MIRROR SYMMETRY: LECTURE 22

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

1. SYZ CONJECTURE (CNTD.)

Recall:
Proposition 1. First order deformations of special Lagrangian L in a strict (resp. almost) Calabi-Yau manifold are given by $\mathcal{H}^{1}(L, \mathbb{R})\left(\right.$ resp. $\left.\mathcal{H}_{\psi}^{1}(L, \mathbb{R})\right)$, where

$$
\begin{equation*}
H_{\psi}^{1}(L, \mathbb{R})=\left\{\beta \in \Omega^{1}(L, \mathbb{R}) \mid d \beta=0, d^{*}(\psi \beta)=0\right\} \tag{1}
\end{equation*}
$$

It is still true that $\mathcal{H}_{\psi}^{1}(L, \mathbb{R}) \cong H^{1}(L, \mathbb{R})$.
Theorem 1 (McLean, Joyce). Deformations of special Lagrangians are unobstructed, i.e. the moduli space of special Lagrangians is a smooth manifold B with $T_{L} B \cong \mathcal{H}_{\psi}^{1}(L, \mathbb{R}) \cong H^{1}(L, \mathbb{R})$.

There are two canonical isomorphisms $T_{L} B \xrightarrow{\sim} H^{1}(L, \mathbb{R}), v \mapsto\left[-\iota_{v} \omega\right]$ ("symplectic") and $T_{L} B \xrightarrow{\sim} H^{n-1}(L, \mathbb{R}), v \mapsto\left[\iota_{v} \operatorname{Im} \Omega\right]$ "complex".

Definition 1. An affine structure on a manifold N is a set of coordinate charts with transition functions in $G L(n, \mathbb{Z}) \ltimes \mathbb{R}^{n}$.
Corollary 1. B carries two affine structures.
For affine manifolds, mirror symmetry exchanges the two affine structures. Our particular case of interest is that of special Lagrangian tori, so $\operatorname{dim} H^{1}=n$. The usual harmonic 1-forms on flat T^{n} have no zeroes, and give a pointwise basis of $T^{*} L$. We will make a standing assumptions that ψ-harmonic 1 -forms for $\left.g\right|_{L}$ have no zeroes (at least ok for $n \leq 2$). Then a neighborhood of L is fibered by special Lagrangian deformations of L : locally,

In local affine coordinates, we pick a basis $\gamma_{1}, \ldots, \gamma_{n} \in H_{1}(L, \mathbb{Z})$: deforming from L to L^{\prime}, the deformation of γ_{i} gives a cylinder Γ_{i}, and we set $x_{i}=\int_{\Gamma_{i}} \omega$ (the flux of the deformation $L \rightarrow L^{\prime}$). These are affine coordinates on the symplectic
side. On the complex side, pick a basis $\gamma_{1}^{*}, \ldots, \gamma_{n}^{*} \in H_{n-1}(L, \mathbb{Z})$, construct the associated Γ_{i}^{*}, and set $x_{i}^{*}=\int_{\Gamma_{i}^{*}} \operatorname{Im} \Omega$. Globally, there is a monodromy $\pi_{1}(B, *) \rightarrow$ $\operatorname{Aut} H^{*}(L, \mathbb{Z})$. In our case, the monodromies in $G L\left(H^{1}(L, \mathbb{Z})\right), G L\left(H^{n-1}(L, \mathbb{Z})\right)$ are transposes of each other.
1.1. Prototype construction of a mirror pair. Let B be an affine manifold, $\Lambda \subset T B$ the lattice of integer vectors. Then $T B / \Lambda$ is a torus bundle over B, and carries a natural complex structure, e.g.

$$
T\left(\mathbb{R}^{n}\right) \cong \mathbb{C}^{n}, \mathbb{C}^{n}=\mathbb{R}^{n} \oplus \mathbb{R}^{n}, G L(n, \mathbb{Z}) \ni A \mapsto\left(\begin{array}{cc}
A & 0 \tag{3}\\
0 & A
\end{array}\right)
$$

Setting $\Lambda^{*}=\left\{p \in T^{*} B \mid p(\Lambda) \subset \mathbb{Z}\right\}$ to be the dual lattice of integer covectors, we find that $T^{*} B / \Lambda^{*}$ has a natural symplectic structure since $G L(n, \mathbb{Z}) \ni A \mapsto$ $\left(\begin{array}{cc}A & 0 \\ 0 & A^{T}\end{array}\right) \in \operatorname{Sp}(2 n)$.

In our case, we have two affine structures with dual monodromies

so the complex manifold $T B / \Lambda_{c}$ is diffeomorphic to the symplectic manifold $T^{*} B / \Lambda_{S}^{*}$. Dually, $X^{\vee} \cong T^{*} B / \Lambda_{c}^{*} \cong T B / \Lambda_{s}$.
1.2. More explicit constructions [cf. Hitchin]. Let

$$
\begin{align*}
M=\{(L, \nabla) \mid & L \text { a special Lagrangian torus in } X, \\
& \nabla \text { flat } U(1)-\text { conn on } \mathbb{C} \times L \bmod \text { gauge }\} \tag{5}
\end{align*}
$$

i.e. $\nabla=d+i A, i A \in \Omega^{1}(L, i \mathbb{R}), d A=0 \bmod$ exact forms.

$$
\begin{align*}
T_{(L, \nabla)} M & =\left\{(v, i \alpha) \in C^{\infty}(N L) \oplus \Omega^{1}(L ; i \mathbb{R}) \mid-\iota_{v} \omega \in \mathcal{H}_{\psi}^{1}(L, \mathbb{R}), d \alpha=0 \bmod \operatorname{Im}(d)\right\} \tag{6}\\
& =\left\{(v, i \alpha) \in C^{\infty}(N L) \oplus \Omega^{1}(L ; i \mathbb{R}) \mid-\iota_{v} \omega+i \alpha \in \mathcal{H}_{\psi}^{1}(L ; \mathbb{C})\right\} \\
& =H_{\psi}^{1}(L, \mathbb{C})
\end{align*}
$$

which is a complex vector space, and J^{\vee} is an almost-complex structure.
Proposition 2. J^{\vee} is integrable.

Proof. We build local holomorphic coordinates. Let $\gamma_{1}, \ldots, \gamma_{n}$ be a basis of $H_{1}(L, \mathbb{Z})$, and assume $\gamma_{i}=\partial \beta_{i}, \beta_{i} \in H_{2}(X, L)$. Set

$$
\begin{equation*}
z_{i}(L, \nabla)=\underbrace{\exp \left(-\int_{\beta_{i}} \omega\right)}_{\mathbb{R}_{+}} \underbrace{\operatorname{hol}_{\nabla}\left(\gamma_{i}\right)}_{U(1)} \in \mathbb{C}^{*} \tag{7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{d} \log z_{i}:(v, i \alpha) \mapsto-\int_{\gamma_{i}} \iota_{v} \omega+\int_{\gamma_{i}} i \alpha=\langle\underbrace{\left[-\iota_{v} \omega+i \alpha\right]}_{H^{1}(L, \mathrm{C})}, \gamma_{i}\rangle \tag{8}
\end{equation*}
$$

is \mathbb{C}-linear. If there are no such β_{i}, we instead use a deformation tube as constructed earlier. Warning: all of our formulas are up to (i.e. may be missing) a factor of 2π.

