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We present the results of a theoretical investigation of droplets walking on a
rotating vibrating fluid bath. The droplet’s trajectory is described in terms of an
integro-differential equation that incorporates the influence of its propulsive wave
force. Predictions for the dependence of the orbital radius on the bath’s rotation
rate compare favourably with experimental data and capture the progression from
continuous to quantized orbits as the vibrational acceleration is increased. The orbital
quantization is rationalized by assessing the stability of the orbital solutions, and may
be understood as resulting directly from the dynamic constraint imposed on the drop
by its monochromatic guiding wave. The stability analysis also predicts the existence
of wobbling orbital states reported in recent experiments, and the absence of stable
orbits in the limit of large vibrational forcing.
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1. Introduction
At the 1927 Solvay Conference, Louis de Broglie presented a theory for quantum

dynamics now commonly referred to as his double-wave pilot-wave theory
(Bacciagaluppi & Valentini 2009). The theory postulates that quantum particles
such as electrons are propelled, or ‘piloted’, by an extended wave field centred
on the particle and generated by its internal vibration (de Broglie 1926, 1987). It
was proposed that the resulting pilot-wave dynamics could give rise to the coherent
wave-like statistical behaviour described by standard quantum theory. The theory
thus postulates two waves, a real wave of unspecified origins responsible for guiding
the particle, and the statistical wave describing the particle’s probability density
function. While such a physical picture provides a rational explanation for a number
of quantum oddities, including single-particle diffraction (Bell 1988, p. 112), it was
not widely accepted, instead being superseded by the Copenhagen Interpretation as
the standard view. The first macroscopic pilot-wave system was recently discovered
in the laboratory of Yves Couder (Couder et al. 2005; Protière, Boudaoud & Couder
2006; Couder & Fort 2006; Eddi et al. 2009; Fort et al. 2010).

Consider a fluid bath of density ρ, surface tension σ , kinematic viscosity ν and
mean depth H, in the presence of a gravitational acceleration g, vibrating vertically
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with acceleration γ cos(2πft). For γ > γF, γF being the Faraday threshold, a field of
Faraday waves is excited on the surface. At the onset of instability, the period of the
waves TF = 2/f is twice that of the vibrational forcing, and their wavelength λF =
2π/kF may be approximated by the water-wave dispersion relation (Kumar 1996),

(πf )2 =
(

gk+ σk3

ρ

)
tanh kH. (1.1)

When γ < γF, the interface remains flat unless perturbed, and the decay time of
Faraday waves excited by a surface disturbance is TFMe. The non-dimensional
‘memory parameter’ Me depends on the forcing acceleration γ according to

Me(γ )= Td

TF(1− γ /γF)
, (1.2)

where Td is the viscous decay time of the waves in the absence of forcing (Eddi
et al. 2011; Moláček & Bush 2013b). The memory Me increases progressively as the
Faraday threshold is approached from below, as γ → γF.

Walker (1978) demonstrated that fluid drops may be levitated above a vibrating fluid
bath, their bouncing state enabled by the sustenance of an air layer between drop and
bath during impact. Protière et al. (2006) experimentally characterized the dependence
of the bouncing threshold γB on the system parameters, including the drop size. In
certain regimes, there is a threshold for period-doubled bouncing γP, above which the
drops bounce with the Faraday period TF, so that their frequency is commensurate
with that of the least-stable Faraday wave mode. For γ > γW > γP, γW being the
walking threshold, the waves generated by the drop destabilize the bouncing state and
propel it forward. The walking droplets, henceforth ‘walkers’, thus self-propel through
a resonant interaction with their own wave field (Protière et al. 2006).

The walkers mimic quantum particles in several respects (Bush 2010). Eddi et al.
(2009) observed that droplets can ‘tunnel’ through shallow fluid regions where
walking is forbidden, which is reminiscent of electrons tunnelling through classically
forbidden regions of high potential energy. In their study of single-particle diffraction,
Couder & Fort (2006) reported that the statistical behaviour of walkers passing
through single- and double-slit geometries resembles that of quantum particles. In the
double-slit experiment, the droplet passes through one slit or the other, but is affected
by its pilot-wave field that passes through both. Harris et al. (2013) revealed the
emergence of wave-like statistics describing the position of a walker confined to a
circular domain, which is reminiscent of the quantum corral experiments of Crommie,
Lutz & Eigler (1993). It is worth noting that the walker’s quantum-like behaviour
only arises in the long-memory regime (Fort et al. 2010; Eddi et al. 2011). In the
short-memory limit for walkers, Me & Me(γW), the standing waves generated by the
drop decay relatively quickly, so the droplet motion depends only on its recent past.
In the long-memory limit, Me�Me(γW), the waves generated by successive bounces
are long-lived, so the walker is more strongly influenced by its history. It is in this
high-memory regime that the pilot-wave dynamics gives rise to a coherent wave-like
statistics with characteristic wavelength λF (Couder & Fort 2006; Harris et al. 2013).

A theoretical description of the vertical motion of bouncing drops was developed by
Moláček & Bush (2013a). A model for the coupled horizontal and vertical dynamics
of walking drops was derived by Moláček & Bush (2013b), who rationalized the
observed dependence of the walking threshold γW and the walking speed on the
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system parameters. The model also predicted a number of new bouncing and walking
states that have since been discovered experimentally (Wind-Willassen et al. 2013). In
certain parameter regimes delineated by Moláček & Bush (2013b), the drop can walk
steadily and stably at a uniform horizontal speed while bouncing vertically with the
same period TF as its guiding wave field. Such walkers with perfectly period-doubled
vertical motion are henceforth referred to as ‘resonant walkers’.

Oza, Rosales & Bush (2013) developed a pilot-wave model to describe the
horizontal motion of resonant walkers. By time-averaging the full model of the
coupled horizontal and vertical dynamics developed by Moláček & Bush (2013b), they
derived an integro-differential trajectory equation to describe the horizontal motion
of a resonant walker in the absence of boundaries and external forces. The model
provides rationale for the observation that the bouncing state destabilizes into straight-
line walking for γ >γW , and yields a formula for the walking speed that is consistent
with experimental observations. The authors also analysed the stability of the steady
walking state, and concluded that resonant walkers are stable to perturbations in the
direction of motion, and neutrally stable to lateral perturbations. We here adopt their
model in order to describe pilot-wave dynamics in a rotating frame.

2. Physical picture
We consider the behaviour of walkers on a circular bath of radius Rb rotating with

angular frequency Ω = Ω ẑ about its centreline, the physical system first considered
by Fort et al. (2010). The centrifugal force on the bath will induce a parabolic
deformation of the fluid interface of the form

h0(r)=H − Ω
2R2

b

4g
+ Ω

2

2g
r2, (2.1)

where H is the depth of the fluid at rest and r the radial distance from the rotation
axis. Classically, a ball rolling with speed u0 on a rotating frictionless parabolic
table of height h0(r) will execute an inertial orbit of radius rc, in which the radially
outwards centripetal force mu2

0/rc is balanced by the inward Coriolis force 2mΩu0, so
rc= u0/2Ω . Fort et al. (2010) found that walkers on a rotating bath likewise execute
circular orbits, and characterized the dependence of the orbital radii on the rotation
rate Ω . In the low-memory limit, the walker’s orbital radii decrease monotonically
and continuously with Ω according to the formula r0 = au0/2Ω , where 1.26 a6 1.5
is a fitting parameter. One contribution of this study will be to deduce a formula for
the factor a and rationalize the difference between r0 and rc on physical grounds.

At high memory, Fort et al. (2010) demonstrated that the behaviour is markedly
different: the orbital radius r0 no longer varies continuously with Ω , and the orbital
radii become quantized. The authors also report orbital degeneracy and hysteresis,
in that two different orbital radii may be observed for the same rotation rate Ω ,
depending on whether Ω is approached from above or below. They suggest that
the wave force on the drop in the high-memory regime reduces to that of a single
diametrically opposed image source, proposing the governing equation

mu2
0

r0
= 2mΩu0

a
+K cos(2kFr0), (2.2)

where K is a constant. The range of validity of this approximation will be made clear
in § 4.3.
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As the Coriolis force −2mΩ × ẋp on the walker in a rotating container is similar
in form to the Lorentz force −qB × ẋp on an electron in a uniform magnetic field
B = Bẑ (Weinstein & Pounder 1945), Fort et al. (2010) propose a correspondence
between the quantized orbits of walkers and Landau levels. They observe that in the
high-memory regime, the quantized orbital radii approximately satisfy the relation

r0

λF
= b2

a

(
n+ 1

2

)
, for integer n> 0, (2.3)

where the prefactors a≈ 1.5 and b≈ 0.89 were deduced empirically. This is similar
in form to the quantized Larmor radii rL of an electron in a uniform magnetic field

rL

λdB
= 1

π

(
n+ 1

2

)
, (2.4)

where λdB is the de Broglie wavelength. In § 4.3, we shall demonstrate that the
quantized orbital radii in the high-memory regime are better approximated in terms
of the zeros of the Bessel function J0(kFr0).

