MIRROR SYMMETRY: LECTURE 9

DENIS AUROUX NOTES BY KARTIK VENKATRAM

1. The Quintic (contd.)

To recall where we were, we had

(1)
$$X_{\psi} = \{ (x_0 : \dots : x_4) \in \mathbb{P}^4 \mid f_{\psi} = \sum_{i=0}^4 x_i^5 - 5\psi x_0 x_1 x_2 x_3 x_4 = 0 \}$$

with

(2)
$$G = \{(a_0, \dots, a_4) \in (\mathbb{Z}/5\mathbb{Z})^5 \mid \sum a_i = 0\}/\{(a, a, a, a, a)\} \cong (\mathbb{Z}/5\mathbb{Z})^3$$

acting by diagonal multiplication $x_i \mapsto x_i \xi^{a_i}, \xi = e^{2\pi i/5}$. We obtained a crepant resolution \check{X}_{ψ} of X_{ψ}/G . This family has a LCSL point at $z = (5\psi)^{-5} \to 0$. There was a volume form $\check{\Omega}_{\psi}$ on \check{X}_{ψ} induced by the G-invariant volume form Ω_{ψ} on X_{ψ} by pullback via $\pi : \check{X}_{\psi} \to X_{\psi}/G$. We computed its period on the 3-torus

(3)
$$T_0 = \{(x_0 : \dots : x_4) \mid x_4 = 1, |x_0| = |x_1| = |x_2| = \delta, |x_3| \ll 1\}$$

(or, on the mirror, $\check{T}_0 \subset \check{X}_{\psi}$) to be

(4)
$$\int_{T_0} \Omega_{\psi} = -(2\pi i)^3 \sum_{n=0}^{\infty} \frac{(5n)!}{(n!)^5 (5\psi)^{5n}}$$

In terms of $z=(5\psi)^{-5}$, the period is proportional to

(5)
$$\phi_0(z) = \sum_{n=0}^{\infty} \frac{(5n)!}{(n!)^5} z^n$$

Setting $\Theta = z \frac{d}{dz} : \Theta(\sum c_n z^n) = \sum n c_n z^n$, we obtained the *Picard-Fuchs equation*

(6)
$$\theta^4 \phi_0 = 5z(5\Theta + 1)(5\Theta + 2)(5\Theta + 3)(5\Theta + 4)\phi_0$$

Proposition 1. All periods $\int \check{\Omega}_{\psi}$ satisfy this equation.

Note that all period satisfy some 4th order differential equation: $H^3(\check{X}_{\psi}, \mathbb{C})$ is 4-dimensional, so $[\check{\Omega}_{\psi}], \frac{d}{d\psi}[\check{\Omega}_{\psi}], \cdots, \frac{d^4}{d\psi^4}[\check{\Omega}_{\psi}]$ are linearly related. Thus, so are their integrals over any 3-cycle.

Idea of proof. We view Ω_{ψ} and its derivatives as residues. Let

(7)
$$\overline{\Omega} = \sum_{i=0}^{4} (-1)^{i} x_{i} dx_{0} \wedge \dots \wedge \widehat{dx}_{i} \wedge \dots \wedge dx_{4}$$

be a form on \mathbb{C}^5 . It is homogeneous of degree 5 (not 0), so we need to multiply by something of degree -5 to get a form on \mathbb{P}^4 . If f, g are homogeneous, deg $f = \deg g + 5$, $\frac{g\Omega}{f}$ is a meromorphic 4-form on \mathbb{P}^4 . For instance, $\frac{5\psi\Omega}{f_{\psi}}$ has poles along X_{ψ} . Now, given a 4-form with poles along some hypersurface X, it has a residue on X which is ideally a 3-form on X, but is at least a class in $H^3(X,\mathbb{C})$.

Recall from complex analysis, if $\phi(z)$ has a pole at 0, $\operatorname{res}_0(\phi) = \frac{1}{2\pi i} \int_{S^1} \phi(z) dz$. Now, let's say that we have a 3-cycle C in X: we can associate a "tube" 4-cycle in \mathbb{P}^4 which is the preimage of C in the boundary of a tubular neighborhood of X. Then

(8)
$$\int_{C} \operatorname{res}_{X} \left(\frac{g\overline{\Omega}}{f} \right) := \frac{1}{2\pi i} \int_{\Gamma} \frac{g\overline{\Omega}}{f}$$

If we only have simple poles along X, we get a 3-form characterized by

(9)
$$\operatorname{res}_{X}\left(\frac{g\overline{\Omega}}{f}\right) \wedge df = g\overline{\Omega}$$

at any point of X.

