MIRROR SYMMETRY: LECTURE 3

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

Last time, we say that a deformation of (X, J) is given by

$$
\begin{equation*}
\left\{s \in \Omega^{0,1}(X, T X) \left\lvert\, \bar{\partial} s+\frac{1}{2}[s, s]=0\right.\right\} / \operatorname{Diff}(X) \tag{1}
\end{equation*}
$$

To first order, these are determined by $\operatorname{Def}_{1}(X, J)=H^{1}(X, T X)$, but extending these to higher order is obstructed by elements of $H^{2}(X, T X)$. In the Calabi-Yau case, recall that:

Theorem 1 (Bogomolov-Tian-Todorov). For X a compact Calabi-Yau ($\Omega_{X}^{n, 0} \cong$ \mathcal{O}_{X}) with $H^{0}(X, T X)=0$ (automorphisms are discrete), deformations of X are unobstructed.

Note that, if X is a Calabi-Yau manifold, we have a natural isomorphism $T X \cong \Omega_{X}^{n-1}, v \mapsto i_{v} \Omega$, so

$$
\begin{equation*}
H^{0}(X, T X)=H^{n-1,0}(X) \cong H^{0,1} \tag{2}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
H^{1}(X, T X)=H^{n-1,1}, H^{2}(X, T X)=H^{n-1,2} \tag{3}
\end{equation*}
$$

1. Hodge theory

Given a Kähler metric, we have a Hodge $*$ operator and L^{2}-adjoints

$$
\begin{equation*}
d^{*}=-* d *, \bar{\partial}^{*}=-* \partial * \tag{4}
\end{equation*}
$$

and Laplacians

$$
\begin{equation*}
\Delta=d d^{*}+d^{*} d, \bar{\square}=\overline{\partial \partial}^{*}+\bar{\partial}^{*} \bar{\partial} \tag{5}
\end{equation*}
$$

Every $(d / \bar{\partial})$-cohomology class contains a unique harmonic form, and one can show that $\bar{\square}=\frac{1}{2} \Delta$. We obtain

$$
\begin{align*}
& H_{d R}^{k}(X, \mathbb{C}) \cong \operatorname{Ker}\left(\Delta: \Omega^{k}(X, \mathbb{C}) \circlearrowleft\right) \\
& \cong \bigoplus_{p+q=k} \operatorname{Ker}\left(\bar{\square}: \Omega^{k} \circlearrowleft\right) \tag{6}\\
&\left.\cong \Omega^{p, q} \circlearrowleft\right) \cong \bigoplus_{p+q=k} H \frac{\bar{\partial}}{p, q}(X)
\end{align*}
$$

The Hodge $*$ operator gives an isomorphism $H^{p, q} \cong H^{n-p, n-q}$. Complex conjugation gives $H^{p, q} \cong \overline{H^{q, p}}$, giving us a Hodge diamond

$$
\begin{array}{ccccc}
h^{n, n} & h^{n-1, n} & \cdots & \cdots & h^{0, n} \\
& & & & \\
h^{n, n-1} & h^{n-1, n-1} & \cdots & \ddots & \vdots \tag{7}\\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \cdots & h^{1,1} & h^{0,1} \\
& & & & \\
h^{n, 0} & \cdots & \cdots & h^{1,0} & h^{0,0}
\end{array}
$$

For a Calabi-Yau, we have

$$
\begin{equation*}
H^{p, 0} \cong H^{n, n-p}=H_{\bar{\partial}}^{n-p}\left(X, \Omega_{X}^{n}\right) \cong H_{\bar{\partial}}^{n-p}\left(X, \mathcal{O}_{X}\right)=H^{0, n-p} \cong \overline{H^{n-p, 0}} \tag{8}
\end{equation*}
$$

Specifically, for a Calabi-Yau 3-fold with $h^{1,0}=0$, we have a reduced Hodge diamond

1	0	0	1
0	$h^{1,1}$	$h^{2,1}$	0

$0 \quad h^{2,1} \quad h^{1,1} \quad 0$

1	0	0	1

Mirror symmetry says that there is another Calabi-Yau manifold whose Hodge diamond is the mirror image (or 90 degree rotation) of this one.

There is another interpretation of the Kodaira-Spencer map $H^{1}(X, T X) \cong$ $H^{n-1,1}$. For $\mathcal{X}=\left(X, J_{t}\right)_{t \in S}$ a family of complex deformations of $(X, J), c_{1}\left(K_{X}\right)=$ $-c_{1}(T X)=0$ implies that $\Omega_{\left(X, J_{t}\right)}^{n} \cong \mathcal{O}_{X}$ under the assumption $H^{1}(X)=0$, so we don't have to worry about deforming outside the Calabi-Yau case. Then $\exists\left[\Omega_{t}\right] \in H_{J_{t}}^{n, 0}(X) \subset H^{n}(X, \mathbb{C})$. How does this depend on t ? Given $\frac{\partial}{\partial t} \in T_{0} S, \frac{\partial t}{\partial \Omega_{t}} \in$ $\Omega^{n, 0} \oplus \Omega^{n-1,1}$ by Griffiths transversality:

$$
\begin{equation*}
\alpha_{t} \in \Omega_{J_{t}}^{p, q} \Longrightarrow \frac{\partial}{\partial t} \alpha_{t} \in \Omega^{p, q}+\Omega^{p-1, q+1}+\Omega^{p+1, q-1} \tag{10}
\end{equation*}
$$

Since $\left.\frac{\partial \Omega_{t}}{\partial t}\right|_{t=0}$ is d-closed $\left(d \Omega_{t}=0\right),\left(\left.\frac{\partial \Omega_{t}}{\partial t}\right|_{t=0}\right)^{(n-1,1)}$ is $\bar{\partial}$-closed, while

$$
\begin{equation*}
\bar{\partial}\left(\left.\frac{\partial \Omega_{t}}{\partial t}\right|_{t=0}\right)^{(n-1,1)}+\bar{\partial}\left(\left.\frac{\partial \Omega_{t}}{\partial t}\right|_{t=0}\right)^{(n-1,1)}=0 \tag{11}
\end{equation*}
$$

Thus, $\exists\left[\left(\left.\frac{\partial \Omega_{t}}{\partial t}\right|_{t=0}\right)^{(n-1,1)}\right] \in H^{n-1,1}(X)$.
For fixed Ω_{0}, this is independent of the choice of Ω_{t}. If we rescale $f(t) \Omega_{t}$,

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(f(t) \Omega_{t}\right)=\frac{\partial f}{\partial t} \Omega_{t}+f(t) \frac{\partial \Omega_{t}}{\partial t} \tag{12}
\end{equation*}
$$

Taking $t \rightarrow 0$, the former term is $(n, 0)$, while for the latter, $f(0)$ scales linearly with Ω^{0}.

$$
\begin{equation*}
H^{n-1,1}(X)=H^{1}\left(X, \Omega_{X}^{n-1}\right) \cong H^{1}(X, T X) \tag{13}
\end{equation*}
$$

and the two maps $T_{0} S \rightarrow H^{n-1,1}(X), H^{1}(X, T X)$ agree. Hence, for $\theta \in H^{1}(X, T X)$ a first-order deformation of complex structure, $\theta \cdot \Omega \in H^{1}\left(X, \Omega_{X}^{n} \otimes T X\right)=$ $H^{n-1,1}(X)$ and (the Gauss-Manin connection) $\left[\nabla_{\theta} \Omega\right]^{(n-1,1)} \in H^{n-1,1}(X)$ are the same. We can iterate this to the third-order derivative: on a Calabi-Yau threefold, we have

$$
\begin{equation*}
\left\langle\theta_{1}, \theta_{2}, \theta_{3}\right\rangle=\int_{X} \Omega \wedge\left(\theta_{1} \cdot \theta_{2} \cdot \theta_{3} \cdot \Omega\right)=\int_{X} \Omega \wedge\left(\nabla_{\theta_{1}} \nabla_{\theta_{2}} \nabla_{\theta_{3}} \Omega\right) \tag{14}
\end{equation*}
$$

where the latter wedge is of a $(3,0)$ and a $(0,3)$ form.

2. Pseudoholomorphic curves

(reference: McDuff-Salamon) Let $\left(X^{2 n}, \omega\right)$ be a symplectic manifold, J a compatible almost-complex structure, $\omega(\cdot, J \cdot)$ the associated Riemannian metric. Furthermore, let (Σ, j) be a Riemann surface of genus $g, z_{1}, \ldots, z_{k} \in \Sigma$ market points. There is a well-defined moduli space $\mathcal{M}_{g, k}=\left\{\left(\Sigma, j, z_{1}, \ldots, z_{k}\right)\right\}$ modulo biholomorphisms of complex dimension $3 g-3+k$ (note that $\mathcal{M}_{0,3}=\{\mathrm{pt}\}$).

Definition 1. $u: \Sigma \rightarrow X$ is a J-holomorphic map if $J \circ d u=d u \circ J$, i.e. $\bar{\partial}_{J} u=\frac{1}{2}(d u+J d u j)=0$. For $\beta \in H_{2}(X, \mathbb{Z})$, we obtain an associated moduli space

$$
\begin{equation*}
M_{g, k}(X, J, \beta)=\left\{\left(\Sigma, j, z_{1}, \ldots, z_{k}\right), u: \Sigma \rightarrow X \mid u_{*}[\Sigma]=\beta, \bar{\partial}_{J} u=0\right\} / \sim \tag{15}
\end{equation*}
$$

where \sim is the equivalence given by ϕ below.

This space is the zero set of the section $\bar{\partial}_{J}$ of $\mathcal{E} \rightarrow \operatorname{Map}(\Sigma, X)_{\beta} \times \mathcal{M}_{g, k}$, where \mathcal{E} is the (Banach) bundle defined by $\mathcal{E}_{u}=W^{r, p}\left(\Sigma, \Omega_{\Sigma}^{0,1} \otimes u^{*} T X\right)$.

We can define a linearized operator

$$
\begin{align*}
D_{\bar{\partial}} & : W^{r+1, p}\left(\Sigma, u^{*} T X\right) \times T \mathcal{M}_{g, k} \rightarrow W^{r, p}\left(\Sigma, \Omega_{\Sigma}^{0,1} \otimes U^{*} T X\right) \\
D_{\bar{\partial}}\left(v, j^{\prime}\right) & =\frac{1}{2}\left(\nabla v+J \nabla v j+\left(\nabla_{v} J\right) \cdot d u \cdot j+J \cdot d u \cdot j^{\prime}\right) \tag{17}\\
& =\bar{\partial} v+\frac{1}{2}\left(\nabla_{v} J\right) d u \cdot j+\frac{1}{2} J \cdot d u \cdot j^{\prime}
\end{align*}
$$

This operator is Fredholm, with real index

$$
\begin{equation*}
\operatorname{index}_{\mathbb{R}} D_{\bar{\partial}}:=2 d=2\left\langle c_{1}(T X), \beta\right\rangle+n(2-2 g)+(6 g-6+2 k) \tag{18}
\end{equation*}
$$

One can ask about transversality, i.e. whether we can ensure that $D_{\bar{\partial}}$ is onto at every solution. We say that u is regular if this is true at u : if so, $\mathcal{M}_{g, k}(X, J, \beta)$ is smooth of dimension $2 d$.

Definition 2. We say that a map $\Sigma \rightarrow X$ is simple (or "somewhere injective") if $\exists z \in \Sigma$ s.t. $d u(z) \neq 0$ and $u^{-1}(u(z))=\{z\}$.

Note that otherwise u will factor through a covering $\Sigma \rightarrow \Sigma^{\prime}$. We set $\mathcal{M}_{g, k}^{*}(X, J, \beta)$ to be the moduli space of such simple curves.

Theorem 2. Let $\mathcal{J}(X, \omega)$ be the set of compatible almost-complex structures on X : then
$\mathcal{J}^{\text {reg }}(X, \beta)=\{J \in \mathcal{J}(X, \omega) \mid$ every simple J-holomorphic curve in class β is regular $\}$ is a Baire subset in $\mathcal{J}(X, \omega)$, and for $J \in \mathcal{J}^{\text {reg }}(X, \beta), \mathcal{M}_{g, k}^{*}(X, J, \beta)$ is smooth (as an orbifold, if $\mathcal{M}_{g, k}$ is an orbifold) of real dimension $2 d$ and carries a natural orientation.

The main idea here is to view $\bar{\partial}_{J} u=0$ as an equation on $\operatorname{Map}(\Sigma, X) \times \mathcal{M}_{g, k} \times$ $\mathcal{J}(X, \omega) \ni(u, j, J)$. Then $D_{\bar{\partial}}$ is easily seen to be surjective for simple maps. We have a "universal moduli space" $\tilde{M M}^{*} \xrightarrow{\pi_{J}} \mathcal{J}(X, \omega)$ given by a Fredholm map, and by Sard-Smale, a generic J is a regular value of π_{J}. This universal moduli space is $\mathcal{M}^{*}=\bigsqcup_{J \in \mathcal{J}(X, \omega)} \mathcal{M}_{g, k}^{*}(X, J, \beta)$. For such $J, \mathcal{M}_{g, k}^{*}(X, J, \beta)$ is smooth of dimension $2 d$, and the tangent space is $\operatorname{Ker}\left(D_{\bar{\partial}}\right)$. For the orientability, we need an orientation on $\operatorname{Ker}\left(D_{\bar{\partial}}\right)$. If J is integrable, the $D_{\bar{\partial}}$ is \mathbb{C}-linear $\left(D_{\bar{\partial}}=\bar{\partial}\right)$, so Ker is a \mathbb{C}-vector space. Moreover, $\forall J_{0}, J_{1} \in \mathcal{J}^{\text {reg }}(X, \beta), \exists$ a (dense set of choices of) path $\left\{J_{t}\right\}_{t \in[0,1]}$ s.t. $\bigsqcup_{t \in[0,1]} \mathcal{M}_{g, k}^{*}\left(X, J_{t}, \beta\right)$ is a smooth oriented cobordism. We still need compactness.

