2 branched along Dk. Moishezon and Teicher have constructed
many interesting examples of complex surfaces by this method, and computed their
fundamental groups (see e.g. [13], [16], [11]). Given an ordered system of geometric
generators γ1, . . . , γd of π1(C

2 −Dk), the fundamental group π1(X̃k) is known to be
isomorphic to the quotient of Ker(θ : π1(C

2−Dk) → Sn) by the subgroup generated
by γ2

1 , . . . , γ
2
d , and

∏

γi (see e.g. [16], §4).
By Lemma 5.5, the elements γ2

i and their conjugates map under ψk to elements
of (Z2/Λk)

n with only two non-trivial entries (0, 1); therefore, assuming Conjec-
ture 1.6, quotienting by all squares of geometric generators leads to quotient-
ing the image of ψk by {(0, ρi),

∑

ρi is even} ⊂ (Z2/Λk)
n. Because of Lemma

5.4, and observing that δk takes only even values on Ker θk, we are left with
only the first factor in each summand Z2/Λk. Moreover, one easily checks that
ψk(
∏

γi) = ((1, 0), (1, 0), . . . , (1, 0)) ≡ ((1, 0), . . . , (1, 0), (1−n, d)) mod Λk; and by
Lemma 5.4, the sum of the first factors is always zero, so we end up with a group
isomorphic to (Zks)

n−2, where ks is the divisibility of Lk in H2(X,Z). Moreover, if
we also assume that property (∗) holds in addition to Conjecture 1.6, it can easily
be checked that the commutator subgroup [G0

k, G
0
k] is contained in the subgroup

generated by the γ2
i . Therefore, we have the following conjecture, satisfied by the

examples in §4:
Conjecture 5.7. If X is a simply connected complex surface and k is large enough,
then the fundamental group of the Galois cover X̃k associated to a generic projection
fk : X → CP2 defined by sections of L⊗k is π1(X̃k) = (Zks)

nk−2, where ks is the
divisibility of Lk in H2(X,Z) and nk = deg fk.

Also, a careful observation of the examples in §4 suggests the following possible
structure for the commutator subgroup [G0

k, G
0
k], which is worth mentioning in spite

of the rather low amount of supporting evidence:
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Conjecture 5.8. If the symplectic manifold X is simply connected and k is large
enough, then the commutator subgroup [G0

k, G
0
k] is isomorphic to Γ1 × Γ2, where

Γ1 = Z2 if X is spin and 1 otherwise, and Γ2 = Z2 if Lk ≡ KX mod 2 and 1
otherwise.

6. Moishezon-Teicher techniques for ruled surfaces

6.1. Overview of Moishezon-Teicher techniques. Moishezon and Teicher have
developed a general strategy, consisting of two main steps [8, 9, 13], in order to com-
pute the group π1(C

2 −D) when D is the branch curve of a generic projection to
CP2 of a given projective surface X ⊂ CPN . First, one computes the braid factor-
ization (see §2) associated to the curve D. This calculation involves a degeneration
of the surface X to a singular configuration X0 consisting of a union of planes in-
tersecting along lines in CPN , and a careful analysis of the “regeneration” process
which produces the generic branch curve D out of the singular configuration [8].
As explained in §2, the braid factorization explicitly provides, via the Zariski-Van
Kampen theorem, a (rather complicated) presentation of the group π1(C

2 − D).
In a second step, one attempts to obtain a simpler description by reorganizing the
relations in a more orderly fashion and by constructing morphisms between sub-
groups of π1(C

2 − D) and groups related to B̃n. This process is carried out in [9]
for the case X ' CP1 × CP1, and in subsequent papers for other examples.

6.1.1. Degenerations and braid monodromy calculations. The starting point of the
calculation is a degeneration of the projective surface X ⊂ CPN to an arrangement
X0 of planes in CPN intersecting along lines. The degeneration process in the case
of manifolds like CP1 × CP1 and CP2 is described in detail in [8]. For example, in
the case of CP1 ×CP1 embedded by the linear system O(p, q), one first degenerates
the surface X of degree 2pq to a sum of q copies of CP1 ×CP1 embedded by O(p, 1)
(each of degree 2p) inside CPN ; then each of these surfaces is degenerated into p
quadric surfaces (CP1 × CP1 embedded by O(1, 1)); finally, each of the pq quadric
surfaces is degenerated into a union of two planes intersecting along a line. The
resulting arrangement can be represented by the diagram in Figure 1.
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Figure 1

Each triangle in the diagram represents a plane. Each edge separating two trian-
gles represents an intersection line Li between the corresponding planes; note that
the outer edges of the diagram are not part of the configuration. The branch curve
for the projection X0 → CP2 is an arrangement of lines in CP2 (the projections of
the various intersection lines Li); however, in the regeneration process each of these
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lines acquires multiplicity 2, and the vertices where two or more lines intersect in
X0 turn into certain standard local configurations.

Therefore the braid factorization for D can be computed by looking at the local
contributions of the various vertices in the diagram. Since the regeneration process
turns a local configuration into a branch curve of degree 2m, where m is the number
of edges meeting at the given vertex, the local contribution of a vertex is naturally
described by a word in the braid group B2m. Moreover, because projecting X0

to CP2 creates extra intersection points between the projections of the lines Li

whenever they do not intersect in X0 (i.e. when they do not correspond to edges
with a common vertex in the diagram), the branch curve D contains a number of
additional nodes besides the local vertex configurations.

The major difficulty is to arrange the various local configurations and the addi-
tional nodes into a single braid factorization describing the curve D: given a linear
projection π : CP2 − {pt} → CP1, one needs to fix a base point in CP1 and to
choose an ordered system of loops in CP1 − critπ|D in order to obtain a braid fac-
torization. This choice determines in particular how the local braid monodromy (in
B2m) for each vertex of the grid is embedded into the braid monodromy of D (in
Bd, d = degD). A careless setup leads to local embeddings B2m ↪→ Bd that may
be extremely difficult to determine.

An important observation of Moishezon is that the construction has sufficient
flexibility to allow the images in CP2 of the various lines and intersection points
to be chosen freely. This makes it possible to use the following very convenient
setup [8]. First choose an ordering of the vertices in the diagram describing X0; for
example, for CP1×CP1 Moishezon chooses an ordering first by row, then by column,
starting from the lower-left corner of the diagram: 00, 10, 20, . . . , 01, 11, . . . , pq.
This determines a lexicographic ordering of the edges of the diagram: observing
that each line Li passes through two vertices vi and v′i (vi < v′i), the ordering is
given by Li < Lj iff either v′i < v′j, or v′i = v′j and vi < vj. It is then possible to
choose a configuration where the projections of the lines Li are given by equations
with real coefficients, with slopes increasing according to the chosen lexicographic
ordering, so that the intersection of the arrangement of lines in CP2 with a real slice
R2 looks as in Figure 2.
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Figure 2

The choice of the slopes of the lines ensures that the intersection points of D
with the reference fiber of π (chosen to be {x = A} for some real number A � 0)
are ordered in the natural way along the real axis, thus yielding a natural set of
geometric generators {γi, γ

′
i} for π1(C

2 − D), as shown on the right of Figure 2;



FUNDAMENTAL GROUPS AND SYMPLECTIC INVARIANTS 235

recall that each line Li has multiplicity 2 and hence yields two generators, and note
that the correct ordering of these generators counterclockwise around the base point
is γ′d/2, γd/2, . . . , γ

′
1, γ1. Moreover, the various vertices of the diagram describing X0

appear, in sequence, for increasing values of x (from left to right).
Since all the contributions to the braid monodromy of D are now localized along

the real x-axis, it is a fairly straightforward task to choose a set of generating loops in
the base CP1 of the fibration π and enumerate accordingly the various contributions
to the braid monodromy ofD (standard configurations at the vertices of the diagram
and extra nodes coming from pairs of edges without a common vertex). Going
through the list of vertices in decreasing sequence (“from right to left”) yields the
simplest formula (Proposition 1 of [8]):

Proposition 6.1 (Moishezon). With the above setup, the braid monodromy of D
is given by the factorization

∏1
i=ν(Ci · Fi), where ν is the number of vertices in the

diagram, Ci is a product of contributions from nodal intersections between parts of D
corresponding to non-adjacent edges, and Fi is the braid monodromy corresponding
to the i-th vertex, obtained as the image of a standard local configuration under
the embedding B2mi

↪→ Bd which maps the standard half-twists generating B2mi
to

half-twists along arcs that remain below the real axis.

Proposition 6.1 makes it fairly simple to obtain a presentation of π1(C
2 − D)

in terms of the “global” generators {γi, γ
′
i}: the nature of the local embeddings

B2m ↪→ Bd implies that the relations coming from each vertex are obtained from
standard “local” relations (determined by the local braid monodromy) simply by
renaming each of the 2m local geometric generators into the corresponding global
generator. Additionally, the extra nodes yield various commutation relations among
geometric generators.

The local configurations for the various types of vertices have been analyzed by
Moishezon in [8], leading to explicit formulas for the local contributions to the braid
factorization. The easiest case is that of “2-points” such as the corner points 00
and pq in the diagram for CP1 ×CP1. The only line that passes through the vertex
locally regenerates to a conic in C2, presenting a single vertical tangency near the
origin; hence the local braid monodromy is a single half-twist in B2, giving rise to an
equality relation between the two corresponding geometric generators of π1(C

2−D).
The next case is that of “3-points” such as those occurring on the boundary of

the diagram for CP1×CP1. During the first step of “regeneration”, which turns X0

into a union of pq quadric surfaces, the lines corresponding to the diagonal edges
are replaced by conics (the branch curve of a bidegree (1, 1) map from CP1 × CP1

to CP2). For the vertices along the top and right sides of the diagram (labelled
pj or iq), the partially regenerated configuration in CP2 therefore consists of a
portion of conic tangent to a line, with the line having the greatest slope; after
further regeneration, the line acquires multiplicity 2 and the tangent intersection is
replaced by three cusps. The local contribution to braid monodromy can therefore
be expressed by the product Z̃3

1′2 · Z3
1′2′ · Z3

1′2 · Ẑ11′ , where the various factors are
powers of half-twists along the paths represented in Figure 3 (cf. [8] and equation
(2.4) in [9]). The first three factors correspond to cusps arising from the tangent
intersection between the conic and the line, while the last factor corresponds to the
vertical tangency of the conic.
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The 3-points on the bottom and left sides of the diagram give rise to a very similar
local configuration, except for the ordering of the various components. Finally, the
interior vertices of the diagram for CP1 × CP1 are all of the same type (“6-points”
in Moishezon’s terminology); a careful analysis of their regeneration yields a certain
braid factorization in B12, accounting for the 6 vertical tangencies, 24 nodes and
24 cusps in the local model, as described in [8]. The local contributions to the
relations defining π1(C

2 − D) have also been calculated by Moishezon for these
various standard models in §2 of [9] (see also below).

6.1.2. Fundamental group calculations. The setup described in §6.1.1 provides an
explicit presentation of π1(C

2 − D) in terms of geometric generators {γi, γ
′
i}, i =

1, . . . , d
2
. By Proposition 6.1, the relations consist on one hand of standard relations

given by local models for the various vertices of the diagram describing the degen-
erated surface X0, and on the other hand of commutation relations coming from
non-adjacent edges of the diagram. The goal is then to simplify this presentation

and ultimately identify π1(C
2 −D) with a certain quotient of B̃

(2)
n (or B̃n n P̃n,0).

In the remainder of this section, we describe the recipes used by Moishezon for the
case X = CP1×CP1, following §3 of [9]; these methods also apply to other complex
surfaces admitting similar degenerations, such as X = CP2 [10] or X = F1 (§6.2).

A first observation of Moishezon is that, after a slight change in the choice of
generators, many of the local relations at the vertices can be expressed in terms
of half of the generators only. More precisely, for each value of i, define a twisting
action ρi on the two generators γi, γ

′
i by the formula ρi(γi) = γ′i and ρi(γ

′
i) = γ′iγiγ

′
i
−1.

Choose integers li satisfying the following compatibility conditions: if i < j are the
labels of the two diagonal edges meeting at a 6-point vertex of the diagram, then
lj = li − 1; if i < j are the labels of the two vertical edges meeting at a 6-point,
then lj = li + 1; finally, if i < j are the labels of the two horizontal edges meeting

at a 6-point, then lj = li. Now let ei = ρli
i (γi) and e′i = ρli

i (γ′i). Because of the
invariance properties of the local models [8], the local relations corresponding to
2-points and 3-points have the same expressions in terms of {ei, e

′
i} as in terms of

{γi, γ
′
i}, independently of the amount of twisting, and those for 6-points are also

independent of the li as long as the compatibility relations hold. On the other hand,
if i1 < · · · < i6 are the labels of the edges meeting at a 6-point (i1 and i6 are the
two diagonal edges), then it is possible to eliminate either ei1 or ei6 from the list of
generators, because the local relations imply that

ei6 = (ei3ei2e
−1
i4
e−1

i5
)−1ei1(ei3ei2e

−1
i4
e−1

i5
).(6.1)

The second important observation of Moishezon is that, in many cases (assuming
the diagram is “large enough”, i.e. in the case of a bidegree (p, q) linear system on
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CP1 × CP1 that p, q ≥ 2), the relations coming from cusps and nodes of D can all
be reformulated into a very nice pattern (cf. Lemma 14 of [9]). If the two edges i
and j bound a common triangle in the diagram, then the local relations at their
common vertex imply that

eiejei = ejeiej, eie
′
jei = e′jeie

′
j, e

′
ieje

′
i = eje

′
iej, and e′ie

′
je

′
i = e′je

′
ie

′
j.(6.2)

Otherwise, if there is no triangle having i and j as edges, or equivalently if the two
transpositions θ(ei) = θ(e′i) and θ(ej) = θ(e′j) ∈ Sn are disjoint, then we have

[ei, ej] = [ei, e
′
j] = [e′i, ej] = [e′i, e

′
j] = 1.(6.3)

Looking at e1, . . . , e d
2
, among which there are only n− 1 independent generators

(by (6.1), many of the ei corresponding to diagonal edges can be expressed in
terms of the others), a first consequence of the relations (6.2–6.3) is the following
(Proposition 8 of [9]):

Lemma 6.2 (Moishezon). In the case of the linear system O(p, q) on CP1 × CP1

(p, q ≥ 2), the subgroup B of π1(C
2 − D) generated by e1, . . . , ed/2 is isomorphic

to a quotient of B̃n (n = 2pq). More precisely, there exists a surjective morphism
α̃ : B̃n → B with the property that each ei is the image of a half-twist in B̃n, and
θ ◦ α̃ = σ (i.e. the end points of the half-twists agree with the transpositions θ(ei)).

