
MIRROR SYMMETRY: LECTURE 16

DENIS AUROUX
NOTES BY KARTIK VENKATRAM

0.1. Coherent Sheaves on a Complex Manifold (contd.) Let X be a com-
plex manifold, OX the sheaf of holomorphic functions on X. Recall that the
category of sheaves has both an internal H om (which is a sheaf) and an exter-
nal Hom (the group of global sections for the former). A functor F : C → C ′ is
left exact if 0 → A → B → C → 0 =⇒ 0 → F (A) → F (B) → F (C). If the
category C has enough injectives (objects such that HomC(−, I) is exact), there
are right-derived functors RiF s.t.

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ R1F (B)→ R1F (C)→ · · ·(1)

To compute RiF (A), resolve A by injective objects as 0 → A → I0 → I1 →
I2 → · · · , we get a complex 0 → F (I0) → F (I1) → F (I2) → · · · . Taking
cohomology gives RiF (A) = Ker (F (I i) → F (I i+1))/im (F (I i−1) → F (I i)).
Note that R0F (A) = F (A).

We stated last time that sheaf cohomology arises as the right-derived functor of
the global sections functor. Moreover, since Hom(E ,−) and Hom(−, E) are both
left-exact (the first covariant, the second contravariant), we can define Exti =
RiHom, and short exact sequences 0→ F1 → F2 → F3 → 0 give

0→ Hom(E ,F1)→ Hom(E ,F2)→ Hom(E ,F3)

→ Ext(E ,F1)→ Ext(E ,F2)→ Ext(E ,F3)→ · · ·
(2)

while sequences 0→ E1 → E2 → E3 → 0 give

0→ Hom(E3,F)→ Hom(E2,F)→ Hom(E1,F)

→ Ext(E3,F)→ Ext(E2,F)→ Ext(E1,F)→ · · ·
(3)

Moreover, if E is a locally free sheaf, H om(E ,−) is exact, and Exti(E ,F) =
H i(H om(E ,F)). Otherwise, we can resolve E by locally free sheaves

0→ En → · · · → E0 → E → 0(4)

and, for all practical purposes, replace E by the complex En → · · · → E0. In
our case, we obtain a sequence H om(E0,F) → · · · → H om(En,F) whose
hypercohomology gives Ext∗(E ,F).
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Example. Let E be a locally free sheaf, Op the skyscraper sheaf at a point p.
Then H om(E ,Op) ∼= E∗|p is the skyscraper sheaf with stalk E∗p at p. Taking

sheaf cohomology gives Hom(E ,Op) ∼= E∗p , Exti(E ,Op) = 0∀ i ≥ 1. Furthermore,
H om(Op,Op) ∼= Op: to obtain the higher Ext groups, we resolve Op by locally
free sheaves. (WLOG) Assuming X is affine, local coordinates near p define a
section s of O⊕n

X
∼= V (n = dim X) vanishing transversely at p. We then have a

long exact sequence

0→

(
n∧

V ∗
s→

n−1∧
V ∗

s→ · · · s→ V ∗
s→ OX

)
→ Op → 0(5)

Applying H om(−,Op), we get

Op
0→ V ⊗Op

0→ · · · 0→
n−1∧

V ⊗Op
0→

n∧
V ⊗Op

(6)

(the maps are all zero, since all the sheaves are all skyscraper sheaves at p).
Ext∗(Op,Op) is the hypercohomology of this complex, i.e.

Extk(Op,Op) ∼= H0(
k∧

V ⊗Op) ∼=
k∧

Vp
(7)

Similarly, Exti(Op, E) can be computed by hypercohomology of

E → s→ V ⊗ E s→
2∧

V ⊗ E s→ · · · s→
n∧

V ⊗ E(8)

which is the Koszul resolution of the skyscraper sheaf with stalk
∧n V ⊗ E

at p. This sequence is exact except in the last place, and the cokernel is a
skyscraper sheaf with stalk

∧n⊗E at p. Thus, Extn(Op, E) ∼= (
∧n V ⊗ E)p with

all other groups zero. This is consistent with the Serre duality Exti(E ,F) ∼=
Extn−i(F , KX ⊗ E)∨.

0.2. Derived Categories. The general idea is to work with complexes up to
homotopy.

• Enlarging a category to include complexes makes it algebraically nicer
(e.g. the derived category is triangulated) and less sensitive to the ini-
tial set of objects (we can restrict to a nice subcategory). For instance,
for Fukaya categories, one can hope to allow objects like immersed La-
grangians implicitly.
• Even if we know how to define general objects, it is usually easier to

replace them with complexes of nice objects. For instance, for s ∈
H0(L), D = s−1(0), we can exchange OD with the complex {L−1 s→ OX}.
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Example. This makes it easier to perform intersection theory: for D1, D2

defined by sections s1, s2 of L1,L2, their homological intersection is

[D1] · [D2] = c1(L1) ∪ c1(L2) ∩ [X] = c1(L1|D2) · [D2](9)

If D1 and D2 intersect transversely, OD1∩D2 = OD1 ⊗ OD2 . We can also

resolve this using the associated complex, i.e. apply −⊗OD2 to {L−1
1

s1→
OX}, obtaining {L−1

1 |D2

s1|D2→ OD2}. If D1 = D2 = D, OD ⊗OD = OD is
“too big” (because ⊗ is right exact but not exact). Using the associated

complex still works, however, as we obtain {L−1
1 |D

s|D=0→ OD} with kernel
L−1|D and cokernel OD.

• When do we consider two complexes to be isomorphic? Having isomorphic
cohomology is not enough. For instance, in algebraic topology, a theorem
of Whitehead states that, for X, Y simply connected simplicial complexes,
X and Y are homotopy equivalent ⇔ ∃Z and simplical maps X →
Z, Y → Z s.t. the chain maps C∗(Z) → C∗(X), C∗(Z) → C∗(Y ) are
isomorphisms in cohomology.

Definition 1. A chain map f : C∗ → D∗ (i.e. a collection of maps
fiCi → Di commuting with ∂) is a quasi-isomorphism if the induced
maps on cohomology are isomorphisms.

This is stronger than H∗(C∗) ∼= H∗(D∗).

Example. The complexes of C[x, y]-modules C[x, y]⊕2 →(x,y) C[x, y] and
C[x, y]→0 C have the same cohomology but are not quasi-isomorphic.


