Recall: equivalence relation on complexes:

\[C_i \cong C_{i+1} \cong C_{i+2} \rightarrow \ldots \]

Def. A chain map (i.e., \(f : D_i \rightarrow D_{i+1} \rightarrow D_{i+2} \rightarrow \ldots \)) is a quasi-isomorphism if the induced maps on cohomology are isomorphisms.

This is stronger than \(H^\bullet(C_i) = H^\bullet(D_i) \).

Ex. \(C[x,y] \rightarrow C[x,y] \) and \(C[x,y] \rightarrow 0 \) not quasi-isomorphic as complexes of \(C[x,y] \)-modules even though same \(H^\bullet \).

Exs. \(\{ L^1 \rightarrow O_X \} \) and \(O_D \) are quasi-isomorphic, q.i. \(\iff \) kernel map (similarly with other resolutions of coherent sheaves).

Def. An additive category:

- \(\text{Hom}(A,B) \) abelian groups
 - Composition is distributive (bilinear)
 - 3 direct sums of objects \(A \oplus B \)
 - 3 zero object \(0 \) (\(\text{hom}(0,A) = \text{hom}(A,0) = 0 \))

- \text{abelian category} = additive cat. s.t. all morphisms have ker & coker

- Everything defined by universal properties, e.g. kernel of \(f : A \rightarrow B \) is \(K \rightarrow A \) s.t. \(g : C \rightarrow A \) factors (uniquely) through \(K \) iff \(f \circ g = 0 \).

- In actual example, ker / coker are always "initial" ones.

- in an abelian cat. we have notions of exact sequence - cohomology of a complex.

Def. An abelian category is the bounded derived cat. \(D^b(A) \):

- Objects = bounded (i.e., finite length) chain complexes in \(A \)
- Morphisms = chain maps up to homotopy, localizing w/ quasi-isomorphisms.

- Homotopy: \(\ldots A_i \xrightarrow{d_i-1} A_i \xrightarrow{d_i} A_{i+1} \xrightarrow{d_{i+1}} \ldots \)

- \(f, g \) are homotopic (\(f \sim g \)) if \(\exists h : A \rightarrow B[-1] \) s.t. \(f-g = d_{B} h + h d_{A} \).

Then look at chain maps /
• Equivalently: bounded complexes form a differential graded category
 morphisms = "premaps of complexes" \(\text{Hom}_k(A, B) = \bigoplus \text{Hom}_A(\text{A}_i, \text{B}_{i+k}) \)
 differential = \(f \in \text{Hom}_k(A, B) \Rightarrow \delta(f) = d_B f + (-1)^{k+1} f d_A \).

 Then chain maps = \(\ker(\delta) : \text{Hom}_0 \to \text{Hom}_1 \)
 nullhomotopic = \(\text{Im}(\delta) : \text{Hom}_1 \to \text{Hom}_0 \)

 \(\Rightarrow \) we want to consider \(\text{H}_0 \text{Hom}(A, B) \).

 Localization w.r.t quasi iso: formal invert quasimos, i.e., add extra morphisms \(s^{-1} \) whenever \(s \) is a quasiiso.
 In other terms, \(\text{Hom}_0^*(A, B) = \{ A \overset{s}{\leftarrow} A' \overset{f}{\rightarrow} B \} / \sim \)
 chain map

 [NB: can skip quot by homotopies, because homotopy equivalences are quasi-isomorphisms, but keeping it makes things more explicit].

• Similarly: \(D^+(A), D^-(A) \) (complexes bounded below, bounded above).

Chain and triangles:

• in category of top spaces (or simplicial complexes \(\mathcal{C}_* \)), \(\mathcal{Z} \) ker \& coker \!
 (unless map is a fibration or an inclusion). However, mapping cone acts as both simultaneously:

 \[f : X \to Y \rightsquigarrow \text{C}_f := (X \times [0, 1]) \cup Y \bigg/ (x, 0) \sim (x', 0) \]
 \[(x, 1) \sim f(x) \]

 \[\begin{array}{c}
 \text{X} \\
 \text{Y}
 \end{array} \]

 There are natural maps \(X \to C_f \) (inclusion) and \(C_f \to \Sigma X \) (collapse \(Y \))

 \[X \overset{f}{\to} Y \overset{i}{\to} C_f \overset{g}{\to} \Sigma X \to \ldots \]

 with composition nullhomotopic, giving long exact sequence

 \[H_i(X) \to H_i(Y) \to H_i(C_f) \to H_i(\Sigma X) \to H_{i+1}(Y) \to \ldots \]

 if \(X, Y \) simplicial complexes

 \[\sim C_f \text{ simplicial complex with i-cells=\{cone on (i-)cells of } X, \text{ e=}(\partial X, 0) \]
 \[\text{i-cells of } Y \]
3) By analogy: $f: A^* \to B^*$ chain map b/w complexes

$\Rightarrow C_f := A[1] \oplus B, \quad d = \begin{pmatrix} d_A[1] & 0 \\ f & d_B \end{pmatrix}$

ie $C_f = A[1] \oplus B$

E.g.: if A, B are single objects, Cone $(f: A \to B)$ is just $\{A \to f \to B\}$

We have natural chain maps $B^* \to C_f^*$ (inclusion of B as subcomplex)

$C_f^* \to A^*[1]$ (quiver complex)

(Con check $A^*[1]$ is quasi-isomorphic to mapping cone of $i: B^* \to C_f^*$)

Thus, in derived category we don't have kernels & cokernels, but we have exact triangles $A^* \to B^* \to C^* \to A^*[1]$ (with corresponding long exact seqs. in homology of complexes)

$H^i(A) \to H^i(B) \to H^i(C) \to H^{i+1}(A) \to \cdots$

$D^b(A)$ is a triangulated category, namely additive category with a shift functor $T = [1]$ and a set of "distinguished triangles" satisfying various axioms, among which:

- $\forall X \in Ob, \quad \exists$ $\overline{\exists}_X$ is a distinguished triangle

- $\forall f: X \to Y, \exists$ dist. triangle $X \xrightarrow{f} Y \xleftarrow{e}$

Back to Ext's & derived functors:

1) The det. cat. gives a better way to understand derived functors.

Namely: $F: A \to B$ left exact functor b/w abelian categories

- $R \subset A$ is an adapted class of objects if
 - R is stable under direct sums
 - C^* acyclic complex in $R \Rightarrow F(C^*)$ acyclic
 - $H^i(C) = 0$
 - $\forall A \in A, \exists$ inclusion $0 \to A \to R, R \subset R$.

(ex: injectives)
$K^+(R)$ = homotopy category of complexes bounded below of objects in R
Complexes = chain maps up to homotopy

Then: RF = composition $D^+(A) \rightarrow K^+(R) \xrightarrow{F} D^+(B)$

The functor $RF: D^+(A) \rightarrow D^+(B)$ is exact, i.e. exact triangle \rightarrow exact triangles.
Then $R^iF = H^i(RF)$ (what RF does for a single object $A \in A$ is exactly what we do to compute $R^iF(A)$ using a resolution by objects of R & applying F, except taking cohomology).

2) Let $A, B \in A$ (e.g. $A[k]$), view them as 1-step complexes in degree 0.
$B[k]$ shift $(B[k])^i = B^{i+k}$; so $B[k]$ concentrated in degree $-k$.

Prop: $\hom_{D^b}(A)(A, B[k]) = \mathbb{E}xt^k_U (A, B)$

We can use this to define product on $\mathbb{E}xt^k_U (A, B) \otimes \mathbb{E}xt^l_U (B, C) \rightarrow \mathbb{E}xt^{k+l}_U (A, C)$

as composition in $D^b(A)$

Example: for $k=1$:

\begin{align*}
0 \rightarrow & 0 \rightarrow A \rightarrow 0 \\
\downarrow & \downarrow \\
0 \rightarrow & B \rightarrow 0 \rightarrow 0
\end{align*}

no chain maps, but we're allowed to invert quasi-isomorphism!!

If we have an extension $0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0$ (s.e.s. in A)
then we get maps of complexes $0 \rightarrow 0 \rightarrow C \rightarrow 0$

\begin{align*}
0 \rightarrow & A \rightarrow B \rightarrow 0 \\
\uparrow & f \\
0 \rightarrow & A \rightarrow 0 \rightarrow 0
\end{align*}

which gives an element of $\hom_{D^b(A)}(C, A[1])$ (e.g. $\mathbb{E}xt^1(A, A)$)
(can do the same with higher $\mathbb{E}xt$'s.)

\begin{itemize}
\item 2 ways to understand the proposition:
\item if A has enough injectives, take an injective resolution of B and replace B by quasi-isom. complex (not bounded, but $D^b \rightarrow D^+$ is full and faithful...) then chain maps $I_0 \rightarrow I_1 \rightarrow I_2 \rightarrow \cdots$ up to homotopy $= \mathbb{H}^k(\hom(A, I_\bullet))$.
\end{itemize}
check definition of Ext as derived functor:

\[0 \rightarrow A \rightarrow B \rightarrow C \rightarrow A[1] \]

Then get an exact triangle in \(D^b(A) \):

\[A \rightarrow B \rightarrow C \rightarrow A[1] \]

\((\varepsilon = \text{extension map as above}) \)

Axioms of triangulated categories:

\[\text{Prop.} \quad A \rightarrow B \rightarrow C \rightarrow \text{exact triangle, } E \text{ object } \Rightarrow \text{ long exact sequences} \]

\[\cdots \rightarrow \text{Hom}(E, A[i]) \rightarrow \text{Hom}(E, B[i]) \rightarrow \text{Hom}(E, C[i]) \rightarrow \text{Hom}(E, A[i + 1]) \rightarrow \cdots \]

\[\cdots \rightarrow \text{Hom}(A[i + 1], E) \rightarrow \text{Hom}(A[i], E) \rightarrow \text{Hom}(A[i], E) \rightarrow \cdots \]

Applying to our case \((A, B, C, E \text{ 1-step complex})\) we get exactly

the defining property of Ext as derived functor of Hom \(\varepsilon \).

(Idea: e.g., exactness at \(\text{Hom}(E, B) \): (same as other parts)

* check \(\varepsilon \varepsilon = 0 \) for any exact triangle:

\[\begin{array}{c}
\text{A} \overset{\text{id}}{\rightarrow} \text{A} \overset{\text{id}}{\rightarrow} \text{A}[1] \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\text{C} \overset{\varepsilon}{\rightarrow} \text{B} \overset{\text{id}}{\rightarrow} \text{C} \rightarrow \text{A}[1] \\
\end{array} \]

axiom: \(\exists h \text{ st. square commute} \)

\(h \text{ not be } 0 \Rightarrow \varepsilon \varepsilon = 0 \checkmark \)

* now: assume \(f: A \rightarrow B \text{ st. } \varepsilon \varepsilon f = 0 \).

\[\begin{array}{c}
\text{E} \overset{\text{id}}{\rightarrow} \text{E} \overset{\text{id}}{\rightarrow} \text{E}[1] \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\text{E} \overset{\text{id}}{\rightarrow} \text{E} \overset{\text{id}}{\rightarrow} \text{E}[1] \\
\end{array} \]

\(\exists g \text{ st. square commute} \)

\[\begin{array}{c}
\text{A} \overset{\varepsilon}{\rightarrow} \text{B} \overset{\varepsilon}{\rightarrow} \text{C} \rightarrow \text{A}[1] \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\text{A} \overset{\varepsilon}{\rightarrow} \text{B} \overset{\varepsilon}{\rightarrow} \text{C} \rightarrow \text{A}[1] \\
\end{array} \]

\(\Rightarrow f = ug \)

Hence \(\ker \varepsilon \beta = \text{Im} \varepsilon \beta \checkmark \)