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Abstract

Suspensions of fibres and non-spherical particles are encountered in many
fields ranging from engineering to biology, e.g. papermaking, compos-
ite manufacturing, pharmaceutical applications, red blood cells, food-
processing and cosmetics industries, etc. Predicting the evolution of the
orientation state of the particles is crucial to estimate the rheology of
the suspension, that is its flow behaviour, as well as the final properties
of the material. Jeffery’s theory, describing the kinematics of a single
particle immersed in an homogeneous flow of Newtonian fluid, lays the
foundation for almost every models used today. Coarser representations,
built upon this theory, have been introduced later to describe statistically
the orientation state of the particles, either using a probability density
function, or even moments of this function (Advani-Tucker orientation
tensors).

The assumptions underlying Jeffery’s model are however quite restric-
tive to predict reliably what happens in fibre suspensions flows encoun-
tered in industrial processes. In this thesis, we first revisit this model,
studying the impact of particle inertia and of confinement (wall effects)
on the particle kinematics. In each case, we propose a multi-scale ap-
proach, but given the challenges to upscale the microscopic description
to the macroscopic scale, we then came up with an innovative approach
based on data-driven simulations to circumvent upscaling issues and in-
accuracies introduced by macroscopic closure approximations. Finally,
we developed efficient numerical methods to simulate fluid flows in thin
geometries, considering, within the Proper Generalized Decomposition
(PGD) framework, an in-plane/out-of-plane separated representation of
the solutions of the incompressible Navier-Stokes equations.
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Résumé

Les suspensions de fibres et de particules non-sphériques se rencontrent
dans de nombreux domaines allant de l’ingénierie à la biologie, comme
la fabrication du papier, la production de composites, les applications
pharmaceutiques, les globules rouges, les industries agro-alimentaire et
cosmétique, etc. Prédire l’évolution de l’état d’orientation des partic-
ules est crucial pour estimer les propriétés rhéologiques de la suspension,
c’est-à-dire son comportement en écoulement, ainsi que les propriétés
finales du matériau. La théorie de Jeffery, qui décrit la cinématique
d’une seule particule immergée dans un écoulement homogène de flu-
ide newtonien, jette les bases de presque tous les modèles utilisés au-
jourd’hui. Des représentations plus grossières, construites sur base de
cette théorie, ont été introduites par la suite pour décrire statistiquement
l’état d’orientation des particules, soit en utilisant une fonction de den-
sité de probabilité, voire des moments de celle-ci (tenseurs d’orientation
d’Advani-Tucker).

Les hypothèses qui sous-tendent le modèle de Jeffery sont cepen-
dant assez restrictives pour prédire de façon fiable ce qui se passe dans
les écoulements de suspensions de fibres rencontrés dans les procédés
industriels. Dans cette thèse, nous revisitons d’abord ce modèle, en étu-
diant l’impact de l’inertie des particules et du confinement (effets des
parois) sur la cinématique des particules. Dans chaque cas, nous pro-
posons une approche multi-échelle, mais au vu des défis que représente
le passage de la description microscopique à l’échelle macroscopique, nous
avons ensuite proposé une approche innovante basée sur les données pour
contourner les problèmes de passage à l’échelle et les inexactitudes in-
troduites par les approximations macroscopiques de fermeture. Enfin,
nous avons développé des méthodes numériques efficaces pour simuler
des écoulements dans des géométries minces, en considérant, dans le
cadre de la PGD (Proper Generalized Decomposition), une représenta-
tion séparée plan/hors plan des solutions des équations de Navier-Stokes
incompressibles.
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Résumé étendu

Les suspensions de fibres ont fait l’objet d’études approfondies à diffé-
rentes échelles de modélisation. Selon le niveau de détail et de préci-
sion requis pour une application particulière, on peut vouloir aborder
un problème à une échelle spécifique ou même adopter une approche
multi-échelle en « remontant » les propriétés à travers les échelles.

• Échelle microscopique : l’échelle de la particule elle-même. L’orien-
tation de chaque particule est décrite par un vecteur unitaire le
long de son axe principal. La théorie de Jeffery jette les bases de la
plupart des modèles régissant la cinématique des particules ellip-
soïdales immergées dans un fluide newtonien. Cependant, le coût
calcul pour suivre efficacement à cette échelle des millions de par-
ticules (comme dans les scénarios d’intérêt industriel) devient en
général inabordable et des descriptions plus grossières sont intro-
duites.

• Échelle mesoscopique : l’échelle d’une population de particules dont
l’état d’orientation est décrit par une fonction de densité de pro-
babilité. Cette dernière est définie à la fois dans l’espace physique
(espace et temps) et dans l’espace conformationnel et fournit une
description complète et sans ambiguïté de la fraction de particules
orientées dans une direction donnée à n’importe quel endroit et à
n’importe quel moment. Son évolution est régie par une équation
de Fokker-Plank, dont la solution est malheureusement souvent
impraticable en raison de la haute dimensionnalité inhérente au
problème (« malédiction de la dimensionnalité »).

• Échelle macroscopique : l’échelle de la pièce, dont l’état de confor-
mation est souvent caractérisé par les premiers moments de la
fonction de densité de probabilité susmentionnée. Pour les fibres,
le tenseur d’orientation du second ordre d’Advani-Tucker est sou-
vent choisi comme une description grossière, mais concise, de l’état
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Résumé étendu

d’orientation dans la pièce. L’évolution temporelle du moment du
second ordre exige cependant la connaissance du moment du qua-
trième ordre, et ainsi de suite. Ainsi, les modèles macroscopiques
s’appuient généralement sur des approximations mathématiques de
fermeture dont l’impact sur les résultats est bien souvent imprévi-
sible.

Notre approche est basée sur une représentation en (tri-)haltères
(dumbbells) d’une particule en suspension, sur les extrémités desquelles
une force de traînée hydrodynamique stokésienne est appliquée. Cette
description permet de récupérer la cinématique de Jeffery ainsi que la
contribution à la contrainte totale des particules en suspensions via la
formule de Kramers.

Le but de cette thèse est double. Premièrement, du côté de la cinéma-
tique des fibres en suspensions, nous avons abordé la modélisation multi-
échelles, d’une part de fibres inertielles, et d’autre part de fibres confinées
dans des interstices étroits (plus petits que la longueur de la fibre). Nous
avons dans chaque cas conçu un modèle microscopique réaliste et étudié
en profondeur les questions soulevées par le passage de l’échelle micro
à l’échelle macro. Nous avons par la suite proposé une approche inno-
vante basée sur les données pour le passage à l’échelle (upscaling) des
propriétés d’orientation de fibres en suspension. Deuxièmement, du côté
de la cinématique des fluides, nous avons mis au point des méthodes
numériques efficaces pour simuler des écoulements dans des géométries
étroites.

Nous proposons ici un bref aperçu de chaque chapitre.

Suspensions de particules inertielles

Le chapitre 2 traite de la modélisation des suspensions de particules
inertielles. L’équation de Jeffery a en effet été développée pour des par-
ticules sans masse et notre dérivation en utilisant une représentation en
haltère néglige également l’inertie. La principale question qui motive ce
travail est donc de savoir quel est l’impact de l’inertie sur la cinématique
d’orientation de la particule.
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Résumé étendu

L’utilisation de l’approche par haltères (Fig. 1) permet d’introduire
les effets inertiels simplement. Soit nous imposons directement la seconde
loi de Newton sur l’haltère entier afin d’en déduire son équation de mou-
vement, soit nous appliquons le principe de d’Alembert et introduisons
les pseudo-forces dites inertielles comme forces agissant sur les billes de
l’haltère.

m

m
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Figure 1 – Représentation en haltère d’une fibre inertielle

Le comportement d’une particule inertielle en suspension, mainte-
nant régi par une équation différentielle ordinaire du second ordre, est
ensuite analysé. Nous observons l’apparition d’orbites périodiques pour
les fibres immergées dans un écoulement de cisaillement simple (alors
que les fibres sans inertie s’alignent simplement dans l’écoulement) et
étudions l’impact de l’inertie sur la période d’orientation des fibres et
des sphéroïdes. Dans le cas des sphéroïdes, le modèle prédit également
une dérive de l’orbite vers le plan du gradient d’écoulement, soit graduel-
lement (légère inertie), soit en tournant d’abord autour d’un axe oblique
en mouvement (particules massives).

Suspensions de fibres confinées

Le chapitre 3 se concentre sur les suspensions confinées, c’est-à-dire les
suspensions s’écoulant dans des espaces plus étroits que la longueur des
fibres. Dans de telles circonstances, les interactions des particules avec les
parois ne peuvent plus être négligées et certaines trajectoires d’orienta-
tion (orbites passant en dehors du domaine d’écoulement) sont désormais
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Résumé étendu

interdites. La théorie de Jeffery, développée pour les milieux infinis, ne
peut pas décrire comment les parois limitent la cinématique d’orientation
des particules.

