MIRROR SYMMETRY: LECTURE 7

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

1. Degenerations and Monodromy (contd.)

Last time, we considered families $\mathcal{X} \xrightarrow{\pi} D^{2}$ where for $t \neq 0, X_{t} \cong X$ (with varying J) and for $t=0, X_{0}$ is typically singular. We saw that monodromy around $t=0$ induces $\phi_{*} \in \operatorname{Aut}\left(H^{n}\left(X_{t_{0}}, \mathbb{Z}\right)\right)$.

Theorem 1. All eigenvalues of ϕ_{*} are roots of unity: thus $\exists N, k$ s.t. $\left(\phi_{*}^{N}-\right.$ id $)^{k}=0$. Moreover, $k \leq n+1$.

Replacing ϕ by ϕ^{N} (the "base change" $X_{t}^{\prime}=X_{t^{N}}$), we can assume that ϕ_{*} is unipotent, i.e. $\left(\phi_{*}-\mathrm{id}\right)^{k}=0$. It is maximally unipotent if $k=n+1$. We can further define a weight filtration associated to a unipotent ϕ_{*} coming from the Jordan block decomposition of ϕ_{*} : letting

$$
\begin{equation*}
N=\log \left(\phi_{*}\right)=\left(\phi_{*}-\mathrm{id}\right)-\frac{\left(\phi_{*}-\mathrm{id}\right)^{2}}{2}+\cdots+(-1)^{n+1} \frac{\left(\phi_{*}-\mathrm{id}\right)^{n}}{n} \tag{1}
\end{equation*}
$$

act on $V=H^{n}(X, \mathbb{Q})$, we obtain a filtration $0 \subseteq W_{0} \subseteq \cdots \subseteq W_{2 n}=V$ s.t. $N\left(W_{i}\right) \subset W_{i-2}$ and $N^{k}: W_{n+k} / W_{n+k-1} \xrightarrow{\sim} W_{n-k} / W_{n-k-1}$. We construct this as follows:

- First, $N^{n}: W_{2 n} / W_{2 n-1} \xrightarrow{\sim} W_{0}$ so $W_{0}=\operatorname{im}\left(N^{n}\right), W_{2 n-1}=\operatorname{Ker}\left(N^{n}\right)$.
- Then let $V^{\prime}=W_{2 n-1} / W_{0}$, so N induces $N^{\prime} \in \operatorname{End}\left(V^{\prime}\right)$ (since $W_{2 n-1}=$ Ker $N^{n} \supseteq \operatorname{im} N$ and $\left.W_{0}=\operatorname{im}\left(N^{n}\right) \subseteq \operatorname{Ker} N\right)$ with $\left(N^{\prime}\right)^{n}=0$. By induction, we obtain

$$
\begin{equation*}
0 \subseteq W_{0}^{\prime} \cong W_{1} / W_{0} \subseteq \cdots \subseteq W_{2 n-2}^{\prime} \cong W_{2 n-1} / W_{0}=V^{\prime} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{2 n-2}=\left\{v \mid N^{n-1}(v) \in W_{0}=\operatorname{im} N^{n}\right\} \supseteq \operatorname{im} N \tag{3}
\end{equation*}
$$

so $W_{2 n} \xrightarrow{N} W_{2 n-2}$. Finally, $W_{1}=\left\{N^{n-1}(v) \mid N^{n}(v)=0\right\} \subset$ Ker N so $W_{1} \xrightarrow{N} 0$, and we obtain $W_{k} \rightarrow W_{k-2}$ by induction.

Example. For the elliptic curves from last time, with $\phi=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\exp \left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, we have $0 \subseteq W_{0} \subseteq W_{1} \subseteq W_{2}=H^{1}(C, \mathbb{Q}) \cong \mathbb{Q}^{2}$, with $W_{0}=W_{1}=\operatorname{im} N=$ Ker $N=\operatorname{Span}(a)$ being the direction invariant by monodromy.

Note that if N is the $(n+1) \times(n+1)$ Jordan block with 0 's on the diagonal and 1 s above (with columns e_{i}), then $W_{0}=\operatorname{Span}\left(e_{1}\right), W_{2 n-1}=\operatorname{Span}\left(e_{1} \cdots e_{n}\right)$, and we can reduce to the equivalent $(n-1) \times(n-1)$ Jordan block and repead the process with $W_{1}=W_{0}, W_{2 n-2}=W_{2 n-1}, \cdots, W_{2 k-2}=W_{2 k-1}=\operatorname{Span}\left(e_{1} \cdots e_{k}\right)$. There is a similar story if N is a sum of such Jordan blocks.

Remark. In fact, the interplay of weight filtration with Hodge filtration

$$
\begin{equation*}
F^{p}=H^{n, 0} \oplus \cdots \oplus H^{p, n-p} \quad\left(H^{n}=F^{0} \supseteq F^{1} \supseteq \cdots, F^{p} / F^{p+1} \cong H^{p, n-p}\right) \tag{4}
\end{equation*}
$$

(with Griffiths transversality giving $\nabla F^{p} \subseteq F^{p-1}$ under deformations) gives a notion of "mixed Hodge structure". By [Schmid], there exists a limiting Hodge filtration as $t \rightarrow 0$, but we won't say any more about those.

Now consider a multidimensional family $\mathcal{X} \rightarrow\left(D^{2}\right)^{s}$ smooth over $\left(D^{*}\right)^{S}$ where $D^{*}=D^{2} \backslash\{0\}$. Then we have s monodromies $\phi_{1}, \ldots, \phi_{s} \in \operatorname{Aut} H_{n}(X),\left[\phi_{i}, \phi_{j}\right]=$ 0 (since $\pi_{1}\left(\left(D^{*}\right)^{s}\right)=\mathbb{Z}^{s}$ is abelian), so $N_{i}=\log \phi_{i}$ also commute.

Theorem 2 (Cattani-Kaplan). All the elements of the form $\sum \lambda_{i} N_{i}, \lambda_{i}>0$ have the same monodromy weight filtration.

We want to consider a "universal family" of Calabi-Yau manifolds near a "deepest corner", caled a "large complex structure limit point" in the moduli space.

Definition 1 (Morrison). Given a family of Calabi-Yau n-folds $\mathcal{X} \rightarrow\left(D^{*}\right)^{S} \subset$ $\left(D^{2}\right)^{s}$, $s=h^{n-1,1}(X)$, s.t. the Kodaira-Spencer map $T_{*}\left(D^{*}\right)^{s} \rightarrow H^{1}\left(T X_{t}\right)$ is an isomorphism at every point of $\left(D^{*}\right)^{s}$, we say that $0 \in\left(D^{2}\right)^{s}$ is a large complex structure limit (LCSL) point if
(1) The monodromies ϕ_{j} around each factor are all unipotent.
(2) Let $N_{j}=\log \phi_{j}, N=\sum \lambda_{j} N_{j}$ for $\lambda_{j}>0$ arbitrary. Then the weight filtration $0 \subseteq W_{0} \subseteq W_{1} \subseteq \cdots \subseteq W_{2 n}=H^{n}(X, \mathbb{Q})$ has $\operatorname{dim} W_{0}=\operatorname{dim} W_{1}=$ $1, \operatorname{dim} W_{2}=\operatorname{dim} W_{3}=s+1$.
(3) Let α_{0}^{*} be the generator of $W_{0}, \alpha_{1}^{*}, \cdots, \alpha_{s}^{*}$ the rest of a basis for W_{2}. Then $\exists m_{j k} \in \mathbb{Q}$ s.t. $N_{j}\left(\alpha_{k}^{*}\right)=m_{j k} \alpha_{0}^{*}$, i.e. $\phi_{j}\left(\alpha_{k}^{*}\right)=\alpha_{k}^{*}+m_{j k} \alpha_{0}^{*}$. We further require that $\left(m_{j k}\right)$ is an invertible matrix.

This essentially says that the family is locally a "full deformation", that we single out a one-dimensional subspace $\operatorname{Span}\left(\alpha_{0}^{\vee}\right)$ of $H^{n}(X)$ preserved by the monodromy, and that, for each factor D^{2}, we get a class $\tilde{\alpha}_{j}^{*}$ s.t. $\phi_{j}\left(\tilde{\alpha}_{j}^{*}\right)=\tilde{\alpha}_{j}^{*}+\alpha_{0}^{*}$ and $\tilde{\alpha}_{j}^{*}$ is invariant under the other ϕ_{i}.

Remark. If $h^{n-1,1}=s=1$, then this is equivalent to the statement that the monodromy around zero is maximally unipotent. For instance, the family of elliptic curves seen last time is an LCSL point.