We now need to add to this description the other generators e′i, or equivalently
the elements ai = e′ie

−1
i . In the case of CP1 × CP1, we relabel these elements as dij

for the diagonal edge in position ij (1 ≤ i ≤ p, 1 ≤ j ≤ q, see Figure 1), vij for
the vertical edge in position ij (1 ≤ i < p, 1 ≤ j ≤ q), and hij for the horizontal
edge in position ij (1 ≤ i ≤ p, 1 ≤ j < q). We are especially interested in a2 = v11.
Moishezon’s next observation is that, as a consequence of relations (6.2–6.3) and
of the local relations of the lower-left-most 6-point in the diagram, the subgroup
generated by v11 and the conjugates g−1v11g, g ∈ B, is naturally isomorphic to
a quotient of P̃n,0 ([9], Definition 5 and Lemma 17). Moreover, the subgroup of
π1(C

2 −D) generated by the ei and by v11 is similarly isomorphic to a quotient of

the semi-direct product B̃n n P̃n,0, or equivalently (as seen in §4) B̃(2)
n .

The most important relations in π1(C
2 −D) are those coming from the vertical

tangencies of D, which we now list for the various types of vertices. If the edge
labelled i passes through a 2-point, then the local relation ei = e′i can be rewritten
in the form ai = 1. If i < j are the labels of the two edges meeting at a 3-point,
then we have e′i = e−1

j e′j
−1eie

′
jej, or equivalently e′j = e−1

i e′i
−1eje

′
iei. Using (6.2) this

relation can be rewritten as

aj = e−1
i eje

′
ie

−1
j eie

−1
j = e−2

i (eiej)ai(e
−1
j e−1

i )eje
2
i e

−1
j .(6.4)

Finally, if i1 < · · · < i6 are the labels of the edges meeting at a 6-point (according
to the ordering rules, i1 and i6 are diagonal, i2 and i5 are vertical, and i3 and i4 are
horizontal), then, besides (6.1), we also have











ai6 = (ei3ei2e
−1
i4
e−1

i5
)−1ai1(ei3ei2e

−1
i4
e−1

i5
)

ai5 = (e−1
i1
ei3e

−1
i4
ei6)

−1ai2(e
−1
i1
ei3e

−1
i4
ei6)

ai4 = (e−1
i1
ei2e

−1
i5
ei6)

−1ai3(e
−1
i1
ei2e

−1
i5
ei6)

(6.5)
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{

ai3 = (ei3ei1)
−1 ai2ai1(ei1a

−1
i2
e−1

i1
) (ei3ei1)

ai2 = (ei2ei1)
−1 ai3ai1(ei1a

−1
i3
e−1

i1
) (ei2ei1)

(6.6)

A first consequence of relations (6.4–6.6) is that, going inductively through the
various vertices of the grid, all ai can be expressed in terms of the e1, . . . , ed/2 and
of a2 = v11. Therefore π1(C

2 −D) is generated by the ei and by v11; hence it is iso-

morphic to a quotient of B̃
(2)
n . In other words, we have a surjective homomorphism

α : B̃
(2)
n → π1(C

2 −D), extending the morphism α̃ : B̃n → B of Lemma 6.2.

From this point on, the results in §3 make it possible to present Moishezon’s ar-
gument in a simpler and more illuminating way. Observe that by Lemma 6.2 each

ei is the image by α of a half-twist in the diagonally embedded subgroup B̃n ⊂ B̃
(2)
n .

Moreover, it is a general fact about irreducible plane curves that all geometric gen-
erators are conjugate to each other in π1(C

2 −D); therefore each of the geometric

generators ei, e
′
i is the image of a pair of half-twists in B̃

(2)
n . Alternately this can be

seen directly from the above-listed relations; these relations also imply that each
ai belongs to the normal subgroup of pure degree 0 elements α(P̃n,0 × P̃n,0), and
therefore that the half-twists corresponding to the geometric generators e′i have
the correct end points as prescribed by the Sn-valued monodromy representation
morphism θ. Therefore π1(C

2 −D) has the property (*) defined in §3.
In view of Lemmas 3.3 and 3.4, at this point in the argument we can discard all the

relations in π1(C
2−D) coming from nodes and cusps of D since they automatically

hold in quotients of B̃
(2)
n , and focus on the relations (6.4–6.6) instead.

By Lemma 3.2, pairs of half-twists in B̃
(2)
n with fixed end points can be clas-

sified by two integers. More precisely, fix an ordering of the n sheets of the
branched cover f , e.g. from left to right and from bottom to top in the dia-
gram. This provides an ordering of the end points of the half-twists corresponding

to ei and e′i; we can find an element g ∈ B̃
(2)
n such that ei = α(g−1(x1, x1)g),

with ordering of the end points preserved. Then by Lemma 3.2 there exist inte-
gers k and l such that e′i = α(g−1(x1u

−k
1 η−k(−k−1)/2, x1u

−l
1 η

−l(−l−1)/2)g), i.e. ai =
α(g−1(uk

1η
k(k−1)/2, ul

1η
l(l−1)/2)g). One easily checks by Lemma 3.1 that reversing the

ordering of the end points changes k into −k and l into −l.
Since α is a priori not injective, the integers k and l are not necessarily unique, and

there may exist another pair of integers (k′, l′) = (k+κ, l+λ) with the same property,
i.e. such that µ = (uκ

1η
k′(k′−1)/2−k(k−1)/2, uλ

1η
l′(l′−1)/2−l(l−1)/2) ∈ Kerα. If κ is odd,

then the normal subgroup generated by µ contains the commutator of µ with (u2, 1),
which is equal to (η, 1); so (η, 1) ∈ Kerα. If κ is even, then ηk′(k′−1)/2−k(k−1)/2 =
ηκ/2 = ηκ(κ−1)/2 (recall that η2 = 1). Similarly, if λ is odd then (1, η) ∈ Kerα,
otherwise ηl′(l′−1)/2−l(l−1)/2 = ηλ(λ−1)/2. In both cases we arrive to the conclusion
that µ̃ = (uκ

1η
κ(κ−1)/2, uλ

1η
λ(λ−1)/2) ∈ Kerα. In fact, µ and µ̃ generate the same

normal subgroups, so we also have the converse implication.
Therefore the set of all possible values for (κ, λ) forms a subgroup Λ ⊂ Z2; in

fact Λ = {(κ, λ), (uκ
1η

κ(κ−1)/2, uλ
1η

λ(λ−1)/2) ∈ Kerα}, and the pair of integers (k, l) is
only defined mod Λ. So, to ei and e′i we can associate an element āi = (k, l) ∈ Z2/Λ.
This element āi contains all the relevant information about ei and e′i apart from
the end points. Indeed, because of Lemma 3.5, up to composition of α with an
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automorphism of B̃
(2)
n we can assume ei to be the image by α of any given pair

of half-twists with the correct end points. And, by Lemma 3.2, if two half-twists
x, y ∈ B̃n have the same end points, then x2y−2 ∈ {1, η}, so up to a factor of η
the product e′iei = aie

2
i is determined by āi; that ambiguity can in fact be lifted by

arguing that ei and e′i are images of half-twists.
The subgroup Λ can be determined by looking at the relations in π1(C

2 − D)
coming from vertical tangencies of D, which determine the kernel of α. We now
reformulate these relations in terms of the āi. First, at a 2-point, the relation ai = 1
becomes āi = (0, 0). What happens at a 3-point depends on the ordering of the
sheets of f (i.e., of the triangles of the diagram): the relation (6.4) becomes

±āi + ±āj = (1, 1),(6.7)

where the first sign is + if the triangle T which has both i and j among its edges
comes after the other triangle bounded by the edge i and − otherwise, and the
second sign is + if T comes after the other triangle bounded by the edge j and −
otherwise. In the case of a 6-point with the standard ordering used by Moishezon,
(6.5) and (6.6) become

āi6 = āi1 , āi5 = āi2 , āi4 = āi3 , āi1 − āi2 + āi3 = 0.(6.8)

In the case of CP1 × CP1, denoting by d̄ij, v̄ij and h̄ij the elements of Z2/Λ
corresponding to dij, vij and hij, the relations become (listing the vertices from left
to right and bottom to top): d̄1,1 = (0, 0), v̄i,1 − d̄i+1,1 = (1, 1), h̄1,j + d̄1,j+1 = (1, 1);
d̄i+1,j+1 = d̄i,j , v̄i,j+1 = v̄i,j, h̄i+1,j = h̄i,j, d̄i,j − v̄i,j + h̄i,j = 0; −d̄p,j − h̄p,j = (1, 1),
d̄i,q − v̄i,q = (1, 1), d̄p,q = (0, 0). Moreover, by construction v̄11 = (0, 1) (because v11

was identified to a generator of P̃n,0).
Working inductively from the lower-left corner of the diagram, these equations

yield the formulas

d̄i,j = (j − i, 0), v̄i,j = (1 − i, 1), h̄i,j = (1 − j, 1)(6.9)

(compare with Proposition 10 of [9], recalling that the identification between B̃n n

P̃n,0 and B̃
(2)
n is given by (x, u) 7→ (x, xu)). Moreover, we are left with the relations

(p − 1,−1) = (1, 1) and (q − 1,−1) = (1, 1). In other words, Λ is the subgroup of
Z2 generated by (2 − p, 2) and (2 − q, 2).

Because all relations in π1(C
2 −D) coming from vertical tangencies correspond

to equality relations between pairs of half-twists in B̃
(2)
n , by the above remarks

Kerα is the normal subgroup of B̃
(2)
n generated by a certain number of elements of

the form (uκ
1η

κ(κ−1)/2, uλ
1η

λ(λ−1)/2), and therefore it is completely determined by the

subgroup Λ ⊂ Z2. In our case, Kerα is the normal subgroup of B̃
(2)
n generated by

(u2−p
1 η(2−p)(1−p)/2, u2

1η) and (u2−q
1 η(2−q)(1−q)/2, u2

1η). We can now finish the proof of
Theorem 4.1, observing that H0

p,q = (P̃n,0 × P̃n,0)/Kerα. Recalling from Lemma 3.1

that P̃n,0 has commutator subgroup {1, η} ' Z2 and that Ab P̃n,0 ' Zn−1, we have
two cases to consider. First, if e.g. p is odd, then by considering the commutator of
(u2−p

1 η(2−p)(1−p)/2, u2
1η) with (u2, 1) we obtain that (η, 1) ∈ Kerα (and similarly if q

is odd); but one easily checks that (1, η) 6∈ Kerα. On the other hand, if p and q
are both even, then no non-trivial element of C = {1, η} × {1, η} belongs to Kerα.
Therefore, [H0

p,q, H
0
p,q] ' C/(C ∩ Kerα) is isomorphic to Z2 if p or q is odd, and to

Z2×Z2 if p and q are even. Moreover, we have AbH0
p,q ' (P̃n,0× P̃n,0)/〈C,Kerα〉 '
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(Z2/Λ)n−1, which one easily shows to be isomorphic to (Z2⊕Zp−q)
n−1 or (Z2(p−q))

n−1

depending on the parity of p and q. This completes the proof of Theorem 4.1. The
computations for CP2 (Theorem 4.2) and other algebraic surfaces admitting similar
degenerations can be carried out by the same method; for example, the case of the
Hirzebruch surface F1 is treated in §6.2 below.

6.2. The Hirzebruch surface F1. In this section, we prove Theorem 4.5 using
the method outlined in the preceding section. Consider the projective embedding
of F1 defined by sections of the linear system O(pF +qE), p > q ≥ 2 (recall F is the
fiber and E is the exceptional section). This projective surface can be degenerated
in the same manner as the Veronese surface of which it is a blow-up (the projective
embedding of CP2 defined by sections of O(p)), following the procedure described
in §3 of [8]. This surface of degree n = (2p−q)q can be first degenerated into a sum
of q Hirzebruch surfaces, of degrees respectively 2p − 1, 2p − 3, . . . , 2(p − q) + 1.
Each of these Hirzebruch surfaces can then be degenerated into the union of a plane
and a certain number of quadric surfaces, which in turn can each be degenerated
to two planes. The resulting diagram is pictured in the right half of Figure 4.

�
�

�
�

�
�

F1

. . .

F1

→

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

1 2 . . . p

1

...

q

10 20 p-1,0

11 21 p1

qq pq

q q
qq

q
q

q q

Figure 4

One uses the same setup as in §6.1.1, ordering the vertices from left to right
and bottom to top, and the edges accordingly. The braid monodromy is given by
Proposition 6.1. It follows from Moishezon’s work that all vertices correspond to
well-known configurations: the two vertices qq and pq are 2-points, while the other
boundary vertices are 3-points and the interior vertices are 6-points.

As in §6.1.2, one replaces the natural set of geometric generators {γi, γ
′
i} by

twisted generators ei = ρli
i (γi) and e′i = ρli

i (γ′i), where the integers li satisfy the
required compatibility conditions, in order to have (6.1) at all 6-points. Moreover,
relations (6.2) and (6.3) hold for all pairs of edges ((6.2) if the edges bound a
common triangle, (6.3) otherwise), by the same argument as for CP2: the proof of
Lemma 1 of [10] (see also Lemma 14 of [9]) applies almost without modification.

Eliminating redundant diagonal edges as allowed by (6.1), we are left with exactly
n− 1 independent generators among the ei. As in the case of CP1 ×CP1, relations
(6.2) and (6.3) imply that the subgroup B generated by the ei is isomorphic to a
quotient of B̃n, and Lemma 6.2 extends to the case of the Hirzebruch surface F1.

As previously, we let ai = e′ie
−1
i , and we relabel these elements as dij, vij and

hij. We are now interested in a1 = v11 : one can again show that the subgroup
generated by v11 and the conjugates g−1v11g, g ∈ B is isomorphic to a quotient of
P̃n,0, by Lemma 5 of [10] (the argument is the same for F1 as for CP2); the subgroup
of π1(C

2 − D) generated by the ei and by a1 is again isomorphic to a quotient of

B̃n n P̃n,0 ' B̃
(2)
n .
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Relations (6.4–6.6) imply that, going through the various 3-points and 6-points
of the diagram, all the ai can be expressed in terms of e1, . . . , ed/2 and a1 = v11;
therefore π1(C

2 − D) is generated by e1, . . . , ed/2 and a1, so that we again obtain

a surjective morphism α : B̃
(2)
n → π1(C

2 − D). As in the case of CP1 × CP1, the
various geometric generators are images by α of pairs of half-twists with correct end
points, so that property (*) holds once more. Using the classification of half-twists
in B̃n (Lemma 3.2), we can consider pairs of integers āi instead of the elements ai;
once again, the āi are only defined modulo a certain subgroup Λ ⊂ Z2.