Eddi et al. (2012) examined two identical walkers orbiting each other in a rotating
frame. The authors observed that the orbital radii of co-rotating orbits (orbits that
rotate in the same sense as the fluid bath) increase with the rotation rate, while those
of counter-rotating orbits decrease. The difference 1r depends linearly on the rotation
rate Ω , which suggests an analogy with the Zeeman effect from quantum mechanics
(Cohen-Tannoudji, Diu & Laloë 1977). An analogous level-splitting phenomenon will
be explored here for the case of single walkers moving on circular orbits.

Harris & Bush (2014) presented the results of a comprehensive experimental study
of walkers in a rotating frame, in which they observed a number of effects not
reported by Fort et al. (2010). In particular, they found that orbital quantization
only exists for a finite range of memory Me. As Me is progressively increased, the
circular orbits destabilize into wobbling states, and subsequently into more complex
trajectories. In the high-memory limit, the drop’s trajectory becomes irregular, its
radius of curvature oscillating erratically between those of accessible but unstable
circular orbits. The histogram describing the trajectory’s local radius of curvature
thus takes a wavelike form, with peaks on the radii of the unstable orbital solutions.
While the drop’s trajectory is chaotic, the influence of the unstable orbital solutions
is thus reflected in its wavelike statistical behaviour.

The goal of the current study is to use the approach developed by Oza et al. (2013)
to examine the influence of rotation on the orbital motion of drops in a rotating frame.
We here introduce the orbital memory parameter MO

e = TFMe/TO, where TO≈ 2πr0/u0
is the walker’s orbital period. In the high-orbital-memory regime MO

e � 1, the drop
completes an orbit before the local Faraday waves have decayed, thus interacting with
its own wake. Its trajectory is thus strongly influenced by its history, as is stored in
the wave field. We here rationalize the emergence of quantized orbits by assessing the
linear stability of circular orbits. Moreover, we rationalize the observations of Harris
& Bush (2014) that the circular orbits generally become unstable in the high-memory
limit.

In § 3, we derive an integro-differential equation of motion for a drop in a rotating
frame by adapting the model of Oza et al. (2013). In § 4, we study the dependence
of the orbital radius on the rotation rate in various memory regimes, showing that
the theoretical predictions compare favourably to recent experimental data (Harris &
Bush 2014). The stability of the orbital solutions is analysed in § 5, which allows us
to rationalize the emergence of quantized orbits in the intermediate memory regime,
and their disappearance at high memory. Future directions are discussed in § 6.
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3. Trajectory equation
Consider a drop of mass m and radius RD walking on the surface of a fluid bath

vibrating with vertical acceleration γ cos(2πft). Let xp(t) = (xp(t), yp(t)) denote the
horizontal position of the drop at time t. We assume the drop to be in a resonant
state, so that its vertical motion is periodic with period TF= 2/f . The horizontal force
balance, time-averaged over the bouncing period, yields the equation of motion

mẍp +Dẋp =−mg∇h(xp, t) (3.1)

(Oza et al. 2013), where the wave field generated by the walker is given by

h(x, t)= A
TF

∫ t

−∞
J0
(
kF

∣∣x− xp(s)
∣∣) e−(t−s)/(TFMe) ds. (3.2)

The drop experiences a propulsive wave force −mg∇h(xp, t) and a time-averaged drag
force −Dẋp, where formulae for the amplitude A and time-averaged drag coefficient
D are given in table 1 (Moláček & Bush 2013b). The first term in the formula for
D results from the drag induced on the drop during impact, the second from its free
flight. During each impact, the walker generates a monochromatic standing wave
with spatial amplitude profile J0

(
kF

∣∣x− xp

∣∣) and decay time TFMe (Moláček & Bush
2013b). We assume the wave field to be linear, so that h(x, t) may be expressed
as the sum of the waves generated prior to time t. The wave field (3.2) is obtained
by approximating the resulting discrete sum as an integral, an approximation that is
valid provided the timescale of horizontal motion TH = λF/|ẋp| is much greater than
the timescale TF of vertical motion, as is the case in the experiments. The Faraday
wavenumber kF is well approximated by (1.1), as the effect of the rotation on the
dispersion relation is negligible in the regime of interest, Ω� f .

We refer to (3.1)–(3.2) as the stroboscopic approximation since, by averaging over
the vertical dynamics, we have eliminated consideration of the drop’s vertical motion.
The drop is thus effectively ‘strobed’ at the bouncing frequency, and approximated as
a continuous moving source of standing waves. The richness of this pilot-wave system
arises through the propulsive wave force −mg∇h(xp, t) that depends explicitly on the
walker’s past. We note that the dominant contribution to the integral comes from its
recent past, specifically t − s ∼ O(TFMe), so the drop is influenced by more of its
history as the memory Me increases.

If the container is forced below the walking threshold, the drop simply bounces
in place, as the bouncing solution xp ≡ constant is stable for γ < γW (Oza et al.
2013). When forced above the walking threshold (γ > γW), the bouncing solution
destabilizes into a stable walking solution xp(t)= u0t(cos θ, sin θ), where the arbitrary
angle θ determines the walking direction. The balance between the wave and drag
forces determines the speed u0. Formulae for γW and u0 in terms of experimental
parameters are provided in table 1 (Oza et al. 2013).

In a container rotating about its vertical centreline with angular frequency Ω =Ω ẑ,
there are three additional physical effects. The drop experiences a Coriolis force
−2mΩ × ẋp and centrifugal force −mΩ × (Ω × xp

)
, fictitious forces arising when

Newton’s laws are written in the rotating frame. It also experiences an additional
time-averaged propulsive force −F(t)∇h0(xp) resulting from the parabolic deformation
of the fluid interface, where h0(x) is given by (2.1) and F(t) is the instantaneous
vertical force acting on the drop. Since the drop’s vertical motion is periodic, the
average vertical force must equal the drop’s weight, so F(t)=mg (Moláček & Bush
2013b). As the timescale of the drop’s horizontal motion is much larger than the
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Dimensional variables Definition

xp Drop position
m Drop mass
RD Drop radius
ν Fluid kinematic viscosity
νeff Effective fluid kinematic viscosity

(Moláček & Bush 2013b)
σ Fluid surface tension
ρ Fluid density
µa Air dynamic viscosity
ρa Air density
f Forcing frequency
γ Forcing acceleration
γF Faraday instability threshold
g Gravitational acceleration
TF = 2/f Faraday period
Td Decay time of waves

without forcing
λF Faraday wavelength
kF = 2π/λF Faraday wavenumber
Φ Mean phase of wave during

contact time

D= 0.17mg
√

ρRD
σ
+ 6πµaRD

(
1+ ρagRD

12µaf

)
Drag coefficient

A= 1√
2π

kFRD
3k2

FR2
D+Bo

RDk2
Fν

1/2
eff

σ
√

TF
mgTF sinΦ Amplitude of single surface wave

F=mgAkF Wave force coefficient

γW = γF

(
1−

√
FkFT2

d
2DTF

)
Walking threshold

u0 = 1
kFTd

(
1− γ

γF

)




1
4

[
−1+

√
1+ 8

(
γF−γW
γF−γ

)2
]2

− 1





1/2

Walking speed

Ω =Ω ẑ Angular frequency of fluid bath
r0 Orbital radius
ω Orbital frequency

Non-dimensional variables

Bo= ρgR2
D

σ
Bond number

Me = Td
TF(1−γ /γF)

Memory

κ = m
DTFMe

Non-dimensional mass

β = FkFTFM2
e

D Non-dimensional wave
force coefficient

Ω̂ = 2mΩ
D Non-dimensional angular frequency

of fluid bath
r̂0 = kFr0 Non-dimensional orbital radius
ω̂=ωTFMe Non-dimensional orbital frequency
MO

e = ω̂

2π
Orbital memory

TABLE 1. The variables appearing in the trajectory equations (3.3) and (3.4).
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bouncing period, we may approximate F(t)∇h0(xp) as mΩ2xp, which precisely cancels
the centrifugal force. We thus obtain the integro-differential equation of motion

mẍp +Dẋp = F
TF

∫ t

−∞

J1
(
kF

∣∣xp(t)− xp(s)
∣∣)

∣∣xp(t)− xp(s)
∣∣ (xp(t)− xp(s))e−(t−s)/(TFMe) ds

− 2mΩ × ẋp, (3.3)

where F = mgAkF. We note that this equation simply corresponds to the pilot-wave
trajectory equation (3.1) augmented by the Coriolis force.

