
MIRROR SYMMETRY: LECTURE 2

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

Reference for today: M. Gross, D. Huybrechts, D. Joyce, “Calabi-Yau Mani-
folds and Related Geometries”, Chapter 14.

1. Deformations of Complex Structures

An (almost) complex structure (X, J) splits the complexified tangent and
(wedge powers of) cotangent bundles as

TX ⊗ C = TX1,0 ⊕ TX0,1, v0,1 =
1

2
(v + iJv)

T ∗X ⊗ C = T ∗X1,0 ⊕ T ∗X0,1, T ∗X1,0 = Span(dzi), T
∗X0,1 = Span(dzi)

k∧
T ∗X ⊗ C =

⊕
p+q=k

p,q∧
T ∗X = Ωp,q(X)

(1)

If J is almost complex, these are C-vector bundles. J is integrable (i.e. a complex
structure)

[T 1,0, T 1,0] ⊂ T 1,0 ⇔ d = ∂ + ∂ maps Ωp,q → Ωp+1,q ⊕ Ωp,q+1

⇔ ∂
2

= 0 on diff. forms
(2)

We obtain a Dolbeault cohomology for holomorphic vector bundles E:

Cq

∂
(X,E) = {C∞(X,E)

∂→ Ω0,1(X,E)
∂→ Ω0,2(X,E)→ · · · }

Hq

∂
(X,E) = ker∂/im∂

(3)

Deforming J to a “nearby” J ′ gives

Ω1,0
J ′ ⊆ T ∗C = Ω1,0

J ⊕ Ω0,1
J(4)

is a graph of a linear map (−s) : Ω1,0
J → Ω0,1

J . J ′ is determined by Ω1,0
J ′ (acted

on by i) and Ω0,1
J ′ (acted on by i′). s is a section of (Ω1,0

J )∗ ⊗ Ω0,1
J = T1,0

j ⊗ Ω0,1
J

i.e. a (0, 1)J -form with values in T 1,0
J X. If z1, . . . , zn are local holomorphic
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coordinates for J , then s =
∑
sij

∂
∂zi
⊗ dzj. A basis of (1, 0)-forms for J ′ is given

by dzi −
∑
j

sijdzj︸ ︷︷ ︸
s(dzi)

and (0, 1)-vectors for J ′ by ∂
∂zk

+
∑
`

s`k
∂

∂z`︸ ︷︷ ︸
s(∂/∂zk)

.

We can use this to test the integrability of J ′. The Dolbeault complex (
⊕

q Ω0,q
X ⊗

TX1,0, ∂) (∂ acts “on forms”) carries a Lie bracket

[α⊗ v, α′ ⊗ v′] = (α ∧ α′)⊗ [v, v′](5)

giving it the structure of a differential graded Lie algebra.

Proposition 1. J ′ is integrable ⇔ ∂s+ 1
2
[s, s] = 0.

Proof. We want to check that the bracket of two 0, 1 tangent vectors is still 0, 1,
i.e. that

[
∂

∂zk
+
∑
`

s`k
∂

∂z`
,
∂

∂zk
+
∑
`

s`k
∂

∂z`
] ∈ TX0,1

J ′(6)

Evaluating this bracket gives∑
`

(
∂s`j
∂zi
− ∂s`i
∂zj

)
∂

∂z`
+
∑
k,`

(ski
∂s`j
∂zk
− skj

∂s`i
∂zk

)
∂

∂z`
(7)

We want this to be 0, i.e. for all i, j, `,

0 =
∂s`j
∂zi
− ∂s`i
∂zj︸ ︷︷ ︸

coefficient of ∂
∂z`
⊗(dzi∧dzj) in (∂s)

+
∑
k

(ski
∂s`j
∂zk
− skj

∂s`i
∂zk

)︸ ︷︷ ︸
in 1

2
[s,s]

(8)

We leave the rest as an exercise. �

We would now like to use this to understand the moduli space of complex
structures. Define

MCX(X) = {J integrable complex structures on X}/Diff(X)(9)

(or, assuming that Aut(X, J) is discrete, we want that near J , ∃ a universal family
X → U ⊂MCX (complex manifolds, holomorphic fibers ∼= X) s.t. any family of
integrable complex structures X ′ → S induces a map S → U s.t. X pulls back
to X ′). We have an action of the diffeomorphisms of X: for φ ∈ Diff(X) close to
id,

dφ : TX ⊗ C ∼→ φ∗TX ⊗ C
∂φ : TX1,0 → φ∗TX1,0

∂φ : TX0,1 → φ∗TX1,0

(10)
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so

φ∗dzi = dzi ◦ dφ = dzi ◦ ∂φ+ dzi ◦ ∂φ
= (dzi ◦ ∂φ︸ ︷︷ ︸

(1,0) for J

)(id + (∂φ)−1 · ∂φ)(11)

Deformation by s ∈ Ω0,1(X,TX1,0) gives Ω1,0
J ′ = {α − s(α)|α ∈ Ω1,0} (the graph

of −s): taking s = −(∂φ)−1 · ∂φ : TX0,1 → φ∗TX1,0 → TX1,0 gives the desired
element of Ω0,1(TX1,0).