The various relations between the āi are now the following: v̄i,1 − d̄i+1,1 = (1, 1),
v̄i,i − h̄i+1,i = (1, 1); d̄i+1,j+1 = d̄i,j , v̄i,j+1 = v̄i,j, h̄i+1,j = h̄i,j, d̄i,j − v̄i,j + h̄i,j = 0;
−d̄p,j − h̄p,j = (1, 1), v̄q,q = (0, 0), d̄i,q − v̄i,q = (1, 1), d̄p,q = (0, 0). Moreover,
v̄1,1 = (0, 1). Therefore, d̄i,j = (2j − 2i + 1, j − i + 1), v̄i,j = (2 − 2i, 2 − i) and
h̄i,j = (1− 2j, 1− j) (compare with Proposition 4 of [10]), and we are left with two
additional relations: (2p− 2, p− 2) = (1, 1) and (2 − 2q, 2 − q) = (0, 0). Therefore,
Λ is the subgroup of Z2 generated by (2p− 3, p− 3) and (2q − 2, q − 2), and Kerα

is the normal subgroup of B̃
(2)
n generated by (u2p−3

1 η(2p−3)(2p−4)/2, up−3
1 η(p−3)(p−4)/2)

and (u2q−2
1 η(2q−2)(2q−3)/2, uq−2

1 η(q−1)(q−2)/2).
Considering the commutator of the first generator with (u2, 1), we obtain that

(η, 1) ∈ Kerα. Moreover, if either p is even or q is odd, then considering the
commutator of one of the generators with (1, u2), we obtain that (1, η) ∈ Kerα.
On the contrary, if p is odd and q is even then (1, η) 6∈ Kerα. We conclude that
[H0

p,q, H
0
p,q] ' C/(C ∩ Kerα) is trivial or isomorphic to Z2 depending on the parity

of p and q, and that AbH0
p,q ' (Z2/Λ)n−1 ' (Z2/〈(p, 3), (q, 2)〉)n−1 ' (Z3q−2p)

n−1.

7. Double covers of CP1 × CP1

In this section, we sketch the proof of Theorem 4.6, which combines the methods
described in §6 with ideas similar to those in [3].

7.1. Generic perturbations of iterated branched covers. Let C be a smooth
algebraic curve of degree (2a, 2b) in Y = CP1 × CP1, and let Xa,b be the double
cover of Y branched along C. Then one can construct a map f 0 : Xa,b → CP2

simply by composing the double cover π : Xa,b → Y with a generic projective map
g : Y → CP2 determined by sections of O(p, q). The map f 0 is not generic : its
ramification curve is the union of the ramification curve of π and the preimage by
π of the ramification curve of g, and so the branch curve D0 of f 0 is the union of
g(C) (with multiplicity 1) and the branch curve Dg of g (with multiplicity 2).

This situation is extremely similar to that considered in [3] for the composition
of a generic map from a symplectic 4-manifold to CP2 with a quadratic map from
CP2 to itself. The local behavior of the map f 0 is generic everywhere except at the
intersection points of C with the ramification curve of g ; assuming that C and g are
chosen generically, a local model for f 0 near these points is (x, y) 7→ (−x2 +y,−y2),
for which a generic local perturbation is given e.g. by (x, y) 7→ (−x2 + y,−y2 + εx)
where ε is a small non-zero constant (cf. also [3]). There are several ways in which
the map f 0 can be perturbed and made generic. If the linear system π∗O(p, q)
is sufficiently ample, then f 0 can be deformed within the holomorphic category
into a generic projective map which no longer factors through the double cover
π. Another possibility, if p and q are sufficiently large, is to use approximately
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holomorphic methods (Theorem 1.1) to deform f 0 into a map with generic local
models (cf. [3]).

In both cases, the effect of the perturbation on the topology of the branch curve
of f 0 is pretty much the same. First, the local model near an intersection point of
C with the ramification curve of g is perturbed as described above (up to isotopy),
which transforms a tangent intersection of g(C) with the branch curve of g in CP2

into a standard configuration with three cusps [3]. Secondly, the two copies of the
branch curve of g, which make up the multiplicity two component of D0, are sepa-
rated and made transverse to each other; this deformation of Dg is performed either
within the holomorphic category or resorting to approximately holomorphic pertur-
bations. In the second case, the perturbation process can be performed in a very
flexible manner, which in some cases may create negative intersections ; restricting
oneself to algebraic perturbations is a convenient way to avoid this phenomenon,
but makes the global perturbation harder to describe explicitly. In any case, up to
isotopy and creation or cancellation of pairs of intersections between the two de-
formed copies of the branch curve of g, the topology of the resulting generic branch
curve D is uniquely determined and can be computed easily from that of D0. In
fact, the approximately holomorphic perturbation process can always be carried
out, even for small values of p and q for which neither the holomorphic construction
nor Theorem 1.1 are able to yield generic projective maps ; in this situation, we can
still study the topology of the curve D, but Theorem 4.6 only describes a “virtual”
generic projective map.

As in §6, the study of the curve D relies on a degeneration process: one first
degenerates the curve C in Y = CP1×CP1 into a union of two sets of parallel lines,
2a along one factor and 2b along the other factor. Parallel lines are then merged, so
that the resulting configuration C0 ⊂ Y consists of only two components, a (1, 0)-
line of multiplicity 2a and a (0, 1)-line of multiplicity 2b. Finally, one degenerates the
projective embedding of Y given by the linear system O(p, q) into an arrangement
Y0 of planes intersecting along lines, as in §6.1. The fully degenerated branch curve
is a union of lines, some of which correspond to the intersections between the planes
in Y0 (each contributing with multiplicity 4, since the branch curve of g is counted
with multiplicity 2), while the others are the images of the p + q components into
which C0 degenerates (some of these components contribute with multiplicity 2a,
others with multiplicity 2b).

The curve D can be recovered from this arrangement of lines by the converse
“regeneration” process, which first yields the union Dg ∪ g(C0) (by deforming Y0

into the smooth surface Y ), then Dg ∪ g(C) = D0 (by separating the multiple
components of C0 and smoothing the resulting curve), and finally D (by performing
the prescribed local perturbation at the intersection points of the two ramification
curves and by perturbing the two copies of Dg in a generic way).

7.2. Braid monodromy calculations. The braid monodromy for the curve Dg ∪
g(C0) (and for the subsequent regenerations D0 and D) can be computed using the
same methods as in §6.1.1. The diagram describing the degenerated configuration
is as represented on Figure 5, which differs from Figure 1 only by the addition of
edges corresponding to C0 along the top and right boundaries of the diagram.

Thanks to Proposition 6.1, we only need to understand the local behavior of the
curves Dg∪g(C0), D

0 and D near the various vertices of the diagram. At all vertices
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except those through which C0 passes (top and right sides of the diagram), the local
description ofDg∪g(C0) andD0 is exactly the same as that ofDg, which has already
been discussed in §6.1 : the various vertices are standard 2-points, 3-points and 6-
points as in Moishezon’s work [9]. Moreover, the local configuration for D at such a
vertex simply consists of two copies of the local configuration for Dg, shifted apart
from each other by a generic translation. The two components, which correspond
to the two preimages of the ramification curve of g under the branched cover π,
may intersect at nodal points of either orientation ; we won’t be overly concerned
by the details of these intersections, since the various possible configurations only
differ by isotopies and creations or cancellations of pairs of nodes, which do not
affect the stabilized fundamental group in any way.

We now consider a vertex along the top boundary of the diagram, at position iq
with 1 ≤ i ≤ p−1. The local configuration for Dg∪g(C0) at such a point is as shown
on Figure 6. The parts labelled 1, 1′, 2, 2′ correspond to Dg, and form a standard
3-point (cf. §6.1.1 and Figure 3), presenting three cusp singularities near the point
A. The parts labelled 3 and 4 correspond to g(C0), obtained by “regeneration” of
the two lines associated to the horizontal edges of the diagram passing through the
vertex. The curve g(C0) presents tangent intersections with the two lines 2 and 2′

near the point B, and with the conic 1, 1′ at the point C. The two intersections of the
line labelled 4 with the conic 1, 1′ in CP2 remain as nodes since the corresponding
curves fail to intersect in Y .

The local description of the curve D0 = Dg ∪ g(C) is obtained from that of
Dg ∪ g(C0) by separating C0 into 2b parallel components ; this yields 2b copies of
the lines labelled 3 and 4 in Figure 6, and the local configuration near the points
B and C becomes as shown in the right half of Figure 6 (the pictures correspond
to the case b = 2). Finally, in order to obtain D we must perturb D0 in the
manner explained in §7.1: the multiplicity two component Dg ⊂ D0 (corresponding
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to the parts labelled 1, 1′, 2, 2′ in Figure 6) is separated into two distinct copies
(in particular the point A is duplicated), while each tangent intersection of g(C)
with Dg (such as those near points B and C) gives rise to three cusps. It is then
possible to write explicitly the local braid monodromy for D, with values in B4b+8

by enumerating carefully the 4b + 2 vertical tangencies, 18b + 6 cusps, and nodes
of the local model (the exact number of nodes depends on the choice of boundary
values for the local perturbation of D0).

In fact, since we only aim to compute stabilized fundamental groups of branch
curve complements, we shall not concern ourselves with the nodes of D, since these
only yield commutation relations which by definition always hold in the stabilized
group. Moreover, for reasons that will be apparent later in the argument, the
cusp points are also of limited relevance for our purposes; those which will play
a role in the argument, namely the six cusps near point A and one of the 12b
cusps near point B of Figure 6, give rise to braid monodromies equal to the cubes
of the half-twists represented in Figure 7. Actually, the truly important informa-
tion is contained in the vertical tangencies, which correspond to the half-twists
τ ′1, . . . , τ

′
2b, τ

′′
1 , . . . , τ

′′
2b, t, t̃ ∈ B4b+8 represented in Figure 8. As in §6.1, the reference

fiber of π is {x = A} for A a large positive real constant, and the chosen generating
paths in the base (x-plane) remain under the real axis except near their end points;
the labels 1, 1′, 2, 2′, 1̃, 1̃′, 2̃, 2̃′ and 31, . . . , 32b, 41, . . . , 42b correspond respectively to
the two copies of Dg and to g(C).

We now turn to vertices along the right boundary of the diagram, at positions pj
with 1 ≤ j ≤ q−1. The local geometric configuration is very similar to that for the
vertices along the top boundary, except for the local description of the curve g(C)
which now involves 2a parallel copies of g(C0) instead of 2b. Another difference
is that, due to the ordering of the vertices and edges of the diagram, the slope of
some of the line components to which g(C) degenerates becomes smaller than that
of some of the components to which Dg degenerates, so that the braid monodromy
has to be calculated again, with results very similar to those above. In fact, it can
easily be checked that, up to a Hurwitz equivalence, the only effect of the change
of ordering on the local braid monodromy is the simultaneous conjugation of all
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contributions by a braid that exchanges the groups of points labelled 2, 2̃, 2′, 2̃′ and
31, . . . , 32a by moving them around each other counterclockwise.

The last vertex that remains to be investigated is the corner vertex at position
pq. The local configuration for D0 = Dg ∪ g(C) is obtained from that represented
in Figure 9 (left) by smoothing the 4ab mutual intersections between the lines
labelled 21, . . . , 22a and 31, . . . , 32b. Indeed, the local configuration for Dg is simply
a conic (labelled 1, 1′ in Figure 9), while g(C0) consists of two lines tangent to that
conic, and g(C) is obtained by “thickening” these two lines into respectively 2a
and 2b components (21, . . . , 22a corresponding to the vertical edge of the diagram,
and 31, . . . , 32b corresponding to the horizontal edge of the diagram) and smoothing
their mutual intersections. The curve D is then obtained from D0 by separating the
multiplicity 2 componentDg into two distinct copies, while each tangent intersection
of Dg with g(C) gives rise to three cusps.

The braid monodromy for the corner vertex can be deduced explicitly from this
description. We are particularly interested in the 8ab+ 2 vertical tangencies of the
local model, for which the corresponding half-twists τij (1 ≤ i ≤ 2a, 1 ≤ j ≤ 2b,
each appearing twice), t and t̃ in B2a+2b+4 are represented in Figure 9 (right).

7.3. Fundamental group calculations. As in §6, the Zariski-Van Kampen theo-
rem provides an explicit presentation of π1(C

2−D) in terms of the braid monodromy.
The main difference is that there are now four generators for each interior edge of
the diagram (Figure 5), because the regeneration process involves two copies of the
branch curve of g; we denote by γi, γ

′
i and γ̃i, γ̃

′
i the four generators corresponding

to the i-th interior edge. Moreover, each edge along the top boundary of the dia-
gram contributes 2b generators (denoted by zi,1, . . . , zi,2b for the horizontal edge in
position iq, where 1 ≤ i ≤ p), and similarly each edge along the right boundary
contributes 2a generators (yj,1, . . . , yj,2a for the vertical edge in position pj, where
1 ≤ j ≤ q).

We are in fact interested in the stabilized quotient G of π1(C
2−D) (see Definition

2.2), which can be expressed in terms of the same generators by adding suitable
commutation relations. Let Γ be the subgroup of G generated by the γi, γ

′
i, and

let Γ̃ be the subgroup generated by the γ̃i, γ̃
′
i. By definition, the elements of Γ

always commute with those of Γ̃, because the images by the geometric monodromy
representation θ of the geometric generators γi, γ

′
i and γ̃i, γ̃

′
i act on two disjoint sets

of n/2 = 2pq sheets of the branched cover f .
As in §6, we introduce twisted generators ei, e

′
i and ẽi, ẽ

′
i for Γ and Γ̃, by choosing

integers li satisfying the same compatibility conditions at the inner vertices as in §6,
and setting as previously ei = ρli

i (γi), e
′
i = ρli

i (γ′i), ẽi = ρ̃li
i (γ̃i) and ẽ′i = ρ̃li

i (γ̃′i), with
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the obvious definition for ρi and ρ̃i. Even though this could be avoided by proving
a suitable invariance property, we will assume that li = 1 for every diagonal edge in
the top-most row or in the right-most column of the diagram (so ei = γ′i, ẽi = γ̃′i),
and lj = 0 for every vertical edge in the top-most row and every horizontal edge in
the right-most column (so ej = γj, ẽj = γ̃j). Finally, as in §6.1 we let ai = e′ie

−1
i and

ãi = ẽ′iẽ
−1
i , and we relabel these elements as dij, vij, hij (resp. d̃ij, ṽij, h̃ij) according

to their position in the diagram.

Lemma 7.1. The subgroup BΓ ⊂ Γ generated by the ei and the subgroup BΓ̃ ⊂ Γ̃

generated by the ẽi are naturally isomorphic to quotients of B̃n/2. Moreover, the

subgroups Γ and Γ̃ of G are naturally isomorphic to quotients of B̃(2)
n/2, with geo-

metric generators corresponding to pairs of half-twists. Furthermore, Γ is generated
by the elements of BΓ and v11, and Γ̃ is generated by the elements of BΓ̃ and ṽ11.

Proof. We first look at relations corresponding to the interior vertices of the diagram
(Figure 5) and to the vertices along the bottom and left boundaries. Since the local
description of D at these vertices simply consists of two superimposed copies of
Dg, and since the generators of Γ commute with those of Γ̃, one easily checks that
the local configurations yield relations among the ei, e

′
i that are exactly identical

to those discussed in §6 in the case of CP1 × CP1; additionally, an identical set of
relations also holds among the ẽi, ẽ

′
i.