Les forces de contact entre une fibre en suspension et les parois de
la cavité peuvent être introduites dans le modèle en haltères, comme le
montre la Fig. 2.

Figure 2 – Représentation en haltère d’une fibre confinée

En plus d’avoir étendu le modèle standard de Jeffery afin de prendre
en compte les effets du confinement, une description multi-échelles est
proposée. Un résultat inattendu de cette étude approfondie est l’incapa-
cité des modèles macroscopiques classiques à gérer les configurations de
confinement (indépendamment de l’impact du confinement sur la ciné-
matique elle-même). En d’autres termes, le principal défi avec les modèles
macroscopiques traditionnels impliquant des moments de la fonction de
densité de probabilité réside d’avantage dans les capacités de représenta-
tion dans des conditions très confinées que dans une description appro-
priée de la cinématique d’orientation confinée.

Nous avons constaté plus tard que l’expression de la cinématique
d’une fibre confinée présente des similitudes significatives avec les équa-
tions de l’élastoplaticité, établissant un parallèle entre, d’une part, la ci-
nématique classique non confinée et la déformation élastique, et d’autre
part, le mouvement confiné de la particule et la déformation élastopla-
tique. Cette approche purement phénoménologique nous a permis de
revisiter le mouvement de particules confinées en suspension dans des
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Résumé étendu

matrices newtoniennes et non-newtoniennes et nous avons prouvé que la
cinématique confinée fournie par ce modèle est identique à celle dérivée
via des approches microstructurelles.

Approche basée sur les données pour les suspen-
sions

Le chapitre 4 introduit une approche basée sur les données pour les sus-
pensions de fibres. Les descripteurs macroscopiques, le tenseur d’orien-
tation du second ordre en tête, sont aujourd’hui préférés dans les appli-
cations industrielles en raison de leur faible coût de calcul. Le principal
problème rencontré avec les modèles macroscopiques est cependant les
inexactitudes introduites par les approximations de fermeture. Dans le
cas des suspensions de fibres diluées, des fermetures ajustées fiables ont
été proposées et testées, comme la fermeture IBOF. Dans des cas plus
complexes, comme par exemple dans des conditions de confinement, les
fermetures traditionnelles se sont souvent révélées inadéquates (cf. cha-
pitre 3) et des modèles appropriés n’ont pas encore été développés ou
sont difficiles à mettre au point.

Afin de contourner les développements lourds et les inexactitudes
des approximations de fermeture obligatoires à l’échelle macroscopique,
nous passons à une approche innovante, basée sur des données, pour
les simulations de suspensions de fibres. Puisque la physique à l’échelle
microscopique peut être raisonnablement modélisée, l’idée est d’effectuer
hors ligne des simulations numériques directes précises et coûteuses à
cette échelle et d’extraire les descripteurs macroscopiques correspondants
afin de construire une base de données de scénarios. Lors d’une nouvelle
simulation en ligne, les descripteurs macroscopiques peuvent alors être
mis à jour rapidement en combinant adéquatement les éléments de la base
de données au lieu de s’appuyer sur un modèle macroscopique imprécis.

Cette stratégie est présentée dans le cas bien connu des suspensions
de fibres diluées (où elle peut être comparée à des modèles macrosco-
piques utilisant des fermetures) et également dans le cas des suspensions
de fibres confinées ou chargées électriquement, pour lesquelles les ap-
proximations de fermeture traditionnelles se sont révélées inadéquates
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Résumé étendu

ou n’existent simplement pas.

Méthodes numériques pour la simulation d’écou-
lements dans des géométries minces

Le chapitre 5 traite des méthodes numériques efficaces pour simuler des
écoulements dans des géométries minces. Ce chapitre est un peu indé-
pendant des précédents puisqu’il ne concerne pas directement les sus-
pensions de fibres, cependant, la motivation derrière ce travail trouve
son origine dans les suspensions confinées, pour lesquelles la résolution
de l’écoulement de la matrice peut être une question délicate en soi. Les
écoulements dans des géométries dégénérées, dans lesquelles la longueur
caractéristique dans une direction est beaucoup plus petite que dans les
autres, sont une tâche difficile pour les techniques de simulation stan-
dard basées sur des maillages, qui nécessitent souvent un grand nombre
de points de discrétisation ou d’éléments pour fournir des solutions pré-
cises. Classiquement, des simplifications ou approximations ad-hoc (par
exemple, la théorie de la lubrification) sont plutôt utilisées pour traiter
ce genre de problèmes.

Dans ce chapitre, nous considérons, dans le cadre de la PGD (Pro-
per Generalized Decomposition), une représentation séparée plan/hors
plan des solutions des équations de Navier-Stokes incompressibles dans
des géométries minces. La solution PGD pour le champ de vitesse du
fluide est donc exprimée sous la forme d’une somme de N produits im-
pliquant des fonctions inconnues a priori dépendant des coordonnées
dans le plan et dans l’épaisseur : u(x, y, z) =

∑N
i=1 Pi(x, y)Ti(z). L’uti-

lisation de représentations séparées permet de découpler les maillages
dans les directions du plan (grossier) et de l’épaisseur (fin), ce qui per-
met une représentation en haute résolution de l’évolution de la solution le
long de la coordonnée de l’épaisseur tout en conservant une complexité
calcul caractéristique des simulations 2D. Cette technique est particu-
lièrement bien adaptée pour obtenir efficacement des solutions fines et
précises dans les couches limites ou dans les géométries minces lorsque
les approximations basées sur la théorie de la lubrification ne sont pas
appropriées.
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Résumé étendu

Les perspectives incluent le couplage de cette approche avec des sol-
veurs éléments finis standards. Ceux-ci pourraient fournir une solution
grossière dans l’ensemble du domaine de calcul qui serait enrichie de
patchs PGD haute résolution dans les régions d’intérêt.
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Notations

Fluid
ρ fluid density
η fluid viscosity
Re Reynolds number

Flow
γ̇ shear rate
ε̇ elongational rate
∇v flow velocity gradient
D = 1

2

(
∇v + (∇v)T

)
strain rate tensor (symmetric part of ∇v)

Ω = 1
2

(
∇v − (∇v)T

)
vorticity tensor (skew-symmetric part of ∇v)

Particle
r spheroid aspect ratio
λ = r2−1

r2+1
spheroid shape factor

p unit orientation vector
a second-order orientation tensor
A fourth-order orientation tensor
A sixth-order orientation tensor

Tensor operations

· single contraction (dot product)
: double contraction
⊗ tensor / dyadic product
× vector product
δ identity tensor
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Introduction

Modern composite materials were born at the dawn of the 20th century
with the beginning of the “plastic era” and the production of resins and
synthetic materials that outperformed natural resins used so far. How-
ever, plastics alone could not provide enough strength for some structural
applications. Reinforcement was needed to provide additional strength
and rigidity. In the mid 30’s, Owens Corning introduced the first glass-
fibre reinforced plastic, that proved to be both strong and lightweight.
The necessities of World War II then brought the fibre-reinforced com-
posite industry from the laboratory into actual production. In the 60’s,
the introduction of carbon fibres has further improved the composites
stiffness to weight ratios. Over the next decades, many manufactur-
ing processes emerged: compression forming of sheet and bulk moulding
compounds (SMC/BMC), pultrusion, vacuum bag moulding, large-scale
filament winding, etc., and composites slowly found their way in the ma-
rine, aerospace and automotive industries, sporting equipments, medical
devices, etc. By the mid 90’s, composite materials became more com-
mon in mainstream manufacturing and construction, as a cost-effective
replacement to traditional materials like metal and engineered thermo-
plastics. To this day, the new Boeing 787 and Airbus A350 aircraft are
the first commercial airliners composed of more than 50% of compos-
ite materials by weight (mainly carbon fibres) and represent a major
step forward for the aeronautic industry. A similar breakthrough in the
automotive industry is underway. The high production rates call for
new composite forming processes, and therefore models and simulation
tools able to understand, predict and eventually improve such material
processing applications.

Composite forming processes commonly involve injection or compres-
sion moulding, where the short fibre reinforced composite behaves as a
fibre suspension. The orientation of the fibres is governed by the flowing
matrix and interactions with the neighbouring fibres or cavity walls. Pre-
dicting the evolution of the orientation state can be extremely complex,
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Introduction

and the flow-induced fibre orientations define the final mechanical prop-
erties of the part. Thus, modelling and simulation tools are of crucial
importance to predict the orientation of fibres during the process.

This thesis focuses on the multi-scale mathematical modelling of di-
lute and semi-concentrated fibre suspensions.

The first contribution of this thesis is the extension of the classical
models governing the kinematics of rigid fibres immersed in a viscous flow
(based upon Jeffery’s theory, see Chap. 1 for a state of the art on fibre
suspensions modelling) to account for the effects, firstly, of particle iner-
tia and, secondly, of wall and confinement (occurring when suspensions
flow in gaps narrower than the fibre length). In both cases, we propose
a microscopic model, built from a (tri-)dumbbell representation of a sus-
pended fibre (or spheroid), and discuss thoroughly the issues raised by
the upscaling of these models from the microscopic to the macroscopic
scales.

