MIRROR SYMMETRY: LECTURE 19

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

1. Homological Mirror Symmetry

Conjecture 1. X, X^{\vee} are mirror Calabi-Yau varieties $\Leftrightarrow D^{\pi} \operatorname{Fuk}(X) \cong D^{b} \operatorname{Coh}\left(X^{\vee}\right)$
Look at T^{2} at the level of homology [Polishchuk-Zaslow]: on the symplectic side, $T^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}, \omega=\lambda d x \wedge d y$, so $\int_{T^{2}} \omega=\lambda$. On the complex side, $X^{\vee}=$ $\mathbb{C} / \mathbb{Z} \oplus \tau \mathbb{Z}, \tau=i \lambda$. The Lagrangians L in X are Hamiltonian isotopic to straight lines with rational slope, and given a flat connection ∇ on a $U(1)$-bundle over L, we can arrange the connection 1-form to be constant. We will see that families of (L, ∇) in the homology class (p, q) correspond to holomorphic vector bundles over X^{\vee} of rank $p, c_{1}=-q$. For $L \rightarrow X^{\vee}$ a line bundle, the pullback of L to the universal cover \mathbb{C} is holomorphically trivial, and

$$
\begin{array}{r}
L \cong \mathbb{C} \times \mathbb{C} /(z, v) \sim(z+1, v),(z, v) \sim(z+\tau, \phi(z) v) \\
\phi \text { holomorphic, } \phi(z+1)=\phi(z) \tag{1}
\end{array}
$$

Example. $\phi(z)=e^{-2 \pi i z} e^{-\pi i \tau}$ determines a degree 1 line bundle \mathcal{L} with a section given by the theta function

$$
\begin{equation*}
\theta(\tau, z)=\sum_{m \in \mathbb{Z}} e^{2 \pi i\left(\frac{\tau m^{2}}{2}+m z\right)} \tag{2}
\end{equation*}
$$

More generally, set

$$
\begin{equation*}
\theta\left[c^{\prime}, c^{\prime \prime}\right](\tau, z)=\sum_{m \in \mathbb{Z}} \exp \left(2 \pi i\left[\frac{\tau\left(m+c^{\prime}\right)^{2}}{2}+\left(m+c^{\prime}\right)\left(z+c^{\prime \prime}\right)\right]\right) \tag{3}
\end{equation*}
$$

Then

$$
\begin{align*}
& \theta\left[c^{\prime}, c^{\prime \prime}\right](\tau, z+1)=e^{2 \pi i c^{\prime}} \theta\left[c^{\prime}, c^{\prime \prime}\right](\tau, z) \tag{4}\\
& \theta\left[c^{\prime}, c^{\prime \prime}\right](\tau, z+\tau)=e^{-\pi i \tau} e^{-2 \pi i\left(z+c^{\prime \prime}\right)} \theta\left[c^{\prime}, c^{\prime \prime}\right](\tau, z)
\end{align*}
$$

since the interior of \exp for the latter formula is

$$
\begin{align*}
\frac{\tau\left(m+c^{\prime}\right)^{2}}{2}+ & \tau\left(m+c^{\prime}\right)+\left(z+c^{\prime \prime}\right)\left(m+c^{\prime}\right) \\
& =\frac{\tau\left(m+1+c^{\prime}\right)^{2}}{2}-\frac{\tau}{2}+\left(m+1+c^{\prime}\right)\left(z+c^{\prime \prime}\right)-\left(z+c^{\prime \prime}\right) \tag{5}
\end{align*}
$$

Furthermore, sections of $\mathcal{L}^{\otimes n}$ are $\theta\left[\frac{k}{n}, 0\right](n \tau, n z), k \in \mathbb{Z} / n \mathbb{Z}$. By the above

$$
\begin{align*}
\theta\left[\frac{k}{n}, 0\right](n \tau, n z+n) & =\theta\left[\frac{k}{n}, 0\right](n \tau, n z) \tag{6}\\
\theta\left[\frac{k}{n}, 0\right](n \tau, n z+n \tau) & =e^{-\pi i n \tau} e^{-2 \pi i n z} \theta\left[\frac{k}{n}, 0\right](n \tau, n z)
\end{align*}
$$

as desired. Other line bundles are given by pullback over the translation $z \mapsto$ $z+c^{\prime \prime}$, and the higher rank bunddles are given by matrices or pushforward by finite covers.

On the mirror, consider the Lagrangian subvarieties

$$
\begin{align*}
L_{0} & \left.=\{(x, 0)\}, \nabla_{0}=d \text { (mirror to } \mathcal{O}\right) \\
L_{n} & \left.=\{(x,-n x)\}, \nabla_{n}=d \text { (mirror to } \mathcal{L}^{\otimes n}\right), \tag{7}\\
L_{p} & \left.=\{(a, y)\}, \nabla_{p}=d+2 \pi i b d y \text { ("mirror to } \mathcal{O}_{Z}, z=b+a \tau "\right)
\end{align*}
$$

For gradings, pick $\left.\arg (d z)\right|_{L_{i}} \in\left[-\frac{\pi}{2}, 0\right]$. Then

$$
\begin{align*}
s_{k} & =\left(\frac{k}{n}, 0\right) \in C F^{0}\left(L_{0}, L_{n}\right), \\
e & =(a,-n a) \in C F^{0}\left(L_{n}, L_{p}\right), \tag{8}\\
e_{0} & =(a, 0) \in C F^{0}\left(L_{0}, L_{p}\right)
\end{align*}
$$

We want to find the coefficient of e_{0} in $m_{2}\left(e, s_{0}\right)$, i.e. we need to count holomorphic disks in T^{2}. All these disks lift to the universal cover \mathbb{C}, and a Maslov index calculation gives that rigid holomorphic disks are immersed. We obtain an infinite sequence of triangles $T_{m}, m \in \mathbb{Z}$ in the universal cover. T_{m} has corners at $(0,0),(a+m,-n(a+m)),(a+m, 0)$, and the area is $\int_{T_{m}} \omega=\frac{\lambda n(a+m)^{2}}{2}$. Taking holonomy on ∂T_{m} gives

$$
\begin{equation*}
\exp \left(2 \pi i \int_{-n(a+m)}^{0} b d y\right)=\exp (2 \pi i n(a+m) b) \tag{9}
\end{equation*}
$$

The T_{m} are regular, and doing sign calculations makes them count positively. Now,

$$
\begin{equation*}
m_{2}\left(e, s_{0}\right)=\left(\sum_{m \in \mathbb{Z}} T^{\lambda \frac{n}{2}(a+m)^{2}} e^{2 \pi i n(a+m) b}\right) e_{0} \tag{10}
\end{equation*}
$$

As usual, set $T=e^{-2 \pi}$ (convergence is not an issue here), i.e. $T^{\lambda}=e^{2 \pi i \tau}$. Then

$$
\begin{gather*}
\sum_{n \in \mathbb{Z}} \exp 2 \pi i\left[\frac{n \tau m^{2}}{2}+n(\tau a+b) m+\left(n \tau \frac{a^{2}}{2}+n a b\right)\right] \tag{11}\\
=e^{\pi i n \tau a^{2}} e^{2 \pi i n a b} \theta(n \tau, n(\tau a+b))
\end{gather*}
$$

What we have computed is the composition $\mathcal{O} \xrightarrow{s_{0}} \mathcal{L}^{n} \xrightarrow{\mathrm{ev}_{z}} \mathcal{O}_{z}$, where ev_{z} is obtained by picking a trivialization of the fiber at z. Looking at the coefficient of e_{0} in $m_{2}\left(e, s_{k}\right)$, we obtain

$$
\begin{align*}
\sum_{m \in \mathbb{Z}} \exp 2 \pi i & {\left[\frac{n \tau}{2}\left(a+m-\frac{k}{n}\right)^{2}+n\left(a+m-\frac{k}{n}\right) b\right] } \tag{12}\\
& =\sum_{m \in \mathbb{Z}} \exp 2 \pi i\left[\frac{n \tau}{2}\left(m-\frac{k}{n}\right)^{2}+n(\tau a+b)\left(m-\frac{k}{n}\right)+\frac{n \tau}{2} a^{2}+n a b\right] \\
& =e^{\pi i n \tau a^{2}} e^{2 \pi i n a b} \theta\left[0, \frac{k}{n}\right](n \tau, n(\tau a+b))
\end{align*}
$$

so the ratios $\frac{s_{k}}{s_{0}}$ match.
Next, we need to multiply sections. For $s_{0}^{1 \rightarrow 2} \in \operatorname{hom}\left(L_{1}, L_{2}\right), s_{0}^{0 \rightarrow 1} \in \operatorname{hom}\left(L_{0}, L_{1}\right)$, $m_{2}\left(s_{0}^{1 \rightarrow 2}, s_{0}^{0 \rightarrow 1}\right)=c_{0} s_{0}^{0 \rightarrow 2}+c_{1} s_{1}^{0 \rightarrow 2}$ for $s_{0}^{0 \rightarrow 2}, s_{1}^{0 \rightarrow 2} \in \operatorname{hom}\left(L_{0}, L_{2}\right)$ and

$$
\begin{aligned}
& c_{0}=\sum_{n \in \mathbb{Z}} T^{n^{2} \lambda}=\sum_{n \in \mathbb{Z}} e^{2 \pi i \tau n^{2}} \\
& c_{1}=\sum_{n \in \mathbb{Z}} e^{2 \pi i \tau\left(n+\frac{1}{2}\right)^{2}}
\end{aligned}
$$

This corresponds to $\mathcal{O} \xrightarrow{\theta} \mathcal{L} \xrightarrow{\theta} \mathcal{L}^{2}$,

$$
\begin{equation*}
\theta(\tau, z) \theta(\tau, z)=\underbrace{\theta(2 \tau, 0)}_{c_{0}} \underbrace{\theta(2 \tau, 2 z)}_{s_{0}}+\underbrace{\theta\left[\frac{1}{2}, 0\right](2 \tau, 0)}_{c_{1}} \underbrace{\theta\left[\frac{1}{2}, 0\right](2 \tau, 2 z)}_{s_{1}} \tag{14}
\end{equation*}
$$