Next we consider the local configuration at a vertex along the top boundary of the
diagram, and more precisely the cusp singularities present near the point labelled
A on Figure 6, as pictured on Figure 7. Denoting by i and j respectively the
labels of the diagonal and vertical edges meeting at the given vertex, the relations
corresponding to these six cusps are

γ′iγjγ
′
i = γjγ

′
iγj, γ

′
iγ

′
jγ

′
i = γ′jγ

′
iγ

′
j, γ

′
i(γ

−1
j γ′jγj)γ

′
i = (γ−1

j γ′jγj)γ
′
i(γ

−1
j γ′jγj),(7.1)

γ̃′iγ̃j γ̃
′
i = γ̃j γ̃

′
iγ̃j, γ̃

′
iγ̃

′
j γ̃

′
i = γ̃′j γ̃

′
iγ̃

′
j, γ̃

′
i(γ̃

−1
j γ̃′j γ̃j)γ̃

′
i = (γ̃−1

j γ̃′j γ̃j)γ̃
′
i(γ̃

−1
j γ̃′j γ̃j).

It can easily be checked that these relations satisfy a property of invariance under
twisting similar to that of 3-points. In fact, replacing the various generators by
their images under arbitrary powers of the twisting actions ρi, ρ̃i, ρj, ρ̃j amounts to
a conjugation of the relations (7.1) by braids belonging to the local monodromy
(either the entire local monodromy, or two of the six cusps near A, or combinations
thereof), and thus always yields valid relations.

Therefore, the twisted generators ei, e
′
i, ej, e

′
j of Γ satisfy the relations (6.2), and

similarly for ẽi, ẽ
′
i, ẽj, ẽ

′
j in Γ̃. One easily checks that a similar conclusion holds for

pairs of inner edges meeting at a vertex along the right boundary of the diagram
(recall that the local braid monodromy only differs by a simple conjugation). Fi-
nally, because we are looking at the stabilized fundamental group, the commutation
relations discussed in §6 automatically hold in Γ and Γ̃.

So, except for the equality relations arising from vertical tangencies at the vertices
along the top and right boundaries of the diagram, all the relations described in
§6.1 for the case of CP1 × CP1 simultaneously hold in Γ and in Γ̃. Therefore,
the structure of Γ and Γ̃ can be studied by the same argument as in the case of
CP1 × CP1 ([9], see also §6), which yields the desired result.
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Lemma 7.2. The equality zr,i = zr,1 holds for every 1 ≤ r ≤ p, 1 ≤ i ≤ 2b;
similarly, yr,i = yr,1 for every 1 ≤ r ≤ q, 1 ≤ i ≤ 2a. Moreover, the yr,i and the zr,i

are all conjugates of yq,1 under the action of elements of BΓ and BΓ̃.

Proof. First consider the corner vertex at position pq, and more precisely the half-
twists τij arising from the vertical tangencies of the local model near this vertex
(Figure 9). Denoting by µ the label of the diagonal edge in position pq, the half-
twist τ1i yields the relation (y−1

q,1 . . . y
−1
q,2az

−1
p,1 . . . z

−1
p,i−1)zp,i(zp,i−1 . . . zp,1yq,2a . . . yq,1) =

γ̃′µγ
′
µyq,1γ

′
µ
−1γ̃′µ

−1. It follows that the quantity (z−1
p,1 . . . z

−1
p,i−1)zp,i(zp,i−1 . . . zp,1) is in-

dependent of i, which by an easy induction on i implies that zp,i = zp,1 for all i.
Observing that yq,1, . . . , yq,2a and zp,1, . . . , zp,2b are mapped by θ to disjoint transpo-
sitions and hence commute in G, we in fact have zp,i = γ̃′µγ

′
µyq,1γ

′
µ
−1γ̃′µ

−1 for all i.
Since by assumption the twisting parameter lµ is equal to 1, the generators γ ′µ = eµ

and γ̃′µ = ẽµ belong to BΓ and BΓ̃ respectively. This proves the claims made about
the zp,i.

Similarly comparing the relations corresponding to the half-twists τi1, it can be
seen immediately that the quantity (y−1

q,1 . . . y
−1
q,i−1)yq,i(yq,i−1 . . . yq,1) is independent

of i, which implies that yq,i = yq,1 for all i.
We now proceed by induction : assume that zr+1,i = zr+1,1 for all i, and that

zr+1,1 is a conjugate of yq,1 under the action of BΓ and BΓ̃. Let µ and ν be the
labels of the diagonal and vertical edges meeting at the vertex in position rq,
and let ψr = γ̃′νγ

′
ν γ̃νγν γ̃

′
µγ

′
µγ

−1
ν γ̃−1

ν γ′ν
−1γ̃′ν

−1. Define ζr = ψrγνψ
−1
r , ζ ′r = ψrγ

′
νψ

−1
r ,

ζ̃r = ψrγ̃νψ
−1
r , and ζ̃ ′r = ψrγ̃

′
νψ

−1
r . Recalling that the elements of Γ commute

with those of Γ̃, the relations (7.1) imply that ζ ′r = γ′νγνγ
′
µ(γ−1

ν γ′νγν)γ
′
µ
−1γ−1

ν γ′ν
−1 =

γ′νγν(γ
−1
ν γ′νγν)

−1γ′µ(γ−1
ν γ′νγν)γ

−1
ν γ′ν

−1 = γνγ
′
µγ

−1
ν = γ′µ

−1γνγ
′
µ. Similar calculations

for the other elements yield that

ζr = γ′µ
−1(γ−1

ν γ′νγν)γ
′
µ, ζ̃r = γ̃′µ

−1(γ̃−1
ν γ̃′ν γ̃ν)γ̃

′
µ, ζ

′
r = γ′µ

−1γνγ
′
µ, ζ̃

′
r = γ̃′µ

−1γ̃ν γ̃
′
µ.

(7.2)

Due to the choice of twisting parameters lµ = 1 and lν = 0, ζ ′r ∈ BΓ and ζ̃ ′r ∈ BΓ̃.
Since the zr,i commute with the zr+1,i in G (they are mapped to disjoint trans-

positions by θ), and since by assumption zr+1,i = zr+1,1 for all i, we have

(z−1
r,1 . . . z

−1
r,i z

−1
r+1,1 . . . z

−1
r+1,i−1)zr+1,i(zr+1,i−1 . . . zr+1,1zr,i . . . zr,1) = zr+1,1

for all i. Therefore, the relation arising from the vertical tangency τ ′i (Figure 8) at
the vertex rq can be written in the form

zr+1,1 = ζ̃ ′rζ
′
r(z

−1
r,1 . . . z

−1
r,i−1)zr,i(zr,i−1 . . . zr,1)ζ

′
r
−1ζ̃ ′r

−1.

In particular, the value of (z−1
r,1 . . . z

−1
r,i−1)zr,i(zr,i−1 . . . zr,1) does not depend on i,

which implies that zr,i = zr,1 for all i. Moreover, we have zr,i = ζ ′r
−1ζ̃ ′r

−1zr+1,1ζ̃
′
rζ

′
r.

So, by induction on decreasing values of r, we obtain the desired results about
zr,i. The case of yr,i is handled using exactly the same argument, going inductively
through the vertices along the right boundary of the diagram. Indeed, observe that
the local braid monodromy at one of these vertices simply differs from that at a
vertex along the top boundary by a conjugation which exchanges the positions of two
groups of geometric generators ; however, because the corresponding transpositions
in Sn are disjoint, these generators commute with each other in G, so that the
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relations induced by the local braid monodromy can be expressed in exactly the
same form.

Lemma 7.3. The element ṽ11 belongs to the subgroup of G generated by Γ, BΓ̃, and
yq,1.

Proof. Consider the local relations for the vertex at position 1q, and more precisely
the equality relation corresponding to the half-twist labelled τ ′′1 in Figure 8 : with

the same notations as in the proof of Lemma 7.2, we have z2,1 = ζ−1
1 ζ̃−1

1 z1,1ζ̃1ζ1.
Moreover, the cusp point with monodromy κB

1 pictured on Figure 7 yields the

relation ζ̃1z1,1ζ̃1 = z1,1ζ̃1z1,1. It follows that z2,1 = ζ−1
1 z1,1ζ̃1z

−1
1,1ζ1. Therefore, using

formula (7.2) for ζ̃1, we obtain γ̃ ′ν = γ̃ν γ̃
′
µz

−1
1,1ζ1z2,1ζ

−1
1 z1,1γ̃

′
µ
−1γ̃−1

ν , where µ and ν
are the labels of the two interior edges meeting at the considered vertex.

Observe that, since lν = 0 and lµ = 1, the generators γ̃ν = ẽν and γ̃′µ = ẽµ belong
to BΓ̃. Moreover, it is obvious from (7.2) that ζ1 ∈ Γ. Using the result of Lemma
7.2 to express z1,1 and z2,1 in terms of yq,1, it follows that γ̃ ′ν = ẽ′ν belongs to the
subgroup of G generated by Γ, BΓ̃, and yq,1. Therefore, ṽ1,q = ẽ′ν ẽ

−1
ν also belongs

to this subgroup. Finally, the local relations analogous to (6.5) for the ẽi and ãi

at the vertex in position 1r imply that ṽ1,r and ṽ1,r+1 are conjugates of each other
under the action of elements of BΓ̃. Therefore, by induction ṽ1,1 can be expressed
in terms of ṽ1,q and elements of BΓ̃, which completes the proof.

Lemma 7.4. The subgroup B of G generated by BΓ, BΓ̃ and yq,1 is naturally a

quotient of B̃n, with geometric generators corresponding to half-twists.

Proof. We construct a surjective map α : B̃n → B as follows (recall that n = 4pq).
First observe that the subgroup of B̃n generated by the half-twists x1, . . . , x2pq−1

is naturally isomorphic to B̃n/2, which by Lemma 7.1 admits a surjective homo-
morphism to BΓ mapping half-twists to geometric generators. We use this homo-
morphism to define α(xi) for 1 ≤ i ≤ 2pq − 1. Any two half-twists in B̃n/2 are
conjugate to each other; therefore, after a suitable conjugation we can assume that
α(x2pq−1) = eµ, where µ is the label of the diagonal edge at position pq in the dia-
gram, and that the other α(xi) (i ≤ 2pq − 2) are geometric generators mapped by
θ to transpositions disjoint from θ(yq,1). Because of the stabilization process, this
last requirement implies that α(xi) commutes with yq,1 for i ≤ 2pq − 2.

Similarly, the subgroup of B̃n generated by x2pq+1, . . . , xn−1 is naturally isomor-

phic to B̃n/2 and admits a surjective homomorphism to BΓ̃, which we use to define
α(xi) for 2pq+1 ≤ i ≤ n−1. Once again, without loss of generality we can assume
that α(x2pq+1) = ẽµ and that the other α(xi) commute with yq,1. Finally, we define
α(x2pq) = yq,1.

All that remains to be checked is that α can be made into a group homomor-
phism (obviously surjective by construction), i.e. that the relations defining B̃n are
also satisfied by the chosen images α(xi) in B. Since α is built out of two group
homomorphisms and since the elements of BΓ commute with those of BΓ̃, the only
relations to be checked are those involving x2pq.

Consider the corner vertex at position pq in the diagram: the cusp singular-
ities arising from the regeneration of the rightmost tangent intersection of Dg

with g(C) in Figure 9 imply the relations γ ′
µyq,1γ

′
µ = yq,1γ

′
µyq,1 and γ̃′µyq,1γ̃

′
µ =
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yq,1γ̃
′
µyq,1. Since lµ = 1, we have γ ′µ = eµ and γ̃′µ = ẽµ, so that these rela-

tions can be rewritten as α(x2pq−1)α(x2pq)α(x2pq−1) = α(x2pq)α(x2pq−1)α(x2pq) and
α(x2pq+1)α(x2pq)α(x2pq+1) = α(x2pq)α(x2pq+1)α(x2pq). Finally, for all i such that
|i − 2pq| ≥ 2, the relation [α(x2pq), α(xi)] = 1 holds by construction. Therefore,

α defines a surjective group homomorphism from B̃n to B, mapping half-twists to
geometric generators.

Proposition 7.5. The morphism α extends to a surjective group homomorphism

from B̃
(2)
n ' B̃n n P̃n,0 to G mapping pairs of half-twists to geometric generators.

In particular, the group G has property (∗).
Proof. Lemma 7.2 implies that G is generated by Γ, Γ̃, and yq,1. Therefore, by
Lemma 7.1, G is generated by B, v11 and ṽ11, while Lemma 7.3 implies that ṽ11

can be eliminated from the list of generators. Since Lemma 7.4 identifies B with a
quotient of B̃n, the main remaining task is to check that the subgroup P generated
by the g−1v11g, g ∈ B, is naturally isomorphic to a quotient of P̃n,0. This can be

done by proving that P is a primitive B̃n-group (Definition 5 of [9]), as it follows
from the discussion in §1 of [9] that every such group is a quotient of P̃n,0 (compare

Propositions 1, 2, 3 of [9] with the presentation of P̃n,0 given in Lemma 3.1).
As stated in Lemma 7.1, the arguments of [9] show that the subgroup generated

by the g−1v11g, g ∈ BΓ, is a primitive B̃n/2-group (and hence a quotient of P̃n/2,0).
The desired result about P then follows simply by observing that v11 commutes
with yq,1 and with the generators of BΓ̃ and using a criterion due to Moishezon
(Proposition 6 of [9]); indeed, an obvious corollary of this criterion is that, upon
enlarging the conjugation action from B̃n/2 to B̃n, it is sufficient to check that the
additional half-twist generators act trivially on the given prime element (v11).

Since G is obviously generated by its subgroups B and P , and since P is normal, it

is naturally a quotient of B̃n n P̃n,0 ' B̃
(2)
n . Moreover, the geometric generators of G

are all mutually conjugate (because the curve D is irreducible), and by construction

the ei (and ẽi) correspond to pairs of half-twists in B̃
(2)
n , so the same is true of all

geometric generators. Finally, by going carefully over the construction, it is not
hard to check that the end points of the half-twists (x, y) corresponding to a given
geometric generator γ are always the natural ones, in the sense that σ(x) = σ(y) =
θ(γ). Therefore, G has property (∗).

At this point, the only remaining task in the proof of Theorem 4.6 is to character-

ize the kernel of the surjective morphism α : B̃
(2)
n → G given by Proposition 7.5. As

a consequence of Lemmas 3.3 and 3.4, the commutation relations induced either by
nodes in the branch curve D or by the stabilization process, as well as the relations
induced by the cusp points of D, automatically hold, so that Kerα is generated by
equality relations between pairs of half-twists induced by the vertical tangencies of
D. Moreover, as in §6.1.2 the classification of half-twists in B̃n (Lemma 3.2) allows
us to associate to every ai (resp. ãi) a pair of integers āi (resp. ˜̄ai), well-defined
modulo the subgroup Λ = {(κ, λ), (uκ

1η
κ(κ−1)/2, uλ

1η
λ(λ−1)/2) ∈ Kerα} ⊂ Z2. Recall

however from §6.1.2 that this construction requires us to choose an ordering of the
n = 4pq sheets of the branched cover; in our case, these split into two sets of 2pq
sheets, the first one on which the θ(ei), θ(e

′
i) act by permutations, and the second

one on which the θ(ẽi), θ(ẽ
′
i) act by permutations. The ordering we will consider is
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obtained by enumerating first the first set of 2pq sheets, and then the second one.
In each set, the sheets are naturally in correspondence with the 2pq triangles of the
diagram in Figure 5: the ordering we choose for each of the two sets of 2pq sheets
is obtained as in the case of CP1 × CP1 [9] by enumerating the 2pq triangles of the
diagram from left to right and from bottom to top.