Now, for a family of Calabi-Yau 3-folds, we have by definition

$$
\begin{equation*}
0 \subset \underbrace{W_{0}=W_{1}}_{\operatorname{dim}=1} \subset \underbrace{W_{2}=W_{3}}_{\operatorname{dim}=s+1=h^{2,1}+1} \subset \underbrace{W_{4}=W_{5}}_{\operatorname{dim}=2 s+1} \subset \underbrace{W_{6}=H^{3}(X ; \mathbb{Q})}_{\operatorname{dim}=2 s+2} \tag{5}
\end{equation*}
$$

where we use $N^{k}: W_{n+k} / W_{n+k-1} \xrightarrow{\sim} W_{n-k} / W_{n-k-1}$ to get the dimensions of W_{3}, W_{4}, W_{5}. Now, $H^{3}(X)$ carries an intersection pairing preserved by ϕ_{*}, so $N=\log \phi_{*}$ is in the Lie algebra, i.e. $(x, N y)+(N x, y)=0$.

Lemma 1. $W_{4-2 i}=W_{2 i}^{\perp}$.
Proof. Since $W_{0}=\operatorname{im} N^{3}, W_{4}=W_{5}=\operatorname{Ker} N^{3},\left(x, N^{3} y\right)=-\left(N^{3} x, y\right)=0$ for $x \in W_{4}, N^{3} y \in W_{0}$ and the dimensions match. Furthermore, $N\left(W_{4}\right)=W_{2}$ (it is onto since $N: W_{4} / W_{3} \xrightarrow{\sim} W_{2} / W_{1}$ and $\left.W_{0}=\operatorname{im} N^{3}=N\left(\operatorname{im} N^{2}\right)\right)$: thus, for $x, N y \in W_{2},(x, N y)=-(N x, y)=0$ (since $\left.W_{0} \perp W_{4}\right)$ and the dimensions match.

Finally, passing to $H_{3}(X, \mathbb{Q})$ by Poincaré duality, let $S_{i}=P D\left(W_{i}\right)$ (or equivalently, viewing $H_{3}=\left(H^{3}\right)^{*}, S_{i}$ is the annihilator of $\left.W_{4-2 i}\right)$.

Proposition 1. Given an LCSL point in the moduli space of Calabi-Yau 3 folds with $h^{2,1}=s, \exists$ a \mathbb{Z}-basis $\left(\alpha_{0}, \ldots, \alpha_{S}, \beta_{0}, \ldots, \beta_{S}\right)$ of $H_{3}(X, \mathbb{Z})$ s.t. $\beta_{0} \in S_{0}$, $\beta_{1}, \ldots, \beta_{s} \in S_{2}, \alpha_{1}, \ldots, \alpha_{s} \in S_{4}, \alpha_{0} \in S_{6}=H_{3}(X)$ s.t. $\left(\alpha_{i}, \alpha_{j}\right)=\left(\beta_{i}, \beta_{j}\right)=$ $0,\left(\alpha_{i}, \beta_{j}\right)=\delta_{i j}$.

Proof. Let β_{0} be the \mathbb{Z} generator of S_{0} (unique up to sign), which we extend to a \mathbb{Z}-basis β_{i} of S_{2}. By the lemma, S_{2} is Lagrangian w.r.t. the intersection product, so $\left(\beta_{i}, \beta_{j}\right)=0$. Let β_{i}^{*} be the dual basis of $S_{2}^{*}=H^{3} / W_{2}$, i.e. $\beta_{i}^{*} \beta_{j}=\delta_{i j}$, and let $\alpha_{i} \in H_{3}$ be the Poincaré dual of some lift of β_{i}^{*} to H^{3}. Then $\left(\alpha_{i}, \beta_{j}\right)=\delta_{i j}$. We can make $\left(\alpha_{i}, \alpha_{j}\right)=0$ inductively by replacing α_{i} with $\alpha_{i}-\sum\left(\alpha_{i}, \alpha_{j}\right) \beta_{j}$. Finally, $\alpha_{1}, \ldots, \alpha_{s} \in S_{4}$ since $\left(\alpha_{i}, \beta_{0}\right)=0$ and $S_{4}=S_{0}^{\perp}$.

We now define canonical coordinates on our moduli space. Given $\mathcal{X} \rightarrow\left(D^{*}\right)^{s}$ LCSL, let $\Omega\left(t_{1}, \ldots, t_{s}\right)$ be the holomorphic volume form on $X_{\left(t_{1}, \ldots, t_{s}\right)}$, normalized so that $\int_{\beta_{0}} \Omega\left(t_{1}, \ldots, t_{s}\right)=1$. Set $w_{i}\left(t_{1}, \ldots, t_{s}\right)=\int_{\beta_{i}} \Omega\left(t_{1}, \ldots, t_{s}\right)$. This is not quite a coordinate because of monodromy: as t_{j} goes around the origin, $\beta_{i} \mapsto$ $\phi_{j}\left(\beta_{i}\right)=\beta_{i}-m_{j i} \beta_{0}$ for some $m_{j i} \in \mathbb{Z}$ (an integer since these are integer classes). In fact, these are the $m_{j i}$ from the definition of LCSL. Instead, we set $q_{i}=$ $\exp \left(2 \pi i w_{i}\right)$: these are well-defined functions on $\left(D^{*}\right)^{s}$, and are canonical once the basis $\left\{\beta_{i}\right\}$ is chosen. Note that q_{i} is a zero of order $-m_{j i}$ (i.e. a pole of order $m_{j i}$) along $t_{j}=0$; if the $m_{j i}$'s are nonpositive, then we get coordinates on $\left(D^{2}\right)^{s}$, and can choose a basis of S_{2} appropriately.

Example. For our elliptic curves from last time, $q=\exp (2 \pi i \tau(t)), \tau(t)=\int_{b} \Omega$ where $\int_{a} \Omega=1$.

If e_{i} is a basis of $H^{2}(\check{X}, \mathbb{Z}), e_{i}$ in the Kähler cone, we obtain coordinates on the complexified Kähler moduli space: if $[B+i \omega]=\sum \check{t}_{i} e_{i}$, let $\check{q}_{i}=\exp \left(2 \pi i \check{t}_{i}\right), \check{t}_{i}=$ $\int_{e_{i}^{*}} B+i \omega$.

Example. In example above, we have $\check{q}=\exp \left(2 \pi i \int_{T^{2}} B+i \omega\right)$.
Conjecture 1 (Mirror Symmetry). Let $f: \mathcal{X} \rightarrow\left(D^{*}\right)^{S}$ be a family of CalabiYau 3-folds with LCSL at 0 . Then \exists a Calabi-Yau 3-fold \bar{X} and choices of bases $\alpha_{0}, \ldots, \alpha_{S}, \beta_{0}, \ldots, \beta_{S}$ of $H_{3}(X, \mathbb{Z}), e_{1}, \ldots, e_{S}$ of $H^{2}(X, \mathbb{Z})$ s.t. under the map $m:\left(D^{*}\right)^{S} \rightarrow \mathcal{M}_{\text {Kah }}(\check{X}),\left(q_{1}, \ldots, q_{S}\right) \mapsto\left(\check{q}_{i}, \ldots, \check{q}_{S}\right), \check{q}_{i}=q_{i}$, we have a coincidence of Yukawa couplings

$$
\begin{equation*}
\left\langle\frac{\partial}{\partial q_{i}}, \frac{\partial}{\partial q_{j}}, \frac{\partial}{\partial q_{k}}\right\rangle_{p}^{X}=\left\langle\frac{\partial}{\partial \check{q}_{i}}, \frac{\partial}{\partial \check{q}_{j}}, \frac{\partial}{\partial \check{q}_{k}}\right\rangle_{m(p)}^{\check{X}} \tag{6}
\end{equation*}
$$

where the LHS corresponds to $\int_{X} \Omega \wedge\left(\frac{\partial}{\partial q_{i}} \frac{\partial}{\partial q_{j}} \frac{\partial}{\partial q_{k}} \Omega\right)$ and the RHS to a (1,1)coupling, i.e. the Gromov-Witten invariants $\left\langle e_{i}, e_{j}, e_{k}\right\rangle_{0, \beta}^{\check{X}}$ (since $2 \pi i \check{q}_{i} \frac{\partial}{\partial \widetilde{q}_{i}}=\frac{\partial}{\partial \grave{\tau}_{i}}=$ $\left.e_{i} \in H^{1,1}\right)$.

