MIRROR SYMMETRY: LECTURE 2

DENIS AUROUX

NOTES BY KARTIK VENKATRAM

Reference for today: M. Gross, D. Huybrechts, D. Joyce, "Calabi-Yau Manifolds and Related Geometries", Chapter 14.

1. Deformations of Complex Structures

An (almost) complex structure (X, J) splits the complexified tangent and (wedge powers of) cotangent bundles as

$$
\begin{align*}
T X \otimes \mathbb{C} & =T X^{1,0} \oplus T X^{0,1}, v^{0,1}=\frac{1}{2}(v+i J v) \\
T^{*} X \otimes \mathbb{C} & =T^{*} X^{1,0} \oplus T^{*} X^{0,1}, T^{*} X^{1,0}=\operatorname{Span}\left(d z_{i}\right), T^{*} X^{0,1}=\operatorname{Span}\left(d \bar{z}_{i}\right) \tag{1}\\
\bigwedge^{k} T^{*} X \otimes \mathbb{C} & =\bigoplus_{p+q=k}^{p, q} \bigwedge^{p, q} T^{*} X=\Omega^{p, q}(X)
\end{align*}
$$

If J is almost complex, these are \mathbb{C}-vector bundles. J is integrable (i.e. a complex structure)

$$
\begin{align*}
{\left[T^{1,0}, T^{1,0}\right] \subset T^{1,0} } & \Leftrightarrow d=\partial+\bar{\partial} \text { maps } \Omega^{p, q} \rightarrow \Omega^{p+1, q} \oplus \Omega^{p, q+1} \\
& \Leftrightarrow \bar{\partial}^{2}=0 \text { on diff. forms } \tag{2}
\end{align*}
$$

We obtain a Dolbeault cohomology for holomorphic vector bundles E :

$$
\begin{align*}
& C_{\bar{\partial}}^{q}(X, E)=\left\{C^{\infty}(X, E) \xrightarrow{\bar{\sigma}} \Omega^{0,1}(X, E) \xrightarrow{\bar{\sigma}} \Omega^{0,2}(X, E) \rightarrow \cdots\right\} \tag{3}\\
& H_{\bar{\partial}}^{q}(X, E)=\operatorname{ker} \overline{\bar{\partial}} / \mathrm{im} \overline{\bar{\partial}}
\end{align*}
$$

Deforming J to a "nearby" J^{\prime} gives

$$
\begin{equation*}
\Omega_{J^{\prime}}^{1,0} \subseteq T^{*} \mathbb{C}=\Omega_{J}^{1,0} \oplus \Omega_{J}^{0,1} \tag{4}
\end{equation*}
$$

is a graph of a linear map $(-s): \Omega_{J}^{1,0} \rightarrow \Omega_{J}^{0,1}$. J^{\prime} is determined by $\Omega_{J^{\prime}}^{1,0}$ (acted on by i) and $\Omega_{j^{\prime}}^{0,1}$ (acted on by $\left.i^{\prime}\right) . s$ is a section of $\left(\Omega_{J}^{1,0}\right)^{*} \otimes \Omega_{j}^{0,1}=\mathbb{T}_{j}^{1,0} \otimes \Omega_{j}^{0,1}$ i.e. a $(0,1)_{J}$-form with values in $T_{J}^{1,0} X$. If z_{1}, \ldots, z_{n} are local holomorphic
coordinates for J, then $s=\sum s_{i j} \frac{\partial}{\partial z_{i}} \otimes d \bar{z}_{j}$. A basis of $(1,0)$-forms for J^{\prime} is given by $d z_{i}-\underbrace{\sum_{j} s_{i j} d \bar{z}_{j}}_{s\left(d z_{i}\right)}$ and $(0,1)$-vectors for J^{\prime} by $\frac{\partial}{\partial \bar{z}_{k}}+\underbrace{\sum_{\ell} s_{\ell k} \frac{\partial}{\partial z_{\ell}}}_{s\left(\partial / \partial \bar{z}_{k}\right)}$.

We can use this to test the integrability of J^{\prime}. The Dolbeault complex $\left(\bigoplus_{q} \Omega_{X}^{0, q} \otimes\right.$ $\left.T X^{1,0}, \bar{\partial}\right)(\bar{\partial}$ acts "on forms") carries a Lie bracket

$$
\begin{equation*}
\left[\alpha \otimes v, \alpha^{\prime} \otimes v^{\prime}\right]=\left(\alpha \wedge \alpha^{\prime}\right) \otimes\left[v, v^{\prime}\right] \tag{5}
\end{equation*}
$$

giving it the structure of a differential graded Lie algebra.
Proposition 1. J^{\prime} is integrable $\Leftrightarrow \bar{\partial} s+\frac{1}{2}[s, s]=0$.
Proof. We want to check that the bracket of two 0,1 tangent vectors is still 0,1 , i.e. that

$$
\begin{equation*}
\left[\frac{\partial}{\partial \bar{z}_{k}}+\sum_{\ell} s_{\ell k} \frac{\partial}{\partial z_{\ell}}, \frac{\partial}{\partial \bar{z}_{k}}+\sum_{\ell} s_{\ell k} \frac{\partial}{\partial z_{\ell}}\right] \in T X_{J^{\prime}}^{0,1} \tag{6}
\end{equation*}
$$

Evaluating this bracket gives

$$
\begin{equation*}
\sum_{\ell}\left(\frac{\partial s_{\ell j}}{\partial \bar{z}_{i}}-\frac{\partial s_{\ell i}}{\partial \bar{z}_{j}}\right) \frac{\partial}{\partial z_{\ell}}+\sum_{k, \ell}\left(s_{k i} \frac{\partial s_{\ell j}}{\partial z_{k}}-s_{k j} \frac{\partial s_{\ell i}}{\partial z_{k}}\right) \frac{\partial}{\partial z_{\ell}} \tag{7}
\end{equation*}
$$

We want this to be 0 , i.e. for all i, j, ℓ,

$$
\begin{equation*}
0=\underbrace{\frac{\partial s_{\ell j}}{\partial \bar{z}_{i}}-\frac{\partial s_{\ell i}}{\partial \bar{z}_{j}}}_{\text {coefficient of } \frac{\partial}{\partial z_{\ell}} \otimes\left(d \bar{z}_{i} \wedge d \bar{z}_{j}\right) \text { in }(\bar{\partial} s)}+\sum_{k} \underbrace{\left(s_{k i} \frac{\partial s_{\ell j}}{\partial z_{k}}-s_{k j} \frac{\partial s_{\ell i}}{\partial z_{k}}\right)}_{\text {in } \frac{1}{2}[s, s]} \tag{8}
\end{equation*}
$$

We leave the rest as an exercise.
We would now like to use this to understand the moduli space of complex structures. Define

$$
\begin{equation*}
\mathcal{M}_{C X}(X)=\{J \text { integrable complex structures on } X\} / \operatorname{Diff}(X) \tag{9}
\end{equation*}
$$

(or, assuming that $\operatorname{Aut}(X, J)$ is discrete, we want that near J, \exists a universal family $\mathcal{X} \rightarrow \mathcal{U} \subset \mathcal{M}_{C X}$ (complex manifolds, holomorphic fibers $\cong X$) s.t. any family of integrable complex structures $\mathcal{X}^{\prime} \rightarrow S$ induces a map $S \rightarrow \mathcal{U}$ s.t. \mathcal{X} pulls back to $\left.\mathcal{X}^{\prime}\right)$. We have an action of the diffeomorphisms of X : for $\phi \in \operatorname{Diff}(X)$ close to id,

$$
\begin{align*}
& d \phi: T X \otimes \mathbb{C} \xrightarrow{\sim} \phi^{*} T X \otimes \mathbb{C} \\
& \partial \phi: T X^{1,0} \rightarrow \phi^{*} T X^{1,0} \tag{10}\\
& \bar{\partial} \phi: T X^{0,1} \rightarrow \phi^{*} T X^{1,0}
\end{align*}
$$

SO

$$
\begin{align*}
\phi^{*} d z_{i} & =d z_{i} \circ d \phi=d z_{i} \circ \partial \phi+d z_{i} \circ \bar{\partial} \phi \\
& =(\underbrace{d z_{i} \circ \partial \phi}_{(1,0) \text { for } J})\left(\mathrm{id}+(\partial \phi)^{-1} \cdot \bar{\partial} \phi\right) \tag{11}
\end{align*}
$$

Deformation by $s \in \Omega^{0,1}\left(X, T X^{1,0}\right)$ gives $\Omega_{J^{\prime}}^{1,0}=\left\{\alpha-s(\alpha) \mid \alpha \in \Omega^{1,0}\right\}$ (the graph of $-s$): taking $s=-(\partial \phi)^{-1} \cdot \bar{\partial} \phi: T X^{0,1} \rightarrow \phi^{*} T X^{1,0} \rightarrow T X^{1,0}$ gives the desired element of $\Omega^{0,1}\left(T X^{1,0}\right)$.
1.1. First-order infinitesimal deformations. Given a family $J(t), J(0)=J$ gives $s(t) \in \Omega^{0,1}\left(X, T X^{1,0}\right), s(0)=00$. By the above, this should satisfy

$$
\begin{equation*}
\bar{\partial} s(t)+\frac{1}{2}[s(t), s(t)]=0 \tag{12}
\end{equation*}
$$

In particular, $s_{1}=\left.\frac{d s}{d t}\right|_{t=0}$ solves $\bar{\partial} s_{1}=0$. We obtain an infinitesimal action of $\operatorname{Diff}(X)$: for $\left(\phi_{t}\right), \phi_{0}=\mathrm{id},\left.\frac{d \phi}{d t}\right|_{t=0}=v$ a vector field,

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=0}\left(-\left(\partial \phi_{t}\right)^{-1} \circ \bar{\partial} \phi_{t}\right)=-\left.\frac{d}{d t}\right|_{t=0}\left(\bar{\partial} \phi_{t}\right)=-\bar{\partial} v \tag{13}
\end{equation*}
$$

This implies that first-order deformations are given as

$$
\begin{equation*}
\operatorname{Def}_{1}(X, J)=\frac{\operatorname{Ker}\left(\bar{\partial}: \Omega^{0,1}\left(T X^{1,0}\right) \rightarrow \Omega^{2,0}\left(T X^{1,0}\right)\right)}{\operatorname{Im}\left(\bar{\partial}: C^{\infty}\left(T X^{1,0}\right) \rightarrow \Omega^{0,1}\left(T X^{1,0}\right)\right)} \tag{14}
\end{equation*}
$$

We can write this more compactly using Dolbeault cohomology, namely $H_{\bar{\partial}}\left(X, T X^{1,0}\right)$. Furthermore, given a family

of deformations of (X, J) parameterized by S, we get a map $T_{*} S \rightarrow H^{1}\left(X, T X^{1,0}\right)$ called the Kodaira Spencer map

Remark. A complex manifold (X, J) is a union of complex charts U_{i} with biholomorphisms $\phi_{i j}: U_{i j} \xrightarrow{\sim} U_{j i}$ s.t. $\phi_{i j}=\phi_{j i}^{-1}$ and $\phi_{i j} \phi_{j k}=\phi_{i k}$ on $U_{i j k}$. Deformations of (X, J) come from deforming the gluing maps $\phi_{i j}$ among the space of holomorphic maps. To first order, this is given by holomorphic vector fields $v_{i j}$ on $U_{i} \cap U_{j}$ s.t. $v_{i j}=-v_{j i}$ and $v_{i j}+v_{j k}=v_{i k}$ on $U_{i j k}$. This is precisely the Čech 1-cocycle conditions in the sheaf of holomorphic tangent vector fields. Modding out by holomorphic functions $\psi_{i}: U_{i} \xrightarrow{\sim} U_{i}$ (which act by $\phi_{i j} \mapsto \psi_{j} \phi_{i j} \psi_{i}^{-1}$) is precisely modding by the Čech coboundaries. Thus, $\operatorname{Def}_{1}(X, J)=\check{H}^{1}\left(X, T X^{1,0}\right)$.
1.2. Obstructions to Deformation. Given a first-order deformation s_{1}, one can ask if one can find an actual deformation $s(t)=s_{1} t+O\left(t^{2}\right)$ (or even a formal deformation, i.e. non-convergent power series). Expand

$$
\begin{equation*}
s(t)=s_{1} t+s_{2} t^{2}+\cdots \in \Omega^{0,1}\left(X, T X^{1,0}\right) \tag{16}
\end{equation*}
$$

Then the condition $\bar{\partial} s(t)+\frac{1}{2}[s(t), s(t)]=0$ implies that $\bar{\partial} s_{1}=0, \bar{\partial} s_{2}+\frac{1}{2}\left[s_{1}, s_{1}\right]=$ $0, \bar{\partial} s_{3}+\left[s_{1}, s_{2}\right]=0, \cdots$. Now, we need $\left[s_{1}, s_{1}\right] \in \operatorname{im}(\bar{\partial}) \subset \Omega^{0,2}\left(T X^{1,0}\right)$. We know that $\left[s_{1}, s_{1}\right] \in \operatorname{Ker}(\bar{\partial})$. Thus, the primary obstruction to deforming is the class of $\left[s_{1}, s_{1}\right]$ in $H^{2}\left(X, T X^{1,0}\right)$. If it is zero, then there is an s_{2} s.t. $\bar{\partial} s_{2}+\frac{1}{2}\left[s_{1}, s_{1}\right]=0$, and the next obstructure is the class of $\left[s_{1}, s_{2}\right] \in H^{2}\left(X, T X^{1,0}\right)$. We are basically attempting to apply by brute force the implicit function theorem.

If it happens that $H^{2}(X, T X)=0$, then the deformations are unobstructed and the moduli space of complex structures is locally a smooth orbifold (not a manifold, because we may have to quotient by automorphisms) with tangent space $H^{1}\left(X, T X^{1,0}\right)$. For Calabi-Yau manifolds, this will not be true: however, we still have

Theorem 1 (Bogomolov-Tian-Todorov). For X a compact Calabi-Yau $\left(\Omega_{X}^{n, 0} \cong\right.$ \mathcal{O}_{X}) with $H^{0}(X, T X)=0$ (automorphisms are discrete), deformations of X are unobstructed and, assuming $\operatorname{Aut}(X, J)=\{1\}, \mathcal{M}_{C X}$ is locally a smooth manifold with $T \mathcal{M}_{C X}=H^{1}(X, T X)$.

Theorem 2 (Griffiths Transversality). For a family $\left(X, J_{t}\right), \alpha_{t} \in \Omega^{p, q}\left(X, J_{t}\right) \Longrightarrow$ $\left.\frac{d}{d t}\right|_{t=0} \alpha_{t} \in \Omega^{p, q}+\Omega^{p+1, q-1}+\Omega^{p-1, q+1}$.
Proof. J_{t} is given by $s(t) \in \Omega^{0,1}\left(T X^{1,0}\right), s(0)=0$. In local coordinates, we have $T^{*} X_{J_{t}}^{1,0}=\operatorname{Span}\left\{d z_{i}^{(t)}=d z_{i}-\sum s_{i j}(t) d \bar{z}_{j}\right\}$

$$
\begin{equation*}
\alpha_{t}=\sum_{I, J| | I|=p,|J|=q} \alpha_{I J}(t) d z_{i_{1}}^{(t)} \wedge \cdots \wedge d z_{i_{p}}^{(t)} \wedge d \bar{z}_{j_{1}}^{(t)} \wedge \cdots \wedge d \bar{z}_{j_{q}}^{(t)} \tag{17}
\end{equation*}
$$

Taking $\left.\frac{d}{d t}\right|_{t=0}$, the result follows from the product rule. We mostly get (p, q) terms and a few $(p+1, q-1),(p-1, q+1)$ forms (the latter from $\left.\frac{d}{d t}\right|_{t=0}\left(d z_{i_{k}}^{(t)}\right)$.