We have seen above that the relations coming from the vertical tangencies at the
inner vertices of the diagram and at those along the lower and left boundaries are
exactly the same as in the case of CP1 × CP1, except they simultaneously apply to
the generators of Γ and to those of Γ̃. Therefore, as in §6.1.2, these relations do not
contribute to Kerα by themselves, but they translate into equalities between the āi

(and similarly between the ˜̄ai), which yield the following formulas (with the obvious

notations) : d̄i,j = ˜̄di,j = (j − i, 0), v̄i,j = ˜̄vi,j = (1 − i, 1), h̄i,j = ˜̄hi,j = (1 − j, 1)
(compare with (6.9)).

Next, we consider the corner vertex at position pq, for which the braid monodromy
contribution of the vertical tangencies is represented in Figure 9. Recall that some
of the half-twists τij were used in the proof of Lemma 7.2 to eliminate yq,2, . . . , yq,2a

and zp,1, . . . , zp,2b from the list of generators by expressing them in terms of yq,1;
however, since these relations imply that yq,i = yq,1 and zp,i = zp,1 (cf. Lemma
7.2), all the other relations coming from the τij become redundant. Therefore these
equality relations do not make any contributions to the kernel of α. We are left
with the two half-twists t, t̃ of Figure 9. Denote by µ the label of the diagonal
edge passing through the corner vertex. Because G has property (∗), and using the
results of §3, we can find an element g ∈ B̃(2)

n such that zp,1 = α(g−1(x1, x1)g), eµ =
γ′µ = α(g−1(x2, x2)g), and yq,1 = α(g−1(x3, x3)g). Recalling that d̄p,q = (q − p, 0)
and observing that the conjugation by g preserves the ordering of the end points
for eµ, by definition of d̄p,q we have e′µ = α(g−1(x2u

p−q
2 η(p−q)(p−q−1)/2, x2)g), and

therefore γµ = e−1
µ e′µeµ = α(g−1(x2u

q−p
2 η(q−p)(q−p−1)/2, x2)g). The half-twist t yields

the relation γµ = z2b
p,1y

2a
q,1γ

′
µy

−2a
q,1 z

−2b
p,1 ; an easy computation shows that the right-hand

side of this relation is equal to α(g−1(x2u
a−b
2 η(a−b)(a−b−1)/2, x2u

a−b
2 η(a−b)(a−b−1)/2)g).

Comparing the two formulas for γµ, we conclude that the relation introduced by
the half-twist t is equivalent to the property that (a − b + p − q, a − b) ∈ Λ. A
similar calculation shows that the relation introduced by t̃ can also be rewritten in
the form (a− b+ p− q, a− b) ∈ Λ.

We now consider the vertex at position rq (1 ≤ r ≤ p− 1), and investigate in the
same manner the equality relations coming from the vertical tangencies τ ′i , τ

′′
i , t, t̃

represented in Figure 8. Recall that the relations induced by τ ′i were used in the

proof of Lemma 7.2 to show that zr,i = ζ ′r
−1ζ̃ ′r

−1zr+1,1ζ̃
′
rζ

′
r and consequently eliminate

the zr,i from the list of generators; these relations are therefore already accounted
for. Next, we turn to the relation induced by τ ′′i , which taking into account that

zr,i = zr,1 and zr+1,i = zr+1,1 can be written in the form zr+1,1 = ζ−1
r ζ̃−1

r zr,1ζ̃rζr.
Using the expression of zr,1 in terms of zr+1,1, this identity can also be expressed

by the commutation relation [zr+1,1, ζ̃
′
rζ

′
rζ̃rζr] = 1. By (7.2), we have ζ̃ ′rζ

′
rζ̃rζr =

e−1
µ ẽ−1

µ ẽ′ν ẽνe
′
νeν ẽµeµ, where µ and ν are the labels of the two interior edges meeting at

position rq. Since zr+1,1 commutes with eµ and ẽµ, the relation can then be rewritten
as [zr+1,1, ẽ

′
ν ẽνe

′
νeν ] = 1. Taking into account the ordering of the sheets of the
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branched cover, an easy calculation in B̃
(2)
n shows that this relation automatically

holds as a consequence of the equality v̄r,q = ˜̄vr,q.
The relation induced by the half-twist t (Figure 8) can be expressed as γµ =

z2b
r,1γ

′
νγνγ

′
µγ

−1
ν γ′ν

−1z−2b
r,1 . Using property (∗) and recalling that d̄r,q = (q − r, 0)

and v̄r,q = (1 − r, 1), we can find g ∈ B̃
(2)
n , preserving the ordering of the end

points for eµ and eν , such that zr,1 = α(g−1(x1, x1)g), γ
′
µ = eµ = α(g−1(x2, x2)g),

γµ = e−1
µ e′µeµ = α(g−1(x2u

q−r
2 η(q−r)(q−r−1)/2, x2)g), γν = eν = α(g−1(x3, x3)g), and

γ′ν = e′ν = α(g−1(x3u
r−1
3 η(r−1)(r−2)/2, x3u

−1
3 η)g). So z2b

r,1γ
′
νγνγ

′
µγ

−1
ν γ′ν

−1z−2b
r,1 is equal

to α(g−1(x2u
2−r−b
2 η(2−r−b)(1−r−b)/2, x2u

2−b
2 η(2−b)(1−b)/2)g). Comparing this with the

expression for γµ, it becomes apparent that the relation induced by t is in fact
equivalent to the condition (q + b − 2, b − 2) ∈ Λ. A similar calculation for the
half-twist t̃ shows that the relation it induces can also be expressed in the form
(q + b− 2, b− 2) ∈ Λ.

Finally, the case of the vertices along the right boundary of the diagram can be
studied by exactly the same argument; the relations corresponding to the vertical
tangencies of the local model can be expressed by the single requirement that (p+
a− 2, a− 2) ∈ Λ.

Therefore, Λ ⊂ Z2 is the subgroup generated by (p + a − 2, a − 2) and (q + b −
2, b − 2), and Kerα is the normal subgroup of B̃

(2)
n generated by the two elements

g1 = (up+a−2
1 ηλ(p+a−2), ua−2

1 ηλ(a−2)) and g2 = (uq+b−2
1 ηλ(q+b−2), ub−2

1 ηλ(b−2)), where
λ(i) = i(i− 1)/2. Observe that G0

p,q = (P̃n,0 × P̃n,0)/Kerα, and recall from Lemma

3.1 that [P̃n,0, P̃n,0] = {1, η} ' Z2 and Ab P̃n,0 ' Zn−1.
We first consider the commutator subgroup [G0

p,q, G
0
p,q] ' C/(C ∩ Kerα), where

C = {1, η}×{1, η}. First of all, if a+ p is odd, then considering the commutator of
g1 with (u2, 1) we obtain that (η, 1) ∈ Kerα, and similarly if b+q is odd; otherwise,
one easily checks that (η, 1) 6∈ Kerα. Moreover, if a is odd, then considering the
commutator of g1 with (1, u2) we obtain that (1, η) ∈ Kerα, and similarly if b is
odd; when a and b are both even, (1, η) 6∈ Kerα. Also, it is easy to check that
Kerα only contains (η, η) if it also contains (η, 1) and (1, η). The claim made in
the statement of Theorem 4.6 about the structure of [G0

p,q, G
0
p,q] follows.

Finally, we have AbG0
p,q ' (P̃n,0 × P̃n,0)/〈C,Kerα〉 ' (Z2/Λ)n−1. Observing that

Z2/Λ = Z2/〈(p + a − 2, a − 2), (q + b − 2, b − 2)〉 ' Z2/〈(p, a − 2), (q, b − 2)〉, this
completes the proof of Theorem 4.6.
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LUTTINGER SURGERY ALONG LAGRANGIAN TORI AND

NON-ISOTOPY FOR SINGULAR SYMPLECTIC PLANE CURVES

D. AUROUX, S. K. DONALDSON, AND L. KATZARKOV

Abstract. We discuss the properties of a certain type of Dehn surgery along
a Lagrangian torus in a symplectic 4-manifold, known as Luttinger’s surgery,
and use this construction to provide a purely topological interpretation of a non-
isotopy result for symplectic plane curves with cusp and node singularities due to
Moishezon [9].

1. Introduction

It is an important open question in symplectic topology to determine whether,
in a given symplectic manifold, all (connected) symplectic submanifolds realizing a
given homology class are mutually isotopic. In the case where the ambient manifold
is Kähler or complex projective, one may in particular ask whether symplectic
submanifolds are always isotopic to complex submanifolds.

The isotopy results known so far rely heavily on the theory of pseudo-holomorphic
curves and on the Gromov compactness theorem [7]. The best currently known re-
sult for smooth curves is due to Siebert and Tian [11], who have proved that smooth
connected symplectic curves of degree at most 17 in CP2, or realizing homology
classes with intersection pairing at most 7 with the fiber class in a S2-bundle over
S2, are always symplectically isotopic to complex curves; this strongly suggests that
symplectic isotopy holds for smooth curves in CP2 and S2-bundles over S2. Isotopy
results have also been obtained for certain singular configurations; e.g., Barraud has
obtained a result for certain arrangements of pseudo-holomorphic lines in CP2 [4].

On the other hand, Fintushel and Stern [6] and Smith [12] have constructed
infinite families of pairwise non-isotopic smooth connected symplectic curves repre-
senting the same homology classes in certain symplectic 4-manifolds. In both cases,
the construction starts from parallel copies of a given suitable embedded curve of
square zero and modifies them by a braiding construction in order to yield con-
nected symplectic curves; the constructed submanifolds are distinguished by the
diffeomorphism types of the corresponding double branched covers, either using
Seiberg-Witten theory in the argument of Fintushel and Stern, or by more topolog-
ical methods in Smith’s argument. It is also worth mentioning that other examples
have recently been obtained by Vidussi using link surgery [15].

These constructions are predated by a result of Moishezon concerning singular
curves with nodes and cusps in CP2 [9]. More precisely, the construction yields
infinite families of inequivalent cuspidal braid monodromies, but as observed by
Moishezon the result can be reformulated in terms of singular plane curves, which
one can in fact assume to be symplectic (cf. e.g. Theorem 3 of [2]). The statement
can be expressed as follows:

253
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Theorem 1.1 (Moishezon [9]). There exists an infinite set N of positive integers
such that, for each m ∈ N , there exist integers ρm, dm and an infinite family of
symplectic curves Sm,k ⊂ CP2 (k ≥ 0) of degree m with ρm cusps and dm nodes,
such that whenever k1 6= k2 the curves Sm,k1 and Sm,k2 are not smoothly isotopic.

In particular, because a finiteness result holds for complex curves, infinitely many
of the symplectic curves Sm,k are not isotopic to any complex curve.

Moishezon’s argument relies on the observation that the fundamental groups
π1(CP2 − Sm,k) are mutually non-isomorphic. However this requires the heavy
machinery of braid monodromy techniques, and in particular the calculation of the
fundamental group of the complement of the branch curve of a generic polynomial
map from CP2 to itself, carried out in [10] (see also [14]) and preceding papers. The
curious reader is referred to §6 of [3] (see also [13]) for an overview of Moishezon-
Teicher braid monodromy techniques.

The aim of this paper is to provide a topological interpretation of Moishezon’s
construction, along with an elementary proof of Theorem 1.1; this reformulation
shows that Moishezon’s result is very similar to those of Fintushel-Stern and Smith,
in the sense that it also reduces to a braiding process where the various constructed
curves are distinguished by the topology of associated branched covers. We also
show that these constructions can be thought of in terms of Luttinger surgery [8]
along Lagrangian tori in a symplectic 4-manifold.

We start by introducing the surgery construction and describing its elementary
properties in §2; its interpretation in terms of braiding constructions for branched
covers is discussed in §3, while Moishezon’s examples are presented in §4.

2. Luttinger surgery along Lagrangian tori

2.1. The surgery construction. Let T be an embedded Lagrangian torus in a
symplectic 4-manifold (X,ω), and let γ be a simple closed co-oriented loop in T .

It is well-known that a neighborhood of T in X can be identified symplectically
with a neighborhood of the zero section in the cotangent bundle T ∗T ' T ×R2 with
its standard symplectic structure. Moreover, T itself can be identified with R2/Z2

in such a way that γ is identified with the first coordinate axis and its co-orientation
coincides with the standard orientation of the second coordinate axis. Denoting by
(x1, x2) the corresponding coordinates on T and by (y1, y2) the dual coordinates in
the cotangent fibers, the symplectic form is given by ω = dx1 ∧ dy1 + dx2 ∧ dy2.

Let r > 0 be such that the set Ur = (R2/Z2)× [−r, r]× [−r, r] ⊂ (R2/Z2)×R2 is
contained in the neighborhood of T over which the identification holds. Choose a
smooth step function χ : [−r, r] → [0, 1] such that χ(t) = 0 for t ≤ − r

3
, χ(t) = 1 for

t ≥ r
3
, and

∫ r

−r
t χ′(t) dt = 0 (this last condition expresses the fact that χ is centered

around t = 0). Given an integer k ∈ Z, define φk : Ur − Ur/2 → Ur − Ur/2 by the
formulas φk(x1, x2, y1, y2) = (x1 +kχ(y1), x2, y1, y2) if y2 ≥ r

2
and φk = Id otherwise.

Because the support of dχ is contained in [− r
3
, r

3
], the map φk is actually a

diffeomorphism of Ur −Ur/2; moreover, φk obviously preserves the symplectic form.
Therefore, we can tentatively make the following definition:
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Definition 2.1. X(T, γ, k) is the manifold obtained from X by removing a small
neighborhood of T and gluing back the standard piece Ur, using the symplecto-
morphism φk to identify the two sides near their boundaries. In other terms,
X(T, γ, k) = (X − Ur/2) ∪φk

Ur.

It can be easily checked that this surgery operation is equivalent to that intro-
duced by Luttinger in [8] to study Lagrangian tori in R4 (see also [5]).

Forgetting about the symplectic structure, the topological description of the con-
struction is that of a parametrized 1/k Dehn surgery (with Lagrangian framing): a
neighborhood T ×D2 of T is cut out, and glued back in place by identifying the two
boundaries via a diffeomorphism of T × S1 that acts trivially on H1(T ) but maps
the homology class of the meridian µ = {pt} × S1 to [µ̃] = [µ] + k[γ].