1.1. First-order infinitesimal deformations. Given a family J(t), J(0) = J
gives s(t) ∈ Ω0,1(X,TX1,0), s(0) = 00. By the above, this should satisfy

∂s(t) +
1

2
[s(t), s(t)] = 0(12)

In particular, s1 = ds
dt
|t=0 solves ∂s1 = 0. We obtain an infinitesimal action of

Diff(X): for (φt), φ0 = id , dφ
dt
|t=0 = v a vector field,

d

dt
|t=0(−(∂φt)

−1 ◦ ∂φt) = − d

dt
|t=0(∂φt) = −∂v(13)

This implies that first-order deformations are given as

Def1(X, J) =
Ker (∂ : Ω0,1(TX1,0)→ Ω2,0(TX1,0))

Im(∂ : C∞(TX1,0)→ Ω0,1(TX1,0))
(14)

We can write this more compactly using Dolbeault cohomology, namelyH1
∂
(X,TX1,0).

Furthermore, given a family

X //

��

X

��
∗ // S

(15)

of deformations of (X, J) parameterized by S, we get a map T∗S → H1(X,TX1,0)
called the Kodaira Spencer map

Remark. A complex manifold (X, J) is a union of complex charts Ui with biholo-

morphisms φij : Uij
∼→ Uji s.t. φij = φ−1

ji and φijφjk = φik on Uijk. Deformations
of (X, J) come from deforming the gluing maps φij among the space of holomor-
phic maps. To first order, this is given by holomorphic vector fields vij on Ui∩Uj
s.t. vij = −vji and vij + vjk = vik on Uijk. This is precisely the Čech 1-cocycle
conditions in the sheaf of holomorphic tangent vector fields. Modding out by
holomorphic functions ψi : Ui

∼→ Ui (which act by φij 7→ ψjφijψ
−1
i ) is precisely

modding by the Čech coboundaries. Thus, Def1(X, J) = Ȟ1(X,TX1,0).
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1.2. Obstructions to Deformation. Given a first-order deformation s1, one
can ask if one can find an actual deformation s(t) = s1t+O(t2) (or even a formal
deformation, i.e. non-convergent power series). Expand

s(t) = s1t+ s2t
2 + · · · ∈ Ω0,1(X,TX1,0)(16)

Then the condition ∂s(t) + 1
2
[s(t), s(t)] = 0 implies that ∂s1 = 0, ∂s2 + 1

2
[s1, s1] =

0, ∂s3 + [s1, s2] = 0, · · · . Now, we need [s1, s1] ∈ im (∂) ⊂ Ω0,2(TX1,0). We know
that [s1, s1] ∈ Ker (∂). Thus, the primary obstruction to deforming is the class
of [s1, s1] in H2(X,TX1,0). If it is zero, then there is an s2 s.t. ∂s2 + 1

2
[s1, s1] = 0,

and the next obstructure is the class of [s1, s2] ∈ H2(X,TX1,0). We are basically
attempting to apply by brute force the implicit function theorem.

If it happens that H2(X,TX) = 0, then the deformations are unobstructed
and the moduli space of complex structures is locally a smooth orbifold (not
a manifold, because we may have to quotient by automorphisms) with tangent
space H1(X,TX1,0). For Calabi-Yau manifolds, this will not be true: however,
we still have

Theorem 1 (Bogomolov-Tian-Todorov). For X a compact Calabi-Yau (Ωn,0
X
∼=

OX) with H0(X,TX) = 0 (automorphisms are discrete), deformations of X are
unobstructed and, assuming Aut(X, J) = {1},MCX is locally a smooth manifold
with TMCX = H1(X,TX).

Theorem 2 (Griffiths Transversality). For a family (X, Jt), αt ∈ Ωp,q(X, Jt) =⇒
d
dt
|t=0αt ∈ Ωp,q + Ωp+1,q−1 + Ωp−1,q+1.

Proof. Jt is given by s(t) ∈ Ω0,1(TX1,0), s(0) = 0. In local coordinates, we have

T ∗X1,0
Jt

= Span{dz(t)
i = dzi −

∑
sij(t)dzj}

αt =
∑

I,J ||I|=p,|J |=q

αIJ(t)dz
(t)
i1
∧ · · · ∧ dz(t)

ip
∧ dz(t)

j1
∧ · · · ∧ dz(t)

jq(17)

Taking d
dt
|t=0, the result follows from the product rule. We mostly get (p, q) terms

and a few (p+ 1, q − 1), (p− 1, q + 1) forms (the latter from d
dt
|t=0(dz

(t)
ik

). �


