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Abstract. We construct a wide range of symplectic submanifolds in
a compact symplectic manifold as the zero sets of asymptotically holo-
morphic sections of vector bundles obtained by tensoring an arbitrary
vector bundle by large powers of the complex line bundle whose first
Chern class is the symplectic form. We also show that, asymptotically,
all sequences of submanifolds constructed from a given vector bundle
are isotopic. Furthermore, we prove a result analogous to the Lefschetz
hyperplane theorem for the constructed submanifolds.

1. Introduction

In a recent paper [1], Donaldson has exhibited an elementary construc-
tion of symplectic submanifolds of codimension 2 in a compact symplectic
manifold, where the submanifolds are seen as the zero sets of asymptotically
holomorphic sections of well-chosen line bundles. In this paper, we extend
this construction to higher rank bundles as well as one-parameter families,
and obtain as a consequence an important isotopy result.

In all the following, (X,ω) will be a compact symplectic manifold of di-
mension 2n, such that the cohomology class [ ω

2π ] is integral. A compatible
almost-complex structure J and the corresponding riemannian metric g are
fixed. Let L be the complex line bundle on X whose first Chern class is
c1(L) = [ ω

2π ]. Fix a hermitian structure on L, and let ∇L be a hermitian
connection on L whose curvature 2-form is equal to −iω (it is clear that
such a connection always exists).

We will consider families of sections of bundles of the form E ⊗ Lk on
X, defined for all large values of an integer parameter k, where E is any
hermitian vector bundle over X. The connection ∇L induces a connection
of curvature −ikω on Lk, and together with any given hermitian connection
∇E on E this yields a hermitian connection on E ⊗ Lk for any k. We are
interested in sections which satisfy the following two properties :

Definition 1. A sequence of sections sk of E ⊗ Lk (for large k) is said
to be asymptotically holomorphic with respect to the given connections and
almost-complex structure if the following bounds hold :

|sk| = O(1), |∇sk| = O(k1/2), |∂̄sk| = O(1),

|∇∇sk| = O(k), |∇∂̄sk| = O(k1/2).
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Since X is compact, up to a change by a constant factor in the estimates,
the notion of asymptotic holomorphicity does not actually depend on the
chosen hermitian structures and on the chosen connection ∇E . On the
contrary, the connection∇L is essentially determined by the symplectic form
ω, and the positivity property of its curvature is the fundamental ingredient
that makes the construction possible.

Definition 2. A section s of a vector bundle E⊗Lk is said to be η-transverse
to 0 if whenever |s(x)| < η, the covariant derivative ∇s(x) : TxX →
(E ⊗ Lk)x is surjective and admits a right inverse whose norm is smaller

than η−1.k−1/2. A family of sections is transverse to 0 if there exists an
η > 0 such that η-transversality to 0 holds for all large values of k.

In the case of line bundles, η-transversality to 0 simply means that the
covariant derivative of the section is larger than ηk1/2 wherever the section
is smaller than η. Also note that transversality to 0 is an open property :
if s is η-transverse to 0, then any section σ such that |s − σ| < ε and

|∇s − ∇σ| < k1/2ε is automatically (η − ε)-transverse to 0. The following
holds clearly, independently of the choice of the connections on the vector
bundles :

Proposition 1. Let sk be sections of the vector bundles E ⊗ Lk which are
simultaneously asymptotically holomorphic and transverse to 0. Then for all
large enough k, the zero sets Wk of sk are embedded symplectic submanifolds
in X. Furthermore, the submanifolds Wk are asymptotically J-holomorphic,
i.e. J(TWk) is within O(k−1/2) of TWk.

The result obtained by Donaldson [1] can be expressed as follows :

Theorem 1. For all large k there exist sections of the line bundles Lk which
are transverse to 0 and asymptotically holomorphic (with respect to connec-
tions of curvature −ikω on Lk).

Our main result is the following (the extension to almost-complex struc-
tures that depend on t was suggested by the referee) :

Theorem 2. Let E be a complex vector bundle of rank r over X, and let a
parameter space T be either {0} or [0, 1]. Let (Jt)t∈T be a family of almost-
complex structures on X compatible with ω. Fix a constant ε > 0, and
let (st,k)t∈T,k≥K be a sequence of families of asymptotically Jt-holomorphic

sections of E ⊗ Lk defined for all large k, such that the sections st,k and
their derivatives depend continuously on t.
Then there exist constants K̃ ≥ K and η > 0 (depending only on ε, the

geometry of X and the bounds on the derivatives of st,k), and a sequence

(σt,k)t∈T,k≥K̃ of families of asymptotically Jt-holomorphic sections of E⊗L
k

defined for all k ≥ K̃, such that
(a) the sections σt,k and their derivatives depend continuously on t,

(b) for all t ∈ T , |σt,k − st,k| < ε and |∇σt,k −∇st,k| < k1/2ε,
(c) for all t ∈ T , σt,k is η-transverse to 0.
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Note that, since we allow the almost-complex structure on X to depend
on t, great care must be taken as to the choice of the metric on X used for
the estimates on derivatives. The most reasonable choice, and the one which
will be made in the proof, is to always use the same metric, independently
of t (so, there is no relation between g, ω and Jt). However, it is clear from
the statement of the theorem that, since the spaces X and T are compact,
any change in the choice of metric can be absorbed by simply changing the
constants K̃ and η, and so the result holds in all generality.

Theorem 2 has many consequences. Among them, we mention the follow-
ing extension of Donaldson’s result to higher rank bundles :

Corollary 1. For any complex vector bundle E over X and for all large k,
there exist asymptotically holomorphic sections of E ⊗ Lk which are trans-
verse to 0, and thus whose zero sets are embedded symplectic submanifolds
in X. Furthermore given a sequence of asymptotically holomorphic sections
of E ⊗ Lk and a constant ε > 0, we can require that the transverse sections
lie within ε in C0 sense (and k1/2ε in C1 sense) of the given sections.

Therefore, the homology classes that one can realize by this construction
include all classes whose Poincaré dual is of the form [ kω2π ]

r + c1.[
kω
2π ]

r−1 +
. . .+ cr, with c1, . . . , cr the Chern classes of any complex vector bundle and
k any sufficiently large integer.

An important result that one can obtain on the sequences of submanifolds
constructed using Corollary 1 is the following isotopy result derived from
the case where T = [0, 1] in Theorem 2 and which had been conjectured by
Donaldson in the case of line bundles :

Corollary 2. Let E be any complex vector bundle over X, and let s0,k and

s1,k be two sequences of sections of E ⊗ Lk. Assume that these sections
are asymptotically holomorphic with respect to almost-complex structures
J0 and J1 respectively, and that they are ε-transverse to 0. Then for all
large k the zero sets of s0,k and s1,k are isotopic through asymptotically
holomorphic symplectic submanifolds. Moreover, this isotopy can be realized
through symplectomorphisms of X.

This result follows from Theorem 2 by defining sections st,k and almost-
complex structures Jt that interpolate between (s0,k, J0) and (s1,k, J1) in the

following way : for t ∈ [0, 1
3 ], let st,k = (1−3t)s0,k and Jt = J0 ; for t ∈ [13 ,

2
3 ],

let st,k = 0 and take Jt to be a path of compatible almost-complex structures
from J0 to J1 (this is possible since the space of compatible almost-complex
structures is connected) ; and for t ∈ [ 23 , 1], let st,k = (3t−2)s1,k and Jt = J1.
One can then apply Theorem 2 and obtain for all large k and for all t ∈ [0, 1]
sections σt,k that differ from st,k by at most ε/2 and are η-transverse to 0
for some η. Since transversality to 0 is an open property, the submanifolds
cut out by σ0,k and σ1,k are clearly isotopic to those cut out by s0,k and
s1,k. Moreover, the family σt,k gives an isotopy between the zero sets of σ0,k

and σ1,k. So the constructed submanifolds are isotopic. The proof that this
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isotopy can be realized through symplectomorphisms of X will be given in
Section 4.