We now non-dimensionalize (3.3) by introducing the dimensionless variables x̂ =
kFx and t̂ = t/(TFMe). Using primes to denote differentiation with respect to t̂, the
non-dimensional equation of motion becomes

κ x̂′′p + x̂′p = β
∫ t̂

−∞

J1(|x̂p(t̂)− x̂p(ŝ)|)
|x̂p(t̂)− x̂p(ŝ)| (x̂p(t̂)− x̂p(ŝ))e−(t̂−ŝ) dŝ− Ω̂ × x̂′p, (3.4)

where κ = m/DTFMe, β = FkFTFM2
e/D and Ω̂ = 2mΩ/D represent, respectively,

the non-dimensional mass, wave force coefficient and rotation rate. The variables
appearing in (3.3) and (3.4) are listed in table 1. Note that the model has no free
parameters: formulae for D and A are derived by Moláček & Bush (2013b), and Td
and γF can be determined numerically (Kumar 1996; Moláček & Bush 2013b). We
proceed by examining the extent to which (3.3) describes the trajectory of a drop
walking in a rotating frame.

4. Orbital solutions
We seek orbital solutions with constant radius r̂0 and orbital frequency ω̂, and so

substitute x̂p = (r̂0 cos ω̂t̂, r̂0 sin ω̂t̂) into (3.4). The integro-differential equation thus
reduces to a system of algebraic equations that define r̂0 and ω̂ in terms of Me and Ω̂:

−κ r̂0ω̂
2 = β

∫ ∞

0
J1

(
2r̂0 sin

ω̂z
2

)
sin

ω̂z
2

e−z dz+ Ω̂ r̂0ω̂

r̂0ω̂= β
∫ ∞

0
J1

(
2r̂0 sin

ω̂z
2

)
cos

ω̂z
2

e−z dz.





(4.1)

The predictions of (4.1) for the dependence of r0 and ω on γ /γF and Ω are
compared with the experimental data of Harris & Bush (2014) in figures 1 and 2.
The theoretical predictions are generated as follows. The drop radius RD determines
the drag coefficient D (table 1). The dimensionless forcing acceleration γ /γF and the
decay time Td ≈ 0.0174 s for 20.9 cSt oil (Moláček & Bush 2013b) determine the
memory parameter Me through (1.2). Using the formulae in table 1, the experimentally
observed free walking speed u0 is used to determine the wave amplitude A, which
in turn determines the phase Φ. The values of sin Φ so obtained are within 30 %
of those reported in Moláček & Bush (2013b). Given the values of D, A and Me,
the non-dimensional parameters κ , β and Ω̂ are determined through the definitions
in table 1. The algebraic equations (4.1) are then solved numerically, yielding the
orbital radius r0 and frequency ω as functions of Ω . In figures 1 and 2, stable
orbital solutions are indicated in blue, while unstable orbital solutions are indicated
in red and green. The rationale for the stability of the orbital solutions, and so the
distinction between the blue, red and green regions, will be described in § 5.

The wave fields h(x, t) accompanying the orbiting drop, as computed on the basis
of (3.2), are shown in figure 3. Note that interference effects in the wave field become
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FIGURE 1. The predicted dependence of the orbital radius r0 (a,c) and orbital frequency ω
(b,d) on the bath’s rotation rate Ω in the low-memory regime. The dotted lines represent
the standard prediction for inertial orbits: (a) r0= u0/2Ω; (b) ω=−2Ω . The solid curves
are the theoretical predictions determined by solving (4.1) with experimental parameters
corresponding to the data reported by Harris & Bush (2014), who used a silicone oil of
viscosity ν = 20.9 cSt, density ρ = 950 kg m−3, surface tension σ = 0.0206 N m−1 and
forcing frequency f = 80 Hz. There are no fitting parameters. For (a,b), γ /γF= 0.822, free
walking speed u0 = 9.0 mm s−1 and drop radius RD = 0.4 mm. For (c,d), γ /γF = 0.922,
u0 = 9.5 mm s−1 and RD = 0.4 mm. Note that both r0 and ω vary continuously with the
rotation rate Ω .

more pronounced as the memory increases. We proceed by investigating the properties
of these orbital solutions.

4.1. Low orbital memory MO
e � 1

We first consider the low-orbital-memory regime MO
e � 1, in which the drop’s orbital

period is much less than the decay time of the Faraday waves; consequently, the drop
does not interact with its own wake. Since the dimensionless orbital frequency is ω̂=
ωTFMe = 2πMO

e , we note that MO
e � 1 is equivalent to |ω̂| � 1. In this limit, the

defining equations (4.1) for the orbital radius and orbital frequency yield, to leading
order in ω̂,

−κ r̂0ω̂
2 − Ω̂ r̂0ω̂ = β

[
ω̂

2

∫ ∞

0
zJ1(r̂0ω̂z)e−z dz+O(ω̂3)

]
,

r̂0ω̂ = β

[∫ ∞

0
J1(r̂0ω̂z)e−z dz+O(ω̂2)

]
.





(4.2)
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FIGURE 2. The predicted dependence of the orbital radius r0 (a,c) and orbital frequency
ω (b,d) on the bath’s rotation rate Ω in the high-memory regime. The curves are
the theoretical predictions determined by solving (4.1) with the experimental parameters
corresponding to the data reported by Harris & Bush (2014), who used a silicone oil
of viscosity ν = 20.9 cSt, density ρ = 950 kg m−3, surface tension σ = 0.0206 N m−1

and forcing frequency f = 80 Hz. There are no fitting parameters. The blue portions of
the curves are stable, while the red and green portions are unstable (see § 5). For (a,b),
γ /γF=0.954, RD=0.43 mm and u0=12.0 mm s−1. For (c,d), γ /γF=0.971, RD=0.4 mm
and u0 = 10.9 mm s−1 (�) and 11.7 mm s−1 (�). The theoretical curves in (c,d) are
constructed using the average of the observed u0 values. Note that both r0 and ω are
quantized.

As discussed in appendix A, this approximation is valid even for arbitrarily large r̂0.
Both integrals in (4.2) can be evaluated exactly, yielding

− κ r̂0ω̂
2 − Ω̂ r̂0ω̂= β r̂0ω̂

2

2(1+ (r̂0ω̂)2)3/2
, r̂0ω̂= β

r̂0ω̂

(
1− 1√

1+ (r̂0ω̂)2

)
. (4.3)

The second equation allows us to solve for the orbital walking speed û≡ |r̂0ω̂|:

û≡ |r̂0ω̂| = 1√
2

(
−1+ 2β −√1+ 4β

)1/2
. (4.4)

This is the same as the formula for the free speed û0 of a walker on a non-rotating
bath (Oza et al. 2013), the non-dimensional equivalent of that given in table 1.
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FIGURE 3. Plots of the wave field (3.2) accompanying a drop of viscosity ν = 20.9 cSt,
density ρ = 950 kg m−3, surface tension σ = 0.0206 N m−1, period TF = 0.025 s,
radius RD = 0.4 mm and phase sin Φ = 0.16. The amplitude of the wave field is
in units of micrometres. The drop (black dot) orbits clockwise according to xp(t) =
(r0 cos ωt, r0 sin ωt), with orbital radius r0 = 0.95λF and orbital frequency ω defined by
(4.1). The forcing accelerations are (a) γ /γF = 0.822, (b) γ /γF = 0.922, (c) γ /γF = 0.954
and (d) γ /γF = 0.971. The walking threshold in the absence of rotation is γW/γF = 0.806.
Note that interference effects in the wave field become more pronounced with increased
forcing and path memory.

Substituting (4.4) into the first equation of (4.3) yields a formula for the orbital
frequency ω̂:

ω̂=−Ω̂
(
κ + β

2
(
1+ û2

0

)3/2

)−1

=−Ω̂
(
κ + 4β

(−1+√1+ 4β
)3

)−1

(4.5)

since
√

1+ û2
0= 1

2(−1+√1+ 4β). The solutions (4.4) and (4.5) are compatible with
the initial assumption |ω̂| � 1 provided that |Ω̂| � κ + 4β/(−1+√1+ 4β)3.