In the case of suspensions of inertial particles, the particle kinematics,
described by a second-order differential equation, exhibit periodic orbits
for fibres immersed in a simple shear flow (whereas inertialess fibres just
align in the flow field) and an orbit drift towards the flow-gradient plane
is observed for spheroids. The proposed model is also compared with
direct numerical simulations based on multi-particle collision dynamics.

In the case of confined fibre suspensions, the derived kinematics are a
combination of the classical unconfined Jeffery kinematics and a correc-
tion term that prevents the fibre from leaving the flow domain. We show
that these modified kinematics can have a huge impact on the orienta-
tion time of a single fibre. When considering a population of rods, the
delaying effect of confinement is however less noticeable due to the aver-
aging of results involving a number of unconfined trajectories associated
with rods that never reach the walls. Thus, the impact of confinement
is quite moderate in terms of the orientation moments. Nevertheless,
an unexpected result from this study is the inadequacy of continuous
closure-based macroscopic models to handle confinement configurations.
In other words, the main challenge with traditional macroscopic models
involving moments of the orientation lies more with representation ca-
pabilities in highly confined conditions than with a suitable description
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Introduction

of the induced orientation kinematics.

The second contribution of this thesis was motivated on the one hand,
by the upscaling difficulties encountered when moving from the micro-
scopic scale (the scale of the particle, where the physics can be modelled
reasonably well) to the macroscopic scale (the scale of the part, where
coarse moment-based models are called for) and on the other hand, by
the inaccuracies/inadequacies of the mandatory closure approximations
at the macroscopic level. Hence, we propose a data-driven approach
to fibre suspensions. The methodology aims at providing data-driven
macroscopic simulations of orientation kinematics that are cheap and
closure-free. The approach consists of an offline step, the construction of
a database of scenarios obtained from accurate microscopic simulations,
and an online step, the data-driven macroscopic simulation itself. The
method is illustrated in the well-known case of dilute fibre suspensions,
where it performs well compared to macroscopic closure-based models,
and its relevance is then shown in the case of suspensions of confined or
electrically-charged fibres, for which state-of-the-art closures proved to
be inadequate or simply do not exist.

Finally, the third contribution of this thesis is the development of ef-
ficient numerical methods to simulate fluid flows in thin geometries. This
work is not directly related to the study of fibre suspensions, since there
is no fibres involved in the flows, but the motivation still finds its roots
in confined suspensions, for which solving accurately the fluid flow of the
matrix in a narrow geometry can be a tricky issue in itself. Within the
Proper Generalized Decomposition (PGD) framework, we consider an in-
plane/out-of-plane representation of the solution (pressure and velocity
fields) of the incompressible Navier-Stokes equations in thin geometries.
The use of such separated representations let us decouple the meshes
in the plane (coarse) and thickness (fine) directions, allowing a high-
resolution representation of the solution evolution along the thickness
coordinate while keeping the computational complexity characteristic of
2D simulations.
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Structure of the thesis

This thesis is actually a compilation of articles published (or submitted
for publication) in scientific journals. Only the first chapter is in a clas-
sical format and puts the entire thesis into context, giving the global
objectives of the research to be presented in the following chapters. A
state of the art in the field of suspensions of non-spherical particles is
first presented. Then, we introduce our general modelling framework
aimed at exploring extensively the microscopic, mesoscopic and macro-
scopic scales involved in a multi-scale description of such suspensions.
Eventually, an overview of the following chapters is outlined. Chapter 2
addresses the modelling of suspensions of inertial particles. Chapter 3
is devoted to the thorough study of confined suspensions. Chapter 4
presents an innovative approach for fibre suspensions based on data-
driven simulations. This approach, developed at first to circumvent the
difficulties faced when addressing confined suspensions, actually proved
to be a general framework that could be applied in more general sit-
uations. Chapter 5 focuses on efficient numerical techniques, based on
separated representations, to solve fluid flows in thin geometries. Finally,
the conclusion chapter summarizes the main contributions of the thesis
and discusses some possibilities for future development.
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Chapter 1

Mathematical modelling of
suspensions of non-spherical

particles

Abstract The motion of an ellipsoidal particle immersed in a Newtonian
fluid was studied by Jeffery in his 1922 pioneering work and lays the founda-
tion for the description of non-spherical particle suspensions. In this chapter,
we give an overview of the state of the art in the modelling of non-spherical
particle suspensions and we present a modelling framework aimed at exploring
systematically the different scales (microscopic, mesoscopic and macroscopic)
involved in a multi-scale description. In particular, we show how to recover,
within this framework, the so-called Jeffery equation.

Contents
1.1 Key variables in suspensions . . . . . . . . . . . . 9
1.2 Particle kinematics . . . . . . . . . . . . . . . . . 10

1.2.1 Microscopic scale – Orientation of a single particle 10
1.2.1.1 Jeffery’s equation . . . . . . . . . . . . . 10
1.2.1.2 Experimental validation . . . . . . . . . . 14
1.2.1.3 Illustration . . . . . . . . . . . . . . . . . 15

1.2.2 Mesoscopic scale – Orientation probability density
function . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.2.1 Fokker-Planck approach . . . . . . . . . . 18
1.2.2.2 Solving the Fokker-Planck equation . . . 19
1.2.2.3 Illustration . . . . . . . . . . . . . . . . . 20

1.2.3 Macroscopic scale – Orientation tensors . . . . . . 22
1.2.3.1 Advani-Tucker model . . . . . . . . . . . 22
1.2.3.2 Closure approximations . . . . . . . . . . 25
1.2.3.3 Illustration . . . . . . . . . . . . . . . . . 28
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1.2.4 Inter-particle interactions . . . . . . . . . . . . . . 29
1.2.4.1 Diffusion mechanism . . . . . . . . . . . . 29
1.2.4.2 Reduced-strain closure model . . . . . . . 30
1.2.4.3 Interaction tensors . . . . . . . . . . . . . 30

1.2.5 Non-Newtonian matrix . . . . . . . . . . . . . . . . 31
1.3 Suspension rheology . . . . . . . . . . . . . . . . . 33

1.3.1 Newtonian matrix suspensions . . . . . . . . . . . 33
1.3.2 Non-Newtonian matrix suspensions . . . . . . . . . 35

1.4 Dumbbell approach . . . . . . . . . . . . . . . . . 36
1.4.1 Kinematics - Derivation of Jeffery’s equation . . . 36
1.4.2 Rheology - Kramers’ formula . . . . . . . . . . . . 38

1.5 Modelling framework composed of 9 conceptual
bricks . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.6 Overview of the next chapters . . . . . . . . . . . 44
1.6.1 Suspensions of inertial particles . . . . . . . . . . . 44
1.6.2 Confined fibre suspensions . . . . . . . . . . . . . . 45
1.6.3 Data-driven approach to fibre suspensions . . . . . 46
1.6.4 Numerical methods for flow problems in thin ge-

ometries . . . . . . . . . . . . . . . . . . . . . . . . 47

The purpose of this chapter is threefold. First, a state of the art in the
modelling of non-spherical particle suspensions is drawn, covering both the
particle orientation kinematics and the suspension rheology. We discuss thor-
oughly the three different scales at which such a material can be studied and
the descriptions that have been proposed at each scale. The aim is not to
provide an exhaustive review of the field but rather to give an overview of the
tools available, with their capabilities and limitations. Second, the multi-scale
modelling framework we use to address suspensions is presented. We show how
our approach, based mainly on a (tri-)dumbbell representation of a suspended
particle, is able to recover the classical Jeffery theory. Third, the content of
the following chapters is reviewed in order to highlight the different topics
addressed in this thesis and the links amongst them.

Note: In this chapter and in the whole manuscript, we consider the following
tensor products, assuming Einstein’s summation convention:

• if a and b are first-order tensors, then the single contraction “·” reads
(a · b) = aj bj ;

• if a and b are first-order tensors, then the dyadic product “⊗” reads
(a⊗ b)jk = aj bk;
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• if a and b are respectively second and first-order tensors, then the single
contraction “ ·” reads (a · b)j = ajm bm;

• if a and b are second-order tensors, then the double contraction “:” reads
(a : b) = ajk bkj ;

• if a and b are respectively second and fourth-order tensors, then the
double contraction “:” reads (a : b)jk = aml bmljk.

1.1 Key variables in suspensions

Suspensions of fibres and non-spherical particles, in the broadest sense of the
term, are encountered in many fields ranging from engineering to biology,
e.g. papermaking, composite manufacturing, pharmaceutical applications, red
blood cells, food-processing and cosmetics industries, etc. These suspensions
can be classified using a few key variables:

• Suspending matrix. The suspending fluid can be either Newtonian or
non-Newtonian (power law, viscoelastic, etc).

• Suspended particles The suspended particles are usually described by
their aspect ratio r, may or may not have a regular shape, may be flexible
or rigid, may be subject to Brownian motion and may vary in size from
a few nanometres to a few centimetres.