As a first step in the characterization of the topology of the constructed
submanifolds, we also prove the following statement, extending the result
obtained by Donaldson in the case of the line bundles Lk :

Proposition 2. Let E be a vector bundle of rank r over X, and let Wk be
a sequence of symplectic submanifolds of X constructed as the zero sets of
asymptotically holomorphic sections sk of E⊗L

k which are transverse to 0,
for all large k. Then when k is sufficiently large, the inclusion i : Wk →
X induces an isomorphism on homotopy groups πp for p < n − r, and a
surjection on πn−r. The same property also holds for homology groups.

Section 2 contains the statement and proof of the local result on which
the whole construction relies. Section 3 deals with the proof of a semi-global
statement, using a globalization process to obtain results on large subsets
of X from the local picture. The proofs of Theorem 2 and Corollary 2 are
then completed in Section 4. Section 5 contains miscellaneous results on
the topology and geometry of the obtained submanifolds, including Propo-
sition 2.

Acknowledgments. The author wishes to thank Professor Mikhael
Gromov (IHES) for valuable suggestions and guidance throughout the elab-
oration of this paper, and Professor Jean-Pierre Bourguignon (Ecole Poly-
technique) for his support.

2. The local result

The proof of Theorem 2 relies on a local transversality result for approx-
imatively holomorphic functions, which we state and prove immediately.

Proposition 3. There exists an integer p depending only on the dimension
n, with the following property : let δ be a constant with 0 < δ < 1

2 , and let

σ = δ. log(δ−1)−p. Let (ft)t∈T be a family of complex-valued functions over
the ball B+ of radius 11

10 in Cn, depending continuously on the parameter
t ∈ T and satisfying for all t the following bounds over B+ :

|ft| ≤ 1, |∂̄ft| ≤ σ, |∇∂̄ft| ≤ σ.

Then there exists a family of complex numbers wt ∈ C, depending con-
tinuously on t, such that for all t ∈ T , |wt| ≤ δ, and ft − wt has a first
derivative larger than σ at any point of the interior ball B of radius 1 where
its norm is smaller than σ.

Proposition 3 extends a similar result proved in detail in [1], which cor-
responds to the case where T = {0}. The proof of Proposition 3 is based
on the same ideas as Donaldson’s proof, which is in turn based on consider-
ations from real algebraic geometry following the method of Yomdin [7][3],
with the only difference that we must get everything to depend continuously
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on t. Note that this statement is false for more general parameter spaces
T than {0} and [0, 1], since for example when T is the unit disc in C and
ft(z) = t, one looks for a continuous map t 7→ wt of the disc to itself without
a fixed point, in contradiction with Brouwer’s theorem.

The idea is to deal with polynomial functions gt approximating ft, for
which a general result on the complexity of real semi-algebraic sets gives
constraints on the near-critical levels. This part of the proof is similar to
that given in [1], so we skip the details. To obtain polynomial functions,

we approximate ft first by a continuous family of holomorphic functions f̃t
differing from ft by at most a fixed multiple of σ in C1 sense, using that
∂̄ft is small. The polynomials gt are then obtained by truncating the Taylor
series expansion of f̃t to a given degree. It can be shown that by this method
one can obtain polynomial functions gt of degree d less than a constant times
log(σ−1), such that gt differs from ft by at most c.σ in C1 sense, where c is
a fixed constant (see [1]). This approximation process does not hold on the
whole ball where ft is defined, which is why we needed ft to be defined on
B+ to get a result over the slightly smaller ball B (see Lemmas 27 and 28
of [1]).

For a given complex-valued function h over B, call Yh,ε the set of all
points in B where the derivative of h has norm less than ε, and call Zh,ε the
ε-tubular neighborhood of h(Yh,ε). What we wish to construct is a path wt

avoiding by at least σ all near-critical levels of ft, i.e. consisting of values
that lie outside of Zft,σ. Since gt is within c.σ of ft, it is clear that Zft,σ is
contained in Zt = Zgt,(c+1)σ. However a general result on the complexity of
real semi-algebraic sets yields constraints on the set Ygt,(c+1)σ. The precise

statement which one applies to the real polynomial |dgt|
2 is the following

(Proposition 25 of [1]) :

Lemma 1. Let F : Rm → R be a polynomial function of degree d, and let
S(θ) ⊂ Rm be the subset S(θ) = {x ∈ Rm : |x| ≤ 1, F (x) ≤ 1 + θ}. Then
for arbitrarily small θ > 0 there exist fixed constants C and ν depending
only on the dimension m such that S(0) may be decomposed into pieces
S(0) = S1 ∪ S2 · · · ∪ SA, where A ≤ Cdν , in such a way that any pair of
points in the same piece Sr can be joined by a path in S(θ) of length less
than Cdν .

So, as described in [1], given any fixed t, the set Ygt,(c+1)σ of near-critical
points of the polynomial function gt of degree d can be subdivided into
at most P (d) subsets, where P is a fixed polynomial, in such a way that
two points lying in the same subset can be joined by a path of length at
most P (d) inside Ygt,2(c+1)σ. It follows that the image by gt of Ygt,(c+1)σ is
contained in the union of P (d) discs of radius at most 2(c+1)σP (d), so that
the set Zt of values which we wish to avoid is contained in the union Z+

t of
P (d) discs of radius σQ(d), where Q = 3(c+ 1)P is a fixed polynomial and
d = O(log σ−1).
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If one assumes δ to be larger than σQ(d)P (d)1/2, it follows immediately
from this constraint on Zt that Zt cannot fill the disc D of all complex
numbers of norm at most δ : this immediately proves the case T = {0}.
However, when T = [0, 1], we also need wt to depend continuously on t. For
this purpose, we show that if δ is large enough, D − Z+

t , when decomposed
into connected components, splits into several small components and only
one large component.

Indeed, given a component C of D−Z+
t , the simplest situation is that it

does not meet the boundary of D. Then its boundary is a curve consisting of
pieces of the boundaries of the balls making up Z+

t , so its length is at most
2πP (d)Q(d)σ, and it follows that C has diameter less than πP (d)Q(d)σ.
Considering two components C1 and C2 which meet the boundary of D at
points z1 and z2, we can consider an arc γ joining the boundary of D to
itself that separates C1 from C2 and is contained in the boundary of Z+

t .
Assuming that δ is larger than e.g. 100P (d)Q(d)σ, since the length of γ is at
most 2πP (d)Q(d)σ, it must stay close to either z1 or z2 in order to separate
them : γ must remain within a distance of at most 10P (d)Q(d)σ from one
of them. It follows that there exists i ∈ {1, 2} such that Ci is contained
in the ball of radius 10P (d)Q(d)σ centered at zi. So all components of
D−Z+

t except at most one are contained in balls of radius R(d)σ, for some
fixed polynomial R. Furthermore, the number of components of D − Z+

t is
bounded by a value directly related to the number of balls making up Z+

t ,
so that, increasing R if necessary, the number of components of D − Z+

t is
also bounded by R(d).

Assuming that δ is much larger than R(d)3/2σ, the area πδ2 of D is much
larger than πR(d)3σ2, so that the small components of D−Z+

t cannot fill it,
and there must be a single large component. Getting back to D−Zt, which
was the set in which we had to choose wt, it contains D − Z+

t and differs
from it by at most Q(d)σ, so that, letting U(t) be the component of D−Zt

containing the large component of D − Z+
t , it is the only large component

of D − Zt. The component U(t) is characterized by the property that it is
the only component of diameter more than 2R(d)σ in D − Zt.