In dimensional units, the orbital frequency ω and radius r0 are given by

ω=−2Ω
a
, r0 = au0

2Ω
, (4.6)
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xp(t – 2TF)

F

FIGURE 4. (Colour online) Schematic (top view) of the wave force acting on the walker
in the low-memory regime. The walker orbits in a circle of radius r0 with angular speed
u0= |r0ω| while bouncing with period TF on a fluid bath rotating with angular frequency
Ω . The force F acting on the drop at x= xp(t) is primarily due to the wave created by
the prior bounce at x = xp(t − TF), whose form is suggested by the circular wave crest.
The radial component of the force is |F| sin θ . The wave force thus causes the observed
orbital radius r0 = au0/2Ω to be larger than the inertial orbital radius rc = u0/2Ω .

where

a= 1+ 4β

κ
(−1+√1+ 4β

)3 = 1+ 4FM3
e T2

FkF

m
(−1+√1+ 4FM2

e TFkF/D
)3 . (4.7)

Over the parameter regime explored in the experiments of Harris & Bush (2014),
a was measured to be 1.51, and calculated using (4.7) to be 1.41. Both results are
consistent with the empirical deduction of a= 1.2–1.5 reported by Fort et al. (2010).
Plots of the drop’s orbital radius and orbital frequency as a function of Ω in the low-
memory regime are shown in figure 1(a,b), and adequately collapse the data presented
in Harris & Bush (2014). In figure 1(c,d), we begin to see some deviation from the
low-memory result (4.6) for the orbits of smallest radius, as these orbits have the
longest orbital memory.

The a-factor, and the associated increase of the orbital radius relative to inertial
orbits, may be understood in terms of the geometry of the wave force. Figure 4 shows
that the force F on the drop due to the wave generated during its prior impact has
a component |F| sin θ = |F| u0TF/2r0 that points radially outwards. In the low-orbital-
memory regime, the drop’s trajectory is primarily influenced by the waves generated
by a few prior impacts, all of which make contributions pointing radially outwards.
The prefactor a can thus be understood as originating from the dynamic influence
of the walker’s guiding wavefield. Alternatively, the anomalously large radius of the
walker’s orbit may be understood as resulting from an increased effective mass m̃
associated with its wave field, as (4.3) may be expressed in dimensional form as

m̃u2
0

r0
= 2mΩu0, where

m̃
m
= a. (4.8)

4.2. Mid-memory MO
e =O(1): orbital quantization

In the low-orbital-memory regime MO
e � 1, the drop’s orbital radius r0 is a

monotonically decreasing function of the rotation rate Ω , as shown in figure 1.
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Solving the algebraic equations (4.1) numerically indicates that such is no longer the
case in the mid-orbital-memory regime MO

e = O(1), which arises at higher forcing
acceleration γ /γF. The solution curve first develops an inflection point and then
two turning points. More turning points appear with increasing memory Me, as
shown in figure 2(a,c). In § 5, we will show that the regions of the solution curves
with positive slope represent unstable orbital solutions. The unstable regions of the
solution curve represent forbidden orbital radii. This demonstrates the origins of
orbital quantization: the set of observable orbital radii is discrete and discontinuous.
This system represents a classical analogue of the quantized Landau levels of an
electron in a uniform magnetic field (Fort et al. 2010). Here, however, the walker’s
orbital quantization can be rationalized in terms of its pilot-wave dynamics.

We follow the convention of Fort et al. (2010) for numbering the orbits, the smallest
being denoted by n= 0. At certain rotation rates, orbital degeneracy arises: multiple
orbits of different radii may exist for a fixed rotation rate. The orbital degeneracy
becomes even more pronounced at high memory, as we observe the coexistence of
up to three possible radii for a single rotation rate. Even at the highest path memory
considered, as the orbits become larger in radius, they cease to be quantized, and
the data essentially follows the low-memory curve. This might be anticipated on the
grounds that, for sufficiently large radii, the drop is in the low-orbital-memory regime
MO

e � 1: its orbital period TO≈ 2πr0/u0 is much longer than the decay time TFMe of
its wave field.

The equations in (4.1) adequately capture the observed dependence of the orbital
radius r0 and frequency ω on Ω and Me. Note that, in figure 2(b,d), the largest
discrepancy between theory and experiment occurs in frequencies ω of the innermost
orbital n = 0, for which r0/λF < 0.5. Such a discrepancy might be accounted for
through a variation of the bouncing phase sinΦ for the smallest orbits.

4.3. High orbital memory MO
e � 1: an analogue Zeeman effect

The set of orbital solutions has qualitatively different behaviour in the high-orbital-
memory limit MO

e � 1, or equivalently |ω̂| � 1. Let Ω be the rotation rate of the
container, in which the drop orbits with radius r0 and orbital frequency ω. If the
container rotates in the opposite direction (with angular frequency −Ω), the drop will
clearly orbit with the same radius r0 but opposite orbital frequency −ω. Thus, the
solution curves for the orbital radii in figures 1 and 2 should be symmetric about the
vertical axis, with an additional curve corresponding to solutions with identical radii
for Ω < 0. As the memory Me increases, the solution curves approach the r0-axis and,
in the high-memory limit, eventually cross, as shown in figure 5(a). Our pilot-wave
model thus predicts the possibility of a self-orbiting solution with some radius r∗0 that
exists even in the absence of rotation, at Ω = 0. For such solutions, which might
be interpreted as ‘hydrodynamic spin states’, the waves generated by the walker are
sufficient to compensate for the absent Coriolis force, balancing the radial inertial
force and so sustaining the walker’s circular motion.

Note that the self-orbiting solutions (arising at Ω = 0) come in pairs, corresponding
to positive and negative angular frequencies ±ω∗ (figure 5c). As shown in figure 5(b),
the introduction of a finite rotation Ω > 0 causes these two degenerate solutions to
split, one with radius r0 & r∗0 and the other with r0 . r∗0 . To see this explicitly, we
seek solutions to (4.1) with high orbital memory |ω̂| � 1, which only arise in the
high-path-memory regime Me � 1. Specifically, we take β � 1, κ = O

(
β−1/2

)
, ω̂ =

O
(
β1/2

)
, Ω̂ = O(1) and r̂0 = O(1). We first use integration by parts to rewrite the
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FIGURE 5. Orbital solutions in the high-orbital-memory regime MO
e � 1. The curves are

determined by solving (4.1) numerically for γ /γF=0.985, assuming a drop of radius RD=
0.4 mm, phase sinΦ = 0.16 and free walking speed u0= 11.6 mm s−1. Both the red and
green portions of the curves represent unstable solutions (see § 5). (a) Orbital radii as a
function of Ω . (b) Orbital radii for which Ω>0. (c) Orbital frequencies ω as a function of
Ω . The analogue Zeeman effect is apparent in (b), as the self-orbiting solutions of radius
r∗0 at Ω = 0 split into two solutions as Ω is increased. The adjoining co-rotating orbital
solutions (ω > 0) have slightly larger orbital radii than their counter-rotating counterparts
(ω< 0), the difference 1r0 being defined in (4.17).

second equation in (4.1) in the form

r̂0ω̂= β

r̂0ω̂

[
1−

∫ ∞

0
J0

(
2r̂0 sin

ω̂z
2

)
e−z dz

]
. (4.9)

For a 2π-periodic even function f (x) and 0< ε� 1, we have the approximation

ε

∫ ∞

0
f (x)e−εx dx= ε

1− e−2πε

∫ 2π

0
f (x)e−εx dx= 1

2π

∫ 2π

0
f (x) dx+O(ε2), (4.10)

from which it follows that
∫ ∞

0
J1

(
2r̂0 sin

ω̂z
2

)
sin

ω̂z
2

e−z dz= 1
2π

∫ 2π

0
J1
(
2r̂0 sin x

)
sin x dx+O

(
ω̂−2

)
, (4.11a)

∫ ∞

0
J0

(
2r̂0 sin

ω̂z
2

)
e−z dz= 1

2π

∫ 2π

0
J0
(
2r̂0 sin x

)
dx+O

(
ω̂−2

)
. (4.11b)
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We simplify these integrals by using the identity (Watson 1966, p. 151)
∫ π/2

0
Jp−q (a cos x) cos(p+ q)x dx= π

2
(−1)qJp(a/2)Jq(a/2), p, q integers (4.12)

which implies that
∫ π/2

0
J1(a cos x) cos x dx= π

2
J0(a/2)J1(a/2), (p= 1, q= 0), (4.13a)

∫ π/2

0
J0(a cos x) cos x dx= π

2
J2

0(a/2), (p= 0, q= 0). (4.13b)

Letting x→ x+π/2, we find that

1
2π

∫ 2π

0
J1(a sin x) sin x dx= J0(a/2)J1(a/2),

1
2π

∫ 2π

0
J0(a sin x) dx= J2

0(a/2), (4.14)

and thus obtain the high-orbital-memory limit of (4.1):

−κ r̂0ω̂
2 = β [J0(r̂0)J1(r̂0)+O

(
ω̂−2
)]+ Ω̂ r̂0ω̂

r̂0ω̂= β

r̂0ω̂

[
1− J0(r̂0)

2 +O
(
ω̂−2
)]
.



