MIRROR SYMMETRY: LECTURE 8

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

Last time: 18.06 Linear Algebra.
Today: 18.02 Multivariable Calculus. / 18.04 Complex Variables
Thursday: 18.03 Differential Equations

1. Mirror Symmetry Conjecture

Last time, we said that if we have a large complex structure limit (LCSL) degeneration, then we have a special basis $\left(\alpha_{0}, \ldots, \alpha_{S}, \beta_{0}, \ldots, \beta_{S}\right)$ of $H_{3}(X, \mathbb{Z})$ s.t. β_{0} is invariant under monodromy and $\beta_{1}, \ldots, \beta_{s}$ are mapped by monodromy by $\beta_{i} \xrightarrow{\phi_{j}} \beta_{i}-m_{j i} \beta_{0}$ for $m_{j i} \in \mathbb{Z}$. We decided that we would normalize so that $\int_{\beta_{0}} \Omega=1$, and let $w_{i}=\int_{\beta_{i}} \Omega\left(w_{i} \xrightarrow{\phi_{j}} w_{i}-m_{j i}\right)$ and $q_{i}=\exp \left(2 \pi i w_{i}\right)$ (which we called canonical coordinates).

Example. Given a family of tori T^{2} with monodromy $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), \int_{a} \Omega=1, \int_{b} \Omega=$ τ (precisely what you get identifying the elliptic curve with $\left.\mathbb{R}^{2} / \mathbb{Z} \oplus \tau \mathbb{Z}\right), q=$ $\exp (2 \pi i \tau)$.

If e_{i} is a basis of $H^{2}(\check{X}, \mathbb{Z}), e_{i}$ in the Kähler cone, we obtain coordinates on the complexified Kähler moduli space: if $[B+i \omega]=\sum \check{t}_{i} e_{i}$, let $\check{q}_{i}=\exp \left(2 \pi i \check{t}_{i}\right), \check{t}_{i}=$ $\int_{e_{i}^{*}} B+i \omega$.

Example. Returning to our example, $\check{q}=\exp \left(2 \pi i \int_{T^{2}} B+i \omega\right)$.
Conjecture 1 (Mirror Symmetry). Let $f: \mathcal{X} \rightarrow\left(D^{*}\right)^{S}$ be a family of CalabiYau 3-folds with LCSL at 0 . Then \exists a Calabi-Yau 3-fold X and choices of bases $\alpha_{0}, \ldots, \alpha_{S}, \beta_{0}, \ldots, \beta_{S}$ of $H_{3}(X, \mathbb{Z}), e_{1}, \ldots, e_{S}$ of $H^{2}(X, \mathbb{Z})$ s.t. under the map $m:\left(D^{*}\right)^{S} \rightarrow \mathcal{M}_{\text {Kah }}(\check{X}),\left(q_{1}, \ldots, q_{S}\right) \mapsto\left(\check{q}_{i}, \ldots, \check{q}_{S}\right), \check{q}_{i}=q_{i}$, we have a coincidence of Yukawa couplings

$$
\begin{equation*}
\left\langle\frac{\partial}{\partial q_{i}}, \frac{\partial}{\partial q_{j}}, \frac{\partial}{\partial q_{k}}\right\rangle_{p}^{X}=\left\langle\frac{\partial}{\partial \check{q}_{i}}, \frac{\partial}{\partial \check{q}_{j}}, \frac{\partial}{\partial \check{q}_{k}}\right\rangle_{m(p)}^{\check{X}} \tag{1}
\end{equation*}
$$

where the LHS corresponds to $\int_{X} \Omega \wedge\left(\frac{\partial}{\partial q_{i}} \frac{\partial}{\partial q_{j}} \frac{\partial}{\partial q_{k}} \Omega\right)$ and the RHS to a (1,1)coupling, i.e. the Gromov-Witten invariants $\left\langle e_{i}, e_{j}, e_{k}\right\rangle_{0, \beta}^{\check{X}}$ (since $2 \pi i \check{q}_{i} \frac{\partial}{\partial \check{q}_{i}}=\frac{\partial}{\partial \check{t}_{i}}=$ $e_{i} \in H^{1,1}$ etc.).

Remark. A more grown-up version of mirror symmetry would give you an equivalence between $H^{*}(X, \bigwedge T X)$ with its usual product structure and $H^{*}(\bar{X}, \mathbb{C})$ with the quantum twisted product structure as Frobenius algebras (making this concrete would require more work).
1.1. Application to the Quintic (See Gross-Huybrechts-Joyce, after Candelas-de la Ossa-Greene-Parkes). Last time, we defined

$$
\begin{equation*}
X_{\psi}=\left\{\left(x_{0}: \cdots: x_{4}\right) \in \mathbb{P}^{4} \mid f_{\psi}=\sum_{0}^{4} x_{i}^{5}-5 \psi x_{0} x_{1} x_{2} x_{3} x_{4}=0\right\} \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
G=\left\{\left(a_{0}, \ldots, a_{4}\right) \in(\mathbb{Z} / 5 \mathbb{Z})^{5} \mid \sum a_{i}=0\right\} /\{(a, a, a, a, a)\} \cong(\mathbb{Z} / 5 \mathbb{Z})^{3} \tag{3}
\end{equation*}
$$

