MIRROR SYMMETRY: LECTURE 5

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

1. Gromov-Witten Invariants

Recall that if (X, ω) is a symplectic manifold, J an almost-complex structure, $\beta \in H_{2}(X, \mathbb{Z}), \overline{\mathcal{M}}_{g, k}(X, J, \beta)$ is the set of (possibly nodal) J-holomorphic maps to X of genus g representing class β with k marked points up to equivalence. This is not a nice moduli space, but does have a fundamental class $\left[\bar{M}_{g, k}(X, J, \beta)\right] \in H_{2 d}\left(\bar{M}_{g, k}(X, J, \beta), \mathbb{Q}\right)$, where $2 d=\left\langle c_{1}(T X), \beta\right\rangle+2(n-3)(1-$ $g)+2 k$. We further have an evaluation map ev $=\left(\mathrm{ev}_{1}, \ldots, \mathrm{ev}_{n}\right): \bar{M}_{g, k}(X, J, \beta) \rightarrow$ $X^{k},\left(\Sigma, z_{1}, \ldots, z_{k}, u\right) \mapsto\left(u\left(z_{1}\right), \ldots, u\left(z_{k}\right)\right)$. Then the Gromov-Witten invariants are defined for $\alpha_{1}, \ldots, \alpha_{k} \in H^{*}(X), \sum \operatorname{deg} \alpha_{i}=2 d$ by

$$
\begin{equation*}
\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle_{g, \beta}=\int_{\left[\bar{M}_{g, k}(X, J, \beta)\right]} \operatorname{ev}_{1}^{*} \alpha_{1} \wedge \cdots \wedge \operatorname{ev}_{k}^{*} \alpha_{k} \in \mathbb{Q} \tag{1}
\end{equation*}
$$

Or dually, for $\alpha_{i}=P D\left(C_{i}\right), \#\left(\mathrm{ev}_{*}\left[\bar{M}_{g, k}(X, J, \beta)\right] \cap\left(C_{1} \times \cdots \times C_{k}\right)\right) \in \mathbb{Q}$.
For a Calabi-Yau 3-fold, we're interested in $g=0, k=3$, so $\Sigma=\left(S^{2},\{0,1, \infty\}\right)$. For $\operatorname{deg} \alpha_{i}=2, \alpha_{i}=P D\left(C_{i}\right), C_{i}$ cycles transverse to the evaluation map, we have

$$
\begin{align*}
\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0, \beta}=\# & \left\{u: S^{2} \rightarrow X J \text {-hol. of class } \beta\right. \tag{2}\\
& \left.u(0) \in C_{1}, u(1) \in C_{2}, u(\infty) \in C_{3}\right\} / \sim
\end{align*}
$$

Reparameterization acts transitively on triples of points, so

$$
\begin{align*}
\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0, \beta} & =\left(C_{1} \cdot \beta\right)\left(C_{2} \cdot \beta\right)\left(C_{3} \cdot \beta\right) \#\left\{u: S^{2} \rightarrow X J \text {-hol. of class } \beta\right\} / \sim \tag{3}\\
& =\left(\int_{\beta} \alpha_{1}\right)\left(\int_{\beta} \alpha_{2}\right)\left(\int_{\beta} \alpha_{3}\right) \cdot \#\left[\overline{\mathcal{M}}_{0,0}(X, J, \beta)\right]
\end{align*}
$$

We denote by $N_{\beta} \in \mathbb{Q}$ the latter number $\#\left[\overline{\mathcal{M}}_{0,0}(X, J, \beta)\right]$. This works when $\beta \neq 0$: when $\beta=0$, we instead obtain

$$
\begin{equation*}
\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0,0}=\int_{X} \alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3} \tag{4}
\end{equation*}
$$

1.1. Yukawa coupling. Physicists write this as

$$
\begin{equation*}
\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle=\int_{X} \alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}+\sum_{0 \neq \beta \in H_{2}(X, \mathbb{Z})}\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0, \beta} e^{2 \pi i \int_{\beta} B+i \omega} \tag{5}
\end{equation*}
$$

We want to ignore issues of convergence, and so treat this is a formal power series

$$
\begin{equation*}
\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle=\int_{X} \alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}+\sum_{\beta \neq 0}\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0, \beta} q^{\beta} \in \Lambda \tag{6}
\end{equation*}
$$

where Λ is the completion of the group ring $\mathbb{Q}\left[H_{2}(X, \mathbb{Z})\right]=\left\{\sum a_{i} q^{\beta_{i}} \mid a_{i} \in \mathbb{Q}, \beta_{i} \in\right.$ $\left.H_{2}\right\}$. Specifically, we allow infinite sums provided that $\int_{\beta_{i}} \omega \rightarrow+\infty$.
1.2. Quantum cohomology. This is new product structure on $H^{*}(X)$ deformed by this coupling. Namely, pick a basis $\left(\eta_{i}\right)$ of $H^{*}(X),\left(\eta^{i}\right)$ the dual basis, i.e. $\int_{X} \eta_{i} \wedge \eta^{j}=\delta_{i j}$. Set

$$
\begin{equation*}
a_{1} * a_{2}=\sum_{i}\left\langle\alpha_{1}, \alpha_{2}, \eta^{i}\right\rangle \eta_{i}=\alpha_{1} \wedge \alpha_{2}+\sum_{\beta \neq 0}\left\langle\alpha_{1}, \alpha_{2}, \eta^{i}\right\rangle_{0, \beta} q^{\beta} \eta_{i} \tag{7}
\end{equation*}
$$

Definition 1. The quantum cohomology of X is $Q H^{*}(X)=\left(H^{*}(X ; \Lambda), *\right)$.
Theorem 1. This is an associative algebra.
The proof of this relies on understanding the relationship between 4 point GW invariants and various 3 point ones.
1.3. Kähler moduli. We can view q as the coordinates on a Kähler moduli space: for (X, J)-complex, the Kähler cone $\mathcal{K}(X, J)=\{[\omega] \mid \omega$ Kahler $\} \subset$ $H^{1,1}(X) \cap H^{2}(X, \mathbb{R})$ is a open, convex cone. Its real dimension is $h^{1,1}(X)$, and we can make it a complex manifold by adding the "B-field".

Definition 2. Let (X, J) be a Calabi-Yau 3-fold with $h^{1,0}=0$ (so $h^{2,0}=0$ and $\left.H^{1,1}=H^{2}\right)$. Then the complexified Kähler moduli space is

$$
\begin{align*}
\mathcal{M}_{\text {Kah }} & =\left(H^{2}(X, \mathbb{R})+i \mathcal{K}(X, J)\right) / H^{2}(X, \mathbb{Z}) \\
& =\{[B+i \omega], \omega \text { Kahler }\} / H^{2}(X, \mathbb{Z}) \tag{8}
\end{align*}
$$

Choose a basis $\left(e_{i}\right)$ of $H^{2}(X, \mathbb{Z}), e_{1}, \ldots, e_{m} \in \overline{\mathcal{K}(X, J)}$ (which exists by openness). We can write $[B+i \omega]=\sum t_{i} e_{i}, t_{i} \in \mathbb{C} / \mathbb{Z}$, so we have coordinates on $\mathcal{M}_{\text {Kah }}$ given by $q_{i}=\exp \left(2 \pi i t_{i}\right)$. Thus, $\mathcal{M}_{\text {Kah }}$ is an open subset of $\left(\mathbb{C}^{*}\right)^{m}$ which contains $\left(\mathbb{D}^{*}\right)^{m}$, where $\mathbb{D}^{*}=\{q|0<|q|<1\}$.

We now can associate q^{β} to $q_{1}^{d_{1}} \cdots q_{m}^{d_{m}}$, where $d_{i}=\int_{\beta} e_{i}$ for $e_{i} \geq 0$ integers (it is an integer cohomology class integrated against an integer homology class): explicitly, $q_{1}^{d_{1}} \cdots q_{m}^{d_{m}}=\exp \left(2 \pi i \sum d_{i} t_{i}\right)=\exp \left(2 \pi i \int_{\beta} B+i \omega\right)$. We can view $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle$ as a power series in the q_{i}, though we still do not know about convergence.
1.4. Gromov-Witten invariants vs. numbers of curves. We have, for $\alpha_{1}, \alpha_{2}, \alpha_{3} \in H^{2}(X)$,

$$
\begin{align*}
\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle & =\int_{X} \alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}+\sum_{\beta \neq 0}\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0, \beta} q^{\beta} \\
& =\int_{X} \alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}+\sum_{\beta \neq 0}\left(\int_{\beta} \alpha_{1}\right)\left(\int_{\beta} \alpha_{2}\right)\left(\int_{\beta} \alpha_{3}\right) N_{\beta} q^{\beta} \tag{9}
\end{align*}
$$

This is much like our formula from the first class, except the latter term had the form $n_{\beta} \frac{q^{\beta}}{1-q^{\beta}}$ and n_{β} as the number of "rational curves of class β ". The discrepancy comes from the existence of multiple covers. Let $C \subset X$ be an embedded rational curve in a Calabi-Yau 3-fold. A theorem of Grothendieck says that a holomorphic bundle over \mathbb{P}^{1} splits as $\bigoplus \mathcal{O}_{\mathbb{P}^{1}}\left(d_{i}\right)$, where $\mathcal{O}(d)$ is the sheaf whose sections are homogeneous degree d holomorphic functions on \mathbb{C}^{2} and $\mathcal{O}(-1)$ is the tautological bundle. Writing $N C \cong \mathcal{O}_{\mathbb{P}^{1}}\left(d_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(d_{2}\right)$, we obtain

$$
\begin{equation*}
0=c_{1}(T X)[C]=c_{1}(N C)[C]+c_{1}(T C)[C]=d_{1}+d_{2}+2 \tag{10}
\end{equation*}
$$

so $d_{1}+d_{2}=-2$. The "generic case" is $d_{1}=d_{2}=-1$, in which case C is automatically regular as a J-holomorphic curve. The contribution of C to the Gromov-Witten invariant $N_{[C]}$ is precisely 1. On the other hand, there is a component $\mathcal{M}(k C) \subset \mathcal{M}_{0,0}(X, J, k[C])$ consisting of k-fold covers of C. What is $\#[\mathcal{M}(k C)]$?

Theorem 2. If $N C \cong \mathcal{O}(-1) \oplus \mathcal{O}(-1)$, then the contribution of C to $N_{k[C]}$ is $\frac{1}{k^{3}}$.

There are various proofs, all of which are somewhat difficult. For instance, Voisin shows that \exists perturbed $\bar{\partial}$-equations $\bar{\partial}_{J} u=\nu(z, u(z))$ s.t. the moduli space $\tilde{M} M_{3}(k C)$ (of perturbed J-holomorphic maps with 3 marked points representing $k[C]$ and whose image lies in a neighborhood of C) is smooth and has real dimension 6. Moreover, $\left(\mathrm{ev}_{1} \times \mathrm{ev}_{2} \times \mathrm{ev}_{3}\right)_{*}\left[\tilde{\mathcal{M}}_{3}(k C)\right]=[C \times C \times C] \in H_{6}(X \times X \times X)$. Then the contribution of C to $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle_{0, k[C]}$ is

$$
\begin{equation*}
\int_{e v_{*}\left[\tilde{\mathcal{M}}_{3}\right]} \alpha_{1} \times \alpha_{2} \times \alpha_{3}=\left(\int_{C} \alpha_{1}\right)\left(\int_{C} \alpha_{2}\right)\left(\int_{C} \alpha_{3}\right)=\frac{1}{k^{3}}\left(\int_{k C} \alpha_{1}\right)\left(\int_{k C} \alpha_{2}\right)\left(\int_{k C} \alpha_{3}\right) \tag{11}
\end{equation*}
$$

We expect that $\left({ }^{*}\right) N_{\beta}=\sum_{\beta=k \gamma} \frac{1}{k^{3}} n_{\gamma}$.
Remark. We do not know if n_{γ} is what we think it is, but we use this formula as a definition; see the Gopakumar-Vafa conjecture, which claims that $n_{\gamma} \in \mathbb{Z}$, and the theory of Donaldson-Thomas invariants and MNOP conjectures.

Assuming (*), we have

$$
\begin{align*}
\sum_{\beta}\left(\int_{\beta} \alpha_{1}\right)\left(\int_{\beta} \alpha_{2}\right)\left(\int_{\beta} \alpha_{3}\right) N_{\beta} q^{\beta} & =\sum_{k, \gamma}\left(\int_{k \gamma} \alpha_{1}\right)\left(\int_{k \gamma} \alpha_{2}\right)\left(\int_{k \gamma} \alpha_{3}\right) \frac{n_{\gamma}}{k^{3}} q^{k \gamma} \\
& =\sum_{\gamma}\left(\int_{\gamma} \alpha_{1}\right)\left(\int_{\gamma} \alpha_{2}\right)\left(\int_{\gamma} \alpha_{3}\right) n_{\gamma} \sum_{k \geq 1} k^{k \gamma} \tag{12}
\end{align*}
$$

Where we are headed: we correspond this pairing to

$$
\begin{equation*}
\left\langle\theta_{1}, \theta_{2}, \theta_{3}\right\rangle=\int_{X} \Omega \wedge\left(\nabla_{\theta_{1}} \nabla_{\theta_{2}} \nabla_{\theta_{3}} \Omega\right) \tag{13}
\end{equation*}
$$

on $H^{2,1}(\bar{X})$.