So the existence of a single large component U(t) in D−Zt is proved upon
the assumption that δ is large enough, namely larger than σ.Φ(d) where Φ
is a given fixed polynomial that can be expressed in terms of P , Q and R
(so Φ depends only on the dimension n). Since d is bounded by a constant
times log σ−1, it is not hard to see that there exists an integer p such that,
for all 0 < δ < 1

2 , the relation σ = δ. log(δ−1)−p implies that δ > σ.Φ(d).
This is the value of p which we choose in the statement of the proposition,
thus ensuring that the above statements always hold.

Since
⋃

t{t} × Zt is a closed subset of T ×D, the open set U(t) depends
semi-continuously on t : let U−(t, ε) be the set of all points of U(t) at
distance more than ε from Zt ∪ ∂D. We claim that, given any t and any
small ε > 0, for all τ close enough to t, U(τ) contains U−(t, ε). To see this,
we first show for all τ close to t, U−(t, ε) ∩ Zτ = ∅. Assuming that such is
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not the case, one can get a sequence of points of Zτ for τ → t that belong
to U−(t, ε). From this sequence one can extract a convergent subsequence,
whose limit belongs to Ū−(t, ε) and thus lies outside of Zt, in contradiction
with the fact that

⋃

t{t} ×Zt is closed. So U
−(t, ε) ⊂ D−Zτ for all τ close

enough to t. Making ε smaller if necessary, one may assume that U−(t, ε) is
connected, so that for τ close to t, U−(t, ε) is necessarily contained in the
large component of D − Zτ , namely U(τ).

It follows that U =
⋃

t{t}×U(t) is an open connected subset of T×D, and
is thus path-connected. So we get a path s 7→ (t(s), w(s)) joining (0, w(0))
to (1, w(1)) inside U , for any given w(0) and w(1) in U(0) and U(1). We
then only have to make sure that s 7→ t(s) is strictly increasing in order to
define wt(s) = w(s).

Getting the t component to increase strictly is in fact quite easy. Indeed,
we first get it to be weakly increasing, by considering values s1 < s2 of the
parameter such that t(s1) = t(s2) = t and simply replacing the portion of
the path between s1 and s2 by a path joining w(s1) to w(s2) in the connected
set U(t). Then, we slightly shift the path, using the fact that U is open, to
get the t component to increase slightly over the parts where it was constant.
Thus we can define wt(s) = w(s) and end the proof of Proposition 3.

3. The globalization process

3.1. Statement of the result. We will now prove a semi-global result
using Proposition 3. The globalization process we describe here is based on
that used by Donaldson in [1], but a significantly higher amount of work is
required because we have to deal with bundles of rank larger than one. The
important fact we use is that transversality to 0 is a local and open property.

Theorem 3. Let U be any open subset of X, and let E be a complex vector
bundle of rank r ≥ 0 over U . Let (Jt)t∈T be a family of almost-complex
structures on X compatible with ω. Fix a constant ε > 0. Let Wt,k be a
family of symplectic submanifolds in U , obtained as the zero sets of asymp-
totically Jt-holomorphic sections wt,k of the vector bundles E⊗L

k which are
η-transverse to 0 over U for some η > 0 and depend continuously on t ∈ T
(if the rank is r = 0, then we simply define Wt,k = U). Finally, let (σt,k)

be a family of asymptotically Jt-holomorphic sections of L
k which depend

continuously on t. Define U=
k to be the set of all points of U at distance

more than 4k−1/3 from the boundary of U .
Then for some η̃ > 0 and for all large k, there exist asymptotically Jt-

holomorphic sections σ̃t,k of L
k over U , depending continuously on t, and

such that
(a) for all t ∈ T , σ̃t,k is equal to σt,k near the boundary of U ,

(b) |σ̃t,k − σt,k| < ε and |∇σ̃t,k −∇σt,k| < k1/2ε for all t,

(c) the sections (wt,k + σ̃t,k) of (E ⊕ C) ⊗ Lk are η̃-transverse to 0 over
U=
k for all t.
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Basically, this result states that the construction of Theorem 2 can be
carried out, in the line bundle case, in such a way that the resulting sections
are transverse to a given family of symplectic submanifolds.

As remarked in the introduction, the choice of the metric in the statement
of the theorem is not obvious. We choose to use always the same metric g
on X, rather than trying to work directly with the metrics gt induced by ω
and Jt.

3.2. Local coordinates and sections. The proof of Theorem 3 is based
on the existence of highly localized asymptotically holomorphic sections of
Lk near every point x ∈ X. First, we notice that near any point x ∈ X, we
can define local complex Darboux coordinates (zi), that is to say a symplec-
tomorphism from a neighborhood of x in (X,ω) to a neighborhood of 0 in
Cn with the standard symplectic form. Furthermore it is well-known that,
by composing the coordinate map with a (R-linear) symplectic transforma-
tion of Cn, one can ensure that its differential at x induces a complex linear
map from (TxX, Jt) to Cn with its standard complex structure.

Since the almost-complex structure Jt is not integrable, the coordinate
map cannot be made pseudo-holomorphic on a whole neighborhood of x.
However, since the manifold X and the parameter space T are compact,
the Nijenhuis tensor, which is the obstruction to the integrability of the
complex structure Jt on X, is bounded by a fixed constant, and so are its
derivatives. It follows that for a suitable choice of the Darboux coordinates,
the coordinate map can be made nearly pseudo-holomorphic around x, in
the sense that the antiholomorphic part of its differential vanishes at x and
grows no faster than a constant times the distance to x. Furthermore, it is
easy to check that the coordinate map can be chosen to depend continuously
on the parameter t. So, we have the following lemma :

Lemma 2. Near any point x ∈ X, there exist for all t ∈ T complex Dar-
boux coordinates depending continuously on t, such that the inverse ψt :
(Cn, 0) → (X,x) of the coordinate map is nearly pseudo-holomorphic with
respect to the almost-complex structure Jt on X and the canonical complex
structure on Cn. Namely, the map ψt, which trivially satisfies |∇ψt| = O(1)
and |∇∇ψt| = O(1) on a ball of fixed radius around 0, fails to be pseudo-
holomorphic by an amount that vanishes at 0 and thus grows no faster than
the distance to the origin, i.e. |∂̄ψt(z)| = O(|z|), and |∇∂̄ψt| = O(1).

Fix a certain value of the parameter t ∈ T , and consider the hermitian
connections with curvature −ikω that we have put on Lk in the introduction.
Near any point x ∈ X, using the local complex Darboux coordinates (zi) we
have just constructed, a suitable choice of a local trivialization of Lk leads
to the following connection 1-form :

Ak =
k

4

n
∑

j=1

(zjdzj − zjdzj)
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(it can be readily checked that dAk = −ikω).
On the standard Cn with connection Ak, the function defined by s(z) =

exp(−k|z|2/4) satisfies the equation ∂̄Ak
s = 0 and the bound |∇Ak

s| =

O(k1/2). Multiplying this section by a cut-off function at distance k−1/3

from the origin whose derivative is small enough, we get a section s̃ with
small compact support. Since the coordinate map near x has small anti-
holomorphic part where s̃ is large, the local sections s̃ ◦ ψ−1

t of Lk defined
near x by pullback of s̃ through the coordinate map can be easily checked
to be asymptotically holomorphic with respect to Jt and Ak. Thus, for all
large k and for any point x ∈ X, extending s̃ ◦ ψ−1

t by 0 away from x, we
obtain asymptotically holomorphic sections st,k,x of Lk.

Since T is compact, the metrics gt induced on X by ω and Jt differ from
the chosen reference metric g by a bounded factor. Therefore, it is clear
from the way we constructed the sections st,k,x that the following statement
holds :

Lemma 3. There exist constants λ > 0 and cs > 0 such that, given any x ∈
X, for all t ∈ T and large k, there exist sections st,k,x of L

k over X with the
following properties : the sections st,k,x are asymptotically Jt-holomorphic ;
they depend continuously on t ; the bound |st,k,x| ≥ cs holds over the ball

of radius 10k−1/2 around x ; and finally, |st,k,x| ≤ exp(−λk.distg(x, .)
2)

everywhere on X.