acting by diagonal multiplication $x_{i} \mapsto x_{i} \xi^{a_{i}}, \xi=e^{2 \pi i / 5}$. We obtained a crepant resolution \check{X}_{ψ} of X_{ψ} / G (its singularities are $\overline{C_{i j}}=\left\{x_{i}=x_{j}=0\right\} / G$), which has $h^{1,1}=101, h^{2,1}=1$, and $h^{3}=4$. The map $\left(x_{0}: \ldots: x_{4}\right) \mapsto\left(\xi^{a} x_{0}: x_{1}: \ldots: x_{4}\right)$ gives $X_{\psi} \cong X_{\xi \phi}$, so let $z=(5 \xi)^{-5}$. Then $z \rightarrow 0$, i.e. $\psi \rightarrow \infty$, gives a toric degeneration of X_{ψ} to $\left\{x_{0} x_{1} x_{2} x_{3} x_{4}=0\right\}$. This is maximally unipotent, as the monodromy on H^{3} is given by

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \tag{4}\\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

so it is LCSL. We want to compute the periods of the holomorphic volume form on \check{X}_{ψ}. There is a volume form $\check{\Omega}_{\psi}$ on \check{X}_{ψ} induced by the G-invariant volume form Ω_{ψ} on X_{ψ} by pullback via $\pi: \check{X}_{\psi} \rightarrow X_{\psi} / G$. We want to find a 3 -cycle $\beta_{0} \in H_{3}\left(\check{X}_{\psi}\right)$ that survives the degeneration. For $z=0,\left\{\prod x_{i}=0\right\}$ contains tori in component \mathbb{P}^{3} 's, e.g.

$$
\begin{equation*}
T_{0}=\left\{\left(x_{0}: \cdots: x_{4}\right)\left|x_{4}=1,\left|x_{0}\right|=\left|x_{1}\right|=\left|x_{2}\right|=\delta, x_{3}=0\right\}\right. \tag{5}
\end{equation*}
$$

We want to extend it to $z \neq 0$. Take $x_{4}=1,\left|x_{0}\right|=\left|x_{1}\right|=\left|x_{2}\right|=\delta$: then x_{3} should be given by the root of f_{ψ} which tends to 0 as $\psi \rightarrow \infty$. We need to show that there is only one such value (giving us a simple degeneration rather than a branched covering). Explicitly, set $x_{3}=\left(\psi x_{0} x_{1} x_{2}\right)^{1 / 4} y$:

$$
\begin{equation*}
f_{\psi}=0 \Leftrightarrow x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+\left(\psi x_{0} x_{1} x_{2}\right)^{5 / 4} y^{5}+1-5\left(\psi x_{0} x_{1} x_{2}\right)^{5 / 4} y \tag{6}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
y=\frac{y^{5}}{5}+\frac{x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+1}{5\left(\psi x_{0} x_{1} x_{2}\right)^{5 / 4}} \tag{7}
\end{equation*}
$$

One root is $y \sim \psi^{-5 / 4} \rightarrow 0$, with the other four roots converging to $\sqrt[4]{5}$. So for x_{3}, we have one root $\sim \psi^{-1}$, and 4 roots $\sim \psi^{1 / 4}$. Now, G acts freely on $T_{0} \subset X_{\psi}$, and T_{0} / G is contained in the smooth part of X_{ψ} / G and gives a torus $\check{T}_{0} \subset \check{X}_{\psi}, \beta_{0}=\left[\check{T}_{0}\right]$. Because T_{0}, \check{T}_{0} still make sense at $z=0$, their class is preserved by the monodromy.

Next, we want to get the required holomorphic volume form. In the affine subset $x_{4}=1$, let Ω_{ψ} be the 3 -form on X_{ψ} characterized uniquely by

$$
\begin{equation*}
\Omega_{\psi} \wedge d f_{\psi}=5 \psi d x_{0} \wedge d x_{1} \wedge d x_{2} \wedge d x_{3} \tag{8}
\end{equation*}
$$

at each point of X_{ψ}. At a point where $\frac{\partial f_{\psi}}{\partial x_{3}} \neq 0,\left(x_{0}, x_{1}, x_{2}\right)$ are local coordinates, and

$$
\begin{equation*}
\Omega_{\psi}=\frac{5 \psi d x_{0} \wedge d x_{1} \wedge d x_{2}}{\frac{\partial f_{\psi}}{\partial x_{3}}}=\frac{5 \psi d x_{0} \wedge d x_{1} \wedge d x_{2}}{5 x_{3}^{4}-5 \psi x_{0} x_{1} x_{2}} \tag{9}
\end{equation*}
$$