 (4.15)

Let r̂∗0 be a zero of either J0(r) or J1(r). To leading order in β, the orbital radius r̂0
and frequency ω̂ are

r̂0 = r̂∗0 +
κ r̂∗0ω̂

∗2

β

(
1+ Ω̂

κω̂∗

)

×
{

J1(r̂∗0)
−2, if J0(r̂∗0)= 0

− [J0(r̂∗0)J
′
1(r̂
∗
0)
]−1

, if J1(r̂∗0)= 0.
+O

(
β−1
)
, (4.16a)

ω̂∗ =
(
β
(
1− J0(r̂∗0)

2
)

r̂∗20

)1/2

+O (1) . (4.16b)

The radii r̂0 satisfying J1(r̂0) ≈ 0 correspond to solutions in the red portions of the
curve and are never observed experimentally, as is evident in figure 2(c), so we
instead consider the solutions with J0(r̂0)≈ 0. We note that these solutions, although
also unstable, do leave an imprint on the walker’s statistics in the high-memory
limit (Harris & Bush 2014; Oza et al. 2014b). Taking Ω̂ > 0, we see from (4.16)
that co-rotating solutions (ω̂ > 0) have slightly larger radii than the counter-rotating
solutions (ω̂ < 0). In terms of dimensional variables, the difference in radius 1r0 is
prescribed by

1r0

λF
= 2mr∗0 |ω∗|

FMeπJ1(kFr∗0)2
Ω, where r∗0 is defined by J0(kFr∗0)= 0. (4.17)

Thus, the magnitude of the splitting is proportional to the rotation rate Ω . Building
upon the correspondence proposed by Fort et al. (2010) between inertial orbits
and Landau levels, we see that this orbital splitting represents a hydrodynamic
analogue of the Zeeman effect, in which an electron’s degenerate energy level splits
in the presence of a uniform magnetic field. For weak fields, the size of the split
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is proportional to the strength of the magnetic field. We note that this splitting is
similar in form to that reported by Eddi et al. (2012) for orbiting pairs of walkers in
a rotating frame, but would apply to single orbiting walkers were such hydrodynamic
spin states stable.

We observe from (4.16a) that, in the high-orbital-memory regime, the physically
significant orbital radii may be approximated by the zeros of the Bessel function
J0(kFr). We note that the approximation (2.3) proposed by Fort et al. (2010) is
consistent with this result for large r0. Indeed, using the approximation Jα(x) ≈√

2/πx cos (x− απ/2−π/4) for x � |α2 − 1/4|, the radial equation in (4.15) for
counter-rotating solutions (ω< 0) can be expressed as

mu2

r0
≈ 2mΩu+ FMe

πkFr0
cos (2kFr0) , where u= r0|ω|. (4.18)

This is similar in form to the high-memory governing equation (2.2) proposed by
Fort et al. (2010), which was derived using purely geometrical arguments. Both
equations indicate that most of the sources on the circle cancel out, and that the
droplet essentially orbits in the wave field created by a virtual droplet of mass
m̃ = mMe/πkFr0 on the opposite side of the circle. However, we expect (4.18) to
be valid only for sufficiently large orbital radii r0, for which the large-argument
approximation for Jα(x) may be safely applied.

4.4. Trapped states
We now consider orbits of small radius, specifically r0� λF/2. In the limit of r0→ 0,
the non-dimensional equations (4.1) reduce to

− κω̂2
0 − Ω̂0ω̂0 = β

∫ ∞

0
sin2 ω̂0z

2
e−z dz, ω̂0 = β2

∫ ∞

0
sin ω̂0z e−z dz (4.19)

where ω̂0, Ω̂0 are the values corresponding to the r̂0 = 0 solution. The integrals can
be evaluated explicitly, which yields the system of equations

κω̂2
0 + Ω̂0ω̂0 =− βω̂2

0

2
(
1+ ω̂2

0

) , ω̂0 = βω̂0

2
(
1+ ω̂2

0

) (4.20)

with solutions

ω̂0 =±
√
β

2
− 1, Ω̂0 =−ω̂0 (1+ κ) . (4.21)

We call these solutions trapped states, as they have infinitesimal radius but finite
orbital frequency. In terms of dimensional variables, the angular frequencies ω0 and
Ω0 corresponding to these trapped states are

ω0 = 1
TFMe

√
FkFTFM2

e

2D
− 1, Ω0 = D

2m

√
FkFTFM2

e

2D
− 1

(
1+ m

DMeTF

)
. (4.22)

It is shown in Oza, Bush & Rosales (2014a) that the bouncing state xp ≡ constant
is stable for |Ω|>Ω0. That is, even above the walking threshold (γ > γW), the drop
will simply bounce in place if the rotation rate is sufficiently high (|Ω| > Ω0). The
stability of the bouncing state is determined by the balance between the destabilizing
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FIGURE 6. The critical rotation rate for trapping Ω0 as defined by (4.22) is plotted as
a function of the non-dimensional forcing acceleration γ /γF. The drop bounces in place
for |Ω|>Ω0 (Oza et al. 2014a). We assume a drop of radius RD = 0.4 mm and phase
sinΦ= 0.16, for which the walking threshold in the absence of rotation is γW/γF = 0.806.

wave force and the stabilizing effects of the drag force (which opposes the drop’s
motion) and the Coriolis force (which radially confines the drop).

Figure 6 shows that the critical rotation rate required for trapping, Ω0, is
an increasing function of the forcing acceleration γ , and diverges as γ → γF.
Experimental validation of the curve presented in figure 6 was impractical owing
to the significant deflection of the free surface at high Ω , which caused the Faraday
threshold to be spatially non-uniform. Thus, the prediction (4.22) for the critical
rotation rate Ω0 could not be tested reliably with our experimental arrangement.

5. Orbital stability
In order to rationalize the observed orbital quantization, we proceed by analysing

the stability of the orbital solutions found in § 4. To this end, we write xp(t) =
(r(t) cos θ(t), r(t) sin θ(t)) and express the non-dimensional equation of motion (3.4)
in polar coordinates, all of the variables here being non-dimensional. We thus obtain

κ
(
r̈− rθ̇ 2

)+ ṙ = β

∫ t

−∞

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)|

× [r(t)− r(s) cos (θ(t)− θ(s))] e−(t−s) ds
+Ωrθ̇ + εcrδ(t) (5.1a)

κ
(
2ṙθ̇ + rθ̈

)+ rθ̇ = β

∫ t

−∞

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)|

× r(s) sin (θ(t)− θ(s)) e−(t−s) ds
−Ω ṙ+ εr0cθδ(t), (5.1b)
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where ∣∣xp(t)− xp(s)
∣∣2 = r(t)2 + r(s)2 − 2r(t)r(s) cos (θ(t)− θ(s)) , (5.2)

and δr(t), δθ(t) are Dirac delta functions, cr, cθ are O(1) constants and 0<ε� 1. The
delta functions represent a small perturbation to the drop at time t= 0, the response
to which we examine in what follows.

We linearize (5.1) about an orbital solution of radius r0 and frequency ω,
where r0 and ω are defined by (4.1). The drop’s trajectory is thus written as
r(t) = r0 + εr1(t)H(t) and θ(t) = ωt + εθ1(t)H(t), where r1(t) and θ1(t) are the
radial and angular perturbations to the orbital solution, respectively, and H(t) is the
Heaviside step function. We impose the conditions r1(0)= θ1(0)= 0 and ṙ1(0)= cr/κ ,
θ̇1(0)= cθ/κ in order to ensure that xp(t) is a solution of (5.1). We substitute these
expressions into (5.1) and retain only the O(ε) terms to find

κ
(
r̈1 −ω2r1 − 2r0ωθ̇1

)+ ṙ1 =ωΩr1 +Ωr0θ̇1 + β2
{
I
[
(f (t)+ g(t)) sinωt

]
r0θ1(t)

− r0
[
(f (t)+ g(t)) sinωt

] ∗ θ1(t)
}+ β

{
I
[
f (t) cos2 ωt

2
+ g(t) sin2 ωt

2

]
r1(t)

+
(

g(t) sin2 ωt
2
− f (t) cos2 ωt

2

)
∗ r1(t)

}
(5.3a)

κ
(
2ωṙ1 + r0θ̈1

)+ωr1 + r0θ̇1 =−Ω ṙ1 + β2
{
I
[
(g(t)− f (t)) sinωt

]
r1(t)

+ [(f (t)+ g(t)) sinωt
] ∗ r1(t)

}+ β
{
I
[
g(t) cos2 ωt

2
− f (t) sin2 ωt

2

]
r0θ1(t)

+ r0

(
f (t) sin2 ωt

2
− g(t) cos2 ωt

2

)
∗ θ1(t)

}
(5.3b)

where

f (z)= J1(2r0 sin(ωz/2))
2r0 sin(ωz/2)

e−z, g(z)= J′1

(
2r0 sin

ωz
2

)
e−z,

I [f ] =
∫ ∞

0
f (z) dz and f ∗ g(t)=

∫ t

0
f (z)g(t− z) dz.