• Concentration regime Non-spherical particle suspensions can be charac-
terized by the volume fraction φ of solid particles in the fluid. Typically,
three distinct regimes are observed [Doi & Edwards 1987]:

– Dilute regime: φ < 1
r2 (with r the particle aspect ratio)

The particles are free to move without interacting with other par-
ticles.

– Semi-dilute to semi-concentrated regime: 1
r2 < φ < 1

r

Non-negligible hydrodynamic interactions appear between the par-
ticles and some contacts are possible.

– Concentrated regime: φ > 1
r

Numerous contacts between the particle are present forming in-
teracting clusters (exhibiting aggregation/disaggregation mecha-
nisms) or even a dense network of interacting particles.

In the following, we will mainly focus on dilute or semi-dilute suspensions
of non-Brownian rigid fibres and ellipsoids suspended in a Newtonian fluid.
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1.2 Particle kinematics

Fibre suspensions have been extensively studied at different modelling scales
[Petrie 1999, Binetruy et al. 2015]. Depending on the level of detail and accu-
racy required for a particular application, one may want to address a problem
at a specific scale or even to adopt a multi-scale approach by “upscaling” the
properties across the scales.

• Microscopic scale: the scale of the particle itself. Each particle’s ori-
entation is described by a unit vector along its principal axis. Jeffery’s
theory lays the foundation for most models governing the kinematics of
ellipsoidal particles immersed in a Newtonian fluid. However, the com-
putational effort to efficiently track millions of particles (as in scenarios
of industrial interest) becomes in general unaffordable and coarser de-
scriptions are introduced.

• Mesoscopic scale: the scale of a population of particles, whose orientation
state is described by a probability density function (pdf). Such pdf lies
both in physical (space and time) and conformational space and provides
a complete, unambiguous description of the fraction of particles oriented
along a given direction at any location and any time. Its evolution is
given by a Fokker-Plank equation, whose solution is unfortunately often
impracticable due to the inherent high-dimensionality of the problem
(the so-called “curse of dimensionality”).

• Macroscopic scale: the scale of the part, whose conformation state is of-
ten characterized by the first moments of the aforementioned probability
density function. For fibres, the second-order orientation tensor is often
chosen as a coarse, yet concise, description of the orientation state in the
part. The time evolution of the second-order moment requires however
the value of the fourth-order moment, and so on. Thus, macroscopic
models usually rely on mathematical closure approximations whose im-
pact is quite unpredictable.

Figure 1.1 summarizes schematically the multi-scale description of orienta-
tion states in non-spherical particle suspensions.

1.2.1 Microscopic scale – Orientation of a single particle

1.2.1.1 Jeffery’s equation

The first and fundamental work on the motion of a suspended particle was
done by Jeffery in 1922. In his classical paper [Jeffery 1922], he analysed the
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Figure 1.1 – Multi-scale description of orientation states in non-spherical
particle suspensions

evolution of the orientation of a rigid ellipsoid immersed in a Newtonian fluid
flow.

In his study, Jeffery made some assumptions on the fluid flow and on the
ellipsoidal particle. The flow is assumed homogeneous and steady, except in
the vicinity of the particle where it is disturbed. The flow may vary spatially
but on a larger scale than the particle size and the effects of fluid inertia are
neglected. Regarding the ellipsoid, particle inertia is also ignored. The travel
velocity of the ellipsoid is known since it is the (unperturbed) velocity of the
fluid it replaces. Only the particle rotary velocity ω has to be derived. No-slip
boundary conditions are specified on the ellipsoid surface, connecting the fluid
and particle kinematics.

Jeffery addressed the local perturbation of the velocity field induced by
the ellipsoid by solving the governing equations of fluid motion in the frame
of reference x′y′z′attached to the particle (see Fig. 1.2). Since fluid inertia is
neglected, the system has the form of a Stokes flow, that Jeffery managed to
solve by injecting an expression of the velocity field he postulated. From the
velocity and pressure fields, the resulting stress on the surface of the ellipsoid is
derived, and therefore the force and torque acting on the particle are deduced.
The net force is zero, and since the particle inertia is ignored, the net torque
must vanish as well. From there, Jeffery provides the instantaneous angular
velocity of the particle about its axis ω′, which governs the orientation of the
particle. The components of this vector ω′ (in the frame of reference x′y′z′)
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read

ω′1 = Ω′32 +
a22 − a23
a22 + a23

D′23 (1.1)

ω′2 = Ω′13 +
a23 − a21
a23 + a21

D′31 (1.2)

ω′3 = Ω′21 +
a21 − a22
a21 + a22

D′12, (1.3)

where a1, a2 and a3 are the lengths of the ellipsoid’s semi-axes and D′ij and Ω′ij
are respectively the components of the symmetric and skew-symmetric part of
the velocity gradient in that reference frame. A brief discussion on the body-
fixed and external reference frames can be found in [Jiang 2007].

Figure 1.2 – External coordinate system xyz and the coordinate system
x′y′z′ parallel to the three principal axes of the rigid ellipsoid [Jiang 2007]

In the case of axisymmetric ellipsoids (or rotation ellipsoids or spheroids),
for which a2 = a3, the equations of motion are much simpler. Only the aspect
ratio r = a1

a2
is necessary to describe the particle: the case r < 1 corresponds

to oblate spheroids and r > 1 to prolate spheroids. Another geometrical pa-
rameter, the form factor λ is often used to describe a rotation ellipsoid. This
parameter ranges in [−1, 1] and can be expressed from the aspect ratio r as

λ =
r2 − 1

r2 + 1
. (1.4)
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Figure 1.3 – Shape factor λ and aspect ratio r of an ellipsoid

This relation is depicted graphically in Fig. 1.3.
Hand [Hand 1961], and later Hinch and Leal [Hinch & Leal 1979], ex-

pressed the work of Jeffery in a more compact and modern form. The ori-
entation of the particle is then given by the time evolution of a unit vector p

aligned with the particle symmetry axis.
The so-called Jeffery equation thus reads

ṗ = Ω · p + λ(D · p− (∇v : (p⊗ p))p), (1.5)

where D = 1
2 (∇v + (∇v)T ) and Ω = 1

2 (∇v − (∇v)T ) are respectively the
symmetric and skew-symmetric components of the velocity gradient ∇v (in
the fixed external coordinate system xyz). In view of the symmetry of the
strain rate tensor D, the equality ∇v : (p ⊗ p) = D : (p ⊗ p) holds. Note
that this expression does not allow to compute the component of ω parallel
to p. Eq. (1.5) can be interpretated as follows [Lipscomb et al. 1988]: the
particle follows the rotational motion of the fluid (Ω ·p) and partially deforms
with it (λD · p), but since the rigidity of the particle prevents it to lengthen,
the contribution corresponding to an elongation has to be subtracted (−λ(D :

(p⊗ p))p).
Figure 1.4 depicts schematically the orientation evolution of a prolate el-

lipsoid (top) and a rod, that is an infinite aspect ratio ellipsoid, (bottom)
immersed in a linear shear flow. The prolate ellipsoid spends most of its time
with p along the flow axis and flips periodically. The rod exhibits a simpler
motion and just fully aligns with the flow.

Theoretical derivations by Bretherton [Bretherton 1962] proved that the
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Figure 1.4 – Examples of Jeffery’s trajectories in a simple shear flow for
a prolate ellipsoid and a rod

rotary velocity of a particle of any shape could be written under the form

ω = Ω +
1

2
B : D, (1.6)

where B is a third-order tensor that characterizes the geometry of the particle
(Bijk is symmetric with respect to its indices j and k). From there, Bretherton
showed that the motion of any axisymmetric particle is thus mathematically
identical to that of a spheroid, provided that an adequate effective aspect ratio
is used.

As depicted in Fig. 1.5, the unit vector of orientation p can be expressed
in a spherical coordinate system from the polar and azimuthal angles φ and θ
(with 0 ≤ φ < 2π and 0 ≤ θ ≤ π) as p =

[
sin θ cosφ sin θ sinφ cos θ

]T
.

1.2.1.2 Experimental validation

Numerous experimental studies have been carried out to validate Jeffery’s the-
ory, most of them considering Couette or Poiseulle flows of Newtonian fluid.

Several studies focused on the observation of a single cylindrical par-
ticle immersed in a Couette flow [Binder 1939, Trevelyan & Mason 1951,
Mason & Manley 1956]. To get as close as possible to Jeffery’s assumptions,
Anczurowsky & Mason [Anczurowski & Mason 1968] produced rigid prolate
spheroids obtained by polymerization of an electrically deformed liquid drop
suspended in a liquid undergoing Couette flow and studied its rotation kinemat-
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Figure 1.5 – Coordinate system and definitions of φ, θ and p

ics. In all cases, the variation of the polar and azimuthal angles and the period
of rotation were found to be in good agreement with the theory of Jeffery.