Next, consider the holomorphic ($n, 0$)-form on M

$$
\begin{equation*}
\Omega^{\vee}\left(\left(v_{1}, i \alpha_{1}\right), \ldots,\left(v_{n}, i \alpha_{n}\right)\right)=\int_{L}\left(-\iota_{v_{1}} \omega+i \alpha_{1}\right) \wedge \cdots \wedge\left(-\iota_{v_{n}} \omega+i \alpha_{n}\right) \tag{9}
\end{equation*}
$$

After normalizing $\int_{L} \Omega=1$, we have a Kähler form

$$
\begin{equation*}
\omega^{\vee}\left(\left(v_{1}, i \alpha_{1}\right),\left(v_{2}, i \alpha_{2}\right)\right)=\int_{L} \alpha_{2} \wedge\left(\iota_{v_{1}} \operatorname{Im} \Omega\right)-\alpha_{1} \wedge\left(\iota_{v_{2}} \operatorname{Im} \Omega\right) \tag{10}
\end{equation*}
$$

Proposition 3. ω^{\vee} is a Kähler form compatible with J^{\vee}.
Proof. Pick a basis $\left[\gamma_{i}\right]$ of $H_{n-1}(L, \mathbb{Z})$ with a dual basis $\left[e_{i}\right]$ of $H_{1}(L, \mathbb{Z})$, i.e. $e_{i} \cap \gamma_{j}=\delta_{i j}$. For all $a \in H^{1}(L), b \in H^{n-1}(L)$

$$
\begin{equation*}
()\langle a \cup b,[L]\rangle=\sum_{i}\left\langle a, e_{i}\right\rangle\left\langle b, \gamma_{i}\right\rangle \tag{11}
\end{equation*}
$$

Letting $a=\sum a_{i} d x_{i}, b=\sum b_{i}(-1)^{i-1}\left(d x_{1} \wedge \cdots \wedge \widehat{d x}_{i} \wedge \cdots \wedge d x_{n}\right), \int_{T^{n}} a \wedge b=\sum a_{i} b_{i}$. Again, take a deformation from L_{0} to L^{\prime}, C_{i} the tube (an n-chain) formed by the deformation of γ_{i}, and set $p_{i}=\int_{C_{i}} \operatorname{Im} \Omega, \theta_{i}=\int_{e_{i}} A$ for A the connection 1-form (i.e. $\left.\operatorname{hol}_{e_{i}}(\nabla)=\exp \left(i \theta_{i}\right)\right)$. Then

$$
\begin{array}{r}
d p_{i}:(v, i \alpha) \mapsto \int_{\gamma_{i}} \iota_{v} \operatorname{Im} \Omega=\left\langle\left[\iota_{v} \operatorname{Im} \Omega\right], \gamma_{i}\right\rangle \tag{12}\\
d \theta_{i}:(v, i \alpha) \mapsto \int_{e_{i}} \alpha=\left\langle[\alpha], e_{i}\right\rangle
\end{array}
$$

By (11), $\omega^{\vee}=\sum d p_{i} \wedge d \theta_{i}$, implying that ω^{\vee} is closed, and

$$
\begin{align*}
\omega^{\vee}\left(\left(v_{1}, \alpha_{1}\right),\left(v_{2}, \alpha_{2}\right)\right) & =\int_{L} \alpha_{2} \wedge\left(-\psi *_{g} \iota_{v_{1}} \omega\right)-\alpha_{1} \wedge\left(-\psi *_{g} \iota_{v_{2}} \omega\right) \\
& =\int_{L} \psi \cdot\left(\left\langle\alpha_{1}, \iota_{v_{2}} \omega\right\rangle_{g}-\left\langle\alpha_{2}, \iota_{v_{1}} \omega\right\rangle_{g}\right) \operatorname{vol}_{g} \tag{13}\\
\omega^{\vee}\left(\left(v_{1}, \alpha_{1}\right), J^{\vee}\left(v_{2}, \alpha_{2}\right)\right) & =\int_{L} \psi \cdot\left(\left\langle\alpha_{1}, \alpha_{2}\right\rangle_{g}+\left\langle\iota_{v} \omega, \iota_{v_{2}} \omega\right\rangle_{g}\right) \operatorname{vol}_{g}
\end{align*}
$$

which is clearly a Riemannian metric.