(5.4)

Written in this form, the linearized equations are particularly amenable to analysis, as
we can now take their Laplace transform and deduce algebraic equations for R(s)=
L [r1] and Θ(s) =L [θ1]. Using the initial conditions r1(0) = θ1(0) = 0 and ṙ1(0) =
cr/κ , θ̇1(0)= cθ/κ , we obtain

[
κs2 + s− κω2 −Ωω− βF1(s)

]
R− [2κωs+Ωωs+ βF2(s)] r0Θ = cr

[2ωκs+ω+Ωs− βG1(s)] R+ [κs2 + s− βG2(s)
]

r0Θ = r0cθ ,

}
(5.5)

where

F1(s) = I
[
f (t) cos2 ωt

2
+ g(t) sin2 ωt

2

]
+L

[
g(t) sin2 ωt

2
− f (t) cos2 ωt

2

]
(5.6a)

F2(s) = 1
2

{
I
[
(f (t)+ g(t)) sinωt

]−L
[
(f (t)+ g(t)) sinωt

]}
(5.6b)

G1(s) = 1
2

{
I
[
(g(t)− f (t)) sinωt

]+L
[
(f (t)+ g(t)) sinωt

]}
(5.6c)

G2(s) = I
[
g(t) cos2 ωt

2
− f (t) sin2 ωt

2

]
+L

[
f (t) sin2 ωt

2
− g(t) cos2 ωt

2

]
. (5.6d)
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As shown in appendix B, some of the integrals above can be done in closed form, so
(5.5) can be expressed as

[
A(s) −B(s)
C(s) D(s)

] [
R(s)

r0Θ(s)

]
=
[

cr
r0cθ

]
(5.7)

where

A(s) = κs2 + s− κω2 −Ωω− β
(
I
[
f (t) cos2 ωt

2
+ g(t) sin2 ωt

2

]

+L
[
g(t) sin2 ωt

2
− f (t) cos2 ωt

2

])
(5.8a)

B(s) = (2ωκ +Ω) s− (κω+Ω)− β
2

L
[
(f (t)+ g(t)) sinωt

]
(5.8b)

C(s) = (2ωκ +Ω) s+ 2ω+ κω+Ω − β
2

L
[
(f (t)+ g(t)) sinωt

]
(5.8c)

D(s) = κs2 + s− 1− βL
[
f (t) sin2 ωt

2
− g(t) cos2 ωt

2

]
. (5.8d)

The solution to (5.7) is

R(s) = crD(s)+ r0cθB(s)
A(s)D(s)+ B(s)C(s)

(5.9a)

Θ(s) = −crC(s)+ r0cθA(s)
r0 (A(s)D(s)+ B(s)C(s))

. (5.9b)

The poles of R(s) and Θ(s) are the eigenvalues of the linear problem (5.3). If
all of the poles lie in the left-half complex plane, the orbital solution xp(t) =
(r0 cos ωt, r0 sin ωt) is linearly stable. An instability occurs if any pole is in the
right-half complex plane.

It is shown in Oza et al. (2014a) that a necessary and sufficient condition for either
R(s) or Θ(s) to have a pole at s= s∗ is F̃(s∗; r0)= 0, where

F̃(s; r0)=
(
1− e2π(s+1)/|ω|) F(s; r0), F(s; r0)= A(s)D(s)+ B(s)C(s). (5.10)

Thus, assessing the stability of an orbital solution with radius r0 amounts to finding
the real parts of the zeros of the function F̃(s; r0). Note that we parametrize the
orbital solutions in terms of the radius r0 instead of the non-dimensional rotation
rate Ω , since ω and Ω are single-valued functions of r0. That is, the radius r0
uniquely determines the drop’s orbital frequency ω and the bath rotation rate Ω , but
multiple radii r0 could exist for a given value of Ω , as predicted by (4.1) and seen
in experiments (figure 2; see also Harris & Bush (2014) and Fort et al. (2010)).

It is shown in Oza et al. (2014a) that F̃(s; r0) has trivial zeros at s = 0 and
s=±iω, which reflect, respectively, the rotational and translational invariance of the
orbital solution. Note that F̃(s; r0) is a complicated function of s, so it is difficult
to determine its nontrivial zeros in closed form. In Oza et al. (2014a), we instead
expand F̃(s; r0) in various limits for which we can approximate its zeros and thus
assess the stability of the orbital solutions in the appropriate parameter regimes. We
show that orbits of small radius r0� 1 are stable, which confirms that the bouncing
state destabilizes into an orbital state with radius r0 ∼ |Ω0 −Ω|1/2 for Ω .Ω0. We
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also show that the stability problem for orbits of large radius r0 � √β reduces to
that for steady rectilinear walking; this is apparent on physical grounds, as such
orbits have small curvature and so can be approximated locally by a straight line.
Since steady rectilinear walking is stable (Oza et al. 2013), we expect that such large
orbits will be likewise, which is consistent with our inference that such orbits are not
quantized (figures 1 and 2).

5.1. Origin of orbital quantization
Here we demonstrate that the orbital solutions for which dΩ/dr0 > 0 are unstable.
This explains why the upward sloping branches of the solution curves in figure 2(a,c)
are never seen experimentally, a feature that is ultimately responsible for the orbital
quantization.

We proceed by proving the following result.

THEOREM 1. Orbital solutions for which dΩ/dr0 > 0 are linearly unstable, with an
instability corresponding to a real and positive eigenvalue.

Proof. Let F(s; r0) = F0(r0)s + F1(r0)s2 + O(s3). We show in appendix C that
F0(r0) = r0ωd1(dΩ/dr0), where d1 = 1 + βI

[(
f (t) sin2 (ωt/2)− g(t) cos2 (ωt/2)

)
t
]
.

Since F(s; r0) ∼ κ2s4 as s→∞, it follows that F(s; r0) has at least one positive
real root if F0(r0) < 0. Since d1 > 0 (Oza et al. 2014a) and ω < 0, F0(r0) has the
opposite sign as dΩ/dr0. It follows that F(s; r0) has at least one real positive root if
dΩ/dr0 > 0.

Figure 7 summarizes the stability characteristics of the circular orbits. For a given
value of the dimensionless forcing acceleration γ /γF, the stability of an orbital
solution of radius r0 is assessed by finding the zeros of F̃(s; r0), using the method
detailed in Oza et al. (2014a). The perturbations r1(t) and θ1(t) to the orbital solution
will behave like es∗t, where s∗ is the zero of F̃(s; r0) with the largest real part. The
points coloured in blue signify stable orbits, for which all of the zeros lie in the
left-half of the complex plane (Re(s∗) < 0). The points coloured in red and green
signify unstable orbits (Re(s∗) > 0). Unstable orbits for which s∗ has a non-zero
imaginary component (Re(s∗) > 0, Im(s∗) 6= 0) are coloured green, while those for
which s∗ is on the positive real axis (Re(s∗) > 0, Im(s∗)= 0) are coloured red.

We find that orbits for which dΩ/dr0 > 0, proven to be unstable in Theorem 1, are
contained within the red regions of figure 7. We note that the converse of Theorem 1
is not necessarily true: orbital solutions for which dΩ/dr0 < 0 are not necessarily
stable, as indicated by the green regions in figure 2(a,c). While orbital solutions are
observed within these green regions, their relatively large error bars reflect a periodic
fluctuation in the measured radius of curvature, corresponding to a wobbling orbit
(Harris & Bush 2014). We may thus surmise that the oscillatory instability is stabilized
by a nonlinear mechanism beyond the scope of our linear stability analysis.

Figure 7 indicates that all circular orbits are stable for γ /γF < 0.930. Above this
critical value, an unstable (red) solution branch arises for r0 ≈ 0.6λF, corresponding
roughly to the first positive zero of J1(kFr). Along horizontal traverse B, there are two
unstable branches, which correspond to the red portions of the curve in figure 2(a).
As γ /γF is progressively increased, more unstable red tongues arise, for increasing
orbital radius. The orbital solutions have blue, red and green branches along traverse
C (γ /γF = 0.971), corresponding to the curve presented in figure 2(c). We note that
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FIGURE 7. Orbital stability diagram for a walker of radius RD = 0.4 mm, phase sinΦ =
0.16, viscosity ν = 20.9 cSt, and forcing frequency f = 80 Hz, determined by finding
the eigenvalues of the linear stability problem (5.3). The stability of the circular orbit
is governed by the eigenvalue with the largest real part, denoted by s∗. Stable orbits
(Re(s∗) < 0) are indicated in blue. Unstable orbits for which s∗ is complex (Re(s∗) > 0,
Im(s∗) 6= 0) are coloured in green, while those for which s∗ is on the positive real axis
(Re(s∗) > 0, Im(s∗)= 0) are coloured in red. The horizontal traverses A–C correspond to,
respectively, the curves in figures 1(c), 2(a) and 2(c), the colour coding being the same.
We note that the phase sinΦ and drop radius RD vary slightly between the traverses A–C
but are assumed to be fixed in the orbital stability diagram.

wobbling orbits have been observed inside the green regions (Harris & Bush 2014).
Moreover, there is experimental and numerical evidence of more complex periodic
and quasiperiodic orbits within the green regions as the memory is further increased
(Harris & Bush 2014; Oza et al. 2014b). The lateral extent of the unstable regions
increases with increasing memory; consequently, virtually all of the orbital solutions
become unstable in the high-memory limit γ → γF. It is in this limit that a wave-
like statistical behaviour emerges from a chaotic pilot-wave dynamics (Harris & Bush
2014; Oza et al. 2014b).

6. Discussion
We have developed and analysed an integro-differential trajectory equation that

describes the pilot-wave dynamics of a walker in a rotating frame. The theoretical
predictions for the walker’s orbital radius r0 and frequency ω agree well with the
experimental results of Harris & Bush (2014). Specifically, our model allows us to
rationalize the emergence of quantized orbits and wobbling states as the memory
is increased progressively, as well as the relative absence of stable orbits in the
high-memory limit. The theory also predicts the existence of trapped states, which
are orbital solutions of small radius r0 ∼ |Ω0 −Ω|1/2 that arise for Ω .Ω0.

In the low-orbital-memory regime, the walker is found to execute circular orbits of
radius r0 = au0/2Ω , where a is defined in terms of experimental parameters in (4.7).
The factor a originates from the small radial component of the wave force, and can
be interpreted in terms of an added mass associated with the walker’s pilot-wave field.
In the mid-memory regime, the orbital radii are found to be quantized. The orbital
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quantization has been rationalized by analysing the stability of the orbital solutions.
Orbits on the portions of the solution curves in figure 2(a,c) with positive slope are
found to be unstable.

As the memory is increased further, the theory predicts the existence of self-orbiting
solutions, even at Ω = 0, wherein the wave force balances the centripetal force. Such
self-orbiting states might represent a hydrodynamic analogue of a quantum spin
state. Indeed, the self-orbiting solution is reminiscent of the Kerr–Newman model
of the electron, in which the electron is modelled as a charged particle orbiting in
its own wave field (Burinskii 2008). These hydrodynamic ‘spin states’ have not yet
been observed in experiments, and are unstable according to linear stability theory;
nevertheless, it is conceivable that they could be stabilized by nonlinear effects, a
possibility to be explored elsewhere. When subjected to rotation, the solutions that co-
rotate with the bath would have slightly larger orbital radii than their counter-rotating
counterparts, an effect reminiscent of Zeeman splitting in quantum mechanics.

In the future, we will analyse the transition from simple orbital to chaotic dynamics
in greater detail. There is evidence that Hopf-like bifurcations of the orbital solutions
lead to wobbling orbits, as reported in § 5, which will be examined in Oza et al.
(2014b). Higher-order instabilities may give rise to precessing orbits, intermittent
wobbling, and complex quasiperiodic orbits, all of which have been observed either
in our experiments (Harris & Bush 2014) or numerical simulations (Oza et al. 2014b).
We will also analyse the statistical behaviour of the walker’s motion, characterizing
the emergence of wave-like statistics in the high-memory limit (Harris & Bush 2014;
Oza et al. 2014b).

A similar approach will be applied to analysing walkers moving in a central
force field, a configuration currently being examined experimentally by Couder
and coworkers (Perrard et al. 2014). The integro-differential equation of motion has
adequately captured the observed behaviour of a walker in a rotating frame; moreover,
it has allowed us to make predictions that have been confirmed experimentally. Having
benchmarked our pilot-wave model against experimental data in this configuration,
our hope is that we may now apply it to systems that are not necessarily accessible
in the laboratory.
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Appendix A. Asymptotic expansion of (4.1) in the low-orbital-memory regime
|ω̂| � 1

In § 4.1, we analysed the properties of orbital solutions in the low-orbital-memory
regime |ω̂| � 1, approximating (4.1) by (4.2). This can be justified as follows.
Due to the exponential terms in the integrands, the dominant contribution to the
integrals in (4.1) comes from the region z∼O(1). We thus make the approximations
sin (ω̂z/2)≈ ω̂z/2, cos (ω̂z/2)≈ 1 and J1

(
2r̂0 sin (ω̂z/2)

)≈ J1
(
r̂0ω̂z

)
, which are valid

provided |ω̂| � 1 and r̂0|ω̂|3 � 1. Nevertheless, we claimed that this approximation
may be applied even for arbitrarily large values of r̂0. We here use a simplified set
of equations to illustrate why this is the case.
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For the remainder of this section, we understand the variables to be non-dimensional
and drop all carets. We consider the equations

−κr0ω
2 −Ωr0ω = β

∫ ∞

0
J1

(
r0ωz− r0ω

3z3

24

)
ωz
2

e−z dz,

r0ω = β

∫ ∞

0
J1

(
r0ωz− r0ω

3z3

24

)
e−z dz.





(A 1)

These equations are more tractable than (4.1) and have the same qualitative behaviour,
so we use them to illustrate why the low-orbital-memory approximation (4.2) is valid
for arbitrarily large values of r0.

Assuming that u= r0ω is bounded, we may Taylor expand the Bessel function, since
|ω| � 1 and z∼O(1). We thus obtain

J1

(
r0ωz− r0ω

3z3

24

)
= J1(r0ωz)+

∞∑

n=1

(−1)n

n! J(n)1 (r0ωz)
(

r0ω
3z3

24

)n

= J1(uz)+
∞∑

n=1

(−1)nω2nun

24nn! J(n)1 (uz)z3n, (A 2)

which yields the asymptotic expansion
∫ ∞

0
J1

(
r0ωz− r0ω

3z3

24

)
ωz
2

e−z dz = uω

2
(
1+ u2

)3/2 +R1, (A 3a)

∫ ∞

0
J1

(
r0ωz− r0ω

3z3

24

)
e−z dz = 1

u

(
1− 1√

1+ u2

)
+R2, (A 3b)

where

R1 ∼ ω

2

∞∑

n=1

(−1)nω2nun

24nn!
∫ ∞

0
J(n)1 (uz)z3n+1e−z dz, (A 4a)

R2 ∼
∞∑

n=1

(−1)nω2nun

24nn!
∫ ∞

0
J(n)1 (uz)z3ne−z dz. (A 4b)

As shown at the conclusion of this appendix, the integrals in R1 and R2 may be
evaluated exactly, yielding

R1 ∼ ω

2u

∞∑

n=1

(−1)n+1(3n+ 1)!ω2n

24nn!
n+1∑

j=0

(−1)j
(

n+ 1
j

)P3n+1−j

(
1/
√

1+ u2
)

(1+ u2)(3n+2−j)/2

= ω

2u

∞∑

n=1

ω2nR(n)1 , (A 5a)

R2 ∼ 1
u

∞∑

n=1

(−1)n+1(3n)!ω2n

24nn!
n+1∑

j=0

(−1)j
(

n+ 1
j

)P3n−j

(
1/
√

1+ u2
)

(1+ u2)(3n+1−j)/2

= 1
u

∞∑

n=1

ω2nR(n)2 , (A 5b)
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where Pk is the Legendre polynomial of order k. Note that 1/
√

1+ u2 6 1 for all
u, so |Pk| 6 ck for some constants ck. Using the triangle inequality and the formula∑n+1

j=0

(n+1
j

)
xj/2 = (1+√x

)n+1, we obtain the upper bound

∣∣∣R(n)1

∣∣∣6 fn(1+
√

1+ u2)n+1

(1+ u2)(3n+2)/2
,

∣∣∣R(n)2

∣∣∣6 gn(1+
√

1+ u2)n+1

(1+ u2)(3n+1)/2
(A 6)

for some constants fn, gn. This shows that (A5) is well ordered even for large u, which
suggests that the asymptotic expansion is valid for all u.

We now justify (A5). Using the fact that J1(x)=−J′0(x), we integrate (A4) by parts
n+ 1 times to obtain

R1 ∼ ω

2u

∞∑

n=1

ω2n

24nn!
∫ ∞

0
J0(uz)

dn+1

dzn+1

(
z3n+1e−z

)
dz, (A 7a)

R2 ∼ 1
u

∞∑

n=1

ω2n

24nn!
∫ ∞

0
J0(uz)

dn+1

dzn+1

(
z3ne−z

)
dz. (A 7b)

For integers k<m, we have the formula

dk

dzk

(
zme−z

)= (−1)ke−z
k∑

j=0

(−1)j
(

k
j

)
m!

(m− j)!z
m−j, (A 8)

and so obtain

R1 ∼ ω

2u

∞∑

n=1

(−1)n+1ω2n

24nn!
n+1∑

j=0

(−1)j
(

n+ 1
j

)
(3n+ 1)!

(3n+ 1− j)!

×
∫ ∞

0
J0(uz)z3n+1−je−z dz, (A 9a)

R2 ∼ 1
u

∞∑

n=1

(−1)n+1ω2n

24nn!
n+1∑

j=0

(−1)j
(

n+ 1
j

)
(3n)!

(3n− j)!

×
∫ ∞

0
J0(uz)z3n−je−z dz. (A 9b)

The integrals above can be evaluated in closed form using the formula (Bateman 1944)

∫ ∞

0
J0(uz)zke−z dz= k!

Pk

(
1/
√

1+ u2
)

(
1+ u2

)(k+1)/2 , (A 10)

from which we obtain (A5).

Appendix B. Evaluation of integral terms in F1(s), F2(s),G1(s),G2(s)

We evaluate some of the integrals appearing in the definition (5.6) of the functions
F1(s), F2(s), G1(s) and G2(s), by repeatedly employing the fact that r0 and ω are
defined as the solution to (4.1):
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I [f (t) sinωt] =
∫ ∞

0

J1(2r0 sin(ωz/2))
2r0 sin(ωz/2)

sinωze−z dz

=
∫ ∞

0

J1(2r0 sin(ωz/2))
r0

cos
ωz
2

e−z dz= ω
β
. (B 1)

I [g(t) sinωt] =
∫ ∞

0
J′1

(
2r0 sin

ωz
2

)
sinωze−z dz

= 2
∫ ∞

0
J′1

(
2r0 sin

ωz
2

)
cos

ωz
2

sin
ωz
2

e−z dz

= 2
r0ω

∫ ∞

0

[
J1

(
2r0 sin

ωz
2

)
sin

ωz
2
− ω

2
J1

(
2r0 sin

ωz
2

)
cos

ωz
2

]
e−z dz

= − 2
β

[
κω+Ω + ω

2

]
, (B 2)

where we integrate by parts in the third line. Combining (B 1) and (B 2), we obtain

1
2
(I [f (t) sinωt] +I [g(t) sinωt]) = −κω+Ω

β
, (B 3a)

1
2
(I [g(t) sinωt] −I [f (t) sinωt]) = −κω+ω+Ω

β
, (B 3b)

which appear in F2(s) and G1(s), respectively. Similarly,

I

[
f (t) sin2 ωt

2

]
=
∫ ∞

0

J1(2r0 sin(ωz/2))
2r0

sin
ωz
2

e−z dz=−κω
2 +Ωω
2β

(B 4)

I

[
g(t) cos2 ωt

2

]
=
∫ ∞

0
J′1

(
2r0 sin

ωz
2

)
cos

ωz
2

cos
ωz
2

e−z dz

= 1
r0ω

∫ ∞

0

[
ω

2
J1

(
2r0 sin

ωz
2

)
sin

ωz
2

e−z

+ J1

(
2r0 sin

ωz
2

)
cos

ωz
2

e−z

]
dz

= 1
β

[
−1

2
(κω2 +Ωω)+ 1

]
, (B 5)

where we integrate by parts in the second line. Combining (B 4) and (B 5), we obtain

I

[
g(t) cos2 ωt

2

]
−I

[
f (t) sin2 ωt

2

]
= 1
β
, (B 6)

which appears in G2(s).
There do not appear to be simple expressions for the terms I

[
f (t) cos2 (ωt/2)

]
and

I
[
g(t) sin2 (ωt/2)

]
that appear in F1(s).

Appendix C. Proof that F0(r0)= r0ωd1(dΩ/dr0)

We first expand the functions (5.8) around s= 0 and obtain A(s)= a0+O(s), B(s)=
b1s+O(s2), C(s)= c0 +O(s) and D(s)= d1s+O(s2), where
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a0 =−
(
κω2 +Ωω+ 2βI

[
g(t) sin2 ωt

2

])
, b1 = 2ωκ +Ω + β

2
I
[
(f (t)+ g(t)) t sinωt

]

c0 = 2 [ω (1+ κ)+Ω] , d1 = 1+ βI

[(
f (t) sin2 ωt

2
− g(t) cos2 ωt

2

)
t
]
.





(C 1)

Thus, F0(r0)= a0d1 + b1c0.
We now deduce an equation for dΩ/dr0 by first differentiating the governing

equations (4.1) with respect to r0:

2ωκ
dω
dr0
+ωdΩ

dr0
+Ω dω

dr0
= −2βI

[(
∂f
∂r0
+ ∂f
∂ω

dω
dr0

)
sin2 ωt

2

+ dω
dr0

t
2

f (t) sinωt
]

(C 2a)

dω
dr0
= βI

[
dω
dr0

tf (t) cosωt+
(
∂f
∂r0
+ ∂f
∂ω

dω
dr0

)
sinωt

]
. (C 2b)

Since
∂f
∂r0
= 1

r0
(g(t)− f (t)) ,

∂f
∂ω
= t

2
cot

ωt
2
(g(t)− f (t)) , (C 3)

we deduce that

dω
dr0

(2ωκ +Ω)+ωdΩ
dr0
= 2β

r0
I

[
(f (t)− g(t)) sin2 ωt

2

]

− β
2

I

[
(f (t)+ g(t)) t sinωt

]
dω
dr0

(C 4a)

β

r0
I
[
(g(t)− f (t)) sinωt

] = dω
dr0

(
1− βI

[(
g(t) cos2 ωt

2
− f (t) sin2 ωt

2

)
t
])

. (C 4b)

Some of the integrals can be simplified using the results in appendix B, yielding

−ωdΩ
dr0
= dω

dr0

(
2ωκ +Ω + β

2
I
[
(f (t)+ g(t)) t sinωt

])

+ 2β
r0

I

[
g(t) sin2 ωt

2

]
+ 1

r0

(
κω2 +Ωω) (C 5a)

− 2
r0
(ω (1+ κ)+Ω) = dω

dr0

(
1− βI

[(
g(t) cos2 ωt

2
− f (t) sin2 ωt

2

)
t
])

.

(C 5b)

Using (C 1), these equations can be written as

a0 − r0b1
dω
dr0
= r0ω

dΩ
dr0

, c0 + r0d1
dω
dr0
= 0. (C 6)

We eliminate dω/dr0, yielding an equation for dΩ/dr0:

a0 + b1c0

d1
= r0ω

dΩ
dr0

, (C 7)

which is valid since d1 > 0 (Oza et al. 2014a). We thus obtain the desired result

F0(r0)= r0ωd1
dΩ
dr0

. (C 8)
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MOLÁČEK, J. & BUSH, J. W. M. 2013b Drops walking on a vibrating bath: towards a hydrodynamic

pilot-wave theory. J. Fluid Mech. 727, 612–647.
OZA, A. U., BUSH, J. W. M. & ROSALES, R. R. 2014a Orbital stability in hydrodynamic pilot-wave

theory (in preparation).
OZA, A. U., ROSALES, R. R. & BUSH, J. W. M. 2013 A trajectory equation for walking droplets:

hydrodynamic pilot-wave theory. J. Fluid Mech. 737, 552–570.
OZA, A. U., WIND-WILLASSEN, Ø., HARRIS, D. M., ROSALES, R. R. & BUSH, J. W. M. 2014b

Pilot-wave hydrodynamics in a rotating frame: exotic orbits. Physics of Fluids (submitted).
PERRARD, S., LABOUSSE, M., MISKIN, M., FORT, E. & COUDER, Y. 2014 Self-organization into

quantized eigenstates of a classical wave-driven particle. Nature Commun. 5, 3219.
PROTIÈRE, S., BOUDAOUD, A. & COUDER, Y. 2006 Particle-wave association on a fluid interface.

J. Fluid Mech. 554, 85–108.
WALKER, J. 1978 Drops of liquid can be made to float on the liquid. What enables them to do

so? Sci. Am. 238 (6), 151–158.
WATSON, G. N. 1966 A Treatise on the Theory of Bessel Functions. 2nd edn. Cambridge University

Press.
WEINSTEIN, A. & POUNDER, J. R. 1945 An electromagnetic analogy in mechanics. Am. Math. Mont.

52 (8), 432–438.
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