Saffman [Saffman 1956] still discussed the origin of some discrepancies that
sometimes appear between experimental studies and Jeffery’s model. He raised
four issues:

• in experiments, the medium is finite, and the particle might be subject
to (hydrodynamic) wall effects;

• inertial effects (fluid or particle inertia) might play a role in the particle
kinematics;

• non-Newtonian effects might be present;

• some experiments are performed with dilute suspensions rather than a
single isolated particle immersed in the fluid matrix.

These concerns actually emphasize the limitations of the assumptions in which
Jeffery’s theory was derived.

Bretherton’s result, showing the relevance of Jeffery’s theory for axisym-
metric particles as soon as an effective aspect ratio is provided, was also
validated experimentally [Trevelyan & Mason 1951, Mason & Manley 1956,
Cox 1970, Cox 1971, Harris & Pitman 1975].

1.2.1.3 Illustration

As a running illustration across the three modelling scales, we introduce here
the example of a single particle immersed in a simple shear flow of Newtonian

15



Chapter 1. Mathematical modelling of suspensions of non-spherical particles

fluid, whose velocity field reads v =
[
γ̇z 0 0

]T
, with γ̇ = 1 s−1. Since we

consider a unit shear rate, the time coordinate used in the graphical illustrations
in this chapter can thus be viewed as a shear strain coordinate.

Figure 1.6 shows the orientation trajectory of the particle, as a line on the
unit sphere, and the components of the orientation vector p in the case of a rod
(top) and a spheroid of aspect ratio r = 4 (bottom). As mentioned earlier, the
fibre tends to simply align along the flow lines, whereas the spheroid exhibits
a periodic motion (kayaking) along a particular Jeffery orbit determined by its
initial orientation, here (φ0, θ0) =

(
5π
4 ,

2π
5

)
.

(a) Rod trajectory
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(b) Components of the orientation vector p

(c) Ellipsoid trajectory
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(d) Components of the orientation vector p

Figure 1.6 – Trajectory of a particle suspended in a simple shear flow of
Newtonian fluid: (top) rod and (bottom) ellipsoid of aspect ratio r = 4
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Conclusion

Jeffery’s theory, along with the contributions due to Bretherton, describes well
the motion of a single isolated rigid particle suspended in an homogeneous
flow of Newtonian fluid. Nevertheless, it must be noticed that the assumptions
underlying this model are quite restrictive to predict reliably what happens
in fibre suspensions flows encountered in composite manufacturing processes.
Some extensions have thus been proposed in the literature and are listed below.

• Particle geometry and flexibility. The influence of the geometry was
briefly discussed with Bretherton’s work, but studies usually con-
sider straight rigid particle. Few investigations regarding the influ-
ence of the flexibility of the particles have been conducted. Skjetne
[Skjetne et al. 1997] proposed simulations for the motion of flexible fi-
bres modelled as rigid spheres connected by ball and socket joints and
observed drifts in fibre orientations in unbounded simple shear and
parabolic shear flows (the drift direction and rate depend on fiber stiff-
ness, initial orientation, as well as the ambient flow field). Fibre flexibil-
ity was also successfully incorporated in the dumbbell model (Sec 1.4)
[Abisset-Chavanne et al. 2015b]. Nowadays, there has been renewed in-
terest for the study of deformable particle suspensions, especially for
biological applications (red blood cells).

• Particle-particle interactions. This point is addressed in Sec. 1.2.4.

• Non-Newtonian matrix. This point is addressed in Sec. 1.2.5.

• Complex non-homogeneous flows. In configurations of industrial inter-
est, the flow is hardly ever homogeneous, and flow disturbances, caused
by mould walls or obstacles for example, are of the same order of mag-
nitude as the length of the fibre. Higher-gradients theories have been
proposed to address these situations [Abisset-Chavanne et al. 2015b,
Binetruy et al. 2015].

This thesis addresses other limiting aspects of Jeffery’s work, namely the impact
of particle inertia (Chap. 2) and wall and confinement effects (Chap. 3). The
main features of these extensions are presented in more detail at the end of this
chapter (Sec. 1.6).

At the microscopic scale, the level of description is the most detailed and
simulations can be easily set up simply by tracking the motion of the particles
involved in the system (provided that the equation governing the particle mo-
tion in the fluid flow is known). The richness of the description comes however
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at a cost. The computational effort to efficiently track millions of particles (as
in scenarios of industrial interest) becomes in general unaffordable. In order
to circumvent these difficulties, more computational than really conceptual,
coarser descriptions must be introduced.

1.2.2 Mesoscopic scale – Orientation probability density
function

1.2.2.1 Fokker-Planck approach

At the mesoscopic scale, we aim at describing the orientation state of a popu-
lation of particles. Two approaches are thus possible:

• Discrete description. We specify the population of N particles by con-
sidering the unit vector along the axis of each individual, that is, by
considering pi, i = 1, . . . , N .

• Continuous description. The individuality of the particles is lost in
favour of a statistical description of the population. A probability density
function – pdf – ψ(x, t,p) now provides at any position x and time t the
fraction of particles with a given conformation p. This pdf is symmetric,
ψ(x, t,p) = ψ(x, t,−p), and satisfies the normalisation condition

∫

S
ψ(x, t,p) dp = 1, ∀x, ∀t (1.7)

with S the unit sphere where p is defined.

In the following, we adopt this new continuous approach.
The equation of evolution for the probability density function ψ(x, t,p) is

given by the Fokker-Planck equation
∂ψ

∂t
+∇x · (ẋ ψ) +∇p · (ṗ ψ) = 0. (1.8)

This equation, written in the form of a convection equation in both physical
and conformational spaces, can be seen as a continuity equation expressing
conservation of probability.

In the case of dilute suspensions, ẋ is given by the unperturbed velocity
field v and ṗ is Jeffery’s kinematics (Eq. (1.5)).

Note: Using the definition of the material (or Lagrangian) derivative D
Dt =

∂
∂t + v · ∇x and the continuity equation for incompressible fluids ∇x · v = 0.
Eq. (1.8) is sometimes written as

Dψ

Dt
= −∇p · (ṗ ψ). (1.9)
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1.2.2.2 Solving the Fokker-Planck equation

The coarser description provided by the continuous description seems an ap-
pealing approach since the whole description of a population of particles is con-
tained in a scalar probability density function, whose evolution is given by a de-
terministic and linear partial differential equation. Unfortunately, this Fokker-
Planck evolution equation must be solved in a high-dimensional space, since
it lies in both physical (space and time) and conformational spaces. Standard
mesh-based discretization techniques usually fail to address equations defined
in many-dimensional spaces (since the number of degrees of freedom increases
exponentially with the number of dimensions involved). This issue is known
as the “curse of dimensionality” and justifies the few number of works address-
ing the modelling at the mesoscopic scale using a continuous Fokker-Planck
approach.

Stochastic approaches, drawing on the mathematical equivalence between
a Fokker-Planck partial differential equation and an Itô stochastic differen-
tial equation [Öttinger 1996] were developed to carry simulation at the meso-
scopic scale. We refer to [Keunings 2004] and [Binetruy et al. 2015] for a
review of the micro-macro simulations using the stochastic approach (and
their inherent challenges), including the pioneering CONFESSIT framework
[Laso & Öttinger 1993] and some further developments with the method of
Brownian configuration fields [Hulsen et al. 1997] and the so-called Lagrangian
particle method (LPM) [Halin et al. 1998] (along with the adaptative LPM
[Gallez et al. 1999] and the backward-tracking LPM [Wapperom et al. 2000]).
Solution procedures based on the use of particles have thus been exten-
sively employed by many authors, but, as mentioned above, there are on
the other hand few works focusing on the solution of Fokker-Planck equa-
tions by using standard discretization techniques [Lozinski & Chauvière 2003,
Chauvière & Lozinski 2004a, Chauvière & Lozinski 2004b].

The recent introduction of the Proper Generalized Decomposition
[Ammar et al. 2006, Ammar et al. 2007] – PGD – has however opened the way
for robust and efficient simulations with the Fokker-Planck approach, as dis-
cussed in the sequel.

The PGD makes use of separated representations in order to ensure that
the complexity scales linearly with the model dimensionality. It basically con-
sists in constructing by successive enrichment an approximation of the solution
in the form of a finite sum of functional products involving functions of each co-
ordinate. Consider a problem defined in a space of dimension D. The unknown
field is denoted by u(x1, x2, . . . , xD) where xi represents any usual coordinate,
either in space, time or conformation space (PGD can even handle physical
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parameters or boundary conditions as extra-coordinates). The solution for
(x1, x2, . . . , xD) ∈ Ω1 ×Ω2 × · · · ×ΩD is approximated in the PGD framework
by

u(x1, x2, . . . , xD) ≈
N∑

i=1

F 1
i (x1)F 2

i (x2) . . . FDi (xD). (1.10)

Neither the number of terms in the sum N , nor the individual functions F di
are known a priori. The latter are obtained by introducing the approximate
separated representations into the weak formulation of the original problem and
solving the resulting non-linear equations iteratively. The overall enrichment
process itself ends when an appropriate stopping criterion, assumed to be an
adequate measure of the approximation error, is satisfied.

For detailed explanations of the enrichment process and the non-
linear iterations involved at each enrichment step, we refer to the two
original papers [Ammar et al. 2006, Ammar et al. 2007] and the monograph
[Chinesta et al. 2014]. A discussion on the applications of the PGD
in the particular context of computational rheology can be found in
[Chinesta et al. 2011].

1.2.2.3 Illustration

Back to our running example (introduced in Sec. 1.2.1.3), we consider now a
population of particles, whose initial orientation is given by a Gaussian pdf
centred on (φ0, θ0) =

(
5π
4 ,

2π
5

)
. Figure 1.7 shows snapshots of the pdf ψ(t,p)

at different times, obtained by solving the Fokker-Planck equation Eq. (1.8).
Figure 1.7a depicts a population of rods aligning in the flow lines; the pdf thus
concentrates around (φ, θ) =

(
0, π2

)
. Figure 1.7b depicts a population of rigid

spheroid of aspect ratio r = 4 undergoing a kayaking motion; the pdf thus
follows a periodic trajectory reminiscent of the Jeffery orbit from Fig. 1.6c.

Conclusion

At the mesoscopic scale, the orientation state of a population of particles is de-
scribed by a pdf that lies in both physical (space and time) and conformational
space and provides a complete, unambiguous description of the fraction of parti-
cles oriented along a given direction at any location and any time. Its evolution
is given by a Fokker-Plank equation, whose solution is often impracticable due
to the inherent high-dimensionality of the problem. To circumvent this curse of
dimensionality, several techniques based on the use of particles were proposed
and widely employed. Despite the fact of considering a discrete description, the
level of detail in the description and the richness of the physics is exactly the
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1.2. Particle kinematics

(a) Rods (b) Ellipsoids of aspect ratio r = 4

Figure 1.7 – Snapshots of the pdf ψ(t,p) (depicted on the unit sphere) for
a population of particles suspended in a simple shear flow of Newtonian
fluid
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Chapter 1. Mathematical modelling of suspensions of non-spherical particles

same and obviously the solutions computed using both approaches are equiv-
alent (provided that convergence is achieved). Moreover, the use of separated
representations, within the PGD framework, recently opened the way to direct
solution of the Fokker-Planck partial differential equation. To alleviate the
challenges inherent to the mesoscopic scale, coarser descriptions, not lying in
conformation space, are again called for.

1.2.3 Macroscopic scale – Orientation tensors

1.2.3.1 Advani-Tucker model

At the macroscopic scale, the probability density function ψ(x, t,p) is sub-
stituted by its first moments (in conformation space), providing a compact
description for the orientation state within the suspension. The so-called
second and fourth-order orientation tensors, introduced by Advani & Tucker
[Advani & Tucker III 1987], read respectively

a(x, t) =

∫

S
(p⊗ p)ψ(x, t,p)dp (1.11)

and
A(x, t) =

∫

S
(p⊗ p⊗ p⊗ p)ψ(x, t,p)dp, (1.12)

where the integration is performed on the unit sphere S. These tensors lie only
in physical space and time. Due to the symmetry of the pdf (ψ(p) = ψ(−p)),
odd-order moments vanish. Usually, only the second and fourth moments are
retained, but the higher the order of the orientation tensors, the more accu-
rate is the description of the orientation state; the pdf can indeed be exactly
recovered, provided that all the moments up to infinite order are available
[Advani & Tucker III 1987].

These orientation tensors exhibit particular properties. a and A are sym-
metric, that is

aij = aji (1.13)

and
Aijkl = Aijlk = Akijl = Alijk = Aklij , etc. (1.14)

Moreover, due to the normalisation condition of ψ, the trace of a equals 1.
The second-order orientation tensor have an intuitive physical interpreta-

tion. A high value of a diagonal component of a indicates that the particles
tend to orient along this direction. Figure 1.8 shows some simple 2D and 3D
orientation states along with their corresponding second-order orientation ten-
sor a. If all the diagonal components are 1

3 , the orientation tensor suggests
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1.2. Particle kinematics

three-dimensional random orientations, but triaxial or any other orientations
that give this average are also possible. This is an example of the inherent
ambiguity of crude macroscopic descriptors. When two diagonal components
are equal to 1

2 the tensor suggests two-dimensional random or planar biaxial
orientations. Finally, a unit diagonal component indicates full alignment in
that direction. The interaction tensor b [Férec et al. 2009], capable of distin-
guishing the orientation states in the aforementioned ambiguous situations, is
also shown in Fig. 1.8 and is discussed in detail in Sec. 1.2.4.3.

Figure 1.8 – Illustration of different orientation states and their
corresponding second-order orientation and interaction tensors
[Férec & Ausias 2015]
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The derivation of an equation of evolution for a leads to the classical
Advani-Tucker macroscopic model [Advani & Tucker III 1987]. We show in the
sequel how to recover this model, from Jeffery’s kinematics and the definition
of the orientation tensors.

Without any loss of generality, we consider the component at position (i, j),
i, j = 1, . . . , 3 of Eq. (1.11)

aij =

∫

S
pipj ψ(x, t,p) dp. (1.15)

Taking the derivative of this equation with respect to time yields

Daij
Dt

=

∫

S
pipj

Dψ(x, t,p)

Dt
dp. (1.16)

Using the Fokker-Planck equation Eq. (1.9), we have that Dψ
Dt = −∇p · (ṗ ψ)

and thus
Daij
Dt

=

∫

S
pipj

(
−∂(ṗk ψ(x, t,p))

∂pk

)
dp. (1.17)

Performing integration by parts on the surface of the unit sphere S (no bound-
ary) and sorting the terms, we obtain

Daij
Dt

=

∫

S

∂(pipj)

∂pk
ṗk ψ(x, t,p) dp (1.18)

=

∫

S
(δikpj ṗk + δjkpiṗk) ψ(x, t,p) dp (1.19)

=

∫

S
(pj ṗi + piṗj) ψ(x, t,p) dp. (1.20)

Finally, coming back to a tensor notation, the time evolution of the second-
order moment a is given by

Da

Dt
=

∫

S
(ṗ⊗ p + p⊗ ṗ) ψ(x, t,p) dp, (1.21)

or using the usual notation

ȧ =

∫

S
(ṗ⊗ p + p⊗ ṗ) ψ(x, t,p) dp. (1.22)

By substituting Jeffery’s expression (Eq. (1.5)) for ṗ, we obtain

ȧ =

∫

S

(
(Ω · p + λ(D · p− (D : (p⊗ p))p))⊗ p

)
ψ(x, t,p) dp

+

∫

S

(
p⊗ (Ω · p + λ(D · p− (D : (p⊗ p))p)

)
ψ(x, t,p) dp,

(1.23)
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1.2. Particle kinematics

that is
ȧ = Ω · a− a ·Ω + λ (D · a + a ·D− 2 A : D) . (1.24)

The equation of evolution of the second-order orientation tensor a depends
not only on a, but also on A, the fourth-order orientation tensor. Unfortu-
nately, the time derivative of the fourth-orientation tensor, using the same
rationale, involves the sixth-orientation tensor and so on. In order to close
the problem and circumvent this purely mathematical issue, an approximate
closure relation is required to express the fourth-orientation moment A as a
function of the lower-order moment a.

1.2.3.2 Closure approximations

Closure problems commonly arise when equations for the moments are derived
from the distribution functions. Much research has focused on developing ac-
curate and stable closure approximations, leading to various results. In the
sequel, we present briefly closure approximations often used in the case of fibre
suspensions. A tentative classification is presented in Fig. 1.9.

Simple closures: LIN - QUAD - HYBR
The simplest closure approximations are

• the linear closure, proposed by Hand [Hand 1962] and exact in the case
of isotropic orientations,

ALIN
ijkl = − 1

35
(δijδkl + δikδjl + δilδjk)

+
1

7
(aijδkl + aikδjl + ailδjk + aklδij + ajlδik + ajkδil);

(1.25)

• the quadratic closure [Hinch & Leal 1976], exact in perfect alignment,

AQUAD
ijkl = aijakl; (1.26)

• and the hybrid closure [Advani & Tucker III 1990], which is a combina-
tion from the previous ones,

AHYBR
ijkl = (1− f)ALIN

ijkl + fAQUAD
ijkl , (1.27)

where f = 1 − 27 det a is a scalar measure of orientation in a 3D orien-
tation field (which varies from 0 in the case of a random orientation to
1 in the case of a perfectly aligned orientation).
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Chapter 1. Mathematical modelling of suspensions of non-spherical particles

Figure 1.9 – Overview of some closure approximations available in the
literature in the case of fibre suspensions [Férec & Ausias 2015]

Composite closures: HL1 - HL2
Whether in the evolution equation of a (Eq. (1.24)) or in the expression of the
stress tensor, the fourth-order tensor appears in the doubly contracted form A :

D. Therefore, some researchers have attempted to construct a closure relation
for this second-order tensor, including Hinch & Leal [Hinch & Leal 1976] who
proposed HL1 (weak flows) and HL2 (strong flows).

Orthotropic closures: ORL - ORF - ORW -ORW3
Cintra & Tucker [Cintra Jr & Tucker III 1995] developed a family of closure ap-
proximations called orthotropic closures, based on the fact that any objective
closure approximation for A must be orthotropic, having the same principal
axes as a. Cintra & Tucker showed that, in this basis, the tensor A has only
three independent components, that can then be expressed as polynomial ap-
proximations of the eigenvalues of a (the coefficients of the approximations
have been fitted from known solutions to the problem).
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1.2. Particle kinematics

Cintra & Tucker first proposed a closure labelled ORF, and later an im-
proved version, called ORL, eliminating non-physical oscillations that could be
observed with ORF in particular flows. Chung & Kwon [Chung & Kwon 2001]
proposed their versions of the orthotropic with ORW and ORW3 (using a third-
order polynomial expansions).

Natural closures: NAT - IBOF
The natural closure (NAT) is an invariant-based system derived by Verleye &
Dupret [Verleye et al. 1994, Dupret & Verleye 1999]. The closure is based on
the most general expression of a full symmetric fourth-order tensor A in terms
of a and δ, that is,

ANAT = β1S(δδ) + β2S(δa) + β3S(aa)

+ β4S(δa · a) + β5S(aa · a) + β6S(a · aa · a).
(1.28)

The coefficients βi in this expression are fitted polynomial expansions of the
invariants of a.

Chung & Kwon [Chung & Kwon 2002] developed the Invariant Based Opti-
mal Fitting closure approximation (IBOF) to improve the accuracy of the NAT
approximation by addressing its singularity issue [Dupret & Verleye 1999].

Both orthotropic and natural closures are fitted closures and their coefficients
are found by matching particular solutions in well-known flow fields. However,
compared to orthotropic closures, natural closures usually require less com-
putation time, since no transformations between the global coordinates and
principal coordinates are necessary.

Neural-network-based closures: NNET - NNORT
A neural-network-based closure approximation (NNET) was proposed by Jack
[Jack et al. 2010], obtained by training a 2-layer neural-network with the inde-
pendent components of a as inputs and the independent components of A as
outputs. To overcome the lack of objectivity of the NNET “black-box” closure,
Qadir and Jack [Qadir & Jack 2009] developed the neural-network orthotropic
closure (NNORT).

Closures for the sixth-order orientation tensor A
Most closures approximations try to express the fourth-order orientation ten-
sor A in terms of the second-order orientation tensor a. However, some
propositions were made to go a step further and consider the evolution
equation for A, thus requiring a closure relation for the sixth-order mo-
ment A. We can mention simple closures, such as LIN6, QUAD6, HYBR6
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[Advani & Tucker III 1990], or even invariant-based fitted closures INV6 and
IBF6 [Jack & Smith 2005, Jack & Smith 2006].

An abundant literature on closure approximations is available. Questions
regarding the choice and the form of closures are still unresolved and new
proposals are regularly made.

1.2.3.3 Illustration

Back again to our running example (from Sec. 1.2.1.3 and 1.2.2.3). We consider
the same population of particles as in Fig. 1.7, but the orientation state is now
described by the second-order tensor a(t). Figure 1.10 shows the evolution of
the diagonal components of a in the case of rods (left) and spheroids of aspect
ratio r = 4 (right). The discrete macroscopic tensor adiscr(t) = 1

N

∑N
i=1 pi⊗pi

is depicted as a solid line, and closure-based macroscopic models (using QUAD,
HYBR and IBOF) as discontinuous lines. Since the fibres tend to align in
the flow (x-direction), the first diagonal of the orientation tensor axx tends
towards 1. For the spheroids, the components of a exhibit a periodic course.
Closures performance (assessed by comparing with the discrete simulation)
is quite satisfactory in this simple example, where the variance of the initial
distribution is rather small.
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(b) Ellipsoids of aspect ratio r = 4

Figure 1.10 – Evolution of the diagonal components of the second-order
orientation tensor for a population of particles suspended in a simple
shear flow of Newtonian fluid (initial configuration depicted in Fig. 1.7)

28



1.2. Particle kinematics

Conclusion

The macroscopic scale offers a simple and crude description of the microstruc-
ture. The pdf is substituted by some of its moments, sacrificing the level of
detail and the involved physics in favour of computational efficiency. The equa-
tions governing the time evolution of these moments however involve closure
approximations (of a purely mathematical nature), whose impact on the results
is quite unpredictable.

1.2.4 Inter-particle interactions

So far, the discussions have focused on dilute suspensions, building upon Jef-
fery’s theory. In the semi-dilute (and semi-concentrated regimes), inter-particle
interactions can no longer be neglected. Different model extensions have thus
been proposed to account for these interactions. In this section, we present
briefly a family of models obtained by introducing a diffusion mechanism, a
phenomenological “reduced-strain closure” model and a more physical model
based on interaction tensors.

1.2.4.1 Diffusion mechanism

The basic idea behind these models is to add to Jeffery’s kinematics (J)
a randomizing term (D) sometimes called “orientational dispersion flux”
[Rahnama et al. 1995]. Hence, the resulting particle kinematics read

ṗ = ṗJ + ṗD. (1.29)

This diffusion term, associated to the hydrodynamic interactions between par-
ticles, reflects the fact that the orientation rate of a particle is perturbed
by its neighbours compared to a single isolated particle. These effects were
analysed by Koch and Shaqfeh [Shaqfeh & Koch 1990, Koch & Shaqfeh 1990,
Rahnama et al. 1995] in shear and elongational flows.

The most famous, and the most commonly used in industrial applications,
is undoubtedly the Folgar & Tucker model [Folgar & Tucker III 1984]. Folgar
& Tucker introduced a phenomenological isotropic diffusion term

ṗD = −Dr

ψ
∇pψ. (1.30)

The diffusion coefficientDr is assumed to scale linearly with the shear rate, that
is Dr = Ciγ̇, where the parameter Ci controls the intensity of the interactions.

At the macroscopic scale, the Folgar & Tucker model reads

ȧ = Ω · a− a ·Ω + λ (D · a + a ·D− 2 A : D) + 2Dr(δ − 3a). (1.31)
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Koch [Koch 1995], and later Fan & Phan-Thien [Fan et al. 1998,
Phan-Thien et al. 2002] proposed to change the scalar diffusion coefficient by a
tensor diffusion, opening the way to anisotropic rotary diffusion models (ARD).
However, Phelps & Tucker [Phelps & Tucker III 2009] pointed a flaw in the
Phan-Thien model: for fibres isotropically oriented, the diffusive contribution
is not vanishingly small, in other words, when the fibres are randomly dis-
tributed, the diffusion term of this model would pull the orientation away from
isotropy. From there, they established a general framework for ARD by impos-
ing particular constraints on the diffusive contribution.

1.2.4.2 Reduced-strain closure model

For concentrated suspensions, experimental observations show that fibers align
more slowly with respect to strain than in predictions based on the standard
Folgar & Tucker model [Sepehr et al. 2004]. Therefore, Tucker and co-authors
[Wang et al. 2008, Phelps & Tucker III 2009] proposed a new time evolution
equation, called the reduced-strain closure model, to slow down the fibre ori-
entation kinematics.

They performed an eigendecomposition of the second-order tensor a and
obtained from (Eq. (1.31)) an equation of evolution for the eigenvalues and
eigenvectors. Then, the growth rates of the eigenvalues are multiplied by an
empirical factor κ ≤ 1 to slow down the orientation kinematics, whereas the
rotation rates for the eigenvectors are left unchanged to ensure the principle of
material frame invariance. They also showed that their new phenomenological
model, developed at the level of the (moment) tensor equation, can be repro-
duced by introducing an additional flux of probability density at the kinetic
theory level (mesoscopic scale).

1.2.4.3 Interaction tensors

In order to take into account inter-particle interactions, Férec
[Férec et al. 2009] introduced interaction tensors based on micromechan-
ical considerations.

In the following, the superscript α refers to the test fibre while β is used for
the neighbouring fibre. Interaction tensors are defined by forming the dyadic
products of the unit vector p, multiplied by the Onsager potential

∣∣pα × pβ
∣∣

and then weighted by the distribution functions. Once again, the odd-order
integrals are zero due to the symmetry of the distributions, so only the even-
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order tensors are of interest. The first two non-vanishing tensors read

b =

∫

Sα

∫

Sβ
(pα ⊗ pα)

∣∣pα × pβ
∣∣ψ(pα)ψ(pβ) dpαdpβ (1.32)

and

B =

∫

Sα

∫

Sβ
(pα ⊗ pα ⊗ pα ⊗ pα)

∣∣pα × pβ
∣∣ψ(pα)ψ(pβ) dpαdpβ . (1.33)

Back to Fig. 1.8, the interaction tensors now allow us to discriminate be-
tween 3D random and triaxial orientations (and similarly 2D random and bi-
axial), for which the orientation tensors a are the same. A perfectly aligned
orientation implies of course a null b tensor since no interactions occur.

Interaction tensors are non-trivial moments of the pdf since the Onsager
potential is included in their definitions and, moreover, they evolve with time.
Two strategies are thus possible: (i) the first consists in deriving time-evolution
equations for the interaction tensors (this approach has not yet been developed,
probably due to the difficulties of determining tensors); (ii) the second strat-
egy consists in determining interaction tensors directly from orientation ten-
sors. We refer to [Férec et al. 2009, Férec et al. 2014, Férec & Ausias 2015] for
a discussion on the expression of the interactions tensors form the orientation
tensors, and the necessary closure approximations.

Conclusion

Multiple mechanisms were proposed to take into account inter-particle inter-
actions in the orientation kinematics of semi-concentrated suspensions. The
diffusion-based models and the reduced-strain closure model are rather phe-
nomenological and try to account for the effects of particle-particle interactions
by tweaking the classical model to reproduce experimental results. Only the
interactions tensors are motivated by micromechanical considerations but their
implementation remains delicate. On the other hand, the ease of use of Folgar
& Tucker’s diffusion model has made it a must in the industry.

1.2.5 Non-Newtonian matrix

Fluid matrices used in composite manufacturing applications are in general
molten thermoplastics that exhibit a viscoelastic behaviour. However, the mod-
elling and simulation tools used to address these processes are often derived
from the aforementioned results for semi-dilute suspensions in Newtonian ma-
trices. Several authors note that non-Newtonian polymer matrix suspensions
received less attention than their Newtonian counterparts [Petrie 1999].
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As mentioned previously, the vast majority of available models are
based on the Jeffery equation that describes the motion of an ellipsoidal
particle immersed in a Newtonian fluid. Thus far, there is no general
Jeffery counterpart available for non-Newtonian suspending fluids. Sev-
eral numerical studies are available (focussing mainly on the sedimentation
motion) [Singh et al. 2000, Yu et al. 2002, Yu et al. 2006, Choi et al. 2010,
Villone et al. 2013, D’Avino & Maffettone 2015] and some experimental stud-
ies were conducted [Iso et al. 1996, Gunes et al. 2008], but very few theoretical
works exist. Leal [Leal 1975] and Brunn [Brunn 1977] published important re-
sults for second-order viscoelastic fluids, in the limit of low Weissenberg num-
bers. They derived the equations governing the motion of rods [Leal 1975] and
ellipsoidal particles [Brunn 1977] that could be viewed as the counterparts of
the Jeffery equation for the fluids and flow regimes considered in their deriva-
tion. Recently, Borzacchiello [Borzacchiello et al. 2016] proposed a multi-scale
modelling of short fibre suspensions in second-order fluids, from microscopic to
macroscopic.

Brunn’s orientation kinematics for a spheroid particle immersed in a second-
order fluid read [Brunn 1977]

ṗ = Ω · p + λ
(
D · p− (D : (p⊗ p)p)

)

−
(
I− (p⊗ p)

)
·D ·

(
H2D · p +H1(D : (p⊗ p))p

)
,

(1.34)

where λ is the spheroid shape factor, and the material parameters H1 and H2

are given by Brunn, H1 = (r2 − 1)H2 = −2
(
r2−1
r2+1

)2 (
k
(2)
0 + 1

4k
(11)
0

)
. Develop-

ing Eq. (1.34), we have

ṗ = Ω · p + λ(D · p− (D : (p⊗ p)p))

−H2D
2 · p +H2(p⊗ p) ·D2 · p

−H1(D : (p⊗ p)) D · p +H1(D : (p⊗ p)) (p⊗ p) ·D · p.
(1.35)

Figure 1.11 shows the orientation trajectory of the particle, as a line on
the unit sphere, and the components of the orientation vector p in the case
of a spheroid of aspect ratio r = 4 immersed in a second-order fluid (in this
illustration, we have k(11)0 = 0.144 and k

(11)
0 = −0.09, and thus, H1 = 0.084

and H2 = 0.0056), and starting from the same initial condition as in Fig. 1.6
(Newtonian case). In the case of a second-order fluid, the kayaking motion of
the particle is knowns to drift towards the shear plane for oblate spheroids (r
< 1) or towards the vorticity axis for prolate spheroids (r > 1) [Brunn 1977,
D’Avino & Maffettone 2015].
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(a) Ellipsoid trajectory
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(b) Components of the orientation vector p

Figure 1.11 – Trajectory of an ellipsoidal particle of aspect ratio r = 4

suspended in a simple shear flow of a second-order fluid

1.3 Suspension rheology

In this section, we give an overview of the models available to describe the
rheological properties of non-spherical particle suspensions, focusing mostly on
dilute and semi-dilute fibre suspensions. The aim is to provide a constitutive
expression for the stress tensor as a function of the strain-rate and of the
microstructural state of the suspension.

Additive decomposition of the stress tensor. In the following rheological mod-
els, the filled system can be viewed as a two-component fluid and thus, the
composite stress is expressed as

σ = −pδ + τm + τ p, (1.36)

where p is the isotropic pressure, τm denotes the suspending matrix contribu-
tion (Newtonian or not) and τ p denotes the contribution of the particles to the
overall stress.

1.3.1 Newtonian matrix suspensions

A variety of theories have been proposed to describe the total stress in a (semi-
)dilute suspension of fibres in an incompressible Newtonian fluid. All these
theories can be expressed as

σ = −pδ + 2η0D + τ p, (1.37)
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with the fibre contribution τ p given by

τ p = η0φ
[
µ1A : D + µ2(a ·D + D · a) + µ3D + µ4a

]
. (1.38)

In this expression, η0 is the viscosity of the Newtonian matrix, φ is the particle
volume fraction, a and A are respectively the second-order and fourth order
orientation tensors (Eqs. (1.11) and (1.12)) and the coefficients µi are mate-
rials constants that depend on the type of particles and the microstructure
configuration.

In the sequel, we review some significant works and give explicit expres-
sions for the material coefficients µi. All the models below were derived us-
ing an homogenization technique similar to the pioneering work of Batchelor
[Batchelor 1970b], who sought the expression of the macroscopic stress as an
ensemble average over a representative volume element. The perturbation of
the flow induced by the presence of the particles is either estimated using Jef-
fery’s theory or using the so-called slender body theory.

Models based on Jeffery’s theory

Lipscomb [Lipscomb et al. 1988] used Batchelor’s theory to derive the macro-
scopic stress in a dilute suspensions of ellipsoidal particles by integrating Jef-
fery’s results [Jeffery 1922]. The contribution of each ellipsoid to the macro-
scopic stress is taken into account by performing an ensemble average of the
stress in the vicinity of each ellipsoid. Lipscomb showed that Jeffery’s re-
sults could be rewritten using Ericksen’s theory of transversely isotropic fluid
[Ericksen 1960], with a particular value for the coefficients in the expression of
σTIF. Thus,

τ p = φ〈σTIF〉 = φ

∫

S
σTIFψ(x, t,p) dp, (1.39)

with the average TIF stress given by

〈σTIF〉 = −p0δ + 2η0D + α1a + α2A : D + 2α3(D · a + a ·D). (1.40)

In the case of a dilute suspensions of spheres (aspect ratio r = 1), they
recovered the famous results from Einstein, that is

σ = −(p+ φp0)δ + 2η0(1 + 2.5φ)D. (1.41)

In the case of slender ellipsoids (r → ∞), the particles contribution to the
stress read

τ p = η0φ

(
4D +

r2

log(r)
A : D

)
. (1.42)
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1.3. Suspension rheology

Phan-Thien & Graham [Phan-Thien & Graham 1991] developed a phe-
nomenological constitutive equation, which implements experimental evidence
that, at high volume fraction, effective specific viscosity increases with the
cube of the volume fraction and modifies the transversely isotropic fluid model.
Their model reads

τ p = 2η0FA : D, (1.43)

where F =
r2φ(2− φ

G )
4(log(2r)−1.5)(1− φ

G )
2 with G = 0.53− 0.013r.

Models based on slender-body theory

Slender-body theory is an asymptotic technique that can be used to obtain an-
alytical approximations to the solutions of Stokes flow around a particle such
as a slender fibre whose length is large compared to its thickness. Follow-
ing this theory, Batchelor [Batchelor 1970b, Batchelor 1970a, Batchelor 1971]
developed a cell (or a self-consistent continuum) model. Constitutive equa-
tions obtained from slender-body theory can be written as Eq. (1.38), but with
µ2 = µ3 = µ4 = 0.

Evans [Evans 1975] developed a general constitutive equation with
µ1 = 16r2

log(r) . Inspired by liquid crystal theory, Dinh & Armstrong
[Dinh & Armstrong 1984] extended Batchