MIRROR SYMMETRY: LECTURE 17

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

1. Coherent Sheaves on a Complex Manifold (contd.)

We now recall the following definitions from category theory.
Definition 1. An additive category is one in which $\operatorname{Hom}(A, B)$ are abelian groups, composition is distributive, and there is a direct sum \oplus and a zero object 0. An abelian category is an additive category s.t. every morphism has a kernel and cokernel, e.g. a kernel of $f: A \rightarrow B$ is a morphism $K \rightarrow A$ s.t. $g: C \rightarrow A$ factors through K uniquely iff $f \circ g=0$.

One can define complexes in an additive category, but one needs to be in an abelian category to have notions of exact sequences and cohomology. Recall that, given chain complexes C_{*}, D_{*}, a chain map $f: C_{*} \rightarrow D_{*}$ is a collection of maps $f_{i} C_{i} \rightarrow D_{i}$ commuting with δ. Given two such maps $f=\left\{f_{i}\right\}, g=\left\{g_{i}\right\}$, we call them homotopic if there is a map $h: A \rightarrow B[-1]$ (B shifted down by 1) s.t. $f-b=d_{B} h+h d_{A}$, i.e.

A chain map is a quasi-isomorphism if the induced maps on cohomology are isomorphisms. This is stronger than $H^{*}\left(C_{*}\right) \cong H^{*}\left(D_{*}\right)$. For \mathcal{A} an abelian category, the category of bounded chain complexes is the differential graded category whose objects are bounded chain complexes in \mathcal{A} and whose morphisms are "pre-homomorphisms" of complexes $\operatorname{Hom}^{k}\left(A_{*}, B_{*}\right)=\bigoplus_{i} \operatorname{Hom}_{\mathcal{A}}\left(A_{i}, B_{i+k}\right)$: it is equipped with a differential δ where

$$
\begin{equation*}
f \in \operatorname{Hom}^{k}\left(A_{*}, B_{*}\right) \Longrightarrow \delta(f)=d_{B} f+(-1)^{k+1} f d_{A} \in \operatorname{Hom}^{k+1}\left(A_{*}, B_{*}\right) \tag{2}
\end{equation*}
$$

Chain maps are precisely the elements of $\operatorname{Ker}\left(\delta: \operatorname{Hom}^{0} \rightarrow \operatorname{Hom}^{1}\right)$, and the nullhomotopic maps are elements of $\operatorname{im}\left(\delta: \operatorname{Hom}^{-1} \rightarrow \operatorname{Hom}^{0}\right)$, so $H^{0} \operatorname{Hom}(A, B)$ gives the space of chain maps up to homotopy.

Definition 2. For \mathcal{A} an abelian category, the bounded derived category $D^{b}(\mathcal{A})$ is the triangulated category whose objects are bounded chain complexes in \mathcal{A} and
whose morphisms are given by chain maps up to homotopy localizing w.r.t. quasiisomorphisms. That is, quasi-isomorphisms are formally inverted; for any quasiisomorphism s, we add a morphism s^{-1}. More precisely, $\operatorname{Hom}_{D^{b}(\mathcal{A})}\left(A_{*}, B_{*}\right)=$ $\left\{A \stackrel{s}{\leftarrow} A^{\prime} \xrightarrow{f} B\right\} / \sim$ where s is a quasi-isomorphism, f is a chain map, and \sim is homotopy equivalence. We similarly define the categories $D^{+}(\mathcal{A}), D^{-}(\mathcal{A})$ of chain complexes bounded above/below.

To explain the notion of triangulated category, recall the following:

- In the category of topological spaces (or simplicial complexes), there are no kernels and cokernels. Given a map f, however, the mapping cone $C_{f}=(X \times[0,1]) \sqcup Y /(x, 0) \sim\left(x^{\prime}, 0\right),(x, 1) \sim f(x)$ acts as both simultaneously. There are natural maps $i: Y \rightarrow C_{f}$ (inclusion) and $q: C_{f} \rightarrow \Sigma X$ (collapsing Y), and we obtain a sequence of topological spaces

$$
X \xrightarrow{f} Y \xrightarrow{i} C_{f} \xrightarrow{q} \Sigma X \rightarrow \cdots
$$

with compositions null-homotopic. This gives a long exact sequence of
$H_{i}(X) \rightarrow H_{i}(Y) \rightarrow H_{i}\left(C_{f}\right) \rightarrow H_{i}(\Sigma X)=H_{i-1}(X) \rightarrow H_{i}(\Sigma Y)=H_{i-1}(Y)$

- If X, Y are simplicial complexes, f a simplicial map, C_{f} defined analogously is a simplicial complex, with i-cells given by cones on $(i-1)$ cells of X and i-cells of Y. The boundary map is given by the matrix $\left(\begin{array}{cc}\partial_{X} & 0 \\ f & \partial_{Y}\end{array}\right)$.
- If A^{*} and B^{*} are complexes, f a chain map, we define $C_{f}=A[1] \oplus B$, i.e. $C_{f}^{i}=A^{i+1} \oplus B^{i}$. The boundary map is $\delta=\left(\begin{array}{cc}\delta_{A}[1] & 0 \\ f & \delta_{B}\end{array}\right)$. Note that, if A, B are single objects, Cone $(f: A \rightarrow B)$ is just $\{0 \rightarrow A \xrightarrow{f}$ $B \rightarrow 0\}$. We have natural chain maps $B^{*} \xrightarrow{i} C_{f}^{*}$ (subcomplex) and $C_{f}^{*} \xrightarrow{q} A^{*}[1]$ (quotient complex). As before, $A^{*}[1]$ is quasi-isomorphic to Cone ($i: B^{*} \rightarrow C_{f}^{*}$).
- Finally, in the derived category, the inversion of quasi-isomorphisms gives us exact triangles

with

$$
\begin{equation*}
H^{i}(A) \rightarrow H^{i}(B) \rightarrow H^{i}(C) \rightarrow H^{i+1}(A) \rightarrow \cdots \tag{6}
\end{equation*}
$$

Definition 3. A triangulated category is an additive category with a shift functor [1] and a set of distinguished triangles satisfying various axioms:

- $\forall X, X \xrightarrow{\text { id }} X \rightarrow 0 \rightarrow X[1]$ is distinguished,
- $\forall X \rightarrow Y$, there is a distinguished triangle $X \xrightarrow{u} Y \rightarrow Z \rightarrow X[1]$ (Z is called the mapping cone of f).
- The rotation of any distinguished triangle is distinguished, i.e. for $X \rightarrow$ $Y \rightarrow Z \rightarrow X[1]$ distinguised, $Y \rightarrow Z \rightarrow X[1] \rightarrow Y[1]$ and $Z \rightarrow X[1] \rightarrow$ $Y[1] \rightarrow Z[1]$ are distinguished.
- Given a square

there is a map between the mapping cones of f, f^{\prime} that makes everything commute in the induced map of distinguished triangles

- Given a pair of maps $X \xrightarrow{u} Y \xrightarrow{v} Z$, there are maps between the mapping cones $C_{u}, C_{v}, C_{v o u}$ of u, v, and $v \circ u$ that make every commute in the induced maps of distinguished triangles.

1.1. Derived functors. Let $F: \mathcal{A} \rightarrow \mathcal{B}$ be a left exact functor between abelian categories. $\mathcal{R} \subset \mathcal{A}$ is called an adapted class of objects for F if
- \mathcal{R} is stable under direct sums,
- for C^{*} an acyclic complex of objects in $\mathcal{R}, F\left(C^{*}\right)$ is acyclic, and
- $\forall A \in \mathcal{A}, \exists R \in \mathcal{R}$ s.t. $0 \rightarrow A \xrightarrow{i} R$.

For instance, the set of injective objects is such an adapted class. Let $K^{+}(\mathcal{R})$ be the homotopy category of complexes bounded below of objects in \mathcal{R}. $R F$ gives a composition $D^{+}(\mathcal{A}) \rightarrow K^{+}(\mathcal{R}) \xrightarrow{F} D^{+}(\mathcal{B})$, where the first map is induced by resolution by objects of R. The map $D^{+}(\mathcal{A}) \rightarrow D^{+}(\mathcal{B})$ is exact, i.e. it maps exact triangles to exact triangles, and $R^{i} F=H^{i}(R F)$.
1.2. Extensions. Let $A, B \in \mathcal{A} \hookrightarrow D^{b}(\mathcal{A})$ be single object complexes concentrated in degree 0 , so $B[k]$ is conentrated in degree $-k$.

Proposition 1. $\operatorname{Hom}_{D^{b}(\mathcal{A})}(A, B[k])=\operatorname{Ext}_{\mathcal{A}}^{k}(A, B)$.
We can use this to define a product $\operatorname{Ext}_{\mathcal{A}}^{k}(A, B) \otimes \operatorname{Ext}_{\mathcal{A}}^{\ell}(B, C) \rightarrow \operatorname{Ext}_{\mathcal{A}}^{k+\ell}(A, C)$ as a composition $A \rightarrow B[k] \rightarrow C[k+\ell]$ in $D^{b}(\mathcal{A})$.

Example. For $k=1$, we have

There are no chain maps, but we can invert quasi-isomorphisms. If we have an extension $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ in \mathcal{A}, we have chain maps

giving an element in $\operatorname{Hom}_{D^{b}(\mathcal{A})}(C, A[1])=\operatorname{Ext}^{1}(C, A)$.
There are two ways to understand the above proposition. First, if \mathcal{A} has enough injectives, take a resolution of B by a complex $I^{0} \rightarrow I^{1} \rightarrow \cdots$ quasiisomorphic to B : the chain maps from A to I^{*} are, up to homotopy, isomorphic to $H^{k}\left(\operatorname{Hom}\left(A, I^{*}\right)\right) \cong \operatorname{Ext}^{k}(A, B)$. Second, we can check the definition of a derived functor. Given a short exact sequence $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ in \mathcal{A}, we get an exact triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{w} A[1]$ quasi-isomorphic to a distinguished triangle with Cone (f).

Proposition 2. For an exact triangle $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} A[1]$ and an object E, we have long exact sequences

$$
\begin{align*}
& \cdots \rightarrow \operatorname{Hom}(E, A[i]) \xrightarrow{f_{*}} \operatorname{Hom}(E, B[i]) \xrightarrow{g_{*}} \operatorname{Hom}(E, C[i]) \xrightarrow{h_{*}} \operatorname{Hom}(E, A[i+1]) \rightarrow \cdots \tag{12}\\
& \cdots \rightarrow \operatorname{Hom}(A[i+1], E) \xrightarrow{h^{*}} \operatorname{Hom}(C[i], E) \xrightarrow{g^{*}} \operatorname{Hom}(B[i], E) \xrightarrow{f^{*}} \operatorname{Hom}(A[i], E) \rightarrow \cdots
\end{align*}
$$

