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Abstract. We discuss a relationship between Khovanov- and Heegaard Floer-

type homology theories for braids. Explicitly, we define a filtration on the bor-
dered Heegaard-Floer homology bimodule associated to the double-branched

cover of a braid and show that its associated graded bimodule is equivalent to

a similar bimodule defined by Khovanov and Seidel.

1. Introduction

The low-dimensional topology community has been energized in recent years
by the introduction of a wealth of so-called homology-type invariants. These in-
variants are defined by associating to a topological object (for example, a link or
a 3–manifold) an abstract chain complex whose quasi-isomorphism class–hence,
homology–is an invariant of the object.

One obtains such invariants from two apparently unrelated points of view:
(1) algebraically, via the higher representation theory of quantum groups, and
(2) geometrically/analytically, via symplectic geometry and gauge theory.

Although the invariants themselves share a number of formal properties, finding
explicit connections between the two viewpoints has proven challenging.

A striking success in this direction is a result of Ozsváth and Szabó relating the
Z/2Z versions of Khovanov homology and Heegaard Floer homology:

Theorem 1.1. [41] Let L ⊂ S3 be a link and L ⊂ S3 denote its mirror. There
exists a spectral sequence whose E2 term is K̃h(L), the reduced Khovanov homology
of the mirror of L, and whose E∞ term is ĤF (Σ(L)), the Heegaard-Floer homology
of the double-branched cover of L.

This result has generated applications in a number of directions (see, e.g., [42],
[52], [8]). It also served as inspiration for Kronheimer and Mrowka’s construction of
an analogous spectral sequence from Khovanov homology to a version of instanton
knot homology, yielding a proof that Khovanov homology detects the unknot [28].

The aim of the present paper is to move toward a more “atomic” understanding
of the Ozsváth-Szabó spectral sequence and its sutured generalizations ([43, 13,
12, 14]). In particular, viewing a link in S3 as the closure of a braid, we can ask
whether there are appropriate Khovanov-type (algebraic) and Heegaard-Floer-type
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(geometric/analytic) invariants associated to braids such that the Ozsváth-Szabó
spectral sequence emerges as an algebraic consequence of a relationship between
these invariants.

Such a description would not only be of theoretical interest. Ozsváth-Szabó’s
original description of the above spectral sequence involves holomorphic polygon
counts in Heegaard multi-diagrams. Since these counts are tricky to carry out
in practice, finding ways to perform them combinatorially should prove valuable,
especially in light of subsequent work of Baldwin [7] (see also L. Roberts [44])
proving that the terms of the Ozsváth-Szabó spectral sequence are themselves link
invariants.

We should at this point remark that recent work of Lipshitz-Ozsváth-Thurston,
in [34] and its sequel, does precisely this. In addition, Szabó [51] has constructed
a combinatorial filtration on the Khovanov cube of resolutions associated to a link
diagram that he conjectures yields the original Ozsváth-Szabó spectral sequence.

In the present paper, we address a slightly different question from a substantially
different direction. First, we focus not on the original Ozsváth-Szabó spectral
sequence but rather on (a direct summand of) one of its sutured generalizations
[43, 12]. Second, we take as our starting point a paper of Khovanov-Seidel [23],
which explores a concrete instance of Kontsevich’s homological mirror symmetry
conjecture [26]. The constructions found there, when combined with work of the
first author [4], lead naturally to a new view on the filtered complexes appearing
in [43, 12].

Explicitly, given a braid σ ⊂ D2× I, we consider the closure of the braid, not in
the three-ball but in the solid torus (viewed as a product sutured annulus, A× I).
Associated to the resulting annular link are Khovanov-type and Heegaard-Floer-
type invariants connected by a sutured spectral sequence [2, 43, 12] that splits along
an extra grading measuring “wrapping” around the S1 factor.1 In [5], building on
work in [32], we obtain a similar spectral sequence in the “next-to-top” graded piece
as the Hochschild homology of a filtered A∞ bimodule associated to the original
braid, σ.

The purpose of the present paper is to give an explicit combinatorial construction
of this filtered A∞ bimodule. Informally, the resulting spectral sequence interpo-
lates between the “open” Khovanov- and Heegaard-Floer-type invariants of a braid
σ ⊂ D2×I just as the sutured spectral sequence interpolates between the analogous
“closed” invariants of its closure, σ̂ ⊂ A× I.

More precisely:

(1) On the algebraic side, we show how to use ideas of Khovanov-Seidel in [23] to
construct an A∞ bimodule,MKh

σ , via Yoneda imbedding of a distinguished
collection of objects in the derived category of a quiver algebra.

(2) On the geometric/analytic side, we use the bordered Floer homology pack-
age of Lipshitz-Ozsváth-Thurston in [31, 32] to construct an A∞ bimodule,
MHF

σ , the 1–strand CFDA bimodule associated to the mapping class σ̂
obtained as the double-branched cover of σ ⊂ D2 × I.

Letting 1 denote the identity braid of the same index as σ, we prove:

1This extra grading has a natural interpretation on the Khovanov side in terms of Uq(sl2)
weight space decompositions and on the Heegaard-Floer side in terms of relative Spinc structures.

See [15] for more details.
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Theorem 6.1. There exists a filtration onMHF
σ whose associated graded bimodule

is quasi-isomorphic, as an ungraded A∞ bimodule over
{

gr(MHF
1

) =MKh
1

}
, to

MKh
σ .

In particular, for each braid there exists a spectral sequence connecting the
Khovanov-Seidel (algebraic) bimodule to the Lipshitz-Ozsváth-Thurston (geomet-
ric/analytic) one. Moreover, these “open” spectral sequences can be defined without
reference to holomorphic curves. In fact, our construction is based on a remark-
ably simple toy model (Lemma 5.3): a filtered complex interpolating between the
cohomology of S1 and the cohomology of S0 (both over Z/2Z) coming from a Z/2Z–
equivariant cochain complex for S1. This toy model was, in turn, inspired by work
of Seidel and Smith [49].

We pause here to emphasize some key points. First, the algebraic objects appear-
ing in [23] do themselves admit a geometric interpretation in terms of the Fukaya
category of a certain Lefschetz fibration (cf. Section 3.5). Those readers familiar
with [47] may therefore prefer to perform the Section 3 calculations geometrically.
We have opted instead to work entirely in the algebraic setting, using symplectic
geometry only as motivation. Although this has surely increased the paper’s length,
we hope it has simultaneously increased its accessibility to non-geometers.

This accessibility is essential, as the algebraic version of the Khovanov-Seidel
construction has a beautiful representation-theoretic interpretation. Explicitly, the
Khovanov-Seidel algebra is a special case (for k = 1) of a family of algebras Ak,n−k,
introduced by Chen-Khovanov [11] and independently by Stroppel [50], giving rise
to a categorification of the Uq(sl2) Reshetikhin-Turaev invariant for tangles. These
algebras can also be identified with endomorphism algebras of projective generators
of certain blocks Ok,n−k of category O. We conjecture that Theorem 6.1 admits a
generalization which, for every n-strand braid σ, provides a relationship between
the k-strand part of the Lipshitz-Ozsváth-Thurston bimodule associated to σ̂ and
a Khovanov-type bimodule defined over the Ext-algebra of the direct sum of all
standard Ak,n−k-modules.

We end by remarking that the construction of our filtration required a choice of
a common “basis” of generators for the relevant Fukaya categories. One natural
choice is made in [23] (corresponding in the geometric setting to Lagrangians where
all but one is compact and in the algebraic setting to Luzstig’s canonical basis for a
tensor product representation), while another equally natural choice is made in [31],
as reinterpreted in [4] (corresponding to non-compact Lagrangians and the standard
basis for a tensor product representation). We work with the latter, noncompact
basis because both (k = 1) algebras in the noncompact case are formal (see Lemma
3.12 and [4, Prop. 3.6]) while the bordered Floer algebra corresponding to the
compact basis is not [47, Chp. 20], [30].

The paper is organized as follows:
In Section 2, we establish notation and collect a number of useful definitions and

elementary algebraic results.
In Section 3, we describe the topological input needed for the algebraic con-

structions in the remainder of the paper. After reviewing the key points in [23], we
proceed to the construction and description of

• an algebra, BKh, associated to a marked disk Dm equipped with a specific
basis of curves and
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• a module, MKh
σ , associated to each braid σ, decomposed as a product of

elementary Artin generators.
We conclude the section with a brief discussion of the Fukaya-theoretic interpreta-
tion of BKh and MKh

σ .
In Section 4, we turn to the construction and description of the analogous bor-

dered Floer algebra BHF and bimodules MHF
σ , using the same topological input.

In Section 5, we describe a natural filtration on BHF whose associated graded
algebra is isomorphic to BKh. Our construction is based on a simple “toy model”
(Lemma 5.3).

In Section 6, we describe a filtration onMHF
σ whose associated graded homology

bimodule is quasi-isomorphic to MKh
σ . We proceed by choosing a decomposition

σ = σ±k1
· · ·σ±kn

of σ as a product of elementary Artin generators, explicitly constructing a filtration
on MHF

σ±k
for each elementary generator, then realizing MHF

σ as the (filtered) A∞
tensor product of the elementary bimodules MHF

σ±k1

, . . . ,MHF
σ±kn

.

In Section 7, we describe an example highlighting the nontriviality of the filtra-
tion on MHF

σ .

1.1. Acknowledgements. We are grateful to Tony Licata, Robert Lipshitz, Peter
Ozsváth, Catharina Stroppel, and Dylan Thurston for a great number of interesting
conversations, and to the MSRI semester-long program on Homology Theories of
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Klamt and Catharina Stroppel in [24] and [25]. Many thanks are also due to
the excellent referee and editor, whose insightful suggestions greatly improved the
manuscript. Finally, we are indebted to John Baldwin, who helped us find the
example described in Section 7.

2. Algebraic preliminaries

In this section, we establish some basic facts about filtered A∞ algebras and
modules. We assume throughout that we are working over the field F = Z/2Z. In
addition, many of the spaces we discuss will be graded either by Z, in which case we
say it is graded, or by Z2, in which case we say it is bigraded. The (co)homological
grading always appears first.

Notation 2.1. If V is a bigraded vector space, i.e.

V =
⊕
i,j∈Z

V(i,j),

and k1, k2 ∈ Z, then V [k1]{k2} will denote the vector space whose first (homologi-
cal) grading has been shifted down by k1 and whose second (internal) grading has
been shifted up by k2.2 Explicitly,

(V [k1]{k2})(i,j)
∼= V(i+k1,j−k2).

2The difference in shift conventions for homological versus internal gradings is unfortunate,
but standard in the literature. In particular, they coincide with those in [23]. The reader should

be warned, however, that [31] uses a different convention, since their differential maps decrease

rather than increase homological grading.
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We omit the standard definitions of A∞ algebras, modules, morphisms and ho-
motopies, instead referring to Keller’s expository papers: [19],[20]. Other excellent
references are Seidel’s book: [47] (though the reader should be warned that Seidel’s
ordering conventions (cf. Eqn 1.1) for A∞ morphisms differ from ours), the thesis
of Lefèvre-Kasegawa [29], and Chapter 2 of [31]. All A∞ modules we consider will
be over homologically unital algebras (c-unital, in the terminology of [47]), and
morphisms between homologically unital algebras must be homologically unital.

Remark 2.2. The algebraically defined modules we study here are, in fact, strictly
unital (cf. Remark 2.5), but the geometrically defined ones need not be.

Let n ∈ Z+ and n1, n2 ∈ Z≥0. We shall use the notation mn to refer to the nth
structure map

mn : A⊗n → A[2− n],
of an A∞ algebra A and the notation m(n1|1|n2) to refer to the (n1|1|n2) structure
map

m(n1|1|n2) : A⊗n1 ⊗M⊗B⊗n2 →M[2− (n1 + 1 + n2)]
of a bimodule M admitting a left (resp., right) A∞ action by the A∞ algebra A
(resp., B).

If A is ungraded but otherwise satisfies all of the conditions of an A∞ algebra,
we call A an ungraded A∞ algebra.

A graded (resp., ungraded) A∞ algebra satisfying mn = 0 for all n > 2 is
a differential graded algebra (dga) (resp., a differential algebra) with differential
∂ := m1 and multiplication m2. The terminology is completely analogous for
graded and ungraded A∞ and differential modules.

If M and N are A∞ bimodules, we will refer to the map

f(n1|1|n2) : A⊗n1 ⊗M⊗B⊗n1 → N[1− (n1 + 1 + n2)]

associated to an A∞ morphism f as the “(n1|1|n2) term of f .” In addition, we
will use the terminology “(n1|1|n2) A∞ relation” to refer to the A∞ relation corre-
sponding to n1 left inputs and n2 right inputs. For example, the (1|1|0) A∞ relation
for an A∞ morphism f : M→ N is given by:

f(1|1|0)(m1⊗1+1⊗m(0|1|0))+f(0|1|0)m(1|1|0) = m(1|1|0)(1⊗f(0|1|0))+m(0|1|0)f(1|1|0).

If f(n1|1|n2) = 0 for all n1, n2 > 0, then we say that f = f(0|1|0) : A → B is a
strict morphism of A∞ modules. In particular, a strict morphism f : A → B of
differential (graded) algebras is a chain map intertwining the multiplication, m2.

An A∞ morphism f is said to be a quasi-isomorphism if f1 induces an isomor-
phism on homology.

Homological perturbation theory allows one to transfer A∞ structures along
certain morphisms. Although the situation of particular interest to us is the transfer
of an A∞ structure along a chain homotopy equivalence p : A → H∗(A) as in
[18, 39, 27], such a transfer can be performed in much greater generality. See [38]
(and the related discussion in [47, Sec. (1i)]). A nice account is also given in [9,
Thm. 2.1]. The tree formulas for this transferred structure are summarized in the
following proposition:

Proposition 2.3. Let

Ah
&& p --

H∗(A)
ι

ii
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be a contraction of a chain complex, A, onto its homology, H∗(A). In other words,
p and ι are chain maps and h is a chain homotopy satisfying:

(1) ιp = Id + ∂h+ h∂, pι = Id.

Suppose A is further endowed with a (not necessarily unital) A∞ structure ex-
tending the differential structure, i.e., multiplication maps

mA
n : A⊗n → A[2− n]

with mA
1 = ∂ and satisfying the A∞ relations.

Then H∗(A) admits a (not necessarily unital) A∞ algebra structure such that

(1) m1 = 0 and m2 is induced from mA
2 ,

(2) there are A∞ quasi-isomorphisms p′ : A → H∗(A) and ι′ : H∗(A) → A,
and an A∞ homotopy h′ : A→ A extending p, ι, h.

The nth A∞ multiplication

mn : (H∗(A))⊗n → H∗(A)[2− n]

is given by

mn :=
∑
T

mT
n

where the sum ranges over all planar rooted trees T with n leaves and mT
n is defined

by applying the T–shaped diagram with

(1) leaves labeled with ι,
(2) interior edges labeled with h,
(3) vertices labeled with the multiplication maps mi in the algebra A, and
(4) root labeled with p

to an element of (H∗(A))⊗n.

See Figure 1 for an enumeration of all such rooted trees T specifying the multi-
plication mn when n = 4. The resulting “transferred” A∞ structure on H∗(A) is
unique (independent of the choice of p, ι, h) up to non-unique A∞ isomorphism.

Remark 2.4. If M is an A∞ module, then the induced A∞ structure on H∗(M)
is constructed exactly as described in Proposition 2.3, where the leaves and root of
each tree have been labeled with H∗(M) rather than H∗(A), where appropriate.

Remark 2.5. The condition ιp = Id +∂h+h∂ in the statement of Proposition 2.3
is all that is needed to transfer the A∞ structure from A to H∗(A), while the extra
condition pι = Id ensures that the two structures are quasi-isomorphic. Moreover,
although Proposition 2.3 as stated is a result about non-unital A∞ algebras (and
non-unital modules over them), in the cases of interest in the present work (specifi-
cally, Lemmas 3.12 and 3.16), Proposition 2.3 yields quasi-isomorphisms of strictly
unital algebras (resp., modules).

Note also that if H∗(A) is finite-dimensional, the condition pι = Id is a conse-
quence of the condition ιp = Id + ∂h+ h∂, hence may be omitted.

Definition 2.6. An A∞ structure on H∗(A) constructed as in Proposition 2.3 is
called a minimal model of A. An A∞ algebra is said to be formal if a minimal
model can be chosen so that mn = 0 for all n > 2.
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m3

ι

ι

ι ιιι

ι ι

ιι ι ι ι ι ι

ιιιιι

h
h

h h
h
h

hh

p p

p p p

m2

m2
m2

m2 m2

m2
m2

m2

m2

m2m2

m3

Figure 1. The full collection of rooted trees with 4 inputs speci-
fying the multiplication m4 described by Proposition 2.3.