3.3. General setup and strategy of proof. In a first step, we wish to
obtain sections σ̃t,k of Lk over U satisfying all the requirements of Theorem
3, except that we replace (c) by the weaker condition that the restriction
of σ̃t,k to Wt,k must be η̂-transverse to 0 over Wt,k ∩ U

−
k for some η̂ > 0,

where U−k is the set of all points of U at distance more than 2k−1/3 from
the boundary of U . It will be shown later that the transversality to 0 of
the restriction to Wt,k ∩U

−
k of σ̃t,k, together with the bounds on the second

derivatives, implies the transversality to 0 of (wt,k + σ̃t,k) over U
=
k .

To start with, we notice that there exists a constant c > 0 such that
Wt,k is trivial at small scale, namely in the ball of radius 10c.k−1/2 around
any point. Indeed, if r = 0 we just take c = 1, and otherwise we use the
fact that wt,k is η-transverse to 0, which implies that at any x ∈ Wt,k,

|∇wt,k(x)| > η.k1/2. Since |∇∇wt,k| < C2.k for some constant C2, defining

c = 1
100η.C

−1
2 , the derivative ∇wt,k varies by a factor of at most 1

10 in the

ball B of radius 10c.k−1/2 around x. It follows that B∩Wt,k is diffeomorphic
to a ball.

In all the following, we work with a given fixed value of k, while keep-
ing in mind that all the constants appearing in the estimates have to be
independent of k.

For fixed k, we consider a finite set of points xi of U
−
k ⊂ U such that the

balls of radius c.k−1/2 centered around xi cover U−k . A suitable choice of
the points ensures that their number is O(kn). For fixed D > 0, this set can
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be subdivided into N subsets Sj such that the distance between two points

in the same subset is at least D.k−1/2. Furthermore, N = O(D2n) can be
chosen independent of k. The precise value of D (and consequently of N)
will be determined later in the proof.

The idea is to start with the sections σt,k of Lk and proceed in steps.

Let Nj be the union of all balls of radius c.k−1/2 around the points of
Si for all i < j. During the j-th step, we start from asymptotically Jt-
holomorphic sections σt,k,j which satisfy conditions (a) and (b), and such
that the restriction of σt,k,j to Wt,k is ηj-transverse to 0 over Wt,k ∩Nj , for
some constant ηj independent of k. For the first step, this requirement is
void, but we choose η0 = ε

2 in order to obtain a total perturbation smaller
than ε at the end of the process. We wish to construct σt,k,j+1 from σt,k,j
by subtracting small multiples ct,k,xst,k,x of the sections st,k,x for x ∈ Sj , in
such a way that the restrictions of the resulting sections are ηj+1-transverse
to 0, for some small ηj+1, over the intersection of Wt,k with all balls of

radius c.k−1/2 around points in Sj . Furthermore, if the coefficients of the
linear combination are chosen much smaller than ηj , transversality to 0 still
holds over Wt,k ∩ Nj . Also, since the coefficients ct,k,x are bounded, the
resulting sections, which are sums of asymptotically holomorphic sections,
remain asymptotically holomorphic. So we need to find, for all x ∈ Sj , small
coefficients ct,k,x so that σt,k,j − ct,k,xst,k,x has the desired properties near x.

3.4. Obtaining transversality near a point of Sj. In what follows, x is

a given point in Sj , and Bx is the ball of radius c.k−1/2 around x. Let Ω be
the closure of the open subset of T containing all t such that Bx ∩Wt,k is
not empty (when r = 0, one gets Ω = T ). When Ω is empty, it is sufficient
to define ct,k,x = 0 for all t. Otherwise, Ω = {0} when T = {0}, and when
T = [0, 1] clearly Ω is a union of disjoint closed intervals. In any case, we
choose a component I of Ω, i.e. either a closed interval or a point.

We can then define for all t ∈ I a point xt belonging to Bx∩Wt,k, in such
a way that xt depends continuously on t, sinceWt,k depends continuously on
t and always intersects Bx in a nice way (when r = 0 one can simply choose

xt = x). Let B̂t be the ball inWt,k of radius 3c.k−1/2 (for the metric induced
by g) centered at xt. Because of the bounds on the second derivatives of

wt,k, we know that B̂t contains Bx ∩Wt,k for all t ∈ I. We now want to
define a nearly holomorphic diffeomorphism from a neighborhood of 0 in
Cn−r to B̂t.

Let B̂ be the ball of radius 4ck−1/2 around 0 in Cn−r, and let B̂− be the
smaller ball of radius 3ck−1/2 around 0. We claim the following :

Lemma 4. For all t ∈ I, there exist diffeomorphisms θt from B̂ to a neigh-
borhood of xt in Wt,k, depending continuously on t, such that θt(0) = xt and

θt(B̂
−) ⊃ B̂t, and satisfying the following estimates over B̂ :

|∂̄θt| = O(k−1/2), |∇θt| = O(1), |∇∂̄θt| = O(1), |∇∇θt| = O(k1/2).
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Proof. Recall that, by Lemma 2, there exist local complex Darboux coordi-
nates on X near x depending continuously on t with the property that the
inverse map ψt : (Cn, 0)→ (X,x) satisfies the following bounds at all points

at distance O(k−1/2) from x :

|∂̄ψt| = O(k−1/2), |∇ψt| = O(1), |∇∂̄ψt| = O(1), |∇∇ψt| = O(1).

Let Tt be the kernel of the complex linear map ∂wt,k(xt) in TxtX : it is

within O(k−1/2) of the tangent space to Wt,k at xt, but Tt is preserved by

Jt. Composing ψt with a translation and a rotation in Cn, one gets maps ψ̃t

satisfying the same requirements as ψt, but with ψ̃t(0) = xt and such that

the differential of ψ̃t at 0 maps the span of the n− r first coordinates to Tt.
Furthermore, X and T are compact, so the metrics gt induced by ω and

Jt differ from the reference metric g by at most a fixed constant. It follows
that, composing ψ̃t with a fixed dilation of Cn if necessary, one may also
require that the image by ψ̃t of the ball of radius 3ck−1/2 around 0 contains
the ball of radius 4ck−1/2 around x for the reference metric g. The only
price to pay is that ψ̃t is no longer a local symplectomorphism ; all other
properties still hold.

Since by definition of c the submanifolds Wt,k are trivial over the consid-
ered balls, it follows from the implicit function theorem that Wt,k can be
parametrized around xt in the chosen coordinates as the set of points of the
form ψ̃t(z, τt(z)) for z ∈ Cn−r, where τt : Cn−r → Cr satisfies τt(0) = 0 and

∇τt(0) = O(k−1/2). The derivatives of τt can be easily computed, since it is
characterized by the equation

wt,k(ψ̃t(z, τt(z))) = 0.

Notice that it follows from the transversality to 0 of wt,k that |∇wt,k◦dψ̃t(v))|

is larger than a constant times k1/2|v| for all v ∈ 0 × Cr. Combining this
estimate with the bounds on the derivatives of wt,k given by asymptotic

holomorphicity and the above bounds on those of ψ̃t, one gets the following
estimates for τt over the ball B̂ :

|∂̄τt| = O(k−1/2), |∇τt| = O(1), |∇∂̄τt| = O(1), |∇∇τt| = O(k1/2).

It is then clear that θt(z) = ψ̃t(z, τt(z)) satisfies all the required properties.

Now that a local identification betweenWt,k and Cn−r is available, we de-
fine the restricted sections ŝt,k,x(z) = st,k,x(θt(z)) and σ̂t,k,j(z) = σt,k,j(θt(z)).
Since st,k,x and σt,k,j are both asymptotically holomorphic, the estimates on

θt imply that ŝt,k,x and σ̂t,k,j , as sections of the pull-back of Lk over the ball

B̂, are also asymptotically holomorphic. Furthermore, they clearly depend
continuously on t ∈ I, and ŝt,k,x remains larger than a fixed constant cs > 0

over B̂. We can then define the complex-valued functions ft,k,x = σ̂t,k,j/ŝt,k,x
over B̂, which are clearly asymptotically holomorphic too.