Now, $\Omega_{\psi} = \operatorname{res}_{X_{\psi}} \left(\frac{5\psi \overline{\Omega}}{f_{\psi}} \right)$, and differentiating k times gives

(10)
$$\frac{\partial^k}{\partial \psi^k} [\Omega_{\psi}] = \operatorname{res}_{X_{\psi}} \left(\frac{g_k \overline{\Omega}}{f_{\psi}^{k+1}} \right)$$

Thus we can express

(11)
$$\Theta^{4}[\Omega_{\psi}] = \operatorname{res}_{X_{\psi}} \left(\frac{g_{\Theta} \overline{\Omega}}{f_{\psi}^{5}} \right)$$

for some g_{Θ} , and write $5z(5\Theta+1)\cdots(5\Theta+4)[\Omega_{\psi}]$ in the same form.

We compare the residues of forms with order 5 poles along X_{ψ} using Griffiths pole order reduction. Assume that ϕ is a 3-form with poles of order ℓ along X_{ψ} ,

$$(12) \qquad \phi = \frac{1}{f_{\psi}^{\ell}} \sum_{i < j} (-1)^{i+j} (x_i g_j - x_j g_i) dx_0 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge \widehat{dx_j} \wedge \dots \wedge dx_4$$

with deg $(g_0 \cdots g_4) = 5\ell - 4$, then

(13)
$$d\phi = \frac{1}{f_{\psi}^{\ell+1}} \left(\ell \sum_{j} g_{j} \frac{\partial f_{\psi}}{\partial x_{j}} - f_{\psi} \sum_{j} \frac{\partial g_{j}}{\partial x_{j}} \right) \overline{\Omega}$$

In particular, if we have something of the form $(\sum g_j \frac{\partial f_{\psi}}{\partial x_j}) \frac{\overline{\Omega}}{f_{\psi}^{\ell+1}}$ (the Jacobian ideal is the span of $\{\frac{\partial f_{\psi}}{\partial x_i}\}$), it can be written as something with a lower order pole plus something exact. We obtain our result iteratively, showing in each stage that the top order term belongs to the Jacobian ideal, and reduce to a lower order term. When we get to order 1, we find that the residue is 0.

There is a theory of differential equations with regular singular points, i.e. differential equations of the form

(14)
$$\Theta^s f + \sum_{j=0}^{s-1} B_j(z) \Theta^j f = 0$$

where $\Theta = z \frac{d}{dz}$ and $B_j(z)$ are meromorphic functions which are holomorphic at z = 0. As with solving ordinary differential equations, we reduce to a 1st order system of differential equations $\Theta w(z) = A(z)w(z)$, where

$$(15) \quad A(z) = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & \ddots & \ddots & \\ & & & \ddots & 0 & 1 \\ -B_0(z) & \cdots & \cdots & -B_{s-1}(z) \end{pmatrix}, w(z) = \begin{pmatrix} f(z) \\ \Theta f(z) \\ \vdots \\ \Theta^{s-1} f(z) \end{pmatrix}$$

The fundamental theorem of these differential equations states that there exists a constant $s \times s$ matrix R and an $s \times s$ matrix of holomorphic functions S(z) s.t.

(16)
$$\Phi(z) = S(z) \exp((\log z)R) = S(z)(\mathrm{id} + (\log z)R + \frac{\log^2 z}{2}R^2 + \cdots)$$

is a fundamental system of solutions to $\Theta w(z) = A(z)w(z)$, and moreover if A(0) doesn't have distinct eigenvalues differing by an integer, we can take R = A(0). This Φ is multivalued, and $z \mapsto e^{2\pi i}z$ gives $\Phi(z) \mapsto \Phi(z)e^{2\pi iR}$ (where $e^{2\pi iR}$ is the monodromy).

In our case, $\mathcal{D}\phi = \Theta^4\phi - 5z(5\Theta + 1)\cdots(5\Theta + 4)\phi = 0$, so the coefficient of Θ^4 is $1 - 5^5z$, and the coefficients of $\Theta^0, \cdots, \Theta^3$ are constant multiples of z. Then

(17)
$$\Theta^4 \phi - \frac{5z}{1 - 5^5 z} P_3(\Theta) \cdot \phi = 0$$

where P_3 is independent of z. Then

(18)
$$R = A(0) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

is nilpotent, and our assumption holds. The corresponding monodromy is

(19)
$$T = e^{2\pi iR} = \begin{pmatrix} 1 & 2\pi i & \frac{(2\pi i)^2}{2} & \frac{(2\pi i)^3}{6} \\ 0 & 1 & 2\pi i & \frac{(2\pi i)^2}{2} \\ 0 & 0 & 1 & 2\pi i \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

If $\omega(z) = \int_{\beta} \dot{\Omega}_{\psi}$ is a period, then it is a solution of the Picard-Fuchs equation, and thus a linear combination of $\Phi(z)_{1i}$'s. There exists a basis b_1, \ldots, b_4 of $H_3(\check{X}, \mathbb{C})$ s.t. $\int_{b_i} \check{\Omega}_{\psi} = \Phi(z)_{1i}$. The monodromy action in this basis is T (T maximally unipotent implies that 0 is LSCL).

1.1. More periods of $\check{\Omega}_{\psi}$. The first fundamental solution we obtained is $\phi_0 = \Phi(z)_{11}$, which is invariant under monodromy and regular at z = 0. Since dim Ker $(T - \mathrm{id}) = 1$, it is unique up to scaling, and $\phi_0(z) = \sum_{n=0}^{\infty} \frac{(5n)!z^n}{(n!)^5}$. We next obtain $\phi_1 = \Phi(z)_{12}$ s.t. $\phi_1(e^{2\pi i}z) = \phi_1(z) + 2\pi i\phi_0(z)$, which is unique up to multiples of ϕ_0 . Since $\Phi(z) = S(z) \exp(R \log z)$, $\phi_1(z) = \phi_0(z) \log z + \tilde{\phi}(z)$, with $\tilde{\phi}(z)$ holomorphic. Now

(20)
$$\Theta^{j}(f(z)\log z) = (\Theta^{j}f)\log z + j(\Theta^{j-1}f)$$

If we write $F(x) = x^4 - 5z \prod_{i=1}^4 (5x + j)$, then

(21)
$$\mathcal{D}\phi_1(z) = F(\Theta)(\phi_0(z)\log z + \tilde{\phi}(z)) \\ = (F(\Theta)\phi_0)\log z + F'(\Theta)\phi_0 + F(\Theta)\tilde{\phi}$$

Since $0 = \mathcal{D}\phi_0 = \mathcal{D}\phi_1$, we find $\mathcal{D}\tilde{\phi}(z) = -F'(\Theta)\phi_0(z)$. This gives a recurrence relation on the coefficients of $\tilde{\phi}(z)$, and one obtains:

(22)
$$\tilde{\phi}(z) = 5 \sum_{n=1}^{\infty} \frac{(5n)!}{(n!)^5} \left(\sum_{j=n+1}^{5n} \frac{1}{j} \right) z^n$$

We want canonical coordinates on the moduli space of complex structures: there are $\beta_0, \beta_1 \in H_3(\check{X}, \mathbb{Z})$, with monodromy $\beta_0 \mapsto \beta_0, \beta_1 \mapsto \beta_1 + \beta_0$, and

(23)
$$\int_{\beta_0} \check{\Omega} = C\phi_0(z)$$
$$\int_{\beta_1} \check{\Omega} = C'\phi_0(z) + C''\phi_1(z)$$

The monodromy acts on the latter by $\int_{\beta_1} \check{\Omega} \mapsto \int_{\beta_1 + \beta_0} \check{\Omega}$, implying that $2\pi i C'' = C$. Thus, the canonial coordinates are

$$(24)$$

$$w = \frac{\int_{\beta_1} \check{\Omega}}{\int_{\beta_0} \check{\Omega}}$$

$$= \frac{C'}{C} + \frac{1}{2\pi i} \frac{\phi_1}{\phi_0}$$

$$= \frac{1}{2\pi i} \log c_2 + \frac{1}{2\pi i} \log z + \frac{1}{2\pi i} \frac{\check{\phi}}{\phi_0}$$

$$q = \exp(2\pi i w) = c_2 z \exp\left(\frac{\check{\phi}(z)}{\phi_0(z)}\right)$$