MIRROR SYMMETRY: LECTURE 18

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

1. Derived Fukaya Category

Last time: derived categories for abelian categories (e.g. $D^{b} \operatorname{Coh}(X)$). This time: the derived Fukaya category. We start with an A_{∞}-category \mathcal{A} and obtain a triangulated category via "twisted complexes". Recall that in an A_{∞}-category, $\operatorname{hom}_{\mathcal{A}}(X, Y)$ is a graded vector space equipped with maps

$$
\begin{equation*}
m_{k}: \operatorname{hom}_{\mathcal{A}}\left(X_{0}, X_{1}\right) \otimes \cdots \otimes \operatorname{hom}_{\mathcal{A}}\left(X_{k-1}, X_{k}\right) \rightarrow \operatorname{hom}_{\mathcal{A}}\left(X_{0}, X_{k}\right)[2-k] \tag{1}
\end{equation*}
$$

1) Additive enlargement: we define the category ΣA to be the category whose objects are finite sums $\bigoplus X_{i}\left[k_{i}\right], X_{i} \in \mathcal{A}, k_{i} \in \mathbb{Z}$ and whose maps are

$$
\begin{equation*}
\operatorname{hom}_{\Sigma \mathcal{A}}\left(\bigoplus_{i} X_{i}\left[k_{i}\right], \bigoplus_{j} Y_{j}\left[\ell_{j}\right]\right)=\bigoplus_{i, j} \operatorname{hom}_{\mathcal{A}}\left(X_{i}, Y_{j}\right)\left[\ell_{j}-k_{i}\right] \tag{2}
\end{equation*}
$$

Note that we have induced multiplication maps

$$
\begin{equation*}
m_{k}\left(a_{k}, \ldots, a_{1}\right)^{i j}=\sum_{i_{1}, \ldots, i_{k-1}} m_{k}\left(a_{k}^{i_{k-1}, j}, \ldots, a_{1}^{i_{1}, j}\right) \tag{3}
\end{equation*}
$$

2) Twisted complexes: we define the category $\operatorname{Tw} \mathcal{A}$ to be the category whose objects are twisted complexes $\left(X, \delta_{X}\right)$,

$$
\begin{equation*}
X=\bigoplus_{i} X_{i}\left[k_{i}\right] \in \Sigma \mathcal{A}, \delta_{X}=\left(\delta_{X}^{i j}\right) \in \operatorname{hom}_{\Sigma \mathcal{A}}^{1}(X, X) \tag{4}
\end{equation*}
$$

(i.e. δ_{X} a degree 1 endomorphism) s.t.

- δ_{X} is strictly lower-triangular, and
- $\sum_{k=1}^{\infty} m_{k}\left(\delta_{x}, \ldots, \delta_{x}\right)=0$. It is a finite sum because δ_{X} is lower triangular, and generalizes $\delta_{X} \circ \delta_{X}=0$.
Example. For a simple map $f: X_{1} \rightarrow X_{2}, f \in \operatorname{hom}_{\mathcal{A}}^{1}\left(X_{1}, X_{2}\right)$, the condition is $m_{1}(f)=0$. Now, for maps $X_{1}[2] \xrightarrow{f} X_{2}[1] \xrightarrow{g} X_{3}$ and $X_{1}[2] \xrightarrow{h} X_{3}$,

$$
\begin{align*}
& g \in \operatorname{hom}^{0}\left(X_{2}, X_{3}\right)=\operatorname{hom}^{1}\left(X_{2}[1], X_{3}\right) \\
& f \in \operatorname{hom}^{0}\left(X_{1}[1], X_{2}[1]\right)=\operatorname{hom}^{1}\left(X_{1}[2], X_{2}[1]\right) \tag{5}\\
& h \in \operatorname{hom}^{-1}\left(X_{1}, X_{3}\right)=\operatorname{hom}^{1}\left(X_{1}[2], X_{3}\right)
\end{align*}
$$

the condition is $m_{1}(f)=m_{1}(g)=0$ and $m_{2}(g, f)+m_{1}(h)=0$.

The morphisms in the category of twisted complexes are

$$
\begin{equation*}
\operatorname{hom}_{\mathrm{Tw} \mathcal{A}}\left(\left(X, \delta_{X}\right),\left(Y, \delta_{Y}\right)\right)=\operatorname{hom}_{\Sigma \mathcal{A}}(X, Y) \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
m_{k}^{\mathrm{Tw} \mathcal{A}}\left(a_{k}, \ldots, a_{1}\right)=\sum_{i_{0}, \ldots, i_{k}} \pm m_{k+i_{0}+\cdots+i_{k}}^{\Sigma \mathcal{A}}(& \underbrace{\delta_{X_{k}}, \ldots, \delta_{X_{k}}}_{i_{k}}, a_{k}, \tag{7}\\
& \ldots, \underbrace{\delta_{X_{k-1}}, \ldots, \delta_{X_{k-1}}}_{i_{k-1}},
\end{align*}
$$

$\mathrm{Tw} \mathcal{A}$ is a triangulated A_{∞}-category, i.e. there are mapping cones satisfying the usual axioms.

Example. For $a \in \operatorname{hom}(X, Y)$,

$$
\begin{equation*}
m_{1}^{\mathrm{Tw} \mathcal{A}}(a)=m_{1}(a) \pm m_{2}\left(\delta_{Y}, a\right) \pm m_{2}\left(a, \delta_{X}\right)+\text { higher terms } \tag{8}
\end{equation*}
$$

This is a generalization of being a chain map up to homotopy.
3) We now take the cohomology category $D(\mathcal{A}):=H^{0}(\mathrm{Tw} \mathcal{A})$, which is an honest triangulated category. The objects of the two categories are the same, but now our morphisms are $\operatorname{hom}^{D(\mathcal{A})}(X, Y):=H^{0}\left(\operatorname{hom}^{\operatorname{Tw} \mathcal{A}}(X, Y), m_{1}^{\operatorname{Tw}(\mathcal{A})}\right)$. Note that $\operatorname{hom}^{D(\mathcal{A})}(X, Y[k])=H^{k}\left(\operatorname{hom}^{\mathrm{Tw} \mathcal{A}}(X, Y), m_{1}^{\mathrm{Tw} \mathcal{A}}\right)$. The composition is induced by $m_{2}^{\mathrm{Tw} \mathcal{A}}$ on cohomology.

Remark. There is a variant of this called a split-closed derived category. Let \mathcal{A} be a linear category, $X \in \mathcal{A}, p \in \operatorname{hom}_{\mathcal{A}}(X, X)$ s.t. $p^{2}=p$ (idempotent). Define the image of p to be an object Y, and add maps $u: X \rightarrow Y, v: Y \rightarrow X$ s.t. $u \circ v=\operatorname{id}_{Y}, v \circ u=p$. That is, we enlarge \mathcal{A} to add these objects and maps, and define the split closure to be the category whose objects are (X, p) with p idempotent, and morphisms $\operatorname{hom}\left((X, p),\left(Y, p^{\prime}\right)\right)=p^{\prime} \operatorname{hom}(X, Y) p$. This is more complicated in the A_{∞} setting.

Geometrically, some exact triangles in $D \operatorname{Fuk}(M)$ are given by Lagrangian connected sums (FOOO) and Dehn twists (Seidel).

- For an example of the latter, given a cylinder with a Lagrangian circle S, we can obtain a symplectomorphism $\tau_{S} \in \operatorname{Symp}(M, \omega)$ which is the identity outside a neighborhood of S and, within that neighborhood, twists the cylinder around (in higher dimensions, define this using the geodesic flow in a neighborhood of $S \cong T^{*} S$). If L is Lagrangian, then $\tau_{S}(L)$ is Lagrangian as well. By Seidel, there exists an exact triangle in
$D \operatorname{Fuk}(M)$:

These correspond to long exact sequences for $\operatorname{HF}\left(L^{\prime},-\right)$.

- In the former situation, for L_{1}, L_{2} (graded) Lagrangians, $L_{1} \cap L_{2}=\{p\}$ of index 0 , we can construct the connected sum $L_{1} \#_{p} L_{2}$, which looks locally like $\tau_{L_{1}}\left(L_{2}\right)$ if L_{1} is a sphere and is given by $\operatorname{Cone}\left(L_{1} \xrightarrow{p} L_{2}\right)$ in general (consider this vs. " $L_{1}[1] \cup_{p} L_{2} \simeq \operatorname{Cone}\left(L_{1} \xrightarrow{0} L_{2}\right)$ "). For instance, in the torus T^{2}, consider two independent loops α of degree 2 and β of degree 1, with two points of intersection p, q. Then Cone $(\alpha \xrightarrow{p+q} \beta) \simeq \gamma_{1} \oplus \gamma_{2}$ is disconnected, where γ_{1}, γ_{2} are degree 1 loops. If we only started with α, β, the triangulated envelope contains $\gamma_{1} \oplus \gamma_{2}$, but not γ_{1}, γ_{2} separately. The split-closure does contain them.
- Now, if we start with two independent generators of the torus, successive Dehn twists give all the homotopy classes of loops in T^{2}, but each homotopy class contains infinitely many non-Hamiltonian isotopic Lagrangians. To generate $D \operatorname{Fuk}\left(T^{2}\right)$ as a triangulated envelope, we need (for instance) one horizontal loop and infinitely many vertical loops. On the other hand, α, β above are split generators. The key point is that Cone $\left(\alpha \xrightarrow{p+T^{q} q} \beta\right)$ gives deformed loops, direct sums of which vary continuously within a homotopy class. But many cones and idempotents have no obvious geometric interpretation. For instance, the Clifford torus $T=\{|x|=|y|=|z|\} \subset \mathbb{C P}^{2}$ has idempotents in $\operatorname{HF}(T, T)$ without any obvious geometric interpretation.