Observe that the normal bundle to T along γ comes equipped with a natural
framing, so that the loop γ can be pushed away from T in a canonical way (up
to homotopy), which allows us to define the homotopy class of γ in π1(X − T );
comparing the fundamental groups of X and X(T, γ, k) with π1(X − T ), we see
that the surgery operation preserves the fundamental group (resp. first homology
group) whenever γk is homotopically (resp. homologically) trivial in X − T .

The fact that the construction is well-defined symplectically is a consequence of
Moser’s stability theorem. More precisely:

Proposition 2.2. X(T, γ, k) carries a natural symplectic form ω̃, well-defined up
to isotopy independently of the choices made in the construction. Moreover, deform-
ing T among Lagrangian tori and γ ⊂ T by smooth isotopies induces a deformation
(pseudo-isotopy) of the symplectic structure ω̃, and if the symplectic area swept by
γ is equal to zero then this deformation preserves the cohomology class [ω̃] and is
therefore an isotopy.

Proof. Fixing an orientation of T (and therefore of γ), and observing that the iden-
tification of a neighborhood of T with a neighborhood of the zero section in T ∗T
is canonical up to isotopy, the possible choices for coordinate systems over a neigh-
borhood of T differ by isotopies and transformations of the form (x′

1, x
′
2, y

′
1, y

′
2) =

(x1 + nx2, x2, y1, y2 − ny1) for some integer n.
To handle the case of isotopies, thanks to Moser’s stability theorem we only need

to worry about the cohomology class of the symplectic form ω̃ on X̃ = X(T, γ, k).
Because the surgery affects only a neighborhood of T , once a loop δ ⊂ X − Ur

homotopic to the meridian of T in X̃ has been fixed, the cohomology class [ω̃] is
completely determined by the quantity

∫

D
ω̃, where D ⊂ X̃ is a disk such that

∂D = δ and realizing a fixed homotopy class.
Equivalently, if one considers a family depending continuously on a parameter

t ∈ [0, 1], the dependence on t of the cohomology class [ω̃t] is exactly given by
the symplectic area swept in X by the meridian loop µ̃t = φk,t(∂∆), where ∆ =
{(0, 0, y1, y2), y1, y2 ∈ [−r, r]} ⊂ Ur (this is because µ̃t bounds a Lagrangian disk
∆̃t in X̃). Viewing the family of loops µ̃t as a map µ̃ : S1 × [0, 1] → X, we have

[ω̃t] = [ω̃0] +
(

∫

S1×[0,t]

µ̃∗ω
)

PD([T ])

(the sign in this formula depends on the choice of an orientation of S1 × [0, 1]).
However, observing that the loop µt = ∂∆, which coincides with µ̃t on three of
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its four sides, bounds a Lagrangian disk in X and therefore sweeps no area, the
symplectic area swept by µ̃t is the difference between the area swept by the arc
{(0, 0, y1, r), y1 ∈ [−r, r]} and that swept by the arc {(kχ(y1), 0, y1, r), y1 ∈ [−r, r]}.
Using the local expression for the symplectic form and the fact that the function χ
is centered (

∫ r

−r
t χ′(t) dt = 0), one sees that this is equal to k times the symplectic

area swept by the loop {(x1, 0, 0, 0), x1 ∈ [0, 1]}, i.e. by γ. Therefore, as long as
the loop γ is fixed, or that it is moved in such a way that no symplectic area is
swept, we do not need to worry about continuous deformations of the construction
parameters.

Observe that the coordinate change (x′1, x
′
2, y

′
1, y

′
2) = (x1 + nx2, x2, y1, y2 − ny1)

simply amounts to a modification of the shape of the cut-off region inside each fiber
of the cotangent bundle (from a square to a parallelogram), which clearly has no
effect on ω̃ (e.g., by the above isotopy argument). Therefore, to complete the proof
we only need to consider the effect of a simultaneous change of orientation on T and
γ (recall that a co-orientation of γ inside T is fixed); this simply amounts to changing
x1 and y1 into −x1 and −y1, which clearly does not affect the construction.

Additionally, it is straightforward to check that, if γ∗ is the loop γ with the
opposite co-orientation, then X(T, γ∗, k) is symplectomorphic to X(T, γ,−k).
Example. Let φ : Σ → Σ be a symplectomorphism of a Riemann surface (Σ, ωΣ),
and consider the mapping torus Y (φ) = [0, 1] × Σ/(1, x) ∼ (0, φ(x)). The manifold
X = S1 ×Y (φ) fibers over S1 ×S1, with monodromy Id along the first factor and φ
along the second factor, and carries a natural symplectic structure ω = dθ∧dt+ωΣ.
Let γ be any simple closed loop in Σ. By picking a point (θ0, t0) ∈ S1 × S1, we
can embed γ as a closed loop γ̄ = {(θ0, t0)} × γ inside a fiber of X. Observe that
T = S1 × {t0} × γ is an embedded Lagrangian torus in (X,ω), containing γ̄. It is
easy to check that the manifold X(T, γ̄, k) is exactly S1 × Y (τ k ◦ φ), where τ is a
Dehn twist about the loop γ (positive or negative depending on the co-orientation).

2.2. Effect on the canonical class. We now study the effect of the surgery proce-
dure on the canonical class c1(K̃) of X̃ = X(T, γ, k). Although there is in general no
natural identification between H2(X,Z) and H2(X̃,Z) (these two spaces may even
have different ranks), we can compare the two canonical classes c1(K) and c1(K̃)
by means of the relative cohomology groups. Indeed, H2(X,T ) can be identified
with H2(X̃, T ) using excision, and we have long exact sequences

· · · −→ H1(T )
δ−→ H2(X,T )

ι−→ H2(X) −→ H2(T ) −→ · · ·
· · · −→ H1(T )

δ̃−→H2(X̃, T )
ι̃−→ H2(X̃) −→ H2(T ) −→ · · ·

The choice of a trivialization τ of K over T determines a lift ĉ1(K, τ) of c1(K) in
the relative group H2(X,T ): the relative Chern class with respect to the chosen
trivialization.

Observe that the choice of a section σ of the Lagrangian Grassmannian Λ(TX)
over a certain subset of X determines the homotopy class of a trivialization τσ of
K over the same subset: indeed, considering a 2-form θσ such that Ker θσ = σ at
every point, and given any ω-compatible almost-complex structure J , the (2, 0)-
component of θ provides a nowhere vanishing section of K. With this understood,
we can fix homotopy classes of trivializations τT and τ̃T of K and K̃ over a neighbor-
hood of T by considering the family of Lagrangian tori (R2/Z2)×{(y1, y2)} parallel
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to T in either X or X̃ (i.e., the trivialization of the canonical bundle is given by
the (2, 0)-component of dy1 ∧ dy2).

Because the trivializations τT and τ̃T of K and K̃ coincide over the punctured
neighborhood Ur−Ur/2, the relative Chern classes ĉ1(K, τT ) and ĉ1(K̃, τ̃T ) are equal

to each other; therefore, we have c1(K̃) = ι̃(ĉ1(K, τT )). However, if we consider
another trivialization τ of K|T , differing from τT by an element ν ∈ H1(T ), then
we obtain a different lift ĉ1(K, τ) = ĉ1(K, τT ) + δ(ν) of c1(K) in H2(X,T ). It is
important to observe that, even though δ(ν) ∈ H2(X,T ) maps to zero in H2(X),
it does not necessarily lie in the kernel of ι̃ : H2(X̃, T ) → H2(X̃). In fact, ι̃(δ(ν))
precisely measures the obstruction for the trivialization of K̃ determined by τ over
the subset Ur − Ur/2 (i.e., differing from τ̃T by the element δ(ν) in the relative

cohomology) to extend over a neighborhood of T in X̃.
An easy computation yields that ι̃(δ(ν)) = −〈ν, k[γ]〉PD([T ]). Indeed, given any

2-cycle C̃ in X̃, we can find a relative 2-cycle C in (X,T ) representing the same
relative homology class; recalling that the meridians µ and µ̃ differ by k[γ] and
being careful about the orientation of the boundary, one easily checks that [∂C] =
−([C̃] · [T ]) k[γ]. It follows that 〈ι̃(δ(ν)), [C̃]〉 = 〈ν, [∂C]〉 = −〈ν, k[γ]〉 ([C̃] · [T ]),
which yields the desired result. Therefore, we conclude that c1(K̃) = ι̃(ĉ1(K, τT )) =
ι̃(ĉ1(K, τ) − δ(ν)) = ι̃(ĉ1(K, τ)) + k〈ν, [γ]〉PD([T ]).

In the special case where there is a proportionality relation of the form c1(K) =
λ[ω] in H2(X,R), it is of particular interest to study simultaneously the effect of the
surgery construction on the canonical and symplectic classes, by directly considering
c1(K̃)−λ[ω̃] ∈ H2(X̃,R). The assumption on c1(K) allows us choose a (Hermitian)
connection ∇ on the canonical bundle K with curvature 2-form F = −2πiλω. Since
the surgery only affects a neighborhood of T , we can endow K̃ with a (Hermitian)
connection ∇̃ with curvature F̃ that coincides with ∇ outside of Ur/2. As before,
denote by µ̃ = φk(∂∆) the meridian of T in X̃, which bounds a Lagrangian disk ∆̃
in X̃. Then we have c1(K̃) − λ[ω̃] = αPD([T ]), where α = i

2π

∫

∆̃
F̃ .

We use the above-defined trivializations τT and τ̃T ofK and K̃ over neighborhoods
of T in X and X̃. This allows us to write locally the connection on K in the form
∇ = d + 2πiλ(y1 dx1 + y2 dx2) + iβ, where β is a closed 1-form and can therefore
be expressed as β = a1 dx1 + a2 dx2 + dh. The integral of F̃ over ∆̃ is given by the
integral along its boundary µ̃ of the 1-form representing the connection ∇̃ in the
chosen trivialization of K̃, i.e. the holonomy of ∇̃ along µ̃ in the chosen trivialization
(note that the choice of a homotopy class of trivialization allows us to view the
holonomy as iR-valued rather than S1-valued). Since the chosen connections and
trivializations of K and K̃ coincide along µ̃, this is equal to the holonomy of ∇
along µ̃, which is given by the formula

i

∫

µ̃

(2πλy1 + a1) dx1 + (2πλy2 + a2) dx2 + dh = i

∫ r

−r

(2πλy1 + a1) kχ
′(y1) dy1 = ika1.

Observing that ia1 is the holonomy of the flat connection ∇|T along the loop γ in
the given trivialization, we obtain the following:

Definition 2.3. Given a loop δ ⊂ X and a homotopy class of trivializations τ of
the canonical bundle K along δ, we define H(δ, τ) to be the real number such that
the holonomy of ∇ along δ is equal to −2πiH(δ, τ) in the trivialization τ .
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Proposition 2.4. c1(K̃) − λ[ω̃] = k H(γ, τT )PD([T ]).

Remark 2.5. A change of homotopy class of the trivialization τ affects the quan-
tity H(δ, τ) by an integer, while a continuous deformation of the loop δ affects
H(δ, τ) by λ times the symplectic area swept.

3. Luttinger surgery for branched covers

In this section, we consider the case where X is a branched cover of another
symplectic 4-manifold (Y, ωY ), and show that the braiding constructions used by
Fintushel-Stern [6] and Smith [12] are a special case of the surgery described in §2.

Let f : X → Y be a covering map with smooth ramification curve R ⊂ X and
simple branching at the generic points of R, such that the branch curve Σ = f(R)
is a symplectic submanifold of Y , immersed except possibly at complex cusp points.
Recall that X carries a natural symplectic structure (up to isotopy), obtained from
the degenerate 2-form f ∗ωY by adding a small exact perturbation along the rami-
fication curve R. More precisely, the local models for f near the points of R allow
us to construct an exact 2-form α such that, at any point of R, the restriction of
α to the kernel of df is a positive volume form. The form ω = f ∗ωY + εα is then
symplectic for ε > 0 sufficiently small, and its isotopy class does not depend on the
choice of α or ε (see e.g. Proposition 10 of [1] and Theorem 3 of [2]).

Consider a loop a0 contained in the smooth part of Σ, and an annulus V0 ⊂ Σ
forming a neighborhood of a0 in Σ. Locally the manifold Y is a fibration over a
neighborhood U of the origin in R2, with fibers Vz ⊂ Y that are smooth symplectic
annuli for all z ∈ U . This fibration carries a natural symplectic connection, given by
the symplectic orthogonal to Vz at each point. Given a path t 7→ z(t) in U starting at
the origin, for small enough values of t we can consider the loops at ⊂ Vz(t) obtained
by parallel transport of a0, and by construction

⋃

t≥0 at is a smooth Lagrangian
surface in Y .

Assume that, for some value z0 ∈ U − {0}, the symplectic annulus Vz0 is con-
tained in the branch curve Σ. Assume moreover that, by parallel transport along a
certain path t 7→ z(t) joining the origin to z0 in U , we can construct an embedded
Lagrangian annulus A =

⋃

t∈[0,t0] at in Y , such that A∩Σ = ∂A = a0∪at0 ⊂ V0∪Vz0

(see Figure 1). Assume finally that, among the lifts of A, exactly two have boundary
contained in the ramification curve R of the map f in X; these two lifts together
form an embedded torus T ⊂ X, and a suitable choice of the perturbation α of
the pull-back form f ∗ωY ensures that T is Lagrangian. Because there is freedom
in choosing the local fibration and the path z(t), the above assumptions can be

A

Σ(Α,1)Σ

VV0

η

z0

Figure 1. Braiding a symplectic curve along a Lagrangian annulus
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made to hold in a rather wide range of situations, including those considered by
Fintushel-Stern and Smith, but also the examples studied by Moishezon [9].

Choose a smooth arc t 7→ η(t) ∈ at joining the two boundary components of A,
and let γ be the loop in T formed by the two lifts of η with end points lying in R.
Observe that the homotopy class of the loop γ in T does not depend on the choice
of the arc η. Moreover, an orientation of a0 determines a co-orientation of γ in T .

We can perform a braiding construction on the two parallel annuli V0 and Vz0

contained in Σ, twisting them k times around each other along the annulus A for
any given integer k ∈ Z. The process is described by the following local model:
a neighborhood of a0 in Y is diffeomorphic to D2 × [−r, r] × S1, where the factor
D2 corresponds to U and the factor [−r, r] × S1 corresponds to the annuli Vz. The
branch curve Σ can be locally identified with the subset {±u} × [−r, r] × S1 ⊂
D2 × [−r, r] × S1, for some u ∈ D2 − {0}, while the annulus A corresponds to
[−u, u] × {0} × S1. Considering a step function χ : [−r, r] → [0, 1] as in §2, the
twisted curve Σ(A, k) is obtained from Σ by replacing {±u} × [−r, r] × S1 with
{(±u exp(iπkχ(t)), t), t ∈ [−r, r]} × S1. Observe that the construction depends
on the choice of an orientation of the factor [−r, r], or equivalently (because Σ is
symplectic) of an orientation of the loop a0. Moreover, it is easy to check that
the construction can be performed in a way that preserves the symplecticity of the
twisted curve.

Recall that the double cover of D2 branched at the two points ±u is an annulus
S1 × [−r, r]; therefore a local model for X is S1 × [−r, r] × [−r, r] × S1, with the
torus T corresponding to S1 × {0} × {0} × S1 and the loop γ corresponding to
S1 × {0} × {0} × {pt}. Also recall that a half-twist exchanging the two points ±u
in D2 lifts to a Dehn twist of the annulus S1 × [−r, r], i.e. a transformation of the
form (x1, y1) 7→ (x1 + χ(y1), y1). Therefore, if one tries to understand the effect of
the twisting construction on the branched cover X in terms of cutting out the piece
S1× [−r, r]× [−r, r]×S1 and gluing it back in place via a nontrivial diffeomorphism,
the difference between the gluing maps on the two sides S1 × [−r, r] × {±r} × S1

must be the k-th power of a Dehn twist along the first S1 factor; so if e.g. we take
the gluing map to be the identity near S1 × [−r, r]× {−r} × S1, then on the other
side it must map (x1, y1, r, x2) to (x1 + kχ(y1), y1, r, x2).

The topological modification undergone byX is therefore exactly the construction
described in §2. Moreover, the symplectic structure on X(T, γ, k) introduced in
§2 and that obtained from its branched covering structure above (Y, ωY ) coincide
up to isotopy. Indeed, in both cases a neighborhood of T containing the region
modified by the surgery can naturally be described as a symplectic fibration where
the fibers and the base are symplectic annuli (in the model of §2 the base is the
(x2, y2)-plane; in the branched covering model the base is the annulus V0). After
checking that the symplectic structures coincide near the boundaries and that the
two symplectic forms lie in the same cohomology class, we can conclude by means
of Moser’s argument. We obtain the following result:

Proposition 3.1. The branched cover of Y obtained from X by replacing the branch
curve Σ with the twisted curve Σ(A, k) is naturally symplectomorphic to X(T, γ, k).

Note that the construction only depends on the isotopy classes of the loop a0 and
of the arc η, even symplectically; this follows from Proposition 2.2 by observing



260 D. AUROUX, S. K. DONALDSON, AND L. KATZARKOV

that, when the arc η is deformed in Y , the symplectic area swept by γ is always
zero (the areas swept by the two lifts of η exactly compensate each other).

Remark 3.2. When the branch curve Σ contains n > 2 parallel annuli Vzi
, one can

similarly construct modified symplectic surfaces associated to arbitrary elements b
of the braid group Bn. However, decomposing b into a product of the standard
generators of Bn and their inverses (or any other half-twists) and starting from
a suitable collection of disjoint Lagrangian annuli in Y with boundary in Σ, the
general braiding construction easily reduces to an iteration of the elementary process
described above. Therefore, assuming that the braid b is liftable, i.e. compatible
with the branching data of the map f , and that it can be decomposed into liftable
half-twists (note that in the case of a double cover all braids are liftable), we can
describe the effect of the general braiding construction on the symplectic manifold
X as a sequence of Luttinger surgeries along disjoint Lagrangian tori.

The examples studied by Fintushel and Stern [6] show that, in some cases, the
non-triviality of Luttinger surgeries along Lagrangian tori can be proved using
Seiberg-Witten invariants; however in many cases it is possible to conclude by
much more elementary arguments, as shown in §4 for Moishezon’s examples.

We finish this section by observing that, in the context of branched covers, it is
possible to provide a more topological interpretation of the quantity H(γ, τT ) intro-
duced in §2.2 to describe the effect of the surgery on the canonical and symplectic
classes of X in the case where they are proportional to each other.

More precisely, assume that c1(K) = λ[ω] in H2(X,R), where ω is the symplectic
form induced by a branched covering map f : X → Y with smooth ramification
curve R. Assume moreover that [γ] ∈ H1(X,Z) is a torsion element, i.e. m[γ] = 0
for some integer m 6= 0, and let N be a surface with boundary such that ∂N =
γ1 ∪ · · ·∪γm, where the γi are parallel copies of γ all obtained as double lifts of arcs
in Y . Then f∗N is a 2-cycle in Y , and we have the following:

Proposition 3.3. mH(γ, τT ) = (λ[ωY ]− c1(KY )) · [f∗N ]− I(N,R), where I(N,R)
is the algebraic intersection number between R and N , counting the 2m intersection
points that lie on the boundary of N with multiplicity 1/2.

Proof. By definition, mH(γ, τT ) =
∑

H(γi, τT ) can be expressed as the difference of
two terms, one measuring the integral over N of the curvature of the connection ∇
on the canonical bundle KX , and the other measuring the obstruction to extending
the trivialization of KX given over the boundary of N to a trivialization over all
of N (i.e., the relative degree of KX over N with respect to the given boundary
trivialization). By assumption, the first term is proportional to the symplectic area
of N ; observing that the exact perturbation added to f ∗ωY does not contribute to
this area (in fact we could work directly with the degenerate form f ∗ωY ), we obtain
that it is equal to λ[ωY ] · [f∗N ].

In order to compute the relative degree deg(KX , N) of KX over N (the boundary
trivialization is implicit in the notation), we first deform the boundary loops γi

inside X in order to obtain loops γ ′i bounding a surface N ′ in X, disjoint from R,
and C1-close to γi; we can assume that the immersed loops f(γ ′

i) ⊂ Y are in fact
embedded. The trivialization τT naturally induces a trivialization of KX over each
loop γ′i, and the relative degree is unaffected by the operation.
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Recall that the trivialization τT of the canonical bundle over γ is defined by
the Lagrangian plane field given by the tangent spaces to T along γ. Deforming
to γ′i, this corresponds to a Lagrangian plane field generated by two vector fields,
one tangent to γ ′i and the other almost parallel to the normal direction to γ in T .
This trivialization of KX is naturally the lift of a trivialization of KY along f(γ ′i),
determined by two vector fields, the first one v1 tangent to f(γ ′i) and the other v2

pointing in a direction transverse to the arc η inside the Lagrangian annulus A.
Outside of the ramification curve, KX is isomorphic to f ∗KY , and a trivialization

of KY lifts to a trivialization of KX . However, we have in fact c1(KX) = f ∗c1(KY )+
PD([R]), so the relative degree of KX over N ′ differs from that of KY over f∗N

′

by a correction term equal to the algebraic intersection number of R with N ′. On
the other hand, the relative degree of KY over f∗N

′ can be evaluated by observing
that each loop f(γ ′i) bounds a small disk Di in Y (because f(γ ′i) is contained in a
neighborhood of the arc η). Moreover, f∗N

′ −∑Di is a 2-cycle in Y , homologous
to f∗N . Therefore, deg(KY , f∗N

′) = c1(KY ) · [f∗N ] +
∑

deg(KY , Di).
It can be checked explicitly that deg(KY , Di), which measures the obstruction

to extending our trivialization of KY over Di, is equal to −1, 0 or +1 depending
on the chosen perturbation of γi. More precisely, recall from above that Y admits
a local fibration π over an open subset U ⊂ R2 (with fibers the symplectic annuli
Vz). Considering the two vector fields v1 and v2 defining the trivialization of KY

along f(γ ′i), and observing that v2 remains almost parallel to the fibers of π along
f(γ′i) and extends to Di, the relative degree deg(KY , Di) is equal to the rotation
number of the vector field π∗(v1) tangent to the loop π(f(γ ′i)) in U (we can safely
assume that this loop is immersed). Recall that γi is the double lift of an arc
joining two points of the branch curve Σ in Y , and therefore passes through exactly
two points of the ramification curve R. For each of these two points, we have two
inequivalent possibilities for the perturbation of γi into γ′i, towards one side or the
other with respect to R; this yields a contribution of ±1 to the linking number
of f(γ′i) with Σ, and ± 1

2
to the rotation number of π(f(γ ′

i)) in U . It follows that
the possible values of the rotation number are −1, 0, and +1, corresponding to
linking numbers of f(γ ′i) with Σ equal to −2, 0, and +2 respectively. Therefore,
deg(KY , Di) is in all cases equal to half of the intersection number of Di with the
branch curve Σ, which coincides with the local difference between the intersection
numbers I(N,R) and I(N ′, R) (once again, counting boundary intersections with
a coefficient 1/2). As a consequence,

∑

deg(KY , Di) = I(N,R) − I(N ′, R), and
so deg(KX , N) = deg(KY , f∗N

′) + I(N ′, R) = c1(KY ) · [f∗N ] + I(N,R), which
completes the proof.

4. Non-isotopic singular symplectic plane curves

4.1. The manifolds Xp,0. Given two symplectic manifolds Y and Z, both obtained
as branched covers of the same manifold M , and assuming that the branch curves
Dg and Dh of g : Y →M and h : Z →M intersect transversely and positively in M ,
we can construct a new symplectic manifold X = Y ×MZ = {(y, z) ∈ Y ×Z, g(y) =
h(z)}. The manifold X is naturally equipped with two branched covering structures
given by the two projections; considering e.g. the projection onto the first factor,
f : X → Y , we obtain a branched covering map which is simply the pull-back of
h via the map g. In particular, the fiber of f above a point y ∈ Y is naturally
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identified to the fiber of h above the point g(y) ∈ M , the degree of f is equal to
that of h, and its branch curve is D = g−1(Dh).

We consider the case where M = Y = Z = CP2, and g : Y → M is a generic
map defined by three polynomials of degree 3, while h : Z → M is a generic map
defined by three polynomials of degree p ≥ 2. We define Xp,0 = Y ×M Z, and
consider the projection to the first factor, f : Xp,0 → Y = CP2, which is a branched
covering of degree p2. It is worth noting that Xp,0 is in fact a complex surface. Via a
suitable transformation in PGL(3,C), we can assume that, outside of a given fixed
small ball B, the branch curve Dh of the map h lies arbitrarily close to a union of
d = 3p(p−1) lines passing through a single point in CP2 (observe that degDh = d).
The cubic map g can be chosen in such a way that Dg does not intersect the ball B.
The branch curve D = g−1(Dh) of f can then be obtained topologically from the
union of d smooth cubics C1, . . . , Cd ⊂ CP2 lying in a generic pencil, by removing a
small neighborhood of each of the 9 base points where the Ci intersect and replacing
it with a configuration similar to the branch curve of h (or rather to Dh ∩B).

The manifold Xp,0 can also be described as follows. Blow up Y = CP2 at the 9
intersection points of the cubics Ci, in order to obtain the rational elliptic surface
E(1) with twelve singular fibers and nine exceptional sections of square −1. Let
W be the p2-fold cover of E(1) branched along d smooth fibers F1, . . . , Fd (the
proper transforms of the cubics C1, . . . , Cd). The branching pattern of the projection
q : W → E(1) is prescribed by that of the map h, in the sense thatW is the pullback
of the elliptic fibration E(1) over CP1 under the base change map h|S : S → ` = CP1,
where S is the smooth plane curve of degree p obtained as the preimage by h of
a generic line ` ⊂ CP2. In particular, W is the total space of an elliptic fibration
π over the curve S of genus (p − 1)(p − 2)/2, with 12p2 singular fibers and nine
exceptional sections E1, . . . , E9 of square −p2. We can glue a copy of CP2 to W
along each of the exceptional sections Ei, replacing a neighborhood of Ei with the
complement of a smooth degree p curve in CP2. It is easy to check that the resulting
manifold W#∪Ei

9CP2 is diffeomorphic to Xp,0.
Moreover, even though the symplectic structure on W depends on an area pa-

rameter for each exceptional section Ei and hence is naturally defined only up to
deformation equivalence (see below), the identification between W#∪Ei

9CP2 and
Xp,0 can be made to hold at the symplectic level. Indeed, if we perform the symplec-
tic sums along Ei without any loss of symplectic volume, then up to isotopy (and
scaling by a constant factor) the symplectic structure on W#∪Ei

9CP2 no longer
depends on the area parameters (observe that the area of Ei determines the volume
of each CP2 summand); it is not hard to check that this symplectic structure is the
same as that arising from the description of Xp,0 as a complex projective surface.

Normalize the Fubini-Study Kähler form on Y = CP2 so that its cohomology
class is Poincaré dual to the homology class [L] of a line; the natural symplectic
structure ω induced on Xp,0 by the covering map f is then Poincaré dual to the
homology class [H] = [f−1(L)].

Lemma 4.1. The symplectic and canonical classes of Xp,0 are related by the iden-
tity c1(K) = λp[ω] in H2(Xp,0,R), where λp = (6p− 9)/p.

Proof. The ramification curve R of the branched covering f : Xp,0 → Y = CP2 is
the preimage under the projection to the second factor e : Xp,0 = Y ×M Z → Z
of the ramification curve Rh of the degree p polynomial map h : Z → M . The
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curve Rh is a smooth curve of degree 3p − 3 in Z = CP2; in particular, denoting
by [`] the homology class of a line in M = CP2, we have p[Rh] = (3p − 3)[h−1(`)]
in H2(Z,Z). Pulling back by e, we obtain the equality p[R] = (3p− 3)[(h ◦ e)−1(`)]
in H2(Xp,0,Z). Since h ◦ e = g ◦ f , and since [g−1(`)] = 3[L] in H2(Y,Z), we
conclude that p[R] = (9p − 9)[f−1(L)] = (9p − 9)[H]. Since it is a general fact
about branched covers of CP2 that [R] = PD(c1(K)) + 3[H], we conclude that
p(c1(K) + 3[ω]) = (9p− 9)[ω], or equivalently c1(K) = λp[ω].

It is worth noting that, because the symplectic structure on E(1) depends on
the choice of the volumes of the blow-up operations, the symplectic structure on
W depends on the choice of the symplectic areas of the exceptional sections Ei,
and is determined only up to deformation (pseudo-isotopy). The situation that
we naturally want to consider is the limit as the area of Ei and consequently the
symplectic volume of the copy of CP2 glued to W along Ei become very small;
on the level of the branch curve D ⊂ Y , this means that the balls around the
intersection points of the cubics C1, . . . , Cd that we delete and replace with copies
of Dh ∩B are very small.

4.2. The manifolds Xp,k. The branch curve of q : W → E(1) consists of d parallel
elliptic curves F1, . . . , Fd (fibers of E(1)), and similarly the branch curve of f :
Xp,0 → CP2 is obtained from d cubics C1, . . . , Cd in a pencil by a modification near
the base points. Therefore, as discussed in §3 we can construct a Lagrangian annulus
A in E(1) (or CP2) that lifts to a Lagrangian torus T in W or Xp,0, and Luttinger
surgery along T amounts to braiding the branch curve along the annulus A.