12 DENIS AUROUX

After dilation of B̂ by a factor of 3c.k1/2, all hypotheses of Proposition 3
are satisfied with δ as small as desired, provided that k is large enough.
Indeed, the asymptotic holomorphicity of ft,k,x implies that, for large k,
the antiholomorphic part of the function over the dilated ball is smaller
than σ = δ.(log δ−1)−p. So the local result implies that there exist complex
numbers ct,k,x of norm less than δ and depending continuously on t ∈ I,
such that the functions ft,k,x − ct,k,x are σ-transverse to 0 over the ball

B̂− of radius 3c.k−1/2 around 0 in Cn−r. We now notice that the sections
ĝt,k,x = σ̂t,k,j − ct,k,xŝt,k,x, which clearly depend continuously on t and are

asymptotically holomorphic, are σ′-transverse to 0 over B̂−, for some σ′

differing from σ by at most a constant factor. Indeed,

∇ĝt,k,x = ∇(ŝt,k,x(ft,k,x − ct,k,x)) = ŝt,k,x∇ft,k,x − (ft,k,x − ct,k,x)∇ŝt,k,x.

Wherever ĝt,k,x is very small, so is ft,k,x − ct,k,x, and ∇ft,k,x is thus large.
Since ŝt,k,x remains larger than some cs > 0 and ∇ŝt,k,x is bounded by a

constant times k1/2, it follows that ∇ĝt,k,x is large wherever ĝt,k,x is very
small. Putting the right constants in the right places, one easily checks that
ĝt,k,x is σ′-transverse to 0 with σ/σ′ bounded by a fixed constant.

We now notice that the restrictions to Wt,k of the sections gt,k,x = σt,k,j−
ct,k,xst,k,x of Lk over U , which clearly are asymptotically Jt-holomorphic and

depend continuously and t, are also σ′′-transverse to 0 over B̂t for some σ′′

differing from σ′ by at most a constant factor. Indeed, B̂t is contained in
the set of all points of the form θt(z) for z ∈ B̂−, and

gt,k,x(θt(z)) = σ̂t,k,j(z)− ct,k,xŝt,k,x(z) = ĝt,k,x(z),

so wherever gt,k,x is smaller than σ′, the derivative of ĝt,k,x is larger than

σ′.k1/2, and since ∇θt is bounded by a fixed constant, ∇gt,k,x is large too.
Next we extend the definition of ct,k,x to all t ∈ T , in the case of T = [0, 1],

since we have defined it only over the components of Ω. However when t 6∈ Ω,
Wt,k does not meet the ball Bx, so that there is no transversality require-
ment. Thus the only constraints are that ct,k,x must depend continuously on
t and remain smaller than δ for all t. These conditions are easy to satisfy,
so we have proved the following :

Lemma 5. For all large k there exist complex numbers ct,k,x smaller than
δ and depending continuously on t ∈ T such that the restriction to Wt,k of
σt,k,j−ct,k,xst,k,x is σ

′′-transverse to 0 overWt,k∩Bx. Furthermore, for some

constant p′ depending only on the dimension, σ′′ is at least δ.(log δ−1)−p′.

3.5. Constructing σt,k,j+1 from σt,k,j. We can now define the sections

σt,k,j+1 of Lk over U by

σt,k,j+1 = σt,k,j −
∑

x∈Sj

ct,k,xst,k,x.

Clearly the sections σt,k,j+1 are asymptotically holomorphic and depend
continuously on t ∈ T . Furthermore, any two points in Sj are distant
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of at least D.k−1/2 with D > 0, so the total size of the perturbation is
bounded by a fixed multiple of δ. So, choosing δ smaller than ηj over a
constant factor (recall that ηj is the transversality estimate of the previous
step of the iterative process), we can ensure that |σt,k,j+1 − σt,k,j | <

ηj

2 and

|∇σt,k,j+1 − ∇σt,k,j | <
ηj

2 k
1/2. As a direct consequence, the restriction to

Wt,k of σt,k,j+1 is
ηj

2 -transverse to 0 wherever the restriction of σt,k,j is ηj-
transverse to 0, including over Wt,k ∩Nj (recall that Nj =

⋃

i<j

⋃

x∈Si
Bx).

Letting ηj+1 = 1
2σ
′′, it is known that for all x ∈ Sj the restriction of

σt,k,j − ct,k,xst,k,x to Wt,k is 2ηj+1-transverse to 0 over Bx ∩ Wt,k. So, in
order to prove that the restriction to Wt,k of σt,k,j+1 is ηj+1-transverse to 0
overWt,k∩Nj+1, it is sufficient to check that given x ∈ Sj , over Bx, the sum
of the perturbations corresponding to all points y ∈ Sj distinct from x is

smaller than ηj+1, and the sum of their derivatives is smaller than ηj+1k
1/2.

In other words, since several contributions were added at the same time (one
at each point of Sj), we have to make sure that they cannot interfere.

This is where the parameter D (minimum distance between two points in
Sj) is important : indeed, over Bx, by Lemma 3, each of the contributions of
the other points in Sj is at most of the order of δ. exp(−λD2), and the sum
of these terms is O(ηj . exp(−λD

2)). Similarly, the derivative of that sum is

O(ηj . exp(−λD
2).k1/2). So the requirement that the sum of the contribu-

tions of all points of Sj distinct from x be smaller than ηj+1 corresponds
to an inequality of the form K0 exp(−λD

2) < ηj+1/ηj , where K0 is a fixed
constant depending only on the geometry of X. Recalling that ηj+1 is no

smaller than ηj . log(η
−1
j )−P for some fixed integer P , the required inequality

is

exp(λD2) > K0. log(η
−1
j )P .

This inequality, which does not depend on k, must be satisfied by every ηj ,
for each of the N steps of the process.

To check that the condition on D can be enforced at all steps, we must
recall that the number of steps in the process is N = O(D2n), and study the
sequence (ηj) given by a fixed η0 > 0 and the inductive definition described
above. It can be shown (see Lemma 24 of [1]) that the sequence (ηj) sat-

isfies for all j a bound of the type log(η−1
j ) = O(j. log(j)). It follows that

log(η−1
N )P = O(D2nP .log(D2n)P ), which is clearly subexponential : a choice

of sufficiently large D thus ensures that the required inequality holds at all
steps. So the inductive process described above is valid, and leads to sections
σ̃t,k = σt,k,N which are asymptotically Jt-holomorphic, depend continuously

on t, and whose restrictions toWt,k are η̂-transverse to 0 over U−k for η̂ = ηN .
Furthermore, σ̃t,k is equal to σt,k near the boundary of U because we only

added a linear combination of sections st,k,x for x ∈ U−k , and st,k,x vanishes

by construction outside of the ball of radius k−1/3 around x. Moreover, σ̃t,k
differs from σt,k by at most

∑

j ηj , which is less than 2η0 = ε. So to complete
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the proof of Theorem 3 we only have to show that the transversality result
on σ̃t,k|Wt,k

implies the transversality to 0 of (wt,k + σ̃t,k) over U
=
k .

3.6. Transversality to 0 over U=
k . At a point x ∈Wt,k∩U

−
k where |σ̃t,k| <

η̂, we know that ∇wt,k is surjective and vanishes in all directions tangential

to Wt,k, while ∇σ̃t,k has a tangential component larger than η̂.k1/2. It
follows that ∇(wt,k + σ̃t,k) is surjective. We now construct a right inverse

R : (Ex ⊕ C)⊗ Lk
x → TxX whose norm is O(k−1/2).

Considering a unit length element u of Lk
x, there exists a vector û ∈ TxWt,k

of norm at most (η̂.k1/2)−1 such that ∇σ̃t,k(û) = u. Clearly ∇wt,k(û) = 0
because û ∈ TxWt,k, so we define R(u) = û. Now consider an orthonormal

frame (vi) in Ex ⊗ L
k
x. It follows from the η-transversality to 0 of wt,k that

∇xwt,k has a right inverse of norm smaller than (η.k1/2)−1, so we obtain

vectors v̂i in TxX such that ∇wt,k(v̂i) = vi and |v̂i| < (η.k1/2)−1. There exist

coefficients λi such that ∇σ̃t,k(v̂i) = λi.u, with |λi| < C.k1/2.|v̂i| < C.η−1,

for some constant C such that |∇σ̃t,k| < C.k1/2 everywhere. So we define
R(vi) = v̂i − λiû, which completes the determination of R.

The norm of R is, by construction, smaller than K.k−1/2 for some K
depending only on the constants above (C, η and η̂). We thus know that

∇(wt,k + σ̃t,k) has a right inverse smaller than K.k−1/2 at any point of

Wt,k ∩ U
−
k where |σ̃t,k| < η̂. Furthermore we know, from the definition of

asymptotic holomorphicity, that |∇∇(wt,k + σ̃t,k)| < K ′.k for some constant
K ′.

Consider a point x of U=
k where |wt,k| and |σ̃t,k| are both smaller than

some α which is simultaneously smaller than η̂
2 ,

ηη̂
2C and η

2KK′ . From the
η-transversality to 0 of wt,k, we know that ∇wt,k is surjective at x and has

a right inverse smaller than (η.k1/2)−1. Since the connection ∇ is unitary,
applying the right inverse to wt,k itself, we can follow the downward gradient
flow of |wt,k|, and we are certain to reach a point y of Wt,k at a distance

d from the starting point x no larger than α.(η.k1/2)−1, which is simulta-

neously smaller than 1
2KK′ .k−1/2 and η̂

2C .k
−1/2. Furthermore if k is large

enough, d < 2k−1/3 so that y ∈ U−k .

Since |∇σ̃t,k| < C.k1/2 everywhere, |σ̃t,k(y)| − |σ̃t,k(x)| < C.k1/2.d < η̂
2 ,

so that |σ̃t,k(y)| < η̂, and the previous results apply at y. Also, since the
second derivatives are bounded by K ′.k everywhere, ∇x(wt,k + σ̃t,k) differs

from ∇y(wt,k + σ̃t,k) by at most K ′k.d, which is smaller than 1
2K .k

1/2, so

that it is still surjective and admits a right inverse of norm O(k−1/2). From
this we infer immediately that (wt,k + σ̃t,k) is transverse to 0 over all of U=

k ,
and the proof of Theorem 3 is complete.

4. The main result

4.1. Proof of Theorem 2. Theorem 2 follows from Theorem 3 by a simple
induction argument. Indeed, to obtain asymptotically holomorphic sections
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of E⊗Lk which are transverse to 0 over X for any vector bundle E, we start
from the fact that E is locally trivial, so that there exists a finite covering
of X by N open subsets Uj such that E is a trivial bundle on a small
neighborhood of each Uj . We start initially from the sections st,k,0 = st,k
of E ⊗ Lk, and proceed iteratively, assuming at the beginning of the j-th
step that we have constructed, for all large k, asymptotically holomorphic
sections st,k,j of E ⊗ Lk which are ηj-transverse to 0 on

⋃

i<j Ui for some

ηj > 0 and differ from st,k by at most jε/N .
Over a small neighborhood of Uj , we trivialize E ' Cr and decompose

the sections st,k,j into their r components for this trivialization. Recall that,

in order to define the connections on E ⊗ Lk for which asymptotic holo-
morphicity and transversality to 0 are expected, we have used a hermitian
connection ∇E on E. Because X is compact the connection 1-form of ∇E

in the chosen trivializations can be safely assumed to be bounded by a fixed
constant. It follows that, up to a change in the constants, asymptotic holo-
morphicity and transversality to 0 over Uj with respect to the connections on

E⊗Lk induced by ∇E and ∇L are equivalent to asymptotic holomorphicity
and transversality to 0 with respect to the connections induced by ∇L and
the trivial connection on E in the chosen trivialization. So we actually do
not have to worry about ∇E .

Now let α be a constant smaller than both ε/rN and ηj/2r. First, using
Theorem 3, we perturb the first component of st,k,j over a neighborhood of
Uj by at most α to make it transverse to 0 over a slightly smaller neighbor-
hood. Next, using again Theorem 3, we perturb the second component by
at most α so that the sum of the two first components is transverse to 0,
and so on, perturbing the i-th component by at most α to make the sum
of the i first components transverse to 0. The result of this process is a
family of asymptotically Jt-holomorphic sections st,k,j+1 of E ⊗ Lk which
are transverse to 0 over Uj . Furthermore, since the total perturbation is
smaller than rα ≤ ηj/2, transversality to 0 still holds over Ui for i < j, so
that the hypotheses of the next step are satisfied. The construction thus
leads to sections σt,k = st,k,N which are transverse to 0 over all of X. Since
at each of the N steps the total perturbation is less than ε/N , the sections
σt,k differ from st,k by less than ε, and Theorem 2 is proved.

4.2. Symplectic isotopies. We now give the remaining part of the proof
of Corollary 2, namely the following statement :

Proposition 4. let (Wt)t∈[0,1] be a family of symplectic submanifolds in X.
Then there exist symplectomorphisms Φt : X → X depending continuously
on t, such that Φ0 = Id and Φt(W0) =Wt.

The following strategy of proof, based on Moser’s ideas, was suggested to
me by M. Gromov. The reader unfamiliar with these techniques may use [4]
(pp. 91-101) as a reference.

It follows immediately from Moser’s stability theorem that there exists
a continuous family of symplectomorphisms φt : (W0, ω|W0

) → (Wt, ω|Wt
).
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Since the symplectic normal bundles to Wt are all isomorphic, Weinstein’s
symplectic neighborhood theorem allows one to extend these maps to sym-
plectomorphisms ψt : U0 → Ut such that ψt(W0) = Wt, where Ut is a small
tubular neighborhood of Wt for all t.

Let ρt be any family of diffeomorphisms of X extending ψt. Let ωt = ρ∗tω
and Ωt = −dωt/dt. We want to find vector fields ξt on X such that the
1-forms αt = ιξt

ωt satisfy dαt = Ωt and such that ξt is tangent to W0 at any
point of W0. If this is possible, then define diffeomorphisms Ψt as the flow
of the vector fields ξt, and notice that

d

dt
(Ψ∗tρ

∗
tω) = Ψ∗t

(

d

dt
(ρ∗tω) + Lξt

(ρ∗tω)

)

= Ψ∗t (−Ωt + dιξt
ωt) = 0.

So the diffeomorphisms ρt ◦Ψt are actually symplectomorphisms of X. Fur-
thermore Ψt preserves W0 by construction, so ρt ◦Ψt maps W0 to Wt, thus
giving the desired result.

So we are left with the problem of finding ξt, or equivalently αt, such
that dαt = Ωt and ξt|W0

is tangent to W0. Note that, since ρt extends the
symplectomorphisms ψt, one has ωt = ω and Ωt = 0 over U0. It follows that
the condition on ξt|W0

is equivalent to the requirement that at any point
x ∈ W0, the ω-symplectic orthogonal NxW0 to TxW0 lies in the kernel of
the 1-form αt.

Since the closed 2-forms ωt are all cohomologous, one has [Ωt] = 0 in
H2(X,R), so there exist 1-forms βt on X such that dβt = Ωt. Remark that,
although Ωt = 0 over U0, one cannot ensure that βt|U0

= 0 unless the class

[Ωt] also vanishes in the relative cohomology group H2(X,U0;R). So we
need to work a little more to find the proper 1-forms αt.