Henceforth, whenever we refer to the minimal model, H∗(A), for A an A∞
algebra, we shall always assume it has been endowed with the structure provided
by Proposition 2.3 for suitable maps ι, p, h.

Definition 2.7. Let A be a homologically unital A∞–algebra. The derived category
D∞(A) is the category with objects homologically unital A∞–modules (left, right,
or bi–, depending on the context) and morphisms A∞–homotopy classes of A∞–
morphisms.

Remark 2.8. Since every A∞ quasi-isomorphism has an inverse up to homotopy
(see [10, Lemma 10.12.2.2]), passing to the derived category has the effect of making
A∞ quasi-isomorphisms invertible.

Definition 2.9. A (graded or ungraded) filtered A∞ algebra A is a (graded or
ungraded) A∞ algebra equipped with a sequence of subsets, for i ∈ Z:

0 ⊆ . . . ⊆ Fi ⊆ Fi+1 ⊆ . . . ⊆ A

that are compatible with the A∞ structure in the following sense:

mn (Fi1 ⊗ . . .⊗Fin) ⊆ Fi1+...+in .

If mn = 0 for all n > 2, A is a (graded or ungraded) filtered differential alge-
bra. (Graded or ungraded) filtered A∞ modules and filtered differential modules are
defined analogously.

Note that the compatibility of the filtration with the multiplicative structure
ensures that if A is a filtered A∞ algebra, the associated graded algebra

⊕
i Fi/Fi−1

is a well-defined (graded or ungraded) A∞ algebra, and if M is a filtered A∞ module
over a filtered A∞ algebra A, then the associated graded module

⊕
i Fi/Fi−1 is a

well-defined A∞ module over the associated graded algebra of A.

Definition 2.10. A filtered A∞ algebra A (resp., module M) is said to be bounded
if there exist n < N ∈ Z such that 0 = Fn and A = FN (A) (resp., M = FN (M)).

Notation 2.11. If M is a filtered A∞ module and k ∈ Z, M{k} will denote the
filtered A∞ module whose filtration has been shifted by k. Explicitly,

Fn (M{k}) := Fn−k (M) .
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A filtration on an A∞ algebra (resp., module) induces a spectral sequence in
the standard way, and if the filtered complex is bounded this spectral sequence
converges in a finite number of steps. Furthermore, each page of the correspond-
ing spectral sequence has the structure of an A∞ algebra (resp., module), by
Proposition 2.3. We will call the homology of the associated graded complex,⊕

i∈Z Fi/Fi−1, the associated graded homology algebra (resp., the associated graded
homology module) and the homology of the total complex (i.e., the E∞ page of this
spectral sequence) the total homology algebra (resp., the total homology module).

If M is a filtered left A∞ A-module, and N is a filtered right A∞ B-bimodule,
then M ⊗N inherits a filtration (and, hence, the structure of a filtered A∞ A-B
bimodule in the sense of Definition 2.9) via: a⊗ b ∈ Fm+n (M⊗N) if a ∈ Fm (M)
and b ∈ Fn (N).

Similarly, the A∞ tensor product of filtered A∞ bimodules naturally inherits the
structure of a filtered A∞ bimodule:

Lemma 2.12. Let M,N be two filtered A∞ bimodules over a filtered A∞ algebra
A. Then the A∞ tensor product, with underlying vector space:

M⊗̃N :=
∞⊕
n=0

M⊗A⊗n ⊗N

inherits the structure of a filtered A∞ bimodule as follows:

F`(M⊗̃N) :=
∞⊕
n=0

 ⊕
i+j1+...+jn+k=`

Fi(M)⊗Fj1(A)⊗ . . .⊗Fjn(A)⊗Fk(N)


Proof. Since M,N are filtered A∞ bimodules, the multiplications

m(0|1|i) : M⊗A1 ⊗ . . .⊗Ai → M

m(i|1|0) : An−i+1 ⊗ . . .⊗An ⊗N → N

mi : A` ⊗ . . .⊗A`+i−1 → A

contributing to the differential on the complex all respect the filtration in the sense
of Definition 2.9. The same is true for the higher multiplications on the complex,
for the same reason. �

Definition 2.13. An A∞ morphism f : M→ N between two filtered A∞ modules
is said to be filtered if

f(n1|1|n2)

(
Fi1 ⊗ . . .⊗Fin1+n2+1

)
⊆ Fi1+...+in1+n2+1 .

Definition 2.14. Let A be a filtered A∞ algebra, and f : M → N a filtered A∞
morphism between filtered A–modules M and N. Let mM

(n1|1|n2) (resp., mN
(n1|1|n2))

denote the A∞ multiplication maps for M (resp., for N).
Then the mapping cone of f , denoted MC(f), is the filtered A∞ A–module with

underlying F–vector space M[1]⊕ (N), A∞ multiplication maps:

m(n1|1|n2) :=

(
mM

(n1|1|n2) 0
f(n1|1|n2) mN

(n1|1|n2)

)
.

and filtration given by:

Fn(MC(f)) := {(a, b) ∈MC(f) a ∈ Fn(M) and b ∈ Fn(N)}.

The following lemma will be useful in the proof of Theorem 6.1.
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Lemma 2.15. Let M⊗̃N be the filtered A∞ bimodule (over the filtered algebra A)
obtained as the A∞ tensor product of the two filtered A∞ bimodules M and N as
in Lemma 2.12. Let gr(−) denote the associated graded A∞ module of −.

Then gr(M)⊗̃gr(A)gr(N) = gr(M⊗̃AN) as A∞ bimodules over gr(A).

Proof. The well-defined chain map

gr(M)⊗̃gr(A)gr(N) Φ // gr(M⊗̃AN)

sending

[x]⊗ [a1]⊗ . . .⊗ [an]⊗ [y] ∈ Fi
Fi−1

(M)⊗ Fj1
Fj1−1

(A)⊗ . . .⊗ Fjn
Fjn−1

(A)⊗ Fk
Fk−1

(N)

⊆ gr(M)⊗̃gr(A)gr(N).

to
[x⊗ a1 ⊗ . . .⊗ an ⊗ y] ∈ FI

FI−1
(M⊗̃AN)

(where in the above I := i+ j1 . . .+ jn + k), is an isomorphism of chain complexes.
�

2.1. Formality of dg algebras and modules. The following technical lemmas
provide sufficient (but not necessary) conditions for formality of an A∞ module.

Lemma 2.16. Let A be a differential (graded) algebra (resp., let M be a differ-
ential (graded) module over A), and let ι, p, h be maps satisfying the conditions in
Proposition 2.3. If, in addition,

(1) h2 = hι = 0, and
(2) mA

2 (ι⊗ ι)(A⊗2) ⊆ ι(A) (resp., mM
(n1|1|n2)(ι⊗ ι)(A

⊗n1⊗M⊗A⊗n2) ⊆ ι(M)
whenever n1 + 1 + n2 = 2),

then A is formal (resp., M is formal).
Furthermore, ι : A → H∗(A) (resp., ι : M → H∗(M)) is a strict A∞ quasi-

isomorphism.

Proof. In the interest of brevity, we give the argument for the case of A a differ-
ential (graded) algebra, leaving the completely analogous proof in the case of M a
differential (graded) module to the reader.

Each tree T contributing to the definition of

mn : (H∗(A))⊗n → H∗(A)

for n > 2 yields the 0 map, since each such tree T involves a product of terms in
A, at least one of which is either:

• of the form h ◦mA
2 ◦ (ι⊗ ι) (if T is trivalent) or

• of the form mA
n (ι⊗ . . .⊗ ι), for n > 2 (if T is not trivalent).

In both cases, such a term is 0 in A by assumption, hence the corresponding map
is 0, implying formality of A.

To see that ι : A → H∗(A) is a strict quasi-isomorphism, we refer to [9, Thm.
2.1], which tells us that ιn can be defined recursively as

ιn :=
∑

i1+...+ir=n
r>1

hmA
r (ιi1 ⊗ . . .⊗ ιir ) .
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Assumptions (1) and (2), combined with the assumption that mA
r = 0 for r > 2,

now allow us to conclude inductively that ιn = 0 for n ≥ 2, as desired.
�

Lemma 2.17. Let M be a differential (graded) module over an algebra A, and let

ιM : H∗(M)→M, pM : M→ H∗(M), hM : M→M

satisfy the conditions in Proposition 2.3. Suppose in addition that

(1) h2
M = pMhM = 0, and

(2) Im(hM ) and Im(mM
(0|1|0)) are both submodules of M over A (i.e., left or/and

right multiplication by an element of A preserves Im(hM ) and Im(mM
(0|1|0))).

Then M is formal, and the projection map pM : M → H∗(M) is a strict quasi-
isomorphism.

Proof. We give the proof in the case that M is a differential (graded) bimodule
over A. If Assumption (2) holds only under left (resp., right) multiplication, then
pM will be a strict quasi-isomorphism of left (resp., right) A–modules.

Since A is an algebra, mA
n = 0 unless n = 2, and A is trivially A∞ isomorphic to

its homology. Choosing ιA : H∗(A) → A and pA : A → H∗(A) to be the identity
morphism, and hA : A→ A to be the zero morphism, we now claim that any tree
T contributing to the definition of

m(n1|1|n2) : A⊗n1 ⊗ (H∗(M))⊗A⊗n2 → H∗(M)

is zero if n1 + n2 + 1 > 2. This follows because:

• If T is trivalent then it corresponds to a summand of the form pM ◦hM (m),
since Im(hM ) is an A–bimodule. Such a term is zero by Assumption (1).
• If T is not trivalent then it involves a product with at least one term of the

form:
mM

(n′1|1|n′2)(ι⊗ . . .⊗ ι) (resp., mA
n (ι⊗ . . .⊗ ι))

for n′1 + n′2 + 1 > 2 (resp., n > 2), which is zero since M is a dg module
(resp., since A is an algebra).

To see that pM is a strict quasi-isomorphism, we again appeal to [9, Thm. 2.1],
which gives recursive definitions for (pM )(n1|1|n2) in terms of p, m, and an auxiliary
morphism h[n1|1|n2], defined recursively in terms of p, ι, h.

Assumptions (1) and (2) allow us to conclude:

(pM )(1|1|0) := p(0|1|0) ◦m(1|1|0) ◦ (1⊗ h)
= 0

and

(pM )(0|1|1) := p(0|1|0) ◦m(0|1|1) ◦ (h⊗ 1)
= 0.

Combined with the fact that mA
n = 0 for all n 6= 2 and mM

(n1|1|n2) = 0 for all
n1 +1+n2 > 2, (pM )(n1|1|n2) is then identically 0 by induction for all (n1 +1+n2) ≥
2, as desired.

�
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3. Khovanov-Seidel Hom algebras and bimodules

In this section, we construct dg bimodules following Khovanov-Seidel in [23].
We begin by describing the topological data needed for the construction of both
the Khovanov-Seidel bimodules and their bordered Floer analogues (described in
Section 4).

We emphasize that although we have chosen to describe the Khovanov-Seidel
objects from a purely algebraic viewpoint, they also admit a beautiful Fukaya-
theoretic description (cf. Section 3.5). Readers familiar with [23, Sec. 6] and [47,
Chp. 20] will likely benefit from keeping this geometric picture in mind.

3.1. Topological data: Basis of curves. Let Dm denote the unit disk in the
complex plane, equipped with a set,

∆ :=
{
−1 +

2(j + 1)
m+ 2

∈ Dm ⊂ C j = 0, . . . ,m
}
,

of m+ 1 points equally distributed along the intersection of the real axis with Dm.
Label by j the point at position −1 + 2(j+1)

m+2 .
By a curve in Dm we shall always mean the image of a smooth imbedding

γ : [0, 1]→ Dm which is transverse to ∂Dm and satisfies γ−1(∂Dm ∪∆) = {0, 1}.

Definition 3.1. A ∂–admissible curve in Dm is a curve in Dm for which γ(0) = −1
and γ(1) ∈ ∆.

A ∂–admissible curve is a particular type of admissible curve in the sense of [23,
Sec. 3b]. Two ∂–admissible curves c1 and c2 are said to be isotopic if there is a
homotopy between c1 and c2 through ∂–admissible curves.

Notation 3.2. Associated to any curve, c ⊂ Dm, is a canonical section of the
interior of c to the real projectivization of the tangent bundle of Dm \ ∆. By
choosing a lift of this section to a particular Z2 cover as described in [23, Sec. 3d],
one assigns a bigrading to c. We shall denote by c̃ the data of a curve c ⊂ Dm

equipped with such a choice of bigrading.

Definition 3.3. [23, Sec. 3a] Two curves c0, c1 ⊂ Dm are said to have minimal
geometric intersection if they satisfy the following conditions:

• c0 and c1 intersect transversely,
• c0 ∩ c1 ∩ ∂Dm = ∅, and
• If z− 6= z+ are two points in c0 ∩ c1 not both in ∆, α0 ⊂ c0 and α1 ⊂ c1

are two arcs with endpoints z−, z+ such that α0 ∩ α1 = {z−, z+}, and K
is the connected component of Dm − (c0 ∪ c1) bounded by α0 ∪ α1, then
if K is topologically an open disk, it must contain at least one point of
∆. Informally, we say there are no “trivial bigons” among the connected
components of Dm − (c0 ∪ c1).

Definition 3.4. [23, Sec. 3e] Let d0, . . . , dm ⊂ Dm be the curves pictured in Figure
2. A ∂–admissible curve in Dm is said to be in normal form if it has minimal
geometric intersection with dj for each j = 0, . . . ,m.

Definition 3.5. A basis of ∂–admissible curves in Dm is a set, B = {c0, . . . , cm} ,
of ∂–admissible curves satisfying the conditions:
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0
...

1 m*
d2d0 d1 dm

Figure 2. The curves dj , for j = 0, . . . ,m, are the intersections of

the lines Re(z) =
(
−1− 1

m+2

)
+ 2(j+1)

m+2 with the unit disk in C. By
convention, the distinguished point, labeled by a ∗, at −1 ∈ ∂Dm,
is the left endpoint for all ∂–admissible curves in Dm.

• If γj : [0, 1] → Dm is the imbedding whose image is cj , then γ(1) = j ∈ ∆
(the right endpoint of cj is j), and
• ci ∩ cj = {−1} if i 6= j (distinct curves ci and cj intersect only at their left

endpoints).
If we, furthermore, specify a lift of each curve, cj ∈ B, to a bigraded curve, c̃j ,

we say that we have a basis, B̃ = {c̃0, . . . , c̃m}, of ∂–admissible bigraded curves in
Dm.

Unless otherwise specified, from this point forward whenever we write that B̃ is
a basis, we shall always mean that B̃ is a basis of ∂–admissible bigraded curves in
normal form in Dm. Two bases B = {c̃0, . . . c̃m} and B′ = {c̃′0, . . . , c̃′m} are said
to be equivalent if there exists an isotopy c̃i → c̃′i for each i = 0, . . . ,m through
∂–admissible bigraded curves in normal form.

As in [23], we let G = Diff(Dm, ∂Dm; ∆) denote the group of diffeomorphisms
f of Dm satisfying f |∂Dm

= Id and f(∆) = ∆ and note that there is a canonical
identification of π0(G) with Bm+1, the Artin braid group on m+1 generators. Under
this correspondence, (isotopy classes of) ∂–admissible curves are sent to (isotopy
classes of) ∂–admissible curves. Moreover, an (equivalence class of) basis B̃ is sent
to an (equivalence class of) basis σ(B̃), after suitably reordering the curves in σ(B̃).

3.2. The ring Am and a braid group action on Db(Am). In [23], Khovanov-
Seidel associate to a braid, σ ∈ Bm+1, a bimodule over a quiver algebra, Am
(defined below). In this subsection, we explain how their construction yields a
family of algebras and bimodules, one for each choice of basis. Our end goal is the
construction of a particular algebra, BKh, and a bimodule, MKh

σ over BKh, from
the data of a particular such basis, Q̃.

We begin by reviewing the original construction of Khovanov-Seidel in [23]. Let
Γm be the oriented graph (quiver) whose vertices are labeled 0, . . . ,m and whose
edges are shown in Figure 3. Recall that, given any oriented graph Γ, one defines its
path ring as the vector space over F freely generated by the set of all finite-length
paths in Γ, where multiplication is given by concatenation, and the product of two
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m0 1

...
2

Figure 3.

i−1 i m0 i−1 i m0

...... ......

σ−iσ+
i

Figure 4. The elementary Artin generators, σ±i

non-composable paths is set to 0. The ring Am is then defined as a quotient of the
path ring of Γm by the collection of relations

(i− 1|i|i+ 1) = 0, (i+ 1|i|i− 1) = 0, (i|i+ 1|i) = (i|i− 1|i), (0|1|0) = 0

for each 0 < i < m. In the above, following [23], we have labeled each path
in Γm by the complete ordered tuple of vertices it traverses. So, for instance,
(i − 1|i|i + 1) denotes the path that starts at vertex i − 1, moves right to i, then
right again to i + 1. The path ring of Γm is further endowed with a grading by
setting deg(i) = deg(i|i+1) = 0 and deg(i|i−1) = 1 for all i. This grading descends
to the quotient, Am, since the relations defining Am are homogeneous with respect
to the grading.3

Note that the collection {(i)|i ∈ 0, . . . ,m} of constant paths are mutually or-
thogonal idempotents, and

∑m
i=0(i) is the identity in Am. There are corresponding

decompositions of Am as a direct sum of projective left modules Am =
⊕m

i=0Am(i)
(resp., projective right-modules Am =

⊕m
i=0(i)Am). As in [23], we denote Am(i)

(resp., (i)Am) by Pi (resp., iP ). Note that Pi (resp., iP ) is the set of all paths
ending at i (resp., beginning at i).

To streamline notation, we henceforth assume that we have fixed m ≥ 0 ∈ Z,
and let A denote the algebra Am.

Khovanov-Seidel go on to associate to each braid σ ∈ Bm+1 an element of Db(A),
the bounded derived category of A–bimodules, by associating to each elementary
Artin braid generator σ±1

i (pictured in Figure 4) a dg bimodule Mσ±i
and to each

braid, σ := σi1
± · · ·σik±, decomposed as a product of elementary braid words, the

dg bimodule
Mσ =Mσi1± ⊗A . . .⊗AMσ±ik

.

They then verify that any two decompositions of σ as a product of elementary Artin
braid generators give rise to quasi-isomorphic complexes, and hence Mσ gives rise
to a well-defined element in Db(A).

3This internal grading corresponds to the second of the two gradings discussed in Notation 3.2.
Note that this grading is not the grading by path length which appears in [11, 50] and corresponds

to the j (quantum) grading of [21]. See Remark 3.21.
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0
...

1 m*

qm

q1

q0

Figure 5. The basis Q = {q0, . . . , qm}

3.3. The dg algebra B and the algebra BKh. Now, suppose we are given the
data of a ∂–admissible bigraded curve in normal form. Khovanov-Seidel show, in
[23, Sec. 4], how to use this data to construct a bounded complex of bigraded
projective left modules over the algebra A. Furthermore, a basis, B̃, of such curves
yields a dga via Yoneda imbedding (cf. [20, Sec. 2.6]). Recall:

Definition 3.6. Let (C1, ∂1), (C2, ∂2) be two bounded dg left modules over an al-
gebra A. Then the Hom complex of the pair (C1, C2), denoted HomA(C1, C2), is the
bounded complex whose generators are left module morphisms, F : C1 → C2, and
whose differential, D, is given by

D(F ) := ∂2F + F∂1.

Construction 3.7. Let B̃ = {c̃0, . . . , c̃m} be a basis, and let L(c̃j) be the bounded
complex of projective A–modules associated to c̃j, for each j = 0, . . . ,m. Then the
direct sum,

m⊕
i,j=0

HomA(L(c̃i), L(c̃j)),

is a dga, with multiplication given by composition of A–bimodule morphisms. We
will refer to

⊕m
i,j=0 HomA(L(c̃i), L(c̃j)) as the Hom algebra associated to B̃.

We focus in the present paper on the Hom algebra associated to the basis Q̃ =
{q̃0, . . . , q̃m} given by (a particular lift of) the collection of curves pictured in Figure
5.4

Applying the construction of [23, Sec. 4a], we associate to q̃j the dg bimodule:

Qj := 0 // P0

·(0|1) // P1

·(1|2) // . . .·(j−1|j)// Pj // 0 ,

where the differential map “ ·(i−1|i)” denotes “right multiplication by the element
(i−1|i).” By fixing a lift of the tangent vector to the curve q0 at a point near 0 ∈ ∆
and declaring this lift to correspond to bigrading (0, 0), we obtain a “canonical”
bigrading on Qj satisfying the property that the bigrading of the idempotent (i) ∈
Pi is (i, 0).

4We expect that results similar to those described in Theorems 5.1 and 6.1 hold for other
choices of basis, but we do not address that here.
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Notation 3.8. We shall denote by B the Hom algebra associated to Q̃:
m⊕

i,j=0

HomA (Qi, Qj)

and by BKh its homology, H∗(B), considered as an A∞ algebra via the construction
in Proposition 2.3.

We will eventually be interested in D∞(BKh)–in particular, a braid group action
on this category–so we now devote some time to describing the structure of B and
BKh.

Notation 3.9. Let RI be a bounded complex of elementary projective left A–
modules (e.g., one obtained from an admissible curve in normal form in Dm as
explained in [23, Sec. 4]):

RI = 0→ Pi0{s0} → . . .→ PiN {sN} → 0.

Suppose further that Pi0{s0} is in (co)homological grading 0. Then we will use
the notation IR to denote the following bounded complex of elementary projective
right A–modules:

IR := 0← i0P{−s0}[0]← . . .← iNP{−sN}[−N ]← 0,

where, if a map Pij → Pij+1 in RI is given by right multiplication by a path γ ∈ A,
then the corresponding map ijP ← ij+1P in IR is given by left multiplication by γ.

Lemma 3.10. Let RI , SJ be bounded complexes of elementary projective left A–
modules as above. Then HomA(RI , SJ ) ∼= IR⊗A SJ .

Proof. Each element φ ∈ HomA(RI , SJ ) can be decomposed as a sum of left A–
module maps φk,` : Pik{sk} → Pj`{s`}, each of which is uniquely determined by
the image, φk,`(ik), of the idempotent, (ik). We therefore obtain an isomorphism

HomA(RI , SJ )→ IR⊗A SJ
of F–vector spaces identifying φ with the element,

∑
k,` ((ik)⊗ φk,`(ik)).

To see that the Hom complex differential D(φ) := φdI+dJ φ on the left matches
the tensor product differential on the right, we simply note that if φ =

∑
k,` φk,` ∈

HomA(RI , SJ ), then for each pair, (k, `), φk,`dI is obtained by pre- (i.e., left-)
(resp., dJ φk,` is obtained by post- (i.e., right-)) multiplying φk,` by a path γk
(resp., γ`). This is precisely the induced differential on the tensor product complex
IR⊗A SJ .

�

Lemma 3.11. Let RI , SJ be two bigraded bounded complexes of projective modules
obtained from admissible bigraded curves in normal form as explained in [23, Sec.
4]. Then the differential on HomA(RI , SJ ) has degree (1, 0).

Proof. By definition, the differential on each of RI , SJ has degree (1, 0), implying
that the differential on IR and, hence, the differential on

HomA(RI , SJ ) = IR⊗A SJ ,
has degree (1, 0) as well. �

The following lemma was also obtained independently by Klamt and Stroppel.
Compare [24, Thms. 5.7, 7.3] and [25, Thms. 5.3, 6.7].
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Lemma 3.12. The dg algebra B :=
⊕m

i,j=0 HomA (Qi, Qj) is formal. Furthermore,
the algebra

BKh := H∗(B)

has the following explicit description:

BKh :=
m⊕

i,j=0

iB
Kh
j , with

iB
Kh
j :=

 0 if i < j,
SpanF〈i1j〉 if i = j, and

SpanF〈i1j , ixj〉 if i > j,

where the bigradings on generators are given by:

gr (i1j) = (0, 0) for all i ≥ j,
gr (ixj) = (−1, 1) for all i > j.

and the multiplication is given by:

m2(i1j ⊗ j1k) := i1k

m2(i1j ⊗ jxk) := ixk
m2(ixj ⊗ j1k) := ixk
m2(ixj ⊗ jxk) = 0

(As usual, m2 : iBKhj ⊗ kB
Kh
` → iB

Kh
` is identically 0 when j 6= k.)

Proof. We know from [23, Prop. 4.9] that as an F–vector space, iBKhj is free of
rank 0 when i < j, 1 when i = j, and 2 when i > j.

Indeed, one sees by direct calculation that when i < j the chain complex splits as
the direct sum of two acyclic subcomplexes. When i = j, the chain complex splits
in a similar fashion, but the first of the two complexes has homology generated by
(0) + . . . + (j) and the second is acyclic. When i > j, the chain complex again
splits, but now both subcomplexes have non-trivial homology, the first generated
by (0) + . . .+ (j), and the second generated by (1|0) + . . .+ (j + 1|j).

Denote the first (resp., second) subcomplex by C1 (resp., by Cx).
Proposition 2.3 now guarantees that BKh := H∗ (B) admits an A∞ structure

quasi-isomorphic to B, which we may describe explicitly once we have maps p :
iBj → iB

Kh
j , ι : iB

Kh
j → iBj , h : iBj → iBj satisfying the assumptions of

Proposition 2.3. We describe these maps in the case i > j, leaving the completely
analogous cases i ≤ j to the reader.

The inclusion map ι is the F–linear extension of:

• ι(i1j) := (0) + . . .+ (j),
• ι(ixj) := (1|0) + . . .+ (j + 1|j).

With respect to the bases:

{(0) + . . .+ (k) | 0 ≤ k ≤ j} ∪ {(k − 1|k) | 0 ≤ k ≤ j}

for C1, and:

{(1|0) + . . .+ (k + 1|k) | 0 ≤ k ≤ j} ∪ {(k|k − 1|k) | 0 ≤ k ≤ j}
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for Cx, the projection map p is the F–linear extension of:

p(φ) :=

 i1j if φ = (0) + . . .+ (j),
ixj if φ = (1|0) + . . .+ (j + 1|j), and
0 otherwise.

The homotopy map h is the F–linear extension of:

h(φ) :=
{ (

mB
1

)−1 (φ) if φ ∈ Im(mB
1 )

0 otherwise,

where in the above,
(
mB

1

)−1 (φ) is defined to be the (unique) basis element φ′

satisfying ∂(φ′) = φ.
One can now either see directly that B is formal by applying Lemma 2.16 or

simply note that the sum of the two gradings associated to each element in BKh

is 0. As each structure map mn :
(
BKh

)⊗n → BKh is degree (2− n) on this sum,
nontrivial multiplications are only possible when n = 2.

Verification that the bigradings and multiplication are as stated is a straightfor-
ward calculation. �

Remark 3.13. The algebra BKh is isomorphic to the algebra of lower triangular
(m+1)×(m+1) matrices over F[x]/(x2) with only 0’s and 1’s on the main diagonal:

BKh ∼=




d0 0 . . . 0

φ1,0 d1
. . .

...
...

. . . . . . 0
φm,0 . . . φm,m−1 dm


∣∣∣∣∣∣∣∣∣∣
di ∈ {0, 1}

 ⊂Mm+1(F[x]/(x2))

We define an algebra isomorphism by sending the generator i1j ∈ iB
Kh
j (resp.,

ixj ∈ BKhj ) to the (m+ 1)× (m+ 1) matrix whose only nonzero matrix entry is a
1 (resp., an x), located in row number i and column number j (where we assume
that rows and columns are numbered from 0 to m).

We close our discussion of BKh with a technical lemma that will prove useful
in our construction of the braid group action on D∞

(
BKh

)
(in particular, in the

proof of Proposition 3.18).

Lemma 3.14. Let ι : BKh → B, p : B → BKh, and h : B → B be the F–
linear transformations defined in the proof of Lemma 3.12. The A∞ morphism of
BKh–modules, ιB : BKh → B, given by

(ιB)(n1|1|n2) :=
{

ι if n1 = n2 = 0, and
0 otherwise.

is a quasi-isomorphism. Furthermore, there exists an A∞ quasi-isomorphism of
BKh–modules, pB : B → BKh, whose first few terms are given by:

(pB)(n1|1|n2) :=
{
p if n1 = n2 = 0,
0 if n1 = 1 and n2 = 0, and

(pB)(0|1|1) : B ⊗BKh → BKh is the bilinear map satisfying

(pB)(0|1|1) (a⊗ b) :=

• i1k if a = (`|`+ 1) ∈ iBj with i < j, k ≤ ` ≤ i, and b = j1k ∈ jB
Kh
k with

j > k, i ≥ k,
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• ixk if a = (`|`+ 1) ∈ iBj with i < j, k + 1 ≤ ` ≤ i, and b = jxk ∈ jB
Kh
k

with j > k, i > k, and
• ixk if a = (`|`−1|`) ∈ iBj with i ≤ j, k+ 1 ≤ ` ≤ i, and b = j1k ∈ jB

Kh
k

with j > k, i > k.
• 0 for all other basis elements a ∈ B, b ∈ BKh in the proof of Lemma

3.12.

Proof. Let m(n1|1|n2) denote the structure maps for B and mKh
(n1|1|n2) denote those

(induced by Proposition 2.3) for BKh, both considered as BKh–bimodules.
Recall that the “Transfer Theorem” [9, Thm. 2.1] tells us how to extend ι, p to

A∞ quasi-isomorphisms. Explicitly, one defines

(ιB)(0|1|0) := ι, (pB)(0|1|0) := p

and constructs higher terms of ιB , pB satisfying the A∞ relations for morphisms.
Since ι, p induce isomorphisms on homology, ιB and pB will then yield A∞ quasi-
isomorphisms B ↔ BKh.

We begin by calculating the higher terms of ιB . But here our work is already
done, since ι, p, and h satisfy the assumptions of Lemma 2.16, hence (ιB)(n1|1|n2) = 0
for all (n1 + 1 + n2) > 1, as desired.

We now move to the calculation of the higher terms of pB .

Computation of (pB)(1|1|0):
Here we note that ph = 0, and Im(h) and Im(mB

1 ) are both left BKh submodules,
so an application of Lemma 2.17, implies that p : B → BKh is a left module map
(and, hence, we can extend p to a left A∞ morphism with no higher left A∞ terms).
In particular, (pB)(1|1|0) := 0, as desired.

Computation of (pB)(0|1|1):
Unfortunately, Im(h) and Im(mB

1 ) are not right BKh submodules, so we will
have to work harder here. The Transfer Theorem ([9, Thm. 2.1]), combined with
remarks in the proof of Lemma 2.17, tells us that

(pB)(0|1|1) := p ◦m(0|1|1) ◦ (h⊗ 1).

We now claim that if iaj ∈ iBj and jbk ∈ jB
Kh
k , then (pB)(0|1|1) (iaj ⊗ jbk) = 0

unless the triple i, j, k satisfies the property that i ≤ j, j > k, and i ≥ k. We can
see this by a case-by-case analysis (see the table below, which describes (pB)(0|1|1)

in the various cases). For example, if j < k (first column of table) then jbk = 0,
and if i < k (first entry in second column), then p(0|1|0) := 0. In both cases, we then
have (pB)(0|1|1) (iaj ⊗ jbk) = 0. On the other hand, when i > j ≥ k or i = j = k

(the remaining entries in the table except the top two in the third column), we
notice that

m(0|1|1)(Im(h)⊗ jbk) ⊆ Im(h).

Since ph = 0, we have (pB)(0|1|1) = 0 in these cases as well.
We are therefore left to compute (pB)(0|1|1) when i ≤ j, j > k, and i ≥ k (the

starred entries of the table). There are three subcases.
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(pB)(0|1|1) (iaj ⊗ jbk) j < k j = k j > k

i < j 0 0 ∗
i = j 0 0 ∗
i > j 0 0 0

Case 1: i < j, j > k, and i = k
Here, we notice that for basis elements iaj , jbk, we have (pB)(0|1|1) (iaj⊗jbk) 6= 0

iff iaj = (i|i+ 1) and jbk = j1k.
In this case,

(pB)(0|1|1) (iaj ⊗ jbk) := p [(0) + . . .+ (i)]
= i1k.

Case 2: i < j, j > k, and i > k
Again, we notice that for basis elements iaj , jbk, we have (pB)(0|1|1) (iaj⊗jbk) 6= 0

iff either
• iaj = (`|`+ 1) for k ≤ ` ≤ i and jbk = j1k, in which case

(pB)(0|1|1) (iaj ⊗ jbk) := p [(0) + . . .+ (k)] = i1k.

• iaj = (`|`+ 1) for k + 1 ≤ ` ≤ i and jbk = jxk, in which case

(pB)(0|1|1) (iaj ⊗ jbk) := p [(1|0) + . . .+ (k + 1|k)] = ixk.

• iaj = (`+ 1|`|`+ 1) for k ≤ ` ≤ i and jbk = j1k, in which case

(pB)(0|1|1) (iaj ⊗ jbk) := p [(1|0) + . . .+ (k + 1|k)] = ixk.

Case 3: i = j > k
An analysis similar to the previous cases allows us to conclude that p(0|1|1)(iaj⊗

jbk) = 0 on basis elements iaj , jbk except when iaj = (`|` − 1|`) for k + 1 ≤ ` ≤ i
and jbk = j1k. In these cases, we have:

p(0|1|1) [iaj ⊗ jbk] = ixk.

Armed with the above calculations, we define p(0|1|1) : iBj ⊗ jB
Kh
k → iBk in the

case i ≤ j, j > k, i ≥ k to be the unique bilinear map assigning the values above
to the basis elements described and 0 to all other basis elements. The desired
conclusion follows.

�

3.4. A braid group action on D∞(BKh). Khovanov-Seidel’s braid group action
on D(A), the derived category of dg modules over the dg algebra A, induces a braid
group action on D∞(BKh), via the following:

Proposition 3.15. There is an equivalence of triangulated categories

D(A)↔ D(B)↔ D∞(BKh).

Proof. Borrowing notation from [32, Sec. 2.4.1], let D∞,∞(−) denote the category
whose objects are strictly unital A∞ modules over “−” and whose morphisms are
A∞ homotopy classes of A∞ morphisms. Since BKh is a strictly unital minimal
A∞ algebra, [29, Cor. 3.3.1.3] and [29, Prop. 3.3.1.8] imply the equivalence of
D∞,∞(BKh) and D∞(BKh), and the argument given in [32, Proposition 2.4.1]
implies the equivalence of D(B) (there denoted DH,qi(B)) and D∞,∞(B).
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Moreover, D∞,∞(B) and D∞,∞(BKh) are equivalent triangulated categories,
since [32, Prop. 2.4.10] tells us that an A∞ quasi-isomorphism φ : B → BKh

(whose existence is guaranteed by Lemma 3.12) induces two mutually quasi-inverse
functors Inductφ : D∞(B)→ D∞(BKh) and Restφ : D∞(BKh))→ D∞(B).5

To see that D(A) ↔ D(B), we will show that the functors F : D(A) → D(B)
and G : D(B)→ D(A) given by

F(M) := Q∗ ⊗AM = HomA(Q,M)
G(N) := Q⊗B N

where Q :=
⊕m

i=0Qi and Q∗ := HomA(Q,A) =
⊕m

i=0 iQ are well-defined mutually
inverse equivalences of triangulated categories.

Since each iQ ⊂ Q∗ is a complex of projective right modules over A, the functor
Q∗⊗A− is exact, so F is clearly well-defined. To prove that G is also well-defined,
we will show that the right dg B-module HomA(Pi, Q) ⊂ Q = HomA(A,Q) =⊕m

i=0 HomA(Pi, Q) is homotopy equivalent to a semi-free dg B-module, and so
tensoring with this dg B-module is exact.

Let MC(i1i−1) denote the mapping cone of the chain map i1i−1 : Qi → Qi−1

defined by i1i−1 := (0) + . . . + (i − 1) ∈ HomA(Qi, Qi−1). There is an A–linear
chain map ι : Pi →MC(i1i−1) given by the inclusion of Pi into Qi, and an A–linear
chain map p : MC(i1i−1)→ Pi given by

p(φ) :=

 φ if φ ∈ Pi ⊂ Qi, and
−φ(i− 1|i) if φ ∈ Pi−1 ⊂ Qi−1, and
0 otherwise.

We leave it to the reader to verify that

pι = Id and ιp = Id + ∂h+ h∂,

where ∂ is the differential in MC(i1i−1) and h : MC(i1i−1) → MC(i1i−1) is the
A–linear map h := i−11i : Qi−1 → Qi defined by i−11i := (0) + . . . + (i − 1) ∈
HomA(Qi−1, Qi).

Thus Pi is homotopy equivalent to the mapping cone of the chain map i1i−1 : Qi →
Qi−1, and consequently, HomA(Pi, Q) is homotopy equivalent to the mapping cone
of the induced chain map i−1fi : i−1B → iB, where iB := HomA(Qi, Q) = (i1i)B.
Since MC(i−1fi) is semi-free (because i−1B and iB are semi-free), the functor
(HomA(Pi, Q)⊗B −) ∼= (MC(i−1fi)⊗B −) is exact, as desired.

It remains to show that the functors F and G are inverses of each other. Clearly,
the composition F ◦G is isomorphic to the identity functor of D(B) because Q∗⊗A
Q ∼= HomA(Q,Q) = B by Lemma 3.10. To show that the composition G ◦ F is
isomorphic to the identity functor of D(A), we will show that the map

ψ : Q⊗B Q∗ −→ A

defined by ψ(q ⊗ f) := f(q) ∈ A for f ∈ Q∗ and q ∈ Q is an isomorphism of dg
bimodules. We first note that the differential in Q ⊗B Q∗ is trivial because the
differential in Q (resp., Q∗) is given by right (resp., left) multiplication with the
element

b :=
m∑
i=1

(
(0|1) + . . .+ (i− 1|i)

)
∈

m⊕
i=1

HomA(Qi, Qi) ⊂ B;

5Note that although [32, Prop. 2.4.10] is formulated for categories of A∞ right modules, similar
statements also hold for categories of A∞ left modules and A∞ bimodules; see [32] for details.
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and so the differential in Q⊗B Q∗ is equal to b⊗ Id + Id⊗ b = 2(b⊗ Id) = 0. Since
the differential in A is trivial as well, it thus suffices to show that ψ is a homotopy
equivalence.

However, we have already seen that Q is homotopy equivalent to a sum of
complexes of the form iB → i−1B where iB = HomA(Qi, Q), and an analo-
gous argument shows that Q∗ is homotopy equivalent to a sum of complexes
of the form Bi−1 → Bi where Bi := HomA(Q,Qi), and B is homotopy equiv-
alent to a sum of complexes of the form iBj−1 → (i−1Bj−1 ⊕ iBj) → i−1Bj
where iBj := HomA(Qi, Qj). Moreover, one can check that under these vari-
ous homotopy equivalences, the map ψ corresponds to the canonical map from
(iB → i−1B)⊗B (Bj−1 → Bj) to iBj−1 → (i−1Bj−1 ⊕ iBj)→ i−1Bj , and now the
fact that ψ is a homotopy equivalence follows from the identities

iB ⊗B Bj = (i1i)B ⊗B B(j1j) = (i1i)B(j1j) = iBj .

�

To understand the braid group action on D∞(BKh), recall (see [23, Sec. 2d])
that Khovanov-Seidel associate

• to the elementary Artin generator σ+
k the dg A–bimodule

Mσ+
k

:= 0 // Pk ⊗ kP
βk // A // 0 ,

where βk is the A–bimodule map specified by βk((k)⊗ (k)) = (k), and
• to the elementary Artin generator σ−k the dg A–bimodule

Mσ−k
:= 0 // A

γk // Pk ⊗ kP{−1} // 0 ,

where

γk(1) = (k−1|k)⊗(k|k−1)+(k+1|k)⊗(k|k+1)+(k)⊗(k|k−1|k)+(k|k−1|k)⊗(k).

Here, “1” denotes the identity element 1 =
∑m
i=0(i).

We can therefore understand the induced braid group action on D∞(BKh) by un-
derstanding the images ofMσ±k

under the derived equivalence D∞(A)→ D∞(B)→
D∞(BKh).

Accordingly, we denote by M̃σ+
k

(resp., M̃σ−k
) the mapping cone

0 // HomA (
⊕m

i=0Qi, Pk)⊗HomA

(
Pk,
⊕m

j=0Qj

) eβk // B // 0

(resp.,

0 // B
eγk // HomA (

⊕m
i=0Qi, Pk)⊗HomA

(
Pk,
⊕m

j=0Qj

)
{−1} // 0 ),

considered as a BKh-BKh dg bimodule.
After an application of Lemma 3.10:

HomA

(
m⊕
i=0

Qi, Pk

)
⊗HomA

Pk, m⊕
j=0

Qj

 =

(
m⊕
i=0

iQ

)
⊗APk⊗ kP⊗A

(
m⊕
i=0

Qj

)
,

the induced maps β̃k, γ̃k can be described as β̃k = Id⊗βk⊗Id and γ̃k = Id⊗γk⊗Id.
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To further streamline notation, we set

P̃k := HomA

(
m⊕
i=0

Qi, Pk

)
and

kP̃ := HomA

Pk, m⊕
j=0

Qj

 .

We will also find it convenient to replace the mapping cones M̃σ±k
with simpler,

quasi-isomorphic, mapping cones. We do this by replacing each bimodule B and
P̃k ⊗ kP̃ by its homology and the maps β̃k, γ̃k by the induced maps on homology.

We already understand the structure of BKh = H∗(B) (Lemma 3.12). The
homology of P̃k (resp., kP̃ ) is described by:

Lemma 3.16. P̃k (resp., kP̃ ) is formal as a left (resp., right) BKh module.
Furthermore, PKhk := H∗

(
P̃k

)
and kP

Kh := H∗

(
kP̃
)

have the following ex-
plicit descriptions.

PKhk = SpanF〈u∗,v∗〉, kP
Kh = SpanF〈u,v〉

where the bigradings of u∗,v∗,u,v are given by:

gr(u∗) = (0, 1), gr(v∗) = (1, 0), gr(u) = (0, 0), gr(v) = (−1, 1),

and left multiplication by a generator θ ∈ BKh on PKhk is given by:

θ · u∗ =
{

u∗ if θ = k1k,
0 otherwise. θ · v∗ =

 v∗ if θ = k−11k−1

u∗ if θ = kxk−1,
0 otherwise.

and right multiplication by a generator θ ∈ BKh on kP
Kh is given by:

u · θ =

 u if θ = k1k

v if θ = kxk−1

0 otherwise.
v · θ =

{
v if θ = k−11k−1

0 otherwise.

Proof. By Lemma 3.10, HomA(Qi, Pk) is given by the complex iQ ⊗A Pk and
HomA(Pk, Qi) by kP ⊗A Qi, where

iQ := 0P 1P
(0|1)·oo . . .

(1|2)·oo
iP

(i−1|i)·oo

This implies that P̃k, kP̃ are given by:

P̃k :=
m⊕
i=0

0Pk 1Pk
(0|1)·oo . . .

(1|2)·oo
iPk

(i−1|i)·oo

kP̃ :=
m⊕
i=0

kP0

·(0|1) //
kP1

·(1|2) // . . . ·(i−1|i)//
kPi

We see from above that iQ⊗A Pk is:
• 0 when i < k − 1,
• rank one, generated by (k−1|k) ∈ k−1Pk, with 0 differential, when i = k−1,
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• a direct sum of Span〈(k|k − 1|k)〉 ⊂ kPk and the acyclic subcomplex

(k − 1|k)← (k) ⊂ {k−1Pk ← kPk}
when i = k, and
• a direct sum of the two acyclic subcomplexes

(k − 1|k)← (k) ⊂ {k−1Pk ← kPk} and (k|k − 1|k)← (k + 1|k) ⊂ {kPk ← k+1Pk}
when i > k.

To show formality of P̃k, we use Lemma 2.17 to show that all induced multipli-
cations

m(n−1|1|0) :
(
BKh

)⊗n−1 ⊗H∗(HomA(Qi, Pk))→ H∗(HomA(Qj , Pk))

vanish for n > 2.
When i ≤ k − 1, HomA(Qi, Pk) has trivial differential, so the maps ιi, pi, hi are

clear. In the case i ≥ k, we define:

ιi : H∗ (HomA(Qi, Pk))→ HomA(Qi, Pk),
pi : HomA(Qi, Pk)→ H∗ (HomA(Qi, Pk)) , and
hi : HomA(Qi, Pk)→ HomA(Qi, Pk)[−1]

as follows.
Let θ denote any generator of HomA(Qi, Pk), let u∗ denote the lone generator of

H∗(HomA(Qk, Pk)), and let ∂ denote the differential on the complex HomA(Qi, Pk).
Note that H∗(HomA(Qi, Pk)) = 0 for i > k. Then we define ιi, pi, hi to be the F–
linear extensions of:

ιk(u∗) := (k|k − 1|k)
ιi>k := 0

pi(θ) :=
{

u∗ if i = k and θ = (k|k − 1|k)
0 otherwise

and

hi(θ) :=
{
∂−1(θ) if θ ∈ Im(∂),
0 otherwise.

In the above, ∂−1(θ) is defined to be the (unique) basis element θ′ satisfying
∂(θ′) = θ.

It is now straightforward to verify that
(1) pihi = 0 for all i, and
(2) Im(hi) and Im(∂) are left BKh-submodules.

Therefore P̃k is formal by Lemma 2.17.
To see that kP̃ is also formal, we perform a very similar computation, observing

that kP̃ satisfies the assumptions of Lemma 2.16 as a right BKh–module, hence is
formal.

Now, we simply note that H∗(P̃k) is rank 2, generated by
• u∗ := pk(k|k − 1|k) ∈ kPk ⊂ HomA (Qk, Pk) and
• v∗ := pk−1(k − 1|k) ∈ k−1Pk ⊂ HomA (Qk−1, Pk),

as is H∗(kP̃ ), generated by
• u := pk(k) ∈ kPk ⊂ HomA (Pk, Qk) and
• v := pk−1(k|k − 1) ∈ kPk−1 ⊂ HomA (Pk, Qk−1).
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Recalling (see the proof of Lemma 3.12) that the generators i1j (for i ≥ j) and
ixj (for i > j) of BKh are represented by (0) + . . .+ (j) and (1|0) + . . .+ (j + 1|j),
we see that the multiplication is also as claimed. �

We now have the proposed model

MC

(
PKhk ⊗ kP

Kh
βKh

k // BKh

)
for MKh

σ+
k

and the model

MC

(
BKh

γKh
k // PKhk ⊗ kP

Kh{−1}

)
forMKh

σ−k
, where βKhk and γKhk are the A∞ morphisms on homology induced by β̃k

and γ̃k.
To understand the induced maps on homology, we must explicitly understand

the quasi-isomorphisms B ↔ BKh and P̃k ⊗ kP̃ ↔ PKhk ⊗ kP
Kh.

Explicitly, if ιP ⊗ ι′P : PKhk ⊗ kP
Kh → P̃k ⊗ kP̃ and pB : B → BKh are A∞

quasi-isomorphisms, then the induced A∞ morphism on homology is given by:

βKhk = pB ◦ β̃k ◦ (ιP ⊗ ι′P ) : PKhk ⊗ kP
Kh → BKh.

Furthermore, (cf. [47, Cor. 3.16]), the mapping cones satisfy:(
0 // PKhk ⊗ kP

Kh
βKh

k =pB◦eβk◦(ιP⊗ι′P ) // BKh // 0

)
=(

0 // P̃k ⊗ kP̃
eβk // B // 0

)
as elements of D∞(BKh).

Similarly, if ιB : BKh → B and pP : P̃k ⊗ kP̃ → PKhk ⊗ kP
Kh are A∞ quasi-

isomorphisms, then:

(
0 // BKh

γKh
k =(pP⊗p′P )◦eβk◦ιB // PKhk ⊗ kP

Kh{−1} // 0

)
=(

0 // B
eγk // P̃k ⊗ kP̃{−1} // 0

)
as elements of D∞(BKh).

Proposition 3.17. The image of Mσ−k
∈ D∞(A) under the derived equivalence

D∞(A)→ D∞
(
BKh

)
is MC

(
γKhk

)
, where

γKhk : BKh → PKhk ⊗ kP
Kh{−1}

is the F–linear BKh–bimodule map (i.e., strict A∞ morphism) determined by

i1i 7→

 v∗ ⊗ v when i = k − 1,
u∗ ⊗ u when i = k, and

0 otherwise.
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Accordingly, we define MKh
σ−k

:= MC
(
γKhk

)
Proof. We must compute the terms of the induced A∞ morphism γKhk := (pP ⊗
p′P ) ◦ β̃k ◦ ιB , as described above.

We begin by noting that the (n1|1|n2) map of the A∞ morphism γKhk , i.e., the
map (

γKhk
)

(n1|1|n2)
:
(
BKh

)⊗n1 ⊗BKh ⊗
(
BKh

)⊗n2 →
(
PKhk ⊗ kP

Kh
)
{−1}

is degree (−(n1 + n2), 0) with respect to the bigrading. This follows from the A∞
relations for morphisms, combined with Lemma 3.11.

An examination of the bigradings of elements of BKh and PKhk ⊗ kP
Kh then

immediately implies that
(
γKhk

)
(n1|1|n2)

= 0 unless n1 = n2 = 0, so γKhk is a strict
A∞ isomorphism, as desired. A quick way to see this is to notice that the sum of
the two gradings associated to each element in BKh and

(
PKhk ⊗ kP

Kh
)
{−1} is 0,

and (γk)(n1|1|n2) is degree −(n1 + n2) on this sum.
It is now easy to verify that(

γKhk
)

:=
(
γKhk

)
(0|1|0)

= (pP ⊗ p′P )(0|1|0) ◦ γ̃k ◦ (ιB)(0|1|0)

is as described. In particular, γKhk is determined by its behavior on the (m + 1)
idempotents i1i ∈ BKh, since it is a BKh–bimodule map.

For example:

γKhk (k−11k−1) := (pP )(0|1|0) ◦ γ̃k ◦ (ιB)(0|1|0) (k−11k−1)

= (pP )(0|1|0) ◦ γ̃k [(0) + . . .+ (k − 1)]

= (pP )(0|1|0) [(k − 1|k)⊗ (k|k − 1)]

= v∗ ⊗ v

We leave the remaining similarly straightforward computations to the reader. �

Proposition 3.18. The image of Mσ+
k
∈ D∞(A) under the derived equivalence

D∞(A) → D∞
(
BKh

)
is MC

(
βKhk

)
, where the terms of the A∞ morphism βKhk

are given as follows.(
βKhk

)
(n1|1|n2)

:
(
BKh

)⊗n1 ⊗
(
PKhk ⊗ kP

Kh
)
⊗
(
BKh

)⊗n2 → BKh

is identically zero unless n1 + n2 = 1.
When n1 = 1, n2 = 0:(

βKhk
)

(1|1|0)
: BKh ⊗

(
PKhk ⊗ kP

Kh
)
→ BKh

is the trilinear map satisfying:

(
βKhk

)
(1|1|0)

:


[i1k ⊗ (u∗ ⊗ u)] 7→ ixk (i ≥ k + 1)

[i1k−1 ⊗ (v∗ ⊗ u)] 7→ i1k (i ≥ k)
[ixk−1 ⊗ (v∗ ⊗ u)] 7→ ixk (i ≥ k + 1)

[i1k−1 ⊗ (v∗ ⊗ v)] 7→ ixk−1 (i ≥ k)

and
(
βKhk

)
(1|1|0)

(b⊗θ) = 0 for all other basis elements b ∈ BKh, θ ∈
(
PKhk ⊗ kP

Kh
)
.

When n1 = 0, n2 = 1:(
βKhk

)
(0|1|1)

:
(
PKhk ⊗ kP

Kh
)
⊗BKh → BKh
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is the trilinear map satisfying:

(
βKhk

)
(0|1|1)

:


[(u∗ ⊗ u)⊗ k1j ] 7→ kxj (j ≤ k − 1)

[(v∗ ⊗ u)⊗ k1j ] 7→ k−11j (j ≤ k − 1)
[(v∗ ⊗ u)⊗ kxj ] 7→ k−1xj (j ≤ k − 2)

[(v∗ ⊗ v)⊗ k−11j ] 7→ k−1xj (j ≤ k − 2)

and
(
βKhk

)
(0|1|1)

(θ⊗b) = 0 for all other basis elements b ∈ BKh, θ ∈
(
PKhk ⊗ kP

Kh
)
.

Accordingly, we define MKh
σ+

k

:= MC
(
βKhk

)
Proof. As in the proof of Proposition 3.17, the (n1|1|n2) map of the A∞ morphism
βKhk is degree (−(n1 + n2), 0) with respect to the bigrading.

In this case, however, we see that the sum of the two gradings for each element
in PKhk ⊗ kP

Kh is 1, while the sum of the two gradings associated to each element
in BKh is 0. Since

(
βKhk

)
(n1|1|n2)

is degree −(n1 + n2) on this sum, we conclude

that
(
βKhk

)
(n1|1|n2)

= 0 unless −(n1 + n2) = −1, as claimed.

To calculate
(
βKhk

)
(n1|1|n2)

in the relevant cases (n1 = 1, n2 = 0) and (n1 =

0, n2 = 1), we recall that βKhk : PKhk ⊗ kP
Kh → BKh is given by the composition

PKhk ⊗ kP
Kh ι⊗ι′ // P̃k ⊗ kP̃

eβk // B
p // BKh .

Calculation of
(
βKhk

)
(1|1|0)

:

Since β̃k is, by definition, a strict A∞ morphism, we see that(
βKhk

)
(1|1|0)

:= p(1|1|0) ◦ β̃k ◦
(
ι(0|1|0) ⊗ ι′(0|1|0)

)
+ p(0|1|0) ◦ β̃k ◦

(
ι(1|1|0) ⊗ ι′(0|1|0)

)
.

Furthermore, we showed during the proof of Lemma 3.14 that p(1|1|0) := 0, so
the first term above also vanishes, leaving:

(
βKhk

)
(1|1|0)

:= p(0|1|0) ◦ β̃k ◦
(
ι(1|1|0) ⊗ ι′(0|1|0)

)
.

Another application of the Transfer Theorem [9, Thm. 2.1] tells us that on basis
elements b ∈ BKh and θ ∈ PKhk , we have

ι(1|1|0) [b⊗ θ] =


(k + 1|k) ∈ HomA(Qi, Pk) when b = i1k, θ = u∗, and i ≥ k + 1,

(k) ∈ HomA(Qi, Pk) when b = i1k, θ = v∗, and i ≥ k,
(k + 1|k) ∈ HomA(Qi, Pk) when b = ixk, θ = v∗, and i ≥ k + 1, and

0 otherwise.

Composing the above with p(0|1|0) ◦ β̃k yields the desired result. We perform
this computation in one case, leaving the small number of remaining (similarly
straightforward) computations to the reader. Assume i ≥ k + 1. Then:(
βKhk

)
(1|1|0)

(i1k ⊗ (u∗ ⊗ u)) := p(0|1|0) ◦ β̃k ◦
[
ι(1|1|0)(i1k ⊗ u∗)⊗ ι′(0|1|0)(u)

]
= p(0|1|0) ◦ β̃k [(k + 1|k)⊗ (k)]
= p(0|1|0)[(k + 1|k)]
= ixk
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Calculation of
(
βKhk

)
(0|1|1)

: Similarly, we have:(
βKhk

)
(0|1|1)

:= p(0|1|1) ◦ β̃k ◦
(
ι(0|1|0) ⊗ ι′(0|1|0)

)
+ p(0|1|0) ◦ β̃k ◦

(
ι(0|1|0) ⊗ ι′(0|1|1)

)
,

and an application of Lemma 2.16 (see the proof of Lemma 3.16) implies that
ι′(0|1|1) := 0, leaving:(

βKhk
)

(0|1|1)
:= p(0|1|1) ◦ β̃k ◦

(
ι(0|1|0) ⊗ ι′(0|1|0)

)
.

Referring to Lemma 3.14, we again perform a sample computation, leaving the
remaining computations to the reader. Assume j ≤ k − 1. Then:(

βKhk
)

(0|1|1)
((v∗ ⊗ u)⊗ k1j) := p(0|1|1) ◦

(
β̃k[(k − 1|k)⊗ (k)]⊗ k1j

)
= p(0|1|1) [(k − 1|k)⊗ k1j ]
= k−11j

�

Now, if we have a general braid group element σ ∈ Bm+1 that decomposes as
σ = σ±k1

· · ·σ±kn
, [23] associates to σ ∈ Bm+1 the dg bimodule:

Mσ :=Mσ±k1
⊗A . . .⊗AMσ±kn

over the algebra A (or, rather, its equivalence class in Db(A)).
Considered as an element of D∞(A), we can alternatively describeMσ in terms

of an A∞ tensor product, by the following.

Definition 3.19. [22, Defn. 1] Given rings A,B, an A-B bimodule M is called
sweet if it is finitely-generated and projective as a left A module and as a right B
module.

Remark 3.20. The tensor product N⊗A M of an A′-A bimodule N with an A-B
bimodule is a sweet A′-B bimodule.

Since each Mσ±k
is a bounded complex of sweet bimodules over A whose higher

multiplications are all trivial, the ordinary tensor product above agrees with the
A∞ tensor product in D∞(A). In other words,

Mσ :=Mσ±k1
⊗̃A . . . ⊗̃AMσ±kn

.

Since A∞ tensor products are sent to A∞ tensor products under the derived equiv-
alence D∞(A) ↔ D∞(B) ↔ D∞(BKh), we see that the element of D∞(BKh)
associated to a general braid σ = σ±k1

· · ·σ±kn
∈ Bm+1 is given by:

MKh
σ :=MKh

σ±k1

⊗̃BKh . . . ⊗̃BKh MKh
σ±kn

.

Remark 3.21. The BKh modules described here (and, more generally, any A∞
module over the Hom algebra of a basis of curves) are equipped with three gradings:

(1) a (co)homological grading,
(2) an internal grading counting steps to the left in the path algebra, Am, which

corresponds to the power of t under the identification of the Khovanov-
Seidel construction with a categorification of the Burau representation (see
[23, Sec. 2e]),



28 DENIS AUROUX, J. ELISENDA GRIGSBY, AND STEPHAN M. WEHRLI

(3) a grading by path length in the path algebra, Am, which corresponds
to Khovanov’s j (quantum) grading if one identifies the Khovanov-Seidel
quiver algebra Am with the algebra A1,m appearing in [11, 50].

The first two of these gradings constitute the bigrading described in [23, Sec.
3d] and discussed throughout this section.

For the benefit of those readers interested in the trigradings of generators of
BKh, PKhk , and kP

Kh, we record them here:

• gr(i1j) = (0, 0, 0) for i1j ∈ iBj for all i, j ∈ {0, . . . ,m},
• gr(ixj) = (−1, 1, 1) for ixj ∈ iBj for all i > j ∈ {0, . . . ,m},
• gr(v∗) = (1, 0, 1) and gr(u∗) = (0, 1, 2) for v∗,u∗ ∈ PKhk for all k ∈
{1, . . . ,m}, and
• gr(v) = (−1, 1, 1) and gr(u) = (0, 0, 0) for v,u ∈ kP

Kh for all k ∈
{1, . . . ,m}.

3.5. BKh and Fukaya categories. For completeness, and to motivate the con-
structions in the next section, we briefly outline a geometric interpretation of the
algebra BKh and the bimodulesMKh

σ±i
, in terms of the Fukaya category of a suitable

Lefschetz fibration [45, 47, 48]. (Since the construction in [47] does not work over
Z/2Z, the setup of [48] is the most appropriate one here.)

Namely, denote by p a polynomial of degree m + 1 whose roots are exactly the
points of ∆, and consider the complex surface S = {(x, y, z) ∈ C3 |x2 + y2 =
p(z)}. The projection to the z coordinate defines a Lefschetz fibration πS : S →
C, whose generic fiber is an affine conic, and whose m + 1 vanishing cycles are
all isotopic to each other. The basis of arcs Q = {q0, . . . , qm} of Figure 5 then
determines a collection of Lefschetz thimbles QS0 , . . . , Q

S
m (i.e., Lagrangian disks in

S whose boundaries are the vanishing cycles in the fiber π−1
S (−1)). These form an

exceptional collection which generates the (directed) Fukaya category F(πS) of the
Lefschetz fibration πS [47, 48].

Perturbing the symplectic structure slightly, we can ensure that the vanishing
cycles (which are Hamiltonian isotopic loops in π−1

S (−1) ' C∗) are mutually trans-
verse and intersect in a suitable manner (i.e., they pairwise intersect in exactly two
points, and the intersection points are arranged in a configuration which forces the
vanishing of higher products on Floer complexes within the ordered collection).

The Floer complexes which determine morphisms from QSi to QSj in the di-
rected Fukaya category then have rank 2 whenever i > j, while by definition these
morphism spaces have rank 1 for i = j and 0 for i < j [45]. (Note: our ordering con-
vention for bases of arcs is the opposite of Seidel’s.) Moreover, an easy calculation
in Floer homology then shows that

BS :=
m⊕

i,j=0

HomF(πS)(QSi , Q
S
j )

is isomorphic to BKh (viewing both as A∞-algebras, in which mn happens to vanish
for n 6= 2). The categories of modules over F(πS) and BKh are therefore equivalent.

In fact, the BKh-module PKhk has a geometric counterpart via this equivalence,
namely a Lagrangian sphere PSk in S which projects under πS to a line segment
connecting two consecutive points of ∆. Indeed, PSk intersects QSk−1 and QSk in one
point each, and is disjoint from the other QSi ; it is then not hard to check that
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i HomF(πS)(QSi , P

S
k ) ' PKhk as an A∞-module over BS ' BKh). See Chapter

20 of [47] for more about the symplectic geometry of S.
Elements of the braid group Bm+1 acting on (Dm,∆) lift to symplectic automor-

phisms of S preserving the fiber π−1
S (−1); specifically, the Artin generator σk lifts

to the Dehn twist about the Lagrangian sphere PSk . Denoting again by σ the sym-
plectic automorphism of S which corresponds to a braid σ ∈ Bm+1, we associate
to it the A∞-bimodule

MS
σ =

m⊕
i,j=0

HomF(πS)(QSi , σ(QSj ))

over BS ' BKh. It then follows from Seidel’s long exact sequence for Dehn twists
[46] that the bimodules MS

σ±k
and MKh

σ±k
associated to Artin generators (or their

inverses) are quasi-isomorphic.

4. Bordered Floer algebras and bimodules

We now consider the analogues in bordered Floer homology of the Khovanov-
Seidel bimodules described in Section 3. We follow Lipshitz-Ozsváth-Thurston in
[31, 32, 33] and Zarev in [53], using a symplectic reinterpretation of their work due
to the first author [4].

4.1. The bordered Floer algebra. Denote by Σ the double cover ofDm branched
at the m + 1 points of ∆ (with covering map πΣ : Σ → Dm). We make Σ a
parametrized surface by equipping it with two marked points z± on its boundary
(the two preimages by πΣ of a point in ∂Dm) and the collection of arcs QΣ =
{QΣ

0 , . . . , Q
Σ
m}, where QΣ

k = π−1
Σ (qk).

In the language introduced by Lipshitz, Ozsváth and Thurston [31], the parametrized
surface (Σ, z±,QΣ) is described combinatorially by a (twice) pointed matched circle
(or pair of circles when m is odd), ZQ. This consists of a pair of oriented intervals
(the two components of ∂Σ \ {z±}), each carrying m+ 1 distinguished points (the
end points of disjoint pushoffs of the QΣ

k ), labeled successively in decreasing order
m, . . . , 1, 0 along each interval (according to the manner in which the end points of
the 1-handles QΣ

k match up).
Recall that the 1–moving strands algebra A (ZQ, 1),6 which we also denote by

BHF for consistency with the preceding sections, can be described as:

A (ZQ, 1) =
m⊕

i,j=0

iB
HF
j ,

where

iB
HF
j = SpanF

 0 if i < j,

i1i if i = j,

iρj , iσj if i > j

 ,

and the multiplication mHF
2 : iBHFj ⊗ jB

HF
k → iB

HF
k is defined by

• mHF
2 (i1i ⊗ a) = mHF

2 (a⊗ j1j) = a for all a ∈ iB
HF
j , and

• mHF
2 (iρj ⊗ jρk) = iρk and mHF

2 (iσj ⊗ jσk) = iσk, but
mHF

2 (iρj ⊗ jσk) = mHF
2 (iσj ⊗ jρk) = 0.

6Here we use the notation convention from [53], which differs by a shift from the one in [31].
See the note in [53, Sec. 2.2].
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As usual, the multiplication map mHF
2 : iBHFj ⊗ kB

HF
` → iB

HF
` is zero unless

j = k. We also set mHF
n = 0 for n 6= 2.

Remark 4.1. Let Fρ ⊕ Fσ denote the F-algebra generated by two orthogonal
idempotents ρ and σ, and let 1 := ρ + σ be its identity element. As we did in the
previous section for BKh (Remark 3.13), we can interpret BHF as the algebra of
all lower triangular (m + 1) × (m + 1) matrices over Fρ ⊕ Fσ which have only 0’s
and 1’s on the main diagonal:

BHF ∼=




d0 0 . . . 0

φ1,0 d1
. . .

...
...

. . . . . . 0
φm,0 . . . φm,m−1 dm


∣∣∣∣∣∣∣∣∣∣
di ∈ {0, 1}

 ⊂Mm+1(Fρ⊕ Fσ)

We identify the generator iρj ∈ iB
HF
j (resp., iσj ∈ iB

HF
j ) with the (m + 1) ×

(m+ 1) matrix whose only nonzero matrix entry is a ρ (resp., a σ), located in row
number i and column number j; and we identify the generator i1i ∈ iB

HF
i with the

(m+ 1)× (m+ 1) matrix whose only nonzero entry is a 1, located on the diagonal
in row number i. (Here we assume that rows and columns are numbered from 0 to
m).

The 1-moving strands algebra has a more geometric interpretation in terms of
the arcs QΣ

0 , . . . , Q
Σ
m on the surface Σ. Namely, these arcs (or small isotopic de-

formations of them) are objects of (and in fact generate) the “partially wrapped”
Fukaya category of Σ relatively to the two marked points z± (see [3, 4]). In this
category, the morphism spaces hom(QΣ

i , Q
Σ
j ) are the Floer complexes generated by

intersections between suitably perturbed copies of the arcs (namely, using the flow
of a suitable Hamiltonian to ensure transversality and push the end points so that
they lie in a specific position along the components of ∂Σ \ {z±}). In our case,
{z±} is a fiber of the covering map πΣ, which is in fact a Lefschetz fibration. The
partially wrapped Fukaya category is then equivalent to F(πΣ), Seidel’s Fukaya
category of the Lefschetz fibration πΣ (see the Remark in section 4 of [3]), and
the QΣ

i are nothing but the Lefschetz thimbles associated to the basis of arcs Q of
Figure 5.

Note that the technical setup in [4] is somewhat different from those in [45] and
[48], even though the resulting categories are equivalent and, in the case at hand, all
calculations for the thimbles QΣ

i give exactly the same answer on the nose. We use
the notation F(πΣ) for familiarity; however the comparison with bordered Floer
homology is simpler in the setup of [4], see Remark 4.3 below.

The Floer complexes which determine morphisms from QΣ
i to QΣ

j have rank 2
whenever i > j, while these morphism spaces have rank 1 for i = j and 0 for
i < j. In the setting of [4], this is because the image of QΣ

i under the appropriate
Hamiltonian [4, §4.2] intersects QΣ

j transversely in 0, 1 or 2 points depending on
cases; while in the directed Fukaya category of [45], this is because the vanishing
cycles consist of the same two points in the case i > j, and by definition in the
other cases. (As before, our ordering convention for bases of arcs is the opposite of
Seidel’s.) An easy calculation in Floer homology then shows that

BΣ :=
m⊕

i,j=0

HomF(πΣ)(QΣ
i , Q

Σ
j )
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βm. . .
β0

Figure 6. A Heegaard diagram for the identity mapping class on
Σ (the left and right hand side pictures are glued according to the
numbers). Note that the α and β arcs are perturbed copies of the
arcs QΣ

k .

is isomorphic to BHF , viewing both as A∞-algebras in which mn happens to van-
ish for n 6= 2 (cf. [3, 4]). The categories of modules over F(πΣ) (in any of its
incarnations) and BHF are therefore equivalent.

4.2. Bordered Floer bimodules. Elements of the braid group Bm+1 acting on
(Dm,∆) lift to elements of the mapping class group of the double cover Σ; specifi-
cally, the Artin generator σk lifts to the Dehn twist about the simple closed curve
PΣ
k = π−1

Σ (pk), where pk is the line segment in Dm joining the two points labeled
k − 1 and k (see Figure 7). We denote by σ̂ the mapping class group element
which lifts a braid σ ∈ Bm+1. With this understood, there are two natural ways of
associating an A∞-bimodule over BHF to a braid σ.

On one hand, Lipshitz, Ozsváth and Thurston [32] associate to the element σ̂ of
the mapping class group a bimodule ĈFDA(σ̂) over the strands algebra, defined in
terms of a suitable Heegaard diagram for the “mapping cylinder” of σ̂, i.e. the 3-
manifold Σ×[0, 1] equipped with parametrizations of the two boundary components
which differ by the action of σ̂ (see [31, 32] for details). We denote by MHF

σ the
1-moving strand part of ĈFDA(σ̂); this is an A∞-bimodule over BHF (in fact a
“type DA” bimodule, which has nicer algebraic properties).

On the other hand, σ̂ acts on the Fukaya category of πΣ, and the A∞-functor
induced by σ̂ naturally yields a bimodule over F(πΣ), hence over BΣ. More con-
cretely, following [3] (see also [33]) we set

MΣ
σ :=

m⊕
i,j=0

HomF(πΣ)

(
QΣ
i , σ̂(QΣ

j )
)
,

which is naturally an A∞-bimodule over BΣ ' BHF .

Lemma 4.2. The A∞-bimodules MΣ
σ and MHF

σ are quasi-isomorphic.

Proof. It is known [32] that the bordered bimodule ĈFDA(id) is quasi-isomorphic
to the strands algebra viewed as a bimodule over itself; therefore MHF

id ' BHF '
BΣ ' MΣ

id (as bimodules). We now give a more geometric interpretation, still in
the case σ = id.

Following the terminology in [33], denote by AZ the bordered Heegaard diagram
depicted in Figure 6, in which the α-arcs and the β-arcs are obtained from QΣ

k by
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pushing the end points along the boundary of Σ, in such a manner that the end
points of the α-arcs all lie before those of the β-arcs along the oriented intervals
∂Σ \ {z±}. Then the 1-moving strand part of the A∞-bimodule ĈFAA(AZ) is
quasi-isomorphic to MHF

id ' BHF ; in fact, ĈFAA(AZ) ' ĈFDA(id) ' A(ZQ)
[4, 53, 33]. Thus it is enough to show that the 1-moving strand part of ĈFAA(AZ)
is quasi-isomorphic to MΣ

id = BΣ.
To understand this, recall that morphisms in F(πΣ) are computed by perturbing

the arcs to the same positions used in the Heegaard diagram AZ. Hence, the
generators of Hom(QΣ

i , Q
Σ
j ) are precisely the intersection points between βi and

αj , i.e. the generators of the 1-moving strand type AA bimodule. Moreover, the
structure maps m(k|1|`) count:

• in the case of the type AA bordered Floer bimodule ĈFAA(AZ), holomor-
phic strips in Σ connecting two generators of the Heegaard-Floer complex,
and with k (resp. `) additional strip-like ends corresponding to chords be-
tween β (resp. α) arcs;
• in the case ofMΣ

id (bimodule over the Fukaya category), rigid holomorphic
polygons bounded by k+ 1 successively perturbed copies of the β-arcs and
`+ 1 successively perturbed copies of the α-arcs (in the setting of [4]; with
other definitions of F(πΣ) the interpretation is slightly different).

However, there is a natural correspondence between these two types of objects; see
Proposition 6.5 of [4] and its proof for details.

In the case of an arbitrary braid σ, denote by σ̂(AZ) the bordered Heegaard
diagram obtained from AZ by having σ̂ act on the α-arcs (leaving the β-arcs un-
changed). From the perspective of Heegaard-Floer theory, the bordered 3-manifold
represented by σ̂(AZ) differs from that corresponding to AZ by a reparametrization
of its α-boundary via the action of σ̂, or equivalently, by attaching the mapping
cylinder of σ̂. Thus

ĈFAA(σ̂(AZ)) ' ĈFAA(AZ) ⊗̃ ĈFDA(σ̂) ' ĈFDA(σ̂).

Hence MHF
σ is quasi-isomorphic to the 1-moving strands part of ĈFAA(σ̂(AZ)).

On the other hand, by the same argument as above this latter bimodule is quasi-
isomorphic to MΣ

σ =
⊕

i,j HomF(πΣ)(QΣ
i , σ̂(QΣ

j )). �

Remark 4.3. The comparison between the higher structure maps of the bimodules
defined from F(πΣ) and from bordered Floer homology is easiest in the setup of [4],
where a specific Hamiltonian flow is used to perturb the Lagrangians and ensure
transversality, and the structure maps count honest holomorphic curves bounded
by successively perturbed copies of the Lagrangians (see Lemma 4.7 of [4]: the
definition of the partially wrapped category is much more cumbersome, but in the
case at hand it simplifies vastly).

The reader who wishes to reproduce this argument using Seidel’s definition of
F(πΣ) instead is referred to [48], where the directed Fukaya category is recast in
terms of the symplectic geometry of the thimbles and solutions to Floer’s equation
with Hamiltonian perturbations. The relevant Hamiltonians behave essentially in
the same manner as that of [4], and the main remaining difference is that one counts
solutions to a perturbed holomorphic curve equation with boundary on the original
Lagrangians, rather than (cascades of) honest holomorphic curves with boundary
on perturbed copies of the Lagrangians. The two counts can be compared by a
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fairly standard argument, or alternatively the proof of [4, Proposition 6.5] can be
adapted to that setting.

If a braid σ can be expressed in terms of the Artin generators as σ = σ±k1
. . . σ±kn

,
then its lift can be written as σ̂ = σ̂±k1

. . . σ̂±kn
, and the pairing theorem for CFDA

bimodules [31, 32] implies that

MHF
σ 'MHF

σ±k1

⊗̃BHF . . . ⊗̃BHFMHF
σ±kn

.

Thus it is enough to understand the bimodules MHF
σ±k
' MΣ

σ±k
associated to the

Artin generators and their inverses. We do this working in the category F(πΣ).
Recall that morphism spaces in that category are defined by Lagrangian Floer
theory after a suitable perturbation (so the end points of arcs lie in the correct
order along the boundary of Σ); in particular they are generated by intersection
points.

Focusing first on MHF
σ+

k

, and recalling that σ̂+
k is the positive Dehn twist about

PΣ
k , Seidel’s exact triangle for Lagrangian Floer homology [46] tells us that, for

each i, j ∈ {0, . . . ,m}, Hom
(
QΣ
i , σ̂

+
k (QΣ

j )
)

is quasi-isomorphic to the complex

0 // Hom
(
QΣ
i , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
j

) βHF
k // Hom

(
QΣ
i , Q

Σ
j

)
// 0 ,

where βHFk is the Floer product map (cf. [46]) induced by counting holomorphic tri-
angles in Σ whose sides lie on (suitable perturbations of) QΣ

i , P
Σ
k , Q

Σ
j , appearing in

counterclockwise order around the boundary. Moreover, these quasi-isomorphisms
are compatible with Floer products, in the sense that in D∞(BHF ) the bimodule
MHF

σ+
k

is equivalent to the complex of bimodules obtained by taking the direct sum
of the above complexes over all i, j.

In analogy to the previous section, we introduce the A∞-modules

PHFk :=
m⊕
i=0

HomF(πΣ)(QΣ
i , P

Σ
k ) and kP

HF :=
m⊕
j=0

HomF(πΣ)(PΣ
k , Qj),

which allows us to write

MHF
σ+

k

'
{

0 // PHFk ⊗ kP
HF

βHF
k // BHF //// 0

}
Like the linear term described above, the higher terms

(βHFk )(n1|1|n2) :⊕
i0,...,in1
j0,...,jn2

Hom(QΣ
in1
, QΣ

in1−1
)⊗ · · · ⊗Hom(QΣ

i1 , Q
Σ
i0)⊗Hom(QΣ

i0 , P
Σ
k )⊗

⊗Hom(PΣ
k , Q

Σ
j0)⊗ · · · ⊗Hom(QΣ

jn2−1
, QΣ

jn2
) −→

⊕
in1 ,jn2

Hom(QΣ
in1
, QΣ

jn2
)

of the A∞-bimodule homomorphism βHFk count rigid holomorphic polygons in Σ
whose sides lie on (suitable perturbations of) QΣ

in1
, . . . , QΣ

i0
, PΣ

k , Q
Σ
j0
, . . . , QΣ

jn2
in

that order.
Similarly, MHF

σ−k
is equivalent in D∞

(
BHF

)
to the direct sum of the complexes

0 // Hom
(
QΣ
i , Q

Σ
j

) γHF
k // Hom

(
QΣ
i , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
j

)
// 0 ,
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Figure 7. The top row above shows curves pk, qk−1, and qk in the
disk Dm, while the bottom row shows their lifts to Lagrangians in
the double branched cover Σ (the figures on the left and right are
identified according to the numbers). The shaded triangle gives
rise to a non-trivial multiplication map m(1|1|0) : Hom(QΣ

k , Q
Σ
k−1)⊗

Hom(QΣ
k−1, P

Σ
k )→ Hom(QΣ

k , P
Σ
k ).

where γHFk is induced by counting holomorphic triangles in Σ whose sides lie on
(suitable perturbations of) PΣ

k , Q
Σ
i , Q

Σ
j , appearing in counterclockwise order around

the boundary. Thus, in D∞(BHF ) we have

MHF
σ−k
'
{

0 // BHF
γHF

k // PHFk ⊗ kP
HF //// 0

}
where the higher terms of the A∞-bimodule homomorphism γHFk again count rigid
holomorphic polygons in Σ.

We remark that, in our very simple setting, these counts are equivalent (by the
Riemann mapping theorem) to counts of topological immersed triangles in Σ with
the stated boundary conditions, and satisfying a local convexity condition at their
corners.

4.3. Explicit calculations. We now make the above story more explicit, by deter-
mining the left (resp., right) A∞-modules PHFk (resp., kPHF ) and the maps βHFk
and γHFk . Since PΣ

k intersects QΣ
k−1 and QΣ

k transversely once each and is disjoint
from all the other QΣ

j , the vector spaces underlying these modules have rank 2.
The multiplication maps

m(n|1|0) :
(
BHF

)⊗n⊗PHFk → PHFk and m(0|1|n) : kPHF⊗
(
BHF

)⊗n → kP
HF

are given by counting holomorphic (n+ 2)–gons in Σ as in Figure 7. Again letting
the two generators of PHFk (resp., of kPHF ) be denoted by u∗,v∗ (resp., by u, v)
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QΣ
k−1

QΣ
k

PΣ
k

v∗

kρk−1

u∗

kσk−1

Figure 8. The holomorphic triangles giving rise to the nontrivial
multiplication maps m(1|1|0) :
Hom(QΣ

k , Q
Σ
k−1) ⊗ Hom(QΣ

k−1, P
Σ
k ) → Hom(QΣ

k , P
Σ
k ). The other

nontrivial multiplication maps can be seen in a similar manner.

and letting θ represent an element of BHF , it is easily verified (see Figure 8) that
the m(1|1|0) (resp., m(0|1|1)) multiplication is given by:

θ · u∗ =
{

u∗ if θ = k1k,
0 otherwise. θ · v∗ =

 v∗ if θ = k−11k−1,
u∗ if θ = kρk−1 or kσk−1,
0 otherwise.

(resp., given by:

u · θ =

 u if θ = k1k,
v if θ = kρk−1 or kσk−1,
0 otherwise.

v · θ =
{

v if θ = k−11k−1,
0 otherwise.

)
The multiplications m(1|1|0) and m(0|1|1) are associative. Moreover, the higher

multiplications are all identically zero. One way to see the vanishing of m(n|1|0)

is to observe that, for any sequence in ≥ · · · ≥ i1 ≥ i0 (n ≥ 2), and perturb-
ing QΣ

i0
, . . . , QΣ

in
so that their end points are in counterclockwise order along the

boundary of Σ (but preserving minimal intersection otherwise), there are no convex
(n+2)-gons with edges lying successively on QΣ

in
, . . . , QΣ

i0
, PΣ

k (and similarly for the
vanishing of m(0|1|n)).

A more conceptual explanation is that it is possible to find a trivialization of the
tangent bundle of Σ and graded lifts [47] of the Lagrangians PΣ

k , Q
Σ
0 , . . . , Q

Σ
m, and

hence a Z-grading by Maslov index on BHF and the modules PHFk , kPHF , with
the following properties:

• all the generators of BHF have degree 0;
• the generators u∗, v∗ of PHFk have the same degree.
• the generators u, v of kPHF have the same degree.

Not all degrees can be taken to be zero: in fact deg u+deg u∗ = deg v+deg v∗ = 1.
Since the maps m(n|1|0) and m(0|1|n) are compatible with the grading and have

degree 1− n, this forces their vanishing unless n = 1.

We now turn to the A∞ morphisms βHFk and γHFk . The calculations are simpli-
fied by constraints arising from the Maslov Z-grading.

First, we observe that βHFk is a degree-preserving A∞-homomorphism of bi-
modules. Namely, since (βHFk )(n1|1|n2) corresponds to a Floer product of order
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4

(QΣ
k )2

(QΣ
k )1

PΣ
k k1k

u
u∗

Figure 9. The above diagram verifies both that the linear part
of

βHFk : Hom
(
QΣ
k , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
k

)
→ Hom

(
QΣ
k , Q

Σ
k

)
is zero, and that the map

γHFk : Hom
(
QΣ
k , Q

Σ
k

)
→ Hom

(
QΣ
k , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
k

)
sends k1k ∈ Hom

(
QΣ
k , Q

Σ
k

)
to u∗ ⊗ u ∈ Hom

(
QΣ
k , P

Σ
k

)
⊗

Hom
(
PΣ
k , Q

Σ
k

)
.