We start with the observation that the d branch points z1, . . . , zd of the simple
branched cover h|S : S → CP1 can be grouped into pairs of points with matching
branching data; this can be done in many ways, and in fact amounts to the choice
of a degeneration of S to a nodal curve with p2 rational components intersecting in
a total of d/2 points. In particular, we can assume that one of the components of
the degenerated curve intersects only once with the others; or equivalently, we can
find two branch points of h|S, e.g. z1 and z2, and an arc η0 joining them in CP1, such
that the union of two lifts of η0 forms a closed curve γ0 ⊂ S that separates S into
two components, one of genus 0 consisting of only one sheet of h|S, and the other
of genus (p − 1)(p − 2)/2 consisting of the remaining p2 − 1 sheets. Equivalently,
observing that W can be constructed from p2 copies of the elliptic fibration E(1)
by repeatedly performing fiber sums (some of which are self-sums, to increase the
genus of the base), γ0 can also be thought of as a loop in the base S that separates
one of the copies of E(1) from the others.

Let a0 be an arbitrary simple closed loop in the fiber F1 above z1, representing
a non-zero homology class in F1 and avoiding the 9 points where F1 intersects the
exceptional sections of E(1). In fact, the choice made by Moishezon in [9] amounts
to choosing a degeneration of the pencil of cubics containing C1, . . . , Cd so that
each Ci becomes close to a union of three lines in CP2, and taking a0 to be one of
the vanishing cycles for the corresponding degeneration of the fiber F1; but other
choices for a0 are equally suitable. As in §3, use parallel transport above the arc η0

to construct a Lagrangian annulus A ⊂ E(1) joining a0 to a similar loop in the fiber
F2 above z2. Note that we equip E(1) with a symplectic form which coincides with
that of Y outside of a small neighborhood of the exceptional sections; moreover, we
can assume that z1 and z2 are arbitrarily close to each other, so that the construction
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is well-defined and the annulus A remains away from the exceptional sections. In
fact, we could also construct A directly as an embedded Lagrangian annulus joining
the cubics C1 and C2 in Y = CP2.

By construction, the annulus A lifts to an embedded Lagrangian torus T in
W −⋃Ei ⊂ Xp,0, and an embedded arc η ⊂ A which projects to the arc η0 ⊂ CP1

lifts to an embedded loop γ ⊂ T such that π(γ) = γ0 ⊂ S. Let Dp,k = D(A, k)
be the singular plane curve obtained from the branch curve D of f by twisting k
times along the annulus A, and let Xp,k = Xp,0(T, γ, k) be the symplectic manifold
obtained from Xp,0 by twisting k times along the loop γ in the Lagrangian torus
T . By Proposition 3.1, Xp,k is naturally a symplectic branched cover of Y = CP2,
with branch curve Dp,k.

Although the description that we give here is very different from that given by
Moishezon in [9], it is an interesting exercise left to the reader to check that the
two constructions are actually identical. In fact, because the two loops γ0 and a0

can be viewed as vanishing cycles for degenerations of the base and fiber of π, the
operation of partial conjugation of the braid monodromy described by Moishezon
exactly amounts to the braiding construction described in §3.
Lemma 4.2. The homology class [T ] ∈ H2(Xp,k,Z) is not a torsion class. More-
over, if p 6≡ 0 mod 3 or k ≡ 0 mod 3 then [T ] is primitive.

Proof. By Poincaré duality, [T ] is a non-torsion class if and only if we can find a
2-cycle that has non-trivial intersection pairing with T ; this is possible if and only
if the meridian of T represents a torsion class in H1(Xp,k − T,Z).

Recall from §2 that the class [µ̃] of a meridian of T in Xp,k can be expressed as
[µ] + k[γ], where [µ] is the class of a meridian of T in Xp,0; since the complements
of T in Xp,0 and Xp,k are diffeomorphic, it is therefore sufficient to prove that both
[µ] and [γ] are torsion classes in H1(Xp,0 − T,Z).

We first show that [µ] is trivial in H1(Xp,0 − T,Z). Consider an arc ξ0 in CP1

which joins the image z0 of a singular fiber of E(1) to the branch point z1 of h|S and
does not intersect η0 in any other point. Starting from the singular point in the fiber
above z0 and using parallel transport along ξ0, we can construct a (Lagrangian) disk
D ⊂ E(1), lying above ξ0 and with boundary δ contained in the smooth fiber F1

above z1 (δ is the vanishing cycle associated to the chosen singular fiber and the arc
ξ0). If the point z0 and the arc ξ0 are chosen in a suitable way, we can assume that
the intersection number of δ with a0 in F1 is equal to 1 (recall that by assumption
a0 represents a primitive class in H1(F1,Z)), and that the disk D does not intersect
the exceptional sections of E(1). The two lifts via h|S of ξ0 which pass through the
ramification point above z1 form a single arc ξ in S that joins two of the critical
values of the elliptic fibration π : W → S and intersects the loop γ0 transversely
in a single point. Similarly, the disk D lifts to a sphere (of self-intersection −2) in
W −⋃Ei; by construction, the intersection number of this sphere with the torus T
is equal to 1. Removing a complement of the intersection with T from the sphere,
we have realized the meridian µ as a boundary in Xp,0 − T , and therefore [µ] = 0.

We next consider the loop γ, which we push away from T by moving it slightly
along the fibers of the elliptic fibration π : W → S. In fact, we can keep moving
γ along the fibers until it lies in a neighborhood of one of the exceptional sections
Ei. Recall that π(γ) = γ0 bounds a disk ∆ in S, corresponding to one of the sheets
of h|S; however, the monodromy of the fibration π along γ0 is not quite trivial, but
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differs from the identity by a Dehn twist around each of the nine points where the
fiber intersects the exceptional sections Ei. In other terms, the normal bundle to
Ei, with its natural trivialization over the boundary γ0, has degree −1 over the disk
∆. Therefore, there is an obstruction to collapsing γ inside W − ⋃Ei, but γ is
homologous to −ν, where ν is a small meridian loop around Ei in W .

In Xp,0, a neighborhood of Ei is replaced by the complement CP2−S of a smooth
plane curve of degree p. Considering a generic line in CP2 and removing neighbor-
hoods of its p intersection points with S, we conclude that −p[ν] is homologically
trivial in Xp,0 − T , and therefore that [γ] is a torsion element in H1(Xp,0 − T,Z),
which completes the proof that [T ] is not torsion in H2(Xp,k,Z).

Another way to look at the loop γ is to view W as a fiber sum of p2 copies of
E(1), with the loop γ0 in the base S separating one of the E(1)’s from the others.
Therefore, W−⋃Ei contains a subset U diffeomorphic to the complement of a fiber
and of the 9 exceptional sections in the rational elliptic surface E(1); the loop γ then
corresponds to the meridian of the removed fiber in U (with reversed orientation).
However, U can be identified with the complement of a smooth cubic in CP2, so
π1(U) = Z/3, and therefore 3[γ] = 0 in H1(Xp,0 − T,Z).

If p 6≡ 0 mod 3, then we conclude that [γ] = 0, and so [µ̃] = [µ] + k[γ] = 0, i.e.
the meridian µ̃ is a boundary in Xp,k − T . Therefore we can find a 2-cycle in Xp,k

which intersects T once, i.e. [T ] is primitive. When p is a multiple of 3, the same
argument holds provided that k is also a multiple of 3.

4.3. Proof of Theorem 1.1. Our strategy to prove Theorem 1.1 is to show that
the manifolds Xp,k are not symplectomorphic to each other by using Proposition
2.4. We start with a computation of the quantity H(γ, τT ) introduced in §2.2 in
the case of the Lagrangian torus T and the loop γ constructed in §4.2:
Lemma 4.3. In Xp,0, we have H(γ, τT ) = (2p− 3)/p.

Proof. We use Proposition 3.3. The ramification curve R of f : Xp,0 → Y = CP2 is
obtained by gluing together the ramification curve of q : W → E(1), which consists
of d = 3p(p − 1) fibers of π, with the ramification curve of a polynomial map of
degree p, i.e. a smooth curve of degree 3p− 3, inside each of the nine copies of CP2

glued to W along the exceptional sections Ei.
Recall from above that the loop γ is homotopic inside W −⋃Ei to a small loop

ν̄ that is the reversed meridian to one of the exceptional sections; this deformation
can be performed without crossing R (except along γ itself). Inside Xp,0, the loop
ν̄ can also be viewed as the meridian of the smooth degree d curve S removed from
CP2 prior to gluing with W ; therefore, taking p copies of ν̄ we obtain the (reversed)
boundary of a punctured line in CP2 − S, which intersects the ramification curve
in 3p − 3 points. Therefore, p copies of γ bound a surface N in Xp,0 such that
I(N,R) = p − (3p − 3) (recall that the 2p boundary intersections only count with
coefficient 1/2). Moreover, because the image by f of CP2 − S is contained in a
small ball around one of the base points of the pencil of cubics on Y , one easily
checks that the homology class [f∗N ] is trivial. Therefore we have pH(γ, τT ) =
−I(N,R) = 2p− 3, which gives the result.

Alternately, remember that W is the fiber sum of p2 copies of E(1), and so
W − ⋃Ei contains a subset U diffeomorphic to the complement of a fiber and
of the 9 exceptional sections in E(1), corresponding to one sheet of the branched
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cover q : W → E(1). Also, γ corresponds to the meridian of the removed fiber in U .
Therefore, three copies of γ bound a punctured line N in U , which does not intersect
the ramification curve anywhere except on the boundary, so I(N , R) = 3; moreover,
one easily checks that f∗N has degree 1 in CP2. Recalling that since Y = CP2 we
have c1(KY ) = −3[ωY ], we obtain 3H(γ, τT ) = (λp + 3) − 3 = λp = (6p − 9)/p,
which again gives the result.

Proposition 4.4. For a fixed value of p 6≡ 0 mod 3, the manifolds Xp,k (k ≥ 0)
are pairwise non-symplectomorphic. The same result remains true for p ≡ 0 mod 3
if we restrict ourselves to values of k that are multiples of 3.

Proof. The manifolds Xp,k are distinguished by the periods of the cohomology class
αp,k = c1(KXp,k

)−λp[ωXp,k
] evaluated on elements of H2(Xp,k,Z). Indeed, by Propo-

sition 2.4 and Lemma 4.3 we have αp,k = k(2p− 3)/p PD([T ]), and by Lemma 4.2
the homology class [T ] ∈ H2(Xp,k,Z) is primitive, so the evaluation of αp,k on integer
homology classes yields all integral multiples of k(2p− 3)/p.

In fact, the difference between the branched covering maps fp,k : Xp,k → Y = CP2

can be seen on a purely topological level, without considering symplectic structures.
Indeed, defining [L] to be the homology class of a line in Y , the cohomology class
of the symplectic form on Xp,k is the Poincaré dual of [f−1

p,k (L)]; and the canonical
class of Xp,k is related to the homology class of the ramification curve R of fp,k

by the formula [Rp,k] = c1(KXp,k
) + 3[f−1

p,k (L)]. Therefore, the cohomology class
αp,k is in fact a smooth invariant of the branched covering structure, and the maps
fp,k : Xp,k → CP2 are not even smoothly isotopic as branched covers.

The branch curves Dp,k are symplectic curves of degree m = 3d = 9p(p − 1) in
CP2, and by construction they all have the same numbers of nodes and cusps (in
fact there are 27(p− 1)(4p− 5) cusps and 27(p− 1)(p− 2)(3p2 + 3p− 8)/2 nodes,
as can be checked e.g. using the Plücker formulas, cf. [9]).

In order to conclude that the curves Dp,k are not smoothly isotopic, we need to
study the possible p2-fold covers of CP2 branched along Dp,k. These are given by
homomorphisms from the fundamental group π1(CP2−Dp,k) to the symmetric group
Sp2 , satisfying certain compatibility relations. Because π1(CP2 − Dp,k) is finitely
generated and Sp2 is a finite group, there are only finitely many such morphisms,
i.e. CP2 admits only finitely many p2-fold covers branched over Dp,k. Because we
have infinitely many inequivalent branched covers Xp,k, we conclude that infinitely
many of the curves Dp,k are not smoothly isotopic. This completes the proof of
Theorem 1.1.

Remark 4.5. The number of p2-fold covers of CP2 branched above Dp,k can be
bounded explicitly by observing that π1(CP2 −Dp,k) is generated by m = degDp,k

small meridian loops, all of which must be mapped to transpositions in Sp2 . How-
ever, the structure of π1(CP2 −Dp,k), as described by Moishezon in [9] using braid
monodromy techniques, implies that there is in fact only one possible branched
covering structure for each of the curves Dp,k as soon as p ≥ 3. It then follows
immediately from the non-isotopy of the branched covers fp,k : Xp,k → CP2 that
the curves Dp,k are all different.

Remark 4.6. The fact that the homology class [T ] fails to be primitive when p ≡ 0
mod 3 and k 6≡ 0 mod 3 is directly related to the first homology groups of the
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manifolds Xp,k. Indeed, whereas it can be easily checked that H1(Xp,k,Z) is trivial
whenever p is not a multiple of 3, it appears that H1(Xp,0,Z) = Z/3 (generated e.g.
by [γ] or by [ν]) when p ≡ 0 mod 3; as a consequence, when p is a multiple of 3
the group H1(Xp,k,Z) is isomorphic to Z/3 for k ≡ 0 mod 3 and trivial otherwise.

Remark 4.7. The construction presented here can be modified in various manners,
e.g. by starting with other pairs of branched covers g : Y → M and h : Z → M ,
or by twisting the branch curves in different ways. This potentially leads to many
more examples of non-isotopic singular symplectic curves in symplectic 4-manifolds.
However, it remains unknown whether it is possible to construct examples of non-
isotopic smooth connected symplectic curves representing a homology class of pos-
itive square inside a given compact symplectic 4-manifold.

Remark 4.8. The relation between our strategy to prove Theorem 1.1 (by compar-
ing the canonical and symplectic classes of the branched covers Xp,k) and the strat-
egy used by Moishezon in [9] (by comparing the fundamental groups π1(CP2−Dp,k))
becomes more apparent if one considers the observations and conjectures made in [3]
about the structure of fundamental groups of branch curve complements. Indeed,
Moishezon’s argument relies on a computation showing that, while the fundamental
group π1(CP2−Dp,0) is always infinite, the groups π1(CP2−Dp,k) are finite as soon
as p ≥ 3 and k 6= 0, and have different ranks for different values of k. On the
other hand, Conjecture 1.6 in [3] states that, at least for “sufficiently ample” sim-
ply connected branched covers of CP2, the fundamental group of the complement
of the branch curve is directly related to the numerical properties of the symplectic
and canonical classes. In particular, it follows from Theorem 1.5 in [3] that, if the
canonical and symplectic classes are proportional to each other, then the fundamen-
tal group of the branch curve complement must be infinite; the converse implication
is conjectured to hold as well (assuming again that the branched cover is simply
connected and “sufficiently ample”). The fact that Theorem 1.1 can be proved
either by considering fundamental groups of complements or numerical relations in
the homology of the branched covers can be considered as additional evidence for
these conjectures.
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