Over U0 one has dβt = Ωt = 0, so βt defines a class in H1(U0,R). By
further restriction, the forms βt|W0

are also closed 1-forms on W0. Let π be
a projection map U0 →W0 such that at any point x ∈W0 the tangent space
to π−1(x) is the symplectic normal space NxW0, and let γt = π∗(βt|W0

).
First we notice that, by construction, the 1-form γt is closed over U0, and
at any point x ∈ W0 the space NxW0 lies in the kernel of γt. Furthermore
the composition of π∗ and the restriction map induces the identity map over
H1(U0,R), so [γt] = [βt|U0

] in H1(U0,R). Therefore there exist functions ft
over U0 such that γt = βt + dft at any point of U0.

Let gt be any smooth functions over X extending ft, and let αt = βt+dgt.
The 1-forms αt satisfy dαt = dβt = Ωt, and since αt|U0

= γt the space NxW0

also lies in the kernel of αt at any x ∈W0. So Proposition 4 is proved.

5. Properties of the constructed submanifolds

5.1. Proof of Proposition 2. This proof is based on that of a similar result
obtained by Donaldson [1] for the submanifolds obtained from Theorem 1
(r = 1). The result comes from a Morse theory argument, as described in
[1]. Indeed, consider the real valued function f = log |s|2 over X−W (where
W = s−1(0)). We only have to show that, if k is large enough, all its critical
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points are of index at least n − r + 1. For this purpose, let x be a critical
point of f , and let us compute the derivative ∂̄∂f at x.

First we notice that x is also a critical point of |s|2, so that s itself is not
in the image of ∇xs. Recalling that s is η-transverse to 0 for some η > 0, it
follows that ∇xs is not surjective and thus |s(x)| ≥ η.

Recalling that the scalar product is linear in the first variable and anti-
linear in the second variable, we compute the derivative

∂ log |s|2 =
1

|s|2
(〈∂s, s〉+ 〈s, ∂̄s〉),

which equals zero at x. A first consequence is that, at x, |〈∂s, s〉| =
|〈∂̄s, s〉| < C|s|, where C is a constant bounding ∂̄s independently of k.

A second derivation, omitting the quantities that vanish at a critical point,
yields that, at x,

∂̄∂ log |s|2 =
1

|s|2
(〈∂̄∂s, s〉 − 〈∂s, ∂s〉+ 〈∂̄s, ∂̄s〉+ 〈s, ∂∂̄s〉).

Recall that ∂̄∂+∂∂̄ is equal to the part of type (1,1) of the curvature of the
bundle E ⊗Lk. This is equal to −ikω⊗ Id+R, where R is the part of type
(1,1) of the curvature of E, so that at x,

∂̄∂ log |s|2 = −ikω+
1

|s|2
(〈R.s, s〉 − 〈∂∂̄s, s〉+ 〈s, ∂∂̄s〉 − 〈∂s, ∂s〉+ 〈∂̄s, ∂̄s〉).

To go further, we have to restrict our choice of vectors to a subspace
of the tangent space TxX at x. Call Θ the space of all vectors v in TxX
such that ∂s(v) belongs to the complex line generated by s in (E ⊗ Lk)x.
The subspace Θ of TxX is clearly stable by the almost-complex structure,
and its complex dimension is at least n − r + 1. For any vector v ∈ Θ,
|〈∂s(v), s〉| = |∂s(v)|.|s| is smaller than |v|.|〈∂s, s〉| < C|v|.|s| where C is the
same constant as above, so that ∂s is O(1) over Θ.

Since ∂̄s = O(1) and ∂∂̄s = O(k1/2) because of asymptotic holomor-
phicity, it is now known that the restriction to Θ of ∂̄∂ log |s|2 is equal to

−ikω+O(k1/2). It follows that, for all large k, given any unit length vector
u ∈ Θ, the quantity −2i∂̄∂f(u, Ju), which equals Hf (u)+Hf (Ju) where Hf

is the Hessian of f at x, is negative. If the index of the critical point at x
were less than n−r+1, there would exist a subspace P ⊂ TxX of real dimen-
sion at least n+ r over which Hf is non-negative, and the subspace P ∩ JP
of real dimension at least 2r would necessarily intersect non-trivially with
Θ whose real dimension is at least 2n − 2r + 2, contradicting the previous
remark. The index of the critical point x of f is thus at least n− r + 1.

A standard Morse theory argument then implies that the inclusion W →
X induces an isomorphism on all homotopy (and homology) groups up to
πn−r−1 (resp. Hn−r−1), and a surjection on πn−r (resp. Hn−r), which
completes the proof of Proposition 2.
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5.2. Homology and Chern numbers of the submanifolds. Proposi-
tion 2 allows one to compute the middle-dimensional Betti number bn−r =
dimHn−r(Wk,R) of the constructed submanifolds. Indeed the tangent bun-
dle TWk and the normal bundle NWk (isomorphic to the restriction toWk of
E⊗Lk) are both symplectic vector bundles overWk. So it is well-known (see
e.g. [4], p. 67) that they admit underlying structures of complex vector bun-
dles, uniquely determined up to homotopy (in our case there exist J-stable
subspaces in TX very close to TWk and NWk, so after a small deformation
one can think of these complex structures as induced by J). Furthermore
one has TWk ⊕NWk ' TX|Wk

. It follows that, calling i the inclusion map
Wk → X, the Chern classes of the bundle TWk can be computed from the
relation

i∗c(TX) = i∗c(E ⊗ Lk).c(TWk).

Since cn−r(TWk).[Wk] is equal to the Euler-Poincaré characteristic of Wk,
and since the spaces Hi(Wk,R) have the same dimension as Hi(X,R) for
i < n− r, the dimension of Hn−r(Wk,R) follows immediately.

For further computations, we need an estimate on this dimension :

Proposition 5. For any sequence of symplectic submanifolds Wk ⊂ X of
real codimension 2r obtained as the zero sets of asymptotically holomorphic
sections of E ⊗ Lk which are transverse to 0, the Chern classes of Wk are
given by

cl(TWk) = (−1)l
(

r+l−1
l

)

(kω̂)l +O(kl−1),

where ω̂ denotes the class of ω
2π in the cohomology of Wk.

This can be proved by induction on l, starting from c0(TWk) = 1, since
the above equality implies that

cl(TWk) = i∗cl(TX)−
l−1
∑

j=0

i∗cl−j(E ⊗ L
k).cj(TWk).

It can be checked that i∗cl−j(E ⊗ Lk) =
(

r
l−j

)

(kω̂)l−j + O(kl−j−1), so that

the result follows from a combinatorial calculation showing that the quantity
∑l

j=0(−1)
j
(

r
l−j

)(

r+j−1
j

)

is equal to 0.

Since [Wk] is Poincaré dual in X to cr(E ⊗L
k), Proposition 5 yields that

χ(Wk) = cn−r(TWk).[Wk] = (−1)n−r
(

n−1
n−r

)

(kω̂)n−r.(kω̂)r+O(kn−1). Finally,

Proposition 2 implies that χ(Wk) = (−1)n−r dimHn−r(Wk,R) + O(1), so
that

dimHn−r(Wk,R) =
(

n−1
n−r

)

[ ω
2π ]

n.kn +O(kn−1).

5.3. Geometry of the submanifolds. Aside from the above topological
information on the submanifolds, one can also try to characterize the geom-
etry of Wk inside X. We prove the following result, expressing the fact that
the middle-dimensional homology of Wk has many generators that are very
“localized” around any given point of X :
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Proposition 6. There exists a constant C > 0 depending only on the ge-
ometry of the manifold X with the following property : let B be any ball of
small enough radius ρ > 0 in X. For any sequence of symplectic submani-
folds Wk ⊂ X of real codimension 2r obtained as the zero sets of asymptoti-
cally holomorphic sections of E⊗Lk which are transverse to 0, let Nk(B) be
the number of independent generators of Hn−r(Wk,R) which can be realized
by cycles that are entirely included in Wk ∩ B. Then, if k is large enough,
one has

Nk(B) > C.ρ2n. dimHn−r(Wk,R).

As a consequence, we can state that when k becomes large the subman-
ifolds Wk tend to “fill out” all of X, since they must intersect non-trivially
with any given ball.

The proof of Proposition 6 relies on the study of what happens when we
perform a symplectic blow-up on the manifold X inside the ball B. Recall
that the blown-up manifold X̃ is endowed with a symplectic form ω̃ which
is equal to ω outside of B, and can be described inside B using the following
model on Cn around 0 : define on Cn × (Cn − {0}) the 2-form

φ = i∂∂̄(p∗1β.p
∗
2 log ‖ · ‖

2),

where p1 is the projection map to Cn, β is a cut-off function around the
blow-up point, and p2 is the projection on the factor Cn − {0}. The 2-form
φ projects to Cn×CPn−1, and after restriction to the graph of the blown-up
manifold (i.e. the set of all (x, y) such that x belongs to the complex line
in Cn defined by y) one obtains a closed 2-form whose restriction to the

exceptional divisor is positive. Calling θ the 2-form on X̃ supported in B
defined by this procedure, it can be checked that, if ε > 0 is small enough
and π is the projection map X̃ → X, the 2-form ω̃ = π∗ω+ εθ is symplectic
on X̃.

If we call e ∈ H2(X̃,Z) the Poincaré dual of the exceptional divisor, since
its normal bundle is the inverse of the standard bundle over CPn−1, we have
(−e)n−1.e = 1, so that en = (−1)n−1. Furthermore, the cohomology class
of ω̃ is given by [ ω̃

2π ] = π∗[ ω
2π ] − ε.e. Now we consider the sections sk of

E⊗Lk over X which define Wk, and assuming ε−1 to be an integer we write
k = K+k̃ with 0 ≤ k̃ < ε−1 and εK ∈ N. Notice that ω̃ = π∗ω outside B and
that we can safely choose a metric on X̃ with the same property. Considering
that the line bundle L̃K on X̃ whose first Chern class is K[ ω̃

2π ] is isomorphic

to π∗LK over X̃ −B, the sections π∗sk of π∗(E⊗Lk) = π∗(E⊗Lk̃)⊗π∗LK

obtained by pull-back of sk satisfy all desired conditions outside B, namely
asymptotic holomorphicity and transversality to 0. If we multiply π∗sk by
a cut-off function equal to 1 over X̃ − B and vanishing over the support of

θ, we now obtain asymptotically holomorphic sections of π∗(E ⊗ Lk̃)⊗ L̃K

over X̃ which are transverse to 0 over X̃ − B. So, if K is large enough, we
can use the construction described in Theorems 2 and 3 to perturb these
sections over B only to make them transverse to 0 over all of X̃. Since there
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are only finitely many values of k̃, the bounds on K required for each k̃
translate as a single bound on k. Considering the zero sets of the resulting
sections, we thus obtain symplectic submanifolds W̃k ⊂ X̃ to which we can
again apply Propositions 2 and 5. The interesting remark is that, using the
above estimate for dimHn−r(W̃k,R), since [ ω̃

2π ]
n = [ ω

2π ]
n − εn (symplectic

blowups decrease the symplectic volume), we get for all large k

dimHn−r(W̃k,R) = dimHn−r(Wk,R)− εn
(

n−1
n−r

)

kn +O(kn−1).

This means that we have decreased the dimension of Hn−r(Wk,R) by chang-
ing the picture only inside the ball B. To continue we need an estimate on
the dependence of ε on the radius ρ of the ball. The main constraint on ε is
that εθ should be much smaller than π∗ω so that the perturbation does not
affect the positivity of π∗ω. The norm of θ is directly related to that of the
second derivative ∂∂̄β of the cut-off function β. Since the only constraint
on β is that it should be 0 outside B and 1 near the blow-up point, an
appropriate choice of β leads to a bound of the type |∂∂̄β| = O(ρ−2). It
follows that ε can be chosen equal at least to a constant times ρ2. So we
obtain that, for a suitable value of C and for all large enough k,

dimHn−r(W̃k,R) < (1− 2Cρ2n) dimHn−r(Wk,R).

Proposition 6 now follows immediately from the following general lemma
by decomposing Wk into (Wk − B) ∪ (Wk ∩ B) and perturbing slightly ρ if
necessary so that the boundary of B is transverse to Wk :

Lemma 6. Let W be a 2d-dimensional compact manifold which decom-
poses into two pieces W = A ∪ B glued along their common boundary S,
which is a smooth codimension 1 submanifold in W . Assume that there
exists a manifold W̃ which is identical to W outside of B, and such that
dimHd(W̃ ,R) ≤ dimHd(W,R) − N . Then there exists a N

2 -dimensional
subspace in Hd(W,R) consisting of classes which can be represented by cy-
cles contained in B.

To prove this lemma, let H = Hd(W,R) and consider its subspaces F
consisting of all classes which can be represented by a cycle contained in A
and G consisting of all classes representable in B. We have to show that
dimG ≥ N

2 . Let G
⊥ be the subspace of H orthogonal to G with respect to

the intersection pairing, namely the set of classes which intersect trivially
with all classes in G. We claim that G⊥ ⊂ F +G.

Indeed, let α be a cycle realizing a class in G⊥. Subdividing α along
its intersection with the common boundary S of A and B, we have α =
α1 + α2 where α1 and α2 are chains respectively in A and B, such that
∂α1 = −∂α2 = β is a (d − 1)-cycle contained in S. However β intersects
trivially with any d-cycle in S since α intersects trivially with all cycles
that have a representative in B. So the homology class represented by β in
Hd−1(S,R) is trivial, and we have β = ∂γ for some d-chain γ in S. Writing
α = (α1 − γ) + (α2 + γ) and shifting slightly the two copies of γ on either
side of S, we get that [α] ∈ F +G.
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It follows that, if FG is a supplementary of F ∩ G in F , dimFG +
dimG = dim(F + G) is larger than dimG⊥ ≥ dimH − dimG, so that
dimG ≥ 1

2(dimH − dimFG). Thus it only remains to show that dimFG ≤

dimHd(W̃ ,R) to complete the proof of the lemma. To do this, we remark
that the morphism h : Hd(W ;R) → Hd(W,B;R) in the relative homology
sequence is injective on FG, since its kernel is precisely G. However, if we
define F̃ and G̃ inside Hd(W̃ ,R) similarly to F and G, the subspace F̃G̃ simi-

larly injects intoHd(W̃ , B̃;R). Furthermore, the images of the two injections
are both equal to the image of the morphism Hd(A;R) → Hd(A,S;R) un-

der the identification Hd(W̃ , B̃;R) ' Hd(A,S;R) ' Hd(W,B;R), so that

dimHd(W̃ ,R) ≥ dim F̃G̃ = dimFG and the proof is complete.

6. Conclusion

This paper has extended the field of applicability of the construction
outlined by Donaldson [1] to more general vector bundles. It is in fact
probable that similar methods can be used in other situations involving
sequences of vector bundles whose curvatures become very positive.

The statement that, in spite of the high flexibility of the construction,
the submanifolds obtained as zero sets of asymptotically holomorphic sec-
tions of E ⊗ Lk which are transverse to 0 are all isotopic for a given large
enough k, has important consequences. Indeed, as suggested by Donald-
son, it may allow the definition of relatively easily computable invariants
of higher-dimensional symplectic manifolds from the topology of their sub-
manifolds, for example from the Seiberg-Witten invariants of 4-dimensional
submanifolds [5][6]. Furthermore, it facilitates the characterization of the
topology of the constructed submanifolds in many cases, thus leading the
way to many possibly new examples of symplectic manifolds.
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