MIRROR SYMMETRY: LECTURE 23

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

Recall that given an (almost) Calabi-Yau manifold (X, J, ω, Ω), we defined M to be the set of pairs $(L, \nabla), L \subset X$ a special Lagrangian torus, ∇ a flat $U(1)$ connection on $\mathbb{C} \times L$ modulo gauge equivalence. Up to 2π,

$$
\begin{align*}
T_{(L, \nabla)} M & =\left\{(v, i \alpha) \in C^{\infty}(N L) \oplus \Omega^{1}(L ; i \mathbb{R}) \left\lvert\,-\iota_{v} \omega+\frac{1}{2 \pi} i \alpha \in \mathcal{H}_{\psi}^{1}(L ; \mathbb{C})\right.\right\} \tag{1}\\
& =H_{\psi}^{1}(L, \mathbb{C})=\left\{\beta \in \Omega^{1}(L, \mathbb{R}) \mid d \beta=0, d^{*}(\psi \beta)=0\right\}, \psi=|\Omega|_{g}
\end{align*}
$$

is a complex vector space, giving us an integrable J^{\vee} on M with holomorphic local coordinates

$$
\begin{equation*}
z_{\beta}(L, \nabla)=\underbrace{\exp (-2 \pi \omega(\beta))}_{\mathbb{R}_{+}} \underbrace{\operatorname{hol}_{\nabla}(\gamma)}_{U(1)} \in \mathbb{C}^{*} \tag{2}
\end{equation*}
$$

and a holomorphic ($n, 0$)-form

$$
\begin{equation*}
\Omega^{\vee}\left(\left(v_{1}, i \alpha_{1}\right), \ldots,\left(v_{n}, i \alpha_{n}\right)\right)=i^{-n} \int_{L}\left(-\iota_{v_{1}} \omega+\frac{i \alpha_{1}}{2 \pi}\right) \wedge \cdots \wedge\left(-\iota_{v_{n}} \omega+\frac{i \alpha_{n}}{2 \pi}\right) \tag{3}
\end{equation*}
$$

After normalizing $\int_{L} \Omega=1$, we obtained a compatible Kähler form

$$
\begin{equation*}
\omega^{\vee}\left(\left(v_{1}, i \alpha_{1}\right),\left(v_{2}, i \alpha_{2}\right)\right)=\frac{1}{2 \pi} \int_{L} \alpha_{2} \wedge\left(\iota_{v_{1}} \operatorname{Im} \Omega\right)-\alpha_{1} \wedge\left(\iota_{v_{2}} \operatorname{Im} \Omega\right) \tag{4}
\end{equation*}
$$

Now, let B be the set of special Lagrangian tori, $\pi^{\vee}: M \rightarrow B,(L, \nabla) \rightarrow L$ a special Lagrangian torus fibration (with torus fiber $\{(0, i \alpha)\}$) "dual to $\pi: X \rightarrow$ $B^{\prime \prime}$. Note that π^{\vee} has a zero section $\{(L, d)\}$ which is a special Lagrangian, and has complex conjugation $(L, \nabla) \leftrightarrow\left(L, \nabla^{*}\right)$.
Example. As usual, let $T^{2}=\mathbb{C} / \mathbb{Z}+i \rho \mathbb{Z}, \Omega=d z, \omega=\frac{\lambda}{\rho} d x \wedge d y, \int_{T^{2}} \omega=\lambda . \quad L$ is special Lagrangian $\Leftrightarrow \operatorname{Im} d z \mid L=0 \Leftrightarrow L$ is parallel to the real axis. We have a fibration $T^{2} \xrightarrow{\pi} S^{1}=\mathbb{R} / \rho \mathbb{Z},(x, y) \mapsto y$, with fibers $L_{t}=\{y=t\}$, inducing a complex affine structure with affine coordinate y ($=\operatorname{Im} \Omega$ on the arc from L_{0} to L), $\operatorname{size}\left(S^{1}\right)=\rho$, and a symplectic affine structure $\frac{\lambda}{\rho} y(=$ the symplectic area swept), $\operatorname{size}\left(S^{1}\right)=\lambda$. On the mirror $M=\{(L, \nabla)\} \in \mathbb{R} / \rho \mathbb{Z}$, the holomorphic coordinate for J^{\vee} is $\exp \left(-2 \pi \frac{\lambda}{\rho} y\right) e^{i \theta}, \theta \in \mathbb{R} / 2 \pi \mathbb{Z}, \nabla=d+i \theta d x$. Or, taking $\frac{1}{2 \pi i}$ $\log), z^{\vee}=\frac{\theta}{2 \pi}+i \frac{\lambda}{\rho} y \in \mathbb{C} / \mathbb{Z}+i \lambda \mathbb{Z}$. Furthermore $\Omega^{\vee}=d z^{\vee}, \omega^{\vee}=\frac{1}{2 \pi} d \theta \wedge d y$. Our SYZ transformation exchanges Lagrangian sections of π and flat connections with a connection on a holomorphic line bundle. Explicitly, set $L=\{x=f(y)\}, f$:
$\mathbb{R} / \rho \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$, with flat connection $\nabla=d+i h(y) d y, h: \mathbb{R} / \rho \mathbb{Z} \rightarrow \mathbb{R}$. We build a Hermitian connection $\bar{\nabla}=d+i f(y) d \theta+i h(y) d y$ on a localy trivialized Hermitian line bundle \mathcal{L}. Note that changing the trivialization by $e^{i \theta}$ changes the connection form by id θ, i.e. $f \leftrightarrow f+1$, glue $y=0$ to $y=\rho$ by $e^{i \operatorname{deg}(f) \theta}$. Furthermore, $\operatorname{deg}(\mathcal{L})=\operatorname{deg}\left(f: S^{1} \rightarrow S^{1}\right)$. We have a holomorhic structure $\bar{\partial}^{\check{\nabla}}=\check{\nabla}^{0,1}$.

In higher-dimensional tori, we have $L=\{x=f(y)\}$ Lagrangian, $f: \mathbb{R}^{n} / \Lambda \rightarrow$ $\mathbb{R}^{n} / \mathbb{Z}^{n}, \nabla=d+i \sum_{j} h_{j}(y) d y_{j}, h: \mathbb{R}^{n} / \Lambda \rightarrow \mathbb{R}^{n}$ on the one side, $\check{\nabla}=d+$ $i \sum_{j} f_{j}(y) d \theta_{j}+i \sum_{j} h_{j}(y) d y_{j}$, which is holomorphic \Leftrightarrow the curvature is $(1,1) / J^{\vee}$. Set

$$
\begin{equation*}
F=i \sum_{j, k} \frac{\partial f_{j}}{\partial y_{k}} d y_{k} \wedge d \theta_{j}+i \sum_{j, k} \frac{\partial h_{j}}{\partial y_{k}} d y_{k} \wedge d y_{j} \tag{5}
\end{equation*}
$$

Then J^{\vee} exchanges $d y_{k}$ and $d \theta_{k}$ up to canonical scaling, and is holomorphic \Leftrightarrow

- $\frac{\partial f_{j}}{\partial y_{k}}=\frac{\partial f_{k}}{\partial y_{j}}$ for $\sum f_{j} d y_{j}$ a closed 1-form on \mathbb{R}^{n} / Λ ($\Leftrightarrow L$ Lagrangian),
- $\frac{\partial h_{j}}{\partial y_{k}}=\frac{\partial h_{k}}{\partial y_{j}}$ for $\sum h_{j} d y_{j}$ a closed 1-form ($\Leftrightarrow \nabla$ is flat).

Example. Let X be a K3 surface, namely a simply connected complex surface with $K_{X} \cong \mathcal{O}_{X}$, e.g. a 4-dimensional hypersurface $\left\{P_{4}\left(x_{0}, \ldots, x_{3}\right)=0\right\} \subset \mathbb{C P}^{3}$ for P_{4} a homogeneous polynomial in degree 4 , or a double cover of $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$, $\left\{z^{2}=P_{4,4}\left(\left(x_{0}, x_{1}\right),\left(y_{0}, y_{1}\right)\right)\right\} \subset \operatorname{Tot}(\mathcal{O}(2,2))$ with Hodge diamond

1	0	1
0	20	0
1	0	1

Any K3 surface is hyperkähler, i.e. there are three complex structures $I, J, K=$ $I J=-J I$ inducing three Kähler forms $\omega_{I}, \omega_{J}, \omega_{K}$ for the same Kähler metric g. The idea is the following: given $I,\left[\omega_{I}\right]$, Yau's theorem gives a Ricci-flat Kähler metric g, and we obtain a holomorphic volume form $\Omega_{I} \in \Omega^{2,0}$ with $\left|\Omega_{I}\right|_{g}=$ $1, \Omega_{U}=\omega_{J}+i \omega_{K}$, where ω_{I} is $(1,1)$ for $I, \omega_{J}=\operatorname{Re} \Omega_{I}, \omega_{K}=\operatorname{Im} \Omega_{I}(2,0)+(0,2)$ for I are pointwise orthonormal self-dual 2 -forms which are covariantly constant.

Some (not all) K3 surfaces admit fibrations by elliptic curves over spheres, typically with 24 nodal singular fibers. For instance, given a double coordinate of $\mathbb{C P}^{1} \times \mathbb{C P}^{1}$, we project to a $\mathbb{C P}^{1}$ factor, and observe that the fibers are double covers of $\mathbb{C P}^{1}$ branched at four points. Now, assume we have one of these with a holomorphic section. The fibers will be I-complex curves, and thus special Lagrangian for $\left(\omega_{J}, \Omega_{J}=w_{K}+i \omega_{I}\right),\left(\omega_{K}, \Omega_{K}=\omega_{I}+i \omega_{J}\right)$ (they are calibrated by ω_{I}, which is $(1,1)$ for I so ω_{J}, ω_{K} vanish). Mirror symmetry corresponds these latter two structures.

