MIRROR SYMMETRY: LECTURE 25

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

Last time, we were considering $\mathbb{C P}^{1}$ mirror to $\mathbb{C}^{*}, W=z+\frac{e^{-\Lambda}}{z}$ for $\Lambda=$ $2 \pi \int_{\mathbb{C P}^{1}} \omega$: the latter object is a Landau-Ginzburg model, i.e. a Kähler manifold with a holomorphic function called the "superpotential". Homological mirror symmetry gave

$$
\begin{align*}
& D^{\pi} \operatorname{Fuk}\left(\mathbb{C P}^{1}\right) \cong H^{0} M F(W) \\
& D^{b} \operatorname{Coh}\left(\mathbb{C P}^{1}\right) \cong D^{b} \operatorname{Fuk}\left(\mathbb{C}^{*}, W\right) \tag{1}
\end{align*}
$$

We stated that the Fukaya category of $\mathbb{C P}^{1}$ was a collection indexed by "charge" $\lambda \in \mathbb{C}$, and defined $\operatorname{Fuk}\left(\mathbb{C P}^{1}, \lambda\right)$ to be the set of weakly unobstructed Lagrangians with $m_{0}=\lambda \cdot[L]$. This is an honest A_{∞}-category, as the m_{0} 's cancel and the Floer differential squares to zero, whereas from λ to λ^{\prime} we'd have $\partial^{2}=\lambda^{\prime}-\lambda$. For instance, for $L \cong S^{1},(L, \nabla)$ is weakly unobstructed, with $m_{0}=W(L, \nabla) \cdot[L]$. However, $\operatorname{HF}(L, L)=0$ unless L is the equator and $\operatorname{hol}(\nabla)= \pm \mathrm{id}$. Then $L_{ \pm}$has $H F \cong H^{*}\left(S^{1}, \mathbb{C}\right)$ with deformed multiplicative structure, $H F^{*}(L, L) \cong \mathbb{C}[t] / t^{2}=$ $\pm e^{-\Lambda / 2}$.

We now look at the matrix factorizations of $W-\lambda, \lambda \in \mathbb{C}$. These are $\mathbb{Z} / 2 \mathbb{Z}$ graded projective modules Q over the ring of Laurent polynomials $R=\mathbb{C}\left[\mathbb{C}^{*}\right] \cong$ $\mathbb{C}\left[z^{ \pm 1}\right]$ equipped with $\delta \in \operatorname{End}^{1}(Q)$ s.t. $\delta^{2}=(W-\lambda) \cdot \mathrm{id}_{Q}$. That is, we have maps $\delta_{0}: Q_{0} \rightarrow Q_{1}, \delta_{1}: Q_{1} \rightarrow Q_{0}$ given by matrices with entries in the space of Laurent polynomials s.t. $\delta_{0} \circ \delta_{1}=(W-\lambda) \cdot \operatorname{id}_{Q_{1}}, \delta_{1} \circ \delta_{0}=(W-\lambda) \cdot \operatorname{id}_{Q_{0}}$. Now $\operatorname{Hom}\left(Q, Q^{\prime}\right)$ is $\mathbb{Z} / 2 \mathbb{Z}$ graded, with

This has a differential ∂ s.t. $\partial(f)=\delta^{\prime} \cdot f \pm f \cdot \delta$ and $\partial^{2}=0$. We obtain a homology category $H^{0} M F(W-\lambda)$: hom $=H^{0}(H o m, \partial)$, i.e. "chain maps" up to "homotopy".

Theorem 1. $H^{0}(M F(W-\lambda))=0$, i.e. all matrix factorizations are nullhomotopic, unless λ is a critical value of W.

Warning: again, looking at homomorphisms from $M F(W-\lambda)$ to $M F\left(W-\lambda^{\prime}\right)$, then $\partial^{2} \neq 0, \partial^{2}(f)=\partial^{\prime 2} \cdot f-f \cdot \partial^{2}=\left(\lambda-\lambda^{\prime}\right) f$.

Example. $W=z+\frac{e^{-\lambda}}{z}$ has critical points $\pm e^{-\Lambda / 2}$ with critical values $\pm 2 e^{-\Lambda / 2}$. Then

$$
\begin{align*}
W \pm 2 e^{-\Lambda / 2} & =z \pm 2 e^{-\Lambda / 2}+\frac{e^{-\lambda}}{z}=\left(z \pm e^{-\Lambda / 2}\right)\left(1 \pm \frac{e^{-\Lambda / 2}}{z}\right) \\
Q_{ \pm} & =\left\{\mathbb{C}\left[z^{ \pm 1}\right] \underset{1 \pm e^{-\Lambda / 2} z^{-1}}{\underset{~ z \pm e^{-\Lambda / 2}}{\leftrightarrows}} \mathbb{C}\left[z^{ \pm 1}\right]\right\} \tag{3}
\end{align*}
$$

Then

is multiplication by $f \in \mathbb{C}\left[z^{ \pm 1}\right]$. The maps ∂ sends

and similarly on the other side, so
(6) $\operatorname{End}\left(Q_{ \pm}\right)=\mathbb{C}\left[z^{ \pm 1}\right] /\left(z \pm e^{-\Lambda / 2}, 1+ \pm e^{-\Lambda / 2} z^{-1}\right) \cong\left(\mathbb{C}\left[z^{ \pm 1}\right] / z \pm e^{-\Lambda / 2}\right) \cong \mathbb{C}$

Similarly $\operatorname{Hom}_{H^{0} M F}\left(Q_{ \pm}, Q_{ \pm}[1]\right) \cong \mathbb{C}$.
Indeed, in the case of the two maps $z-c, 1-c z^{-1}$, we take vertical maps $z, 1$, so
giving us $\mathbb{C}\left[z^{ \pm 1}\right] /\langle z-c\rangle$.
Next, $D^{b} \operatorname{Coh}\left(\mathbb{C P}^{1}\right)$ is generated by $\mathcal{O}(-1)$ and \mathcal{O}, i.e. the smallest full subcategory containing $\mathcal{O}, \mathcal{O}(-1)$ and closed under shifts and cones contains all of D^{b}. More generally, via Beilinson we have that

$$
\begin{equation*}
D^{b} \operatorname{Coh}\left(\mathbb{C P}^{n}\right)=\langle\mathcal{O}(-n), \ldots, \mathcal{O}(-1), \mathcal{O}\rangle \tag{8}
\end{equation*}
$$

The idea is the the diagonal $\Delta \subset \mathbb{C P}^{n} \times \mathbb{C P}^{n}$ is the (transverse) zero set of $s=\sum_{i=0}^{n} \frac{\partial}{\partial x_{i}} \otimes y_{i}$, which is a section of $E=T(-1) \boxtimes \mathcal{O}(1)=\pi_{1}^{*}\left(T \mathbb{C P}^{n} \otimes\right.$
$\mathcal{O}(-1)) \otimes \pi_{2}^{*} \mathcal{O}(1)$. Recall that $T \mathbb{C P}^{n}$ is spanned by the vector fields $x_{i} \frac{\partial}{\partial x_{i}}$ on \mathbb{C}^{n+1} under the relation $\sum_{i=0}^{n} x_{i} \frac{\partial}{\partial x_{i}}=0$. Taking the Koszul resolution

$$
\begin{equation*}
0 \rightarrow E^{*}=\Omega^{1}(1) \boxtimes \mathcal{O}(-1) \rightarrow \mathcal{O} \boxtimes \mathcal{O} \rightarrow \mathcal{O}_{\Delta} \rightarrow 0 \tag{9}
\end{equation*}
$$

in $D^{b} \operatorname{Coh}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)$. On the other hand, $\mathcal{E} \in D^{b} \operatorname{Coh}(X \times Y)$ gives $\phi^{\mathcal{E}}: D^{b}(\operatorname{Coh}(X) \rightarrow$ $D^{b} \operatorname{Coh}(Y), \mathcal{F} \mapsto R \pi_{2 *}\left(L \pi_{1}^{*} \mathcal{F} \stackrel{L}{\otimes} \mathcal{E}\right)$. Exactness implies that $\phi^{\mathcal{O}_{\Delta}}(\mathcal{F}) \cong \mathcal{F}$ sits in an exact triangle with

$$
\begin{align*}
\phi^{\Omega^{1} \boxtimes \mathcal{O}(-1)}(\mathcal{F}) & \cong R \Gamma\left(\mathcal{F} \otimes \Omega^{1}(1)\right) \otimes_{\mathbb{C}} \mathcal{O}(-1) \\
\phi^{\mathcal{O} \boxtimes \mathcal{O}}(\mathcal{F}) & \cong R \Gamma(\mathcal{F}) \otimes_{\mathbb{C}} \mathcal{O} \tag{10}
\end{align*}
$$

which completes the proof.
The algebra of the exceptional collection $\langle\mathcal{O}(-1), \mathcal{O}\rangle$ is given by

$$
\begin{equation*}
\mathcal{A}=\operatorname{End}^{*}(\mathcal{O}(-1) \oplus \mathcal{O}) \tag{11}
\end{equation*}
$$

and $D^{B} \operatorname{Coh}\left(\mathbb{C P}^{1}\right)$ is isomorphic to the derived category of finitely-generated \mathcal{A} modules.

Finally, the Fukaya category of $\left(\mathbb{C}^{*}, W=z+\frac{e^{-\Lambda}}{2}\right)$ is the category whose objects are admissible Lagrangians with flat connections, i.e. L is a (possibly noncompact) Lagrangian submanifold with $\left.W\right|_{L}$ proper, $\left.W\right|_{L} \in \mathbb{R}_{+}$outside a compact subset. We can perturb such L : for $a \in \mathbb{R}$, let $L^{(a)}$ be Hamiltonian isotopic to $L, W\left(L^{(a)}\right) \in \mathbb{R}_{+}+i a$ near ∞. In good cases, it will be the Hamiltonian flow of $X_{\operatorname{Re}(W)}=\nabla \operatorname{Im} W$. Then $\operatorname{Hom}\left(L, L^{\prime}\right)=C F^{*}\left(L^{(a)}, L^{\prime\left(a^{\prime}\right)}\right)$ for $a>a^{\prime}$ (the Floer differential is well-defined), and we obtain $m_{k}, k \geq 2$ similarly, perturbing the Lagrangians so they are in decreasing order of $\operatorname{Im}(W)$.
Example. Consider $L_{0}=\mathbb{R}_{+}, L_{-1}=$ an arc joining 0 to $+\infty$ and rotating once clockwise around the origin. Then $e^{-\Lambda / 2} \in L_{0},-e^{-\Lambda / 2} \in L_{-1}$, so under $W=z+\frac{e^{-\Lambda}}{z}$, we have $W\left(L_{0}\right)$ being the interval $\left[2 e^{-\Lambda / 2},+\infty\right)$ on the positive real axis, while $W\left(L_{-1}\right)$ is an arc that joins $-2 e^{-\Lambda / 2}$ to $+\infty$ in the lower half plane. Furthermore, $\operatorname{hom}\left(L_{0}, L_{0}\right) \cong \mathbb{C} \cdot e, e=\operatorname{id}_{L_{0}}$, and same for L_{-1}, while $\operatorname{hom}\left(L_{0}, L_{-1}\right)=0$ and $\operatorname{hom}\left(L_{-1}, L_{0}\right)=V$ has dimension 2. Then $\operatorname{Fuk}\left(\mathbb{C}^{*}, W\right)$ is generated by L_{-1}, L_{0} (Seidel)

Similarly, one can obtain homological mirror symmetry for toric Fano manifolds: see M. Abouzaid.

