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Last time, we say that a deformation of (X, J) is given by

{s ∈ Ω0,1(X,TX)|∂s+
1

2
[s, s] = 0}/Diff(X)(1)

To first order, these are determined by Def1(X, J) = H1(X,TX), but extending
these to higher order is obstructed by elements of H2(X,TX). In the Calabi-Yau
case, recall that:

Theorem 1 (Bogomolov-Tian-Todorov). For X a compact Calabi-Yau (Ωn,0
X
∼=

OX) with H0(X,TX) = 0 (automorphisms are discrete), deformations of X are
unobstructed.

Note that, if X is a Calabi-Yau manifold, we have a natural isomorphism
TX ∼= Ωn−1

X , v 7→ ivΩ, so

H0(X,TX) = Hn−1,0(X) ∼= H0,1(2)

and similarly

H1(X,TX) = Hn−1,1, H2(X,TX) = Hn−1,2(3)

1. Hodge theory

Given a Kähler metric, we have a Hodge ∗ operator and L2-adjoints

d∗ = − ∗ d∗, ∂∗ = − ∗ ∂∗(4)

and Laplacians

∆ = dd∗ + d∗d,� = ∂∂
∗

+ ∂
∗
∂(5)

Every (d/∂)-cohomology class contains a unique harmonic form, and one can
show that � = 1

2
∆. We obtain

Hk
dR(X,C) ∼= Ker (∆ : Ωk(X,C) 	) = Ker (� : Ωk 	)

∼=
⊕
p+q=k

Ker (� : Ωp,q 	) ∼=
⊕
p+q=k

Hp,q

∂
(X)(6)
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The Hodge ∗ operator gives an isomorphism Hp,q ∼= Hn−p,n−q. Complex con-
jugation gives Hp,q ∼= Hq,p, giving us a Hodge diamond

hn,n hn−1,n · · · · · · h0,n

hn,n−1 hn−1,n−1 · · · . . .
...

...
...

. . .
...

...

...
. . . · · · h1,1 h0,1

hn,0 · · · · · · h1,0 h0,0

(7)

For a Calabi-Yau, we have

Hp,0 ∼= Hn,n−p = Hn−p
∂

(X,Ωn
X) ∼= Hn−p

∂
(X,OX) = H0,n−p ∼= Hn−p,0(8)

Specifically, for a Calabi-Yau 3-fold with h1,0 = 0, we have a reduced Hodge
diamond

1 0 0 1

0 h1,1 h2,1 0

0 h2,1 h1,1 0

1 0 0 1

(9)

Mirror symmetry says that there is another Calabi-Yau manifold whose Hodge
diamond is the mirror image (or 90 degree rotation) of this one.

There is another interpretation of the Kodaira-Spencer map H1(X,TX) ∼=
Hn−1,1. For X = (X, Jt)t∈S a family of complex deformations of (X, J), c1(KX) =
−c1(TX) = 0 implies that Ωn

(X,Jt)
∼= OX under the assumption H1(X) = 0,

so we don’t have to worry about deforming outside the Calabi-Yau case. Then
∃[Ωt] ∈ Hn,0

Jt
(X) ⊂ Hn(X,C). How does this depend on t? Given ∂

∂t
∈ T0S,

∂t
∂Ω t
∈

Ωn,0 ⊕ Ωn−1,1 by Griffiths transversality:

αt ∈ Ωp,q
Jt

=⇒ ∂

∂t
αt ∈ Ωp,q + Ωp−1,q+1 + Ωp+1,q−1(10)
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Since ∂Ωt

∂t
|t=0 is d-closed (dΩt = 0), (∂Ωt

∂t
|t=0)(n−1,1) is ∂-closed, while

∂(
∂Ωt

∂t
|t=0)(n−1,1) + ∂(

∂Ωt

∂t
|t=0)(n−1,1) = 0(11)

Thus, ∃[(∂Ωt

∂t
|t=0)(n−1,1)] ∈ Hn−1,1(X).

For fixed Ω0, this is independent of the choice of Ωt. If we rescale f(t)Ωt,

∂

∂t
(f(t)Ωt) =

∂f

∂t
Ωt + f(t)

∂Ωt

∂t
(12)

Taking t→ 0, the former term is (n, 0), while for the latter, f(0) scales linearly
with Ω0.

Hn−1,1(X) = H1(X,Ωn−1
X ) ∼= H1(X,TX)(13)

and the two maps T0S → Hn−1,1(X), H1(X,TX) agree. Hence, for θ ∈ H1(X,TX)
a first-order deformation of complex structure, θ · Ω ∈ H1(X,Ωn

X ⊗ TX) =
Hn−1,1(X) and (the Gauss-Manin connection) [∇θΩ](n−1,1) ∈ Hn−1,1(X) are the
same. We can iterate this to the third-order derivative: on a Calabi-Yau three-
fold, we have

〈θ1, θ2, θ3〉 =

∫
X

Ω ∧ (θ1 · θ2 · θ3 · Ω) =

∫
X

Ω ∧ (∇θ1∇θ2∇θ3Ω)(14)

where the latter wedge is of a (3, 0) and a (0, 3) form.

2. Pseudoholomorphic curves

(reference: McDuff-Salamon) Let (X2n, ω) be a symplectic manifold, J a com-
patible almost-complex structure, ω(·, J ·) the associated Riemannian metric.
Furthermore, let (Σ, j) be a Riemann surface of genus g, z1, . . . , zk ∈ Σ market
points. There is a well-defined moduli space Mg,k = {(Σ, j, z1, . . . , zk)} modulo
biholomorphisms of complex dimension 3g − 3 + k (note that M0,3 = {pt}).

Definition 1. u : Σ → X is a J-holomorphic map if J ◦ du = du ◦ J , i.e.
∂Ju = 1

2
(du + Jduj) = 0. For β ∈ H2(X,Z), we obtain an associated moduli

space

Mg,k(X, J, β) = {(Σ, j, z1, . . . , zk), u : Σ→ X|u∗[Σ] = β, ∂Ju = 0}/ ∼(15)

where ∼ is the equivalence given by φ below.

Σ, z1, . . . , zk
u //

φ ∼=
��

X

Σ′, z′1, . . . , z
′
k

u′

99sssssssssss
(16)

This space is the zero set of the section ∂J of E → Map(Σ, X)β ×Mg,k, where E
is the (Banach) bundle defined by Eu = W r,p(Σ,Ω0,1

Σ ⊗ u∗TX).
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We can define a linearized operator

D∂ : W r+1,p(Σ, u∗TX)× TMg,k → W r,p(Σ,Ω0,1
Σ ⊗ U

∗TX)

D∂(v, j
′) =

1

2
(∇v + J∇vj + (∇vJ) · du · j + J · du · j′)

= ∂v +
1

2
(∇vJ)du · j +

1

2
J · du · j′

(17)

This operator is Fredholm, with real index

indexRD∂ := 2d = 2〈c1(TX), β〉+ n(2− 2g) + (6g − 6 + 2k)(18)

One can ask about transversality, i.e. whether we can ensure that D∂ is onto at
every solution. We say that u is regular if this is true at u: if so, Mg,k(X, J, β)
is smooth of dimension 2d.

Definition 2. We say that a map Σ→ X is simple (or “somewhere injective”)
if ∃z ∈ Σ s.t. du(z) 6= 0 and u−1(u(z)) = {z}.

Note that otherwise u will factor through a covering Σ→ Σ′. We setM∗
g,k(X, J, β)

to be the moduli space of such simple curves.

Theorem 2. Let J (X,ω) be the set of compatible almost-complex structures on
X: then

J reg(X, β) = {J ∈ J (X,ω)| every simple J-holomorphic curve in class β is regular}
(19)

is a Baire subset in J (X,ω), and for J ∈ J reg(X, β), M∗
g,k(X, J, β) is smooth

(as an orbifold, ifMg,k is an orbifold) of real dimension 2d and carries a natural
orientation.

The main idea here is to view ∂Ju = 0 as an equation on Map(Σ, X)×Mg,k×
J (X,ω) 3 (u, j, J). Then D∂ is easily seen to be surjective for simple maps. We

have a “universal moduli space” ˜MM
∗ πJ→ J (X,ω) given by a Fredholm map,

and by Sard-Smale, a generic J is a regular value of πJ . This universal moduli
space is M∗ =

⊔
J∈J (X,ω)M∗

g,k(X, J, β). For such J , M∗
g,k(X, J, β) is smooth of

dimension 2d, and the tangent space is Ker (D∂). For the orientability, we need
an orientation on Ker (D∂). If J is integrable, the D∂ is C-linear (D∂ = ∂), so
Ker is a C-vector space. Moreover, ∀J0, J1 ∈ J reg(X, β), ∃ a (dense set of choices
of) path {Jt}t∈[0,1] s.t.

⊔
t∈[0,1]M∗

g,k(X, Jt, β) is a smooth oriented cobordism. We
still need compactness.