By definition, these maps count holomorphic triangles with bound-
ary on PΣ

k and on two perturbed copies of QΣ
k , denoted by

(QΣ
k )1 and (QΣ

k )2 in the picture; in counterclockwise order, the
successive edges must lie on (QΣ

k )1, P
Σ
k , (Q

Σ
k )2 for βHFk , and on

PΣ
k , (Q

Σ
k )1, (Q

Σ
k )2 for γHFk . Hence, the shaded topological triangle

does not contribute to βHFk , because its boundary has the incorrect
orientation, hence it does not admit a holomorphic representative.
However, it does contribute to the map γHFk . Computations for
the pairs (i, j) = (k, k − 1), (k − 1, k − 1) are similarly straightfor-
ward.

(n1 + n2 + 2) in F(πΣ), it has degree −(n1 + n2). However, PHFk ⊗ kP
HF is con-

centrated in degree 1, while all the generators of BHF have degree 0. Therefore,
the only non-trivial terms in βHFk are those of degree −1, namely (βHFk )(1|1|0) and
(βHFk )(0|1|1). In particular the linear term βHFk : Hom

(
QΣ
i , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
j

)
→

Hom
(
QΣ
i , Q

Σ
j

)
vanishes identically.

Similarly, γHFk , which is an A∞-refinement of the pair of pants coproduct in
Floer homology, has degree dimC(Σ) = 1 with respect to the Maslov Z-grading.
Hence, the map (γHFk )(n1|1|n2) has degree 1− (n1 + n2) and, for degree reasons, it
must vanish identically unless n1 + n2 = 0. Thus, the only nontrivial term of γHFk
is the linear one.

The calculations are further simplified by recalling that

• Hom
(
QΣ
i , P

Σ
k

)
= Hom

(
PΣ
k , Q

Σ
i

)
= 0 whenever i 6= k, k − 1 and

• Hom
(
QΣ
i , Q

Σ
j

)
= 0 whenever i < j.

Lemma 4.4. γHFk : BHF → PHFk ⊗ kP
HF is the bimodule map determined by

i1i 7→

 v∗ ⊗ v when i = k − 1,
u∗ ⊗ u when i = k, and

0 otherwise
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and by associativity with respect to the multiplication. Moreover, the higher order
maps (γHFk )(n1|1|n2) vanish identically for (n1, n2) 6= (0, 0).

Proof. The map γHFk : Hom
(
QΣ
i , Q

Σ
j

)
→ Hom

(
QΣ
i , P

Σ
k

)
⊗ Hom

(
PΣ
k , Q

Σ
j

)
is 0

unless (i, j) = (k, k), (k − 1, k − 1), or (k, k − 1), since in all other cases either the
domain or the target is zero. The nontrivial cases are then determined by counting
immersed triangles in Σ; the case (i, j) = (k, k) is shown in Figure 9. By inspection,
we see that γHFk is given by:

• When (i, j) = (k, k) or (k − 1, k − 1), γHFk sends the unique generator of
Hom

(
QΣ
i , Q

Σ
j

)
to the unique generator of Hom

(
QΣ
i , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
j

)
,

and
• When (i, j) = (k, k−1), γHFk sends both kρk−1 and kσk−1 ∈ Hom

(
QΣ
i , Q

Σ
j

)
to the unique generator of Hom

(
QΣ
i , P

Σ
k

)
⊗Hom

(
PΣ
k , Q

Σ
j

)
.

The vanishing of the higher maps follows from the degree argument explained above.
�

The story for βHFk is slightly more complicated, because the maps

(βHFk )(1|1|0) : Hom(QΣ
i1 , Q

Σ
i0)⊗Hom(QΣ

i0 , P
Σ
k )⊗Hom(PΣ

k , Q
Σ
j ) −→ Hom(QΣ

i1 , Q
Σ
j )

and

(βHFk )(0|1|1) : Hom(QΣ
i , P

Σ
k )⊗Hom(PΣ

k , Q
Σ
j0)⊗Hom(QΣ

j0 , Q
Σ
j1) −→ Hom(QΣ

i1 , Q
Σ
j ),

which count holomorphic 4-gons in Σ, depend on the choice of Hamiltonian pertur-
bations used to resolve triple intersections at the branch points of πΣ. (Of course,
the behavior of Lagrangian Floer homology under Hamiltonian isotopies guarantees
that the maps obtained from different choices are homotopic.) To fix a convention,
we perturb PΣ

k away from the branch points of πΣ in such a way that its intersec-
tions with QΣ

k and QΣ
k−1 occur on the sheet of the double cover that contains the

generators iρj . With this understood, we have:

Lemma 4.5. The only nontrivial terms of βHFk are:

(βHFk )(1|1|0) :



(iρk, u∗ ⊗ u) 7→ iρk (i ≥ k + 1)

(kσk−1, v∗ ⊗ u) 7→ k1k

(iρk−1, v∗ ⊗ u) 7→ iρk (i ≥ k + 1)
(iσk−1, v∗ ⊗ u) 7→ iσk (i ≥ k + 1)

(iρk−1, v∗ ⊗ v) 7→ iρk−1 (i ≥ k)

and (βHFk )(0|1|1) :



(u∗ ⊗ u, kρj) 7→ kρj (j ≤ k − 1)

(v∗ ⊗ u, kσk−1) 7→ k−11k−1

(v∗ ⊗ u, kρj) 7→ k−1ρj (j ≤ k − 2)
(v∗ ⊗ u, kσj) 7→ k−1σj (j ≤ k − 2)

(v∗ ⊗ v, k−1ρj) 7→ k−1ρj (j ≤ k − 2)

Proof. By definition, (βHFk )(1|1|0) counts rigid holomorphic 4-gons in Σ whose suc-
cessive edges, in counterclockwise order, lie on suitably perturbed copies of the
following Lagrangians: QΣ

i ; either QΣ
k (for u∗) or QΣ

k−1 (for v∗); PΣ
k ; and either

QΣ
k (for u) or QΣ

k−1 (for v). The count depends on the perturbations, so we have
to be more specific.
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PΣ
k

(QΣ
k )2

QΣ
i

(QΣ
k )1

(iρk)1
(iρk)2

u∗ u

(iσk)1 (iσk)2

Figure 10. The above diagram verifies that
(βHFk )(1|1|0)(iρk,u∗ ⊗ u) = iρk and (βHFk )(1|1|0)(iσk,u∗ ⊗ u) = 0
for i > k. By definition,
βHFk (1|1|0) : Hom(QΣ

i , Q
Σ
k ) ⊗ Hom(QΣ

k , P
Σ
k ) ⊗ Hom(PΣ

k , Q
Σ
k ) →

Hom(QΣ
i , Q

Σ
k )

counts rigid holomorphic 4-gons with successive edges, in counter-
clockwise order, on perturbed copies of QΣ

i , QΣ
k (denoted (QΣ

k )1),
PΣ
k , and QΣ

k again (denoted (QΣ
k )2). The only contribution comes

from the shaded region.
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(QΣ
k )2

PΣ
k

QΣ
k−1

(QΣ
k )1

u

kρk−1

v∗

kσk−1

k1k

Figure 11. The above diagram verifies that
(βHFk )(1|1|0)(kρk−1,v∗ ⊗ u) = 0 and (βHFk )(1|1|0)(kσk−1,v∗ ⊗ u) = k1k.

Since we are working in the Fukaya category F(πΣ), the various arcs must be
perturbed by Hamiltonian isotopies which ensure that their end points are suitably
ordered along ∂Σ; these perturbations are responsible for the intersection points
corresponding to the generators iρk and iσk (resp. iρk−1, iσk−1), which we take to
lie close to the boundary of Σ. By contrast, the intersection points corresponding
to the generators u∗,u and k1k normally all lie at the k-th branch point of πΣ,
and perturbations are needed to avoid triple intersections. As mentioned above, we
achieve this by choosing a Hamiltonian which pushes PΣ

k slightly towards the “ρ”
side of the surface. Likewise for v∗,v and k−11k−1.

With this understood, the calculation simply becomes a matter of drawing the
relevant diagrams and looking for immersed four-gons with locally convex corners.
The first two cases are shown on Figures 10 and 11; the others are similar. �
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As a consistency check, it is not hard to verify that the map βHFk is indeed an
A∞-homomorphism, namely for all a1, a2 ∈ BHF and m ∈ PHFk ⊗ kP

HF we have
the identities

βHFk (1|1|0)(a1a2,m) + βHFk (1|1|0)(a1, a2m) + a1β
HF
k (1|1|0)(a2,m) = 0,

βHFk (0|1|1)(m, a1a2) + βHFk (0|1|1)(ma1, a2) + βHFk (0|1|1)(m, a1)a2 = 0,

a1β
HF
k (0|1|1)(m, a2)+βHFk (0|1|1)(a1m, a2)+βHFk (1|1|0)(a1,m)a2 +βHFk (1|1|0)(a1,ma2) = 0.

5. A spectral sequence from the Khovanov-Seidel to the bordered
Floer algebra

In Sections 3 and 4 we showed how to use the data of a basis, Q̃, to construct

• a graded algebra, BKh, using a construction of Khovanov-Seidel in [23] and
• a (graded) algebra BHF , using ideas of Lipshitz-Ozsváth-Thurston in [31]

as generalized by Zarev in [53] and reinterpreted by the first author in [4].

In this section, we establish the existence of a spectral sequence connecting BKh

and BHF . Explicitly, we prove:

Theorem 5.1. Let

BKh := H∗

 m⊕
i,j=0

HomA(Qi, Qj)


be the homology of the Hom algebra associated to the basis Q̃ and let BHF :=
A (ZQ, 1) be the 1–moving strands algebra associated to the arc diagram, ZQ. There
exists a filtration on BHF whose associated graded algebra is isomorphic, as an
ungraded algebra, to BKh. Accordingly, one obtains a spectral sequence whose E1

page is isomorphic to BKh and whose E∞ page is isomorphic to BHF .

Remark 5.2. The observant reader will at this point notice that the spectral
sequence described in the statement of Theorem 5.1 must be somewhat unusual,
since BHF is not a dg algebra but an algebra; hence, the induced differential on the
associated graded page is necessarily trivial and the associated spectral sequence
on F–vector spaces collapses immediately. This should perhaps not be surprising,
as we have dim

(
iB

Kh
j

)
= dim

(
iB

HF
j

)
for each i, j ∈ {0, . . . ,m}. On the other

hand, BKh and BHF are not isomorphic as algebras. The filtration serves only to
alter the multiplicative structure on the underlying algebra and not to change the
dimensions of the underlying F–vector spaces.

We pave the way for a proof of Theorem 5.1 by focusing first on a “toy model”
given by the following two lemmas. Though not logically necessary for the proof of
Theorem 5.1, we include them in order to motivate the definition of the filtration
yielding the spectral sequence from BKh and BHF .

Lemma 5.3. There exists a filtered differential algebra, C, whose associated graded
homology algebra is isomorphic to H∗(S1) and whose total homology algebra is
isomorphic to H∗(S0). Furthermore, the associated graded complex and the total
complex of C are formal A∞ algebras.



40 DENIS AUROUX, J. ELISENDA GRIGSBY, AND STEPHAN M. WEHRLI

τ a b

B

A

Figure 12. A Z/2Z–equivariant chain complex for S1.

Proof. We construct C using a Z/2Z–equivariant cochain complex for H∗(S1).
Specifically, identify S1 with the unit circle in C and give it the structure of a
simplicial complex by placing two 0–simplices labeled a and b at −1 and 1, re-
spectively, and two 1–simplices labeled A and B along the arcs

{
eiθ|θ ∈ [π, 0]

}
and{

eiθ|θ ∈ [−π, 0]
}

, respectively, as in Figure 12. Let a∗ (resp. b∗, A∗, B∗) represent
the Z/2Z cochain that assigns 1 to a (resp., b, A, B) and 0 to all other simplices
in the basis.

The filtered differential algebra, C, is generated by a∗, b∗, A∗, and B∗ with
multiplication given by the cup product on cochains (cf. [16]):

(2)

∪ a∗ b∗ A∗ B∗

a∗ a∗ 0 A∗ B∗

b∗ 0 b∗ 0 0
A∗ 0 A∗ 0 0
B∗ 0 B∗ 0 0

There are two commuting differentials, δ and ∂τ , on C, giving C the structure of
a differential algebra:

• δ is the standard coboundary map on the simplicial cochain complex (hence
satisfies the Leibniz rule with respect to the cup product multiplication),
and
• ∂τ = 1 + τ , where τ is the involution on the cochain complex induced by

complex conjugation on C. One easily checks that ∂τ satisfies the Leibniz
rule with respect to the cup product multiplication.

We have the following two-step filtration F−1 ⊆ F0 ⊆ F1:

0 ⊆ ker(∂τ ) ⊆ C
on (C, δ + ∂τ ). This gives C the structure of a filtered algebra, since Fi · Fj ⊆ Fi+j
for all i, j.7 Furthermore, the associated graded complex is (C, δ), with homology
H∗(S1) and the homology of the total complex (C, δ+∂τ ) is the cohomology of the
fixed point set of τ , i.e., H∗(S0).

We now use Proposition 2.3 to compute the A∞ structure on the associated
graded complex of C, defining maps ι : H∗(S1) → (C, δ), p : (C, δ) → H∗(S1) and
h : (C, δ)→ (C, δ) satisfying the conditions in Equation 1.

7The only non-trivial check that must be performed is that F0 ·F0 ⊆ F0, but this follows from
the fact that ∂τ satisfies the Leibniz rule.
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Let 1 denote the generator of H0(S1) and x denote the generator of H1(S1).
Then we define

ι(1) := a∗ + b∗

ι(x) := A∗,

p(a∗) := 1

p(A∗) = p(B∗) := x

p(b∗) := 0,

and

h(B∗) := b∗

h(a∗) = h(b∗) = h(A∗) := 0

An application of Lemma 2.16 then implies that the associated graded algebra
is formal.

We proceed similarly for (C, δ+∂τ ). Let ρ, σ denote the two generators of H∗(S0)
corresponding to the two connected components of S0. We define:

ι(ρ) := a∗ + A∗

ι(σ) := b∗ + A∗,

p(a∗) := ρ

p(b∗) := σ,

p(A∗) = p(B∗) := 0

and

h(B∗) := A∗

h(a∗) = h(b∗) = h(A∗) := 0,

Once again, an application of Lemma 2.16 implies that the total algebra of C is
formal. �

As noted in the proof of Lemma 5.3, we have simple descriptions of H∗(S1) and
H∗(S0) as F–algebras:

H∗(S1) ∼= F[x]/x2

and
H∗(S0) := SpanF〈ρ, σ〉,

with multiplication given by

m2(ρ⊗ ρ) = ρ

m2(σ ⊗ σ) = σ

m2(ρ⊗ σ) = m2(σ ⊗ ρ) = 0.

Furthermore, the filtration on the filtered differential algebra C defined in the
proof of Lemma 5.3 induces a filtration on H∗(S0). Accordingly, we have:
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Lemma 5.4. Consider the following filtration, F−1 ⊆ F0 ⊆ F1, on H∗(S0):

0 ⊆ SpanF〈ρ+ σ〉 ⊆ H∗(S0).

With respect to this filtration, H∗(S0) is a well-defined filtered (differential) algebra
with associated graded algebra isomorphic to H∗(S1).

Proof. The claim follows immediately from the observation that the A∞ quasi-
isomorphism ι : H∗(S0) → C guaranteed by Lemma 2.16 is filtered, hence induces
a filtered A∞ quasi-isomorphism.

However, we find it instructive to give a more direct proof.
First, H∗(S0) is easily seen to be a well-defined filtered (A∞) algebra (Definition

2.9) with respect to the above choice of filtration. The only non-trivial check that
must be performed is that m2((ρ+σ)⊗(ρ+σ)) ⊆ F0, which follows since 1 := ρ+σ is
the identity element of H∗(S0). Recalling that the multiplication on the associated
graded is given by

m2 : Fr/Fr−1 ⊗Fs/Fs−1 → Fr+s/Fr+s−1,

we see immediately that 1 is also the multiplicative identity in gr(H∗(S0)), since it
lies in filtration level 0.

The underlying F–vector space of the associated graded algebra gr(H∗(S0)) can
be described by:

Fn/Fn−1 :=

 SpanF〈1〉 if n = 0,
SpanF〈ρ〉 if n = 1,

0 otherwise.

Furthermore,

m2(ρ⊗ ρ) = ρ = 0 ∈ F2/F1.

Hence, gr(H∗(S0)) is isomorphic to H∗(S1), by identifying 1, ρ ∈ gr(H∗(S0)) with
1,x ∈ H∗(S1). �

We now proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1. Recalling (see Remark 4.1) that BHF is isomorphic to the
algebra of lower triangular (m + 1) × (m + 1) matrices over H∗(S0) with only 0’s
and 1’s on the diagonal, we define the desired filtration, F−1 ⊆ F0 ⊆ F1, on BHF

as follows:

0 ⊆
{
M ∈ BHF φi,j ∈ {0, 1} ∀ i > j

}
⊆ BHF

We now claim that the associated graded algebra, gr
(
BHF

)
, is isomorphic to

BKh. To see this, note that

Fn/Fn−1 :=

 {M ∈ BHF φi,j ∈ {0, 1} ∀ i > j} when n = 0,
{M ∈ BHF φi,j ∈ {0, ρ} ∀ i > j, and dk = 0 ∀ k} when n = 1, and

0 otherwise.

In particular, gr(BHF ) is isomorphic to the algebra of (m + 1)× (m + 1) lower
triangular matrices over gr(H∗(S0)) with only 0’s and 1’s on the diagonal, where
the filtration on H∗(S0) is the one described in Lemma 5.4. Hence, Lemma 5.4
tells us that gr(BHF ) is isomorphic to BKh as an F–algebra, as desired. �
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6. A spectral sequence from the Khovanov-Seidel to the bordered
Floer bimodules

In analogy to Theorem 5.1, we prove the following theorem relating the Hom
modules described in Section 3 to the bordered Floer modules described in Section
4.

Recall that Q̃ is the basis (of ∂–admissible bigraded curves in normal form)
pictured in Figure 5.

Theorem 6.1. Let σ ∈ Bm+1 be a braid, MKh
σ the bimodule associated to the

pair (Q̃, σ) in Section 3, and MHF
σ the bordered Floer bimodule associated to the

pair (Q, σ) in Section 4. There exists a filtration on MHF
σ whose associated graded

bimodule is isomorphic (as an ungraded A∞ bimodule over BKh) toMKh
σ . Accord-

ingly, one obtains a spectral sequence whose E1 page is isomorphic to MKh
σ and

whose E∞ page is isomorphic to MHF
σ .

Note that Theorem 5.1 is Theorem 6.1 in the special case σ = Id. The proof
of Theorem 6.1 proceeds in two steps. We begin by giving an explicit construc-
tion of the filtration in the special case where σ is one of the elementary Artin
braid generators, {σ±k |k = 1, . . . ,m} (Proposition 6.2). Then in the general case,
σ = σ±k1

· · ·σ±kn
, we explain how to construct a filtration and appropriate spectral

sequence on the A∞ module formed as the A∞ tensor product

MHF
σ±k1

⊗̃BHF . . . ⊗̃BHFMHF
σ±kn

.

Proposition 6.2. Let σ±k ∈ Bm+1 be an elementary Artin braid generator, MKh
σ±k

the bimodule associated to the pair (Q̃, σ±k ) in Section 3, and MHF
σ±k

the bordered-

Floer bimodule associated to the pair (Q, σ±k ) in Section 4. There exists a filtration
on MHF

σ±k
whose associated graded bimodule is isomorphic (as an ungraded A∞

bimodule over BKh) to MKh
σ±k

. Accordingly, one obtains a spectral sequence whose

E1 page is isomorphic to MKh
σ±k

and whose E∞ page is isomorphic to MHF
σ±k

.

Proof of Proposition 6.2. Guided by the models MKh
σ±k

and MHF
σ±k

constructed in
Sections 3 and 4, we turn now to constructing filtrations on the filtered bimodules
MHF

σ±k
(over the filtered algebra BHF ) with the desired properties.

We begin by defining, for each k ∈ {0, . . . ,m}, filtrations on PHFk and kP
HF .

Since:
(1) we have already defined (Theorem 5.1) a filtration on BHF ,
(2) the tensor product of two filtered A∞ modules inherits the structure of a

filtered A∞ module,
(3) the mapping cone of two filtered A∞ modules inherits the structure of a

filtered A∞ module, and
(4) we have

MHF
σ+

k

:= MC
(
βHFk : (PHFk ⊗ kP

HF )→ BHF
)

and

MHF
σ−k

:= MC
(
γHFk : BHF → (PHFk ⊗ kP

HF ){−1}
)
,
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this will induce a filtration on each MHF
σ±k

, as desired.

Recalling that PHFk := SpanF〈u∗,v∗〉 (resp., kPHF := SpanF〈u,v〉), we define
the filtration, F−1 ⊆ F0 ⊆ F1, on PHFk to be 0 ⊆ Span〈v∗〉 ⊆ PHFk (resp., on
kP

HF to be 0 ⊆ Span〈u〉 ⊆ kP
HF ).

Verification that βHFk and γHFk are filtered A∞ morphisms with respect to this
choice of filtration is a straightforward check of a small number of cases, and is left
to the reader.

We now must show that the associated graded (homology) ofMHF
σ±k

is isomorphic

to MKh
σ±k

as a
(
gr(BHF ) = BKh

)
–bimodule.

Since we have already shown (in the proof of Theorem 5.1) that the multiplication
on gr(BHF ) matches the multiplication on BKh, all that remains to show is:

(1) the multiplication of gr(BHF ) on gr
(
PHFk ⊗ kP

HF
)

matches the multipli-
cation of BKh on PKhk ⊗ kP

Kh and
(2) the maps induced by γHFk and βHFk on gr(BHF ) and gr

(
PHFk ⊗ kP

HF
)

match the maps γKhk and βKhk .
Seeing that the multiplication of gr(BHF ) on gr

(
PHFk ⊗ kP

HF
)

matches the
multiplication of BKh on PKhk ⊗ kP

Kh is a simple check of a small number of
cases, bearing in mind that under the isomorphism gr(BHF )↔ BKh, we have the
identification iρj ↔ ixj .

The map induced by γHFk on gr(BHF ) is quickly seen to match the map γKhk ,
since γHFk is a filtered morphism with no higher terms, and the descriptions of γKhk
(Proposition 3.17) and γHFk (Lemma 4.4) are identical.

Verifying that the map induced by βHFk on gr
(
PHFk ⊗ kP

HF
)

matches the map
βKhk is a bit more involved but, again, requires only a handful of checks. We perform
a couple here, leaving the rest to the reader.

Lemma 4.5 tells us that when i ≥ k + 1:(
βHFk

)
(1|1|0)

[iρk ⊗ (u∗ ⊗ u)] := iρk.

But viewed as elements of the associated graded, we have iρk ∈ F1/F0(BHF ) and
u∗ ⊗ u ∈ F1/F0

(
PHFk ⊗ kP

HF
)
, and thus the induced associated graded map is:(

βHFk
)

(1|1|0)
[iρk ⊗ (u∗ ⊗ u)] := iρk = 0 ∈ F2/F1(BHF ).

Under the identification
(
iρk ∈ gr

(
BHF

))
↔
(
ixk ∈ BKh

)
, this agrees with Propo-

sition 3.18, which says: (
βKhk

)
(1|1|0)

[ixk ⊗ (u∗ ⊗ u)] := 0.

Lemma 4.5 also tells us that when j ≤ k − 1:(
βHFk

)
(0|1|1)

[(v∗ ⊗ u)⊗ k(ρ+ σ)j ] := k−1(ρ+ σ)j .

Since (v∗ ⊗ u), k(ρ+ σ)j , and k−1(ρ+ σ)j are all in F0/F−1, the induced map on
the associated graded is still:(

βHFk
)

(0|1|1)
[(v∗ ⊗ u)⊗ k(ρ+ σ)j ] := k−1(ρ+ σ)j .

Under the identification
(
i1j := i(ρ+ σ)j ∈ gr(BHF )

)
↔ i1j ∈ BKh, this agrees

with Proposition 3.18 which says:(
βKhk

)
(0|1|1)

[(v∗ ⊗ u)⊗ k1j ] := k−11j .
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�

Proof of Theorem 6.1. Now that we have a filtration on the A∞ bimodule MHF
σ±k

yielding a spectral sequence fromMKh
σ±k

toMHF
σ±k

for each elementary Artin genera-

tor, σ±k , we would like to construct a filtered A∞ bimoduleMHF
σ and corresponding

spectral sequence MKh
σ →MHF

σ for every σ ∈ Bm+1.
We begin with a decomposition σ = σ±k1

· · ·σ±kn
and define

MHF
σ :=MHF

σ±k1

⊗̃BHF . . . ⊗̃BHFMHF
σ±kn

,

which has the structure of a filtered A∞ bimodule, by Lemma 2.12.
We then check that the associated graded complex of MHF

σ is equivalent to
MKh

σ in D∞
(
BKh

)
, i.e.:

gr
(
MHF

σ

)
∼ MKh

σ

gr
(
MHF

σ±k1

⊗̃BHF . . . ⊗̃BHF MHF
σ±kn

)
∼ MKh

σ±k1

⊗̃BKh . . . ⊗̃BKh MKh
σ±kn

in D∞(BKh).
Lemma 2.15 tells us that

gr
(
MHF

σ±k1

⊗̃BHF . . . ⊗̃BHF MHF
σ±kn

)
∼ gr

(
MHF

σ±k1

)
⊗̃gr(BHF ) . . . ⊗̃gr(BHF ) gr

(
MHF

σ±kn

)
as bimodules over gr(BHF ). Therefore, they are equivalent in D∞

(
BKh

)
, since

gr(BHF ) is isomorphic to BKh (Theorem 5.1). Furthermore, we also know (Propo-

sition 6.2) that gr
(
MHF

σ±ki

)
∼MKh

σ±ki

in D∞(BKh), so we have

gr
(
MHF

σ

)
= gr

(
MHF

σ±k1

⊗̃BHF . . . ⊗̃BHF MHF
σ±kn

)
∼ MKh

σ±k1

⊗̃BKh . . . ⊗̃BKh MKh
σ±kn

=MKh
σ ,

as desired. �

7. An Example

We have now constructed, for every braid σ, a filtration on the Floer bimodule
MHF

σ whose associated graded bimodule is quasi-isomorphic to the Khovanov-
Seidel bimodule MKh

σ . It is natural to wonder about the A∞ operations induced
by Proposition 2.3 on the pages of the corresponding spectral sequence.

As a first point, we note that [23, Prop. 4.9] (see also [35, Lem. 4.1]) implies
that the ranks of H∗(MKh

σ ) and H∗(MHF
σ ) always agree. On the other hand, the

effect of the filtration on the higher A∞ operations is in general nontrivial. For
example, the m2 products in BKh (Remark 3.13) and BHF (Remark 4.1) differ.

A more interesting manifestation of the non-triviality of the operations induced
by the filtration can be found by examining HH∗(MHF

σ ), the Hochschild homology
of MHF

σ . As in the proofs of Lemma 2.15 and Theorem 6.1, we have an induced
filtration on HH∗(MHF

σ ), and the associated graded homology can be identified
with HH∗(MKh

σ ).
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Moreover, it is proved in [32, Thm. 14] that HH∗(MHF
σ ) is isomorphic to the

next-to-top Alexander grading of{
ĤFK(Σ(σ̂), K̃B) when the braid index of σ is even, and

ĤFK(Σ(σ̂), K̃B)⊗ V when the braid index of σ is odd

where:
• ĤFK(Σ(σ̂), K̃B) denotes the “hat” version of the knot Floer homology of

the preimage, K̃B , of the braid axis, KB , in the double-branched cover of
S3 over σ̂, the closure of σ, and
• V = F(0,0) ⊕ F(−1,−1) is a “standard” 2–dimensional vector space (the sub-

scripts on the generators indicate their (Alexander, Maslov) bigrading).

Remark 7.1. Note that the extra factor of V arises in the odd braid index case
because BHF is a strands algebra associate to a twice–pointed matched circle. The
pairing theorem then implies that the Hochschild homology ofMHF

σ coincides with
the sutured Floer homology of the double–branched cover of A × I branched over
the odd-index braid. As spelled out in [17, Ex. 2.4], a sutured Heegaard diagram
for a knot complement with 4 (rather than 2) meridional sutures corresponds to
a 4–pointed Heegaard diagram for the knot. The extra pair of basepoints has the
effect of tensoring the knot Floer complex with V as in [37, Thm. 1.1].

In [5], we prove an analogous result on the Khovanov-Seidel side: namely that
the 0th Hochschild homology of MKh

σ is isomorphic to the next-to-top filtration
grading of the so-called sutured annular Khovanov homology, SKh(σ̂ ⊂ A × I), of
the closure of σ in the solid torus complement of KB , considered as a product
sutured manifold A× I. This invariant of the isotopy class of σ̂ ⊂ (A× I) was first
defined in [2] and studied extensively in [43] (where it is denoted H(σ̂)) and in [12]
(where it is denoted Kh∗(σ̂)). By the filtration grading, we mean the k–grading of
[43] and [12]. The following facts are well-known to the experts (see e.g. [43, Thm.
8.1], [15, Sec. 4], [12, Thm. 3.1]).

Proposition 7.2. Let σ̂ ⊂ (A× I) be the annular closure of the n–strand braid σ.
Letting SKh(σ̂; k) denote the sutured annular Khovanov homology of σ̂ in filtration
grading k, we have:

(1) SKh(σ̂; k) = 0 unless k ∈ {−n,−(n− 2), . . . , n− 2, n},
(2) SKh(σ̂;n) = F.
(3) SKh(σ̂; k) ∼= SKh(σ̂;−k) for all k ∈ Z,
(4) There is a spectral sequence whose E1 page is SKh(σ̂) and whose E∞ page

is Kh(σ̂), the ordinary Z/2Z Khovanov homology of σ̂.

Proof. Statements (1) and (2) are immediate consequences of the correspondence
between generators of the chain complex underlying SKh(σ̂) and enhanced Kauff-
man states (see, e.g., [15, Sec. 4.2]).

To understand (3), we once again use the identification between enhanced Kauff-
man states and generators of CKh(σ̂), the chain complex underlying SKh(σ̂). One
then constructs inverse chain maps

CKh(σ̂; k)↔ CKh(σ̂;−k)

by reversing the orientations of those circular components of the enhanced Kauff-
man state representing nontrivial elements of H1(A).

Statement (4) is [43, Lem. 1]. �
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Consider now the 3–braid σ = (σ1σ2)5 whose closure is the positive (3, 5) torus
knot T3,5. The double-branched cover, Σ(σ̂), is the Heegaard Floer L–space integer
homology sphere Σ(2, 3, 5), and the preimage of the braid axis K̃B ⊂ Σ(2, 3, 5) is
a genus one fibered knot whose corresponding open book has positive monodromy,
hence is compatible with a Stein fillable contact structure [36]. It follows that its
Heegaard-Floer contact invariant [40] is nonzero, so [6, Prop. 3.1] implies that
ĤFK(Σ(2, 3, 5), K̃B) has rank one in the next-to-top Alexander grading, hence
(recalling also [40, Thm. 1.1]) HH∗(MHF

σ ) has rank 2.
On the other hand, Proposition 7.2(4), tells us that rk(SKh(σ̂)) is bounded below

by rk(Kh(σ̂)), and [1] tells us that the rank of the Z/2Z Khovanov homology is 14.
The main result of [5] combined with Proposition 7.2 now implies:

rk(HH∗(MKh
σ )) ≥ rk(HH0(MKh

σ ))
= rk(SKh(σ̂; 1))

=
1
2

(rk(SKh(σ̂))− 2)

≥ 1
2

(rk(Kh(σ̂))− 2)

= 6,

so the A∞ structures on MKh
σ and MHF

σ must differ.
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[51] Zoltán Szabó. A geometric spectral sequence in Khovanov homology. math.GT/1010.4252,

2010.
[52] Liam Watson. Surgery obstructions from Khovanov homology. math.GT/0807.1341, 2008.

[53] Rumen Zarev. Bordered Floer homology for sutured manifolds. math.GT/0908.1106, 2009.

UC Berkeley, Department of Mathematics, 970 Evans Hall # 3840, Berkeley CA
94720, USA

E-mail address: auroux@math.berkeley.edu

Boston College; Mathematics Department; 301 Carney Hall; Chestnut Hill, MA
02467, USA

E-mail address: grigsbyj@bc.edu

Syracuse University; Mathematics Department; 215 Carnegie; Syracuse, NY 13244,

USA

E-mail address: smwehrli@syr.edu


	1. Introduction
	1.1. Acknowledgements

	2. Algebraic preliminaries
	2.1. Formality of dg algebras and modules

	3. Khovanov-Seidel Hom algebras and bimodules
	3.1. Topological data: Basis of curves
	3.2. The ring Am and a braid group action on Db(Am)
	3.3. The dg algebra B and the algebra BKh
	3.4. A braid group action on D(BKh)
	3.5. BKh and Fukaya categories

	4. Bordered Floer algebras and bimodules
	4.1. The bordered Floer algebra
	4.2. Bordered Floer bimodules
	4.3. Explicit calculations

	5. A spectral sequence from the Khovanov-Seidel to the bordered Floer algebra
	6. A spectral sequence from the Khovanov-Seidel to the bordered Floer bimodules
	7. An Example
	References