Defining it in terms of other coordinates, we get the same formula on restrictions. We need to extend this to where $x_{4}=0$. We could rewrite this using homogeneous coordinates, but note that the corresponding divisor is just the canonical divisor: since X_{ψ} is Calabi-Yau, this divisor has no zeroes or poles at $x_{4}=0$. Since Ω_{ψ} is G-invariant, it induces a 3 -form on $\left(X_{\psi} / G\right)^{\text {nonsing }}$ and lifts and extends to $\check{\Omega}_{\psi}$ on \check{X}_{ψ} with

$$
\begin{equation*}
\int_{\check{T}_{0}} \check{\Omega}_{\psi}=\frac{1}{5^{3}} \int_{T_{0}} \Omega_{\psi} \tag{10}
\end{equation*}
$$

Tool: we have the residue formula

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{S^{1}} f(z) d z=\sum_{z_{i} \text { poles of } f \in D^{2}} \operatorname{res}_{f}\left(z_{i}\right) \tag{11}
\end{equation*}
$$

So let $T^{4}=\left\{\left|x_{0}\right|=\left|x_{1}\right|=\left|x_{2}\right|=\left|x_{3}\right|=\delta, x_{4}=1\right\}$. Then

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{T^{4}} \frac{5 \psi d x_{0} d x_{1} d x_{2} d x_{3}}{f_{\psi}}=\int_{T_{x_{0} x_{1} x_{2}}^{3}}\left(\frac{1}{2 \pi i} \int_{S^{1}} \frac{5 \psi d x_{3}}{f_{\psi}}\right) d x_{0} d x_{1} d x_{2} \tag{12}
\end{equation*}
$$

where f_{ψ} has a unique pole at x_{3}. The residue is precisely $\frac{5 \psi}{\left(\partial f / \partial x_{3}\right)}$, giving us

$$
\begin{equation*}
=\int_{T_{0}} \frac{5 \psi}{\left(\partial f / \partial x_{3}\right)} d x_{0} d x_{1} d x_{2}=\int_{T_{0}} \Omega_{\psi} \tag{13}
\end{equation*}
$$

So

$$
\begin{align*}
\int_{T_{0}} \Omega_{\psi} & =\frac{1}{2 \pi i} \int_{T^{4}} \frac{d x_{0} d x_{1} d x_{2} d x_{3}}{(5 \psi)^{-1}\left(x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+1\right)-x_{0} x_{1} x_{2} x_{3}} \\
& =-\frac{1}{2 \pi i} \int_{T^{4}} \frac{d x_{0} d x_{1} d x_{2} d x_{3}}{x_{0} x_{1} x_{2} x_{3}}\left(1-(5 \psi)^{-1} \frac{x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+1}{x_{0} x_{1} x_{2} x_{3}}\right)^{-1} \tag{14}\\
& =-\frac{1}{2 \pi i} \sum_{n=0}^{\infty} \int_{T^{4}} \frac{d x_{0} d x_{1} d x_{2} d x_{3}}{x_{0} x_{1} x_{2} x_{3}} \cdot \frac{\left(x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+1\right)^{m}}{(5 \psi)^{m}\left(x_{0} x_{1} x_{2} x_{3}\right)^{m}}
\end{align*}
$$

We want to find the coefficient of 1 in the latter term. We obviously need $m=5 n$ (the numerator only has powers which are a multiple of 5), and want the coefficient of $x_{0}^{5 n} x_{1}^{5 n} x_{2}^{5 n} x_{3}^{5 n}$ in $\left(x_{0}^{5}+x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+1\right)^{5 n}$, which is $\frac{(5 n)!}{(n!)^{5}}$. We finally obtain

$$
\begin{equation*}
\int_{T_{0}} \Omega_{\psi}=-(2 \pi i)^{3} \sum_{n=0}^{\infty} \frac{(5 n)!}{(n!)^{5}(5 \psi)^{5 n}} \tag{15}
\end{equation*}
$$

In terms of $z=(5 \psi)^{-5}$, the period is proportional to

$$
\begin{equation*}
\phi_{0}(z)=\sum_{n=0}^{\infty} \frac{(5 n)!}{(n!)^{5}} z^{n} \tag{16}
\end{equation*}
$$

Set $a_{n}=\frac{(5 n)!}{(n!)^{5}}$. Then

$$
\begin{equation*}
(n+1)^{4} a_{n+1}=\frac{(5 n+5)!}{(n!)^{5}(n+1)}=5(5 n+4)(5 n+3)(5 n+2)(5 n+1) a_{n} \tag{17}
\end{equation*}
$$

Setting $\Theta=z \frac{d}{d z}: \Theta\left(\sum c_{n} z^{n}\right)=\sum n c_{n} z^{n}$, giving us the Picard-Fuchs equation

$$
\begin{equation*}
\Theta^{4} \phi_{0}=5 z(5 \Theta+1)(5 \Theta+2)(5 \Theta+3)(5 \Theta+4) \phi_{0} \tag{18}
\end{equation*}
$$

Next time, we will show that there is a unique regular solution, and a unique solution with logarithmic poles to our original problem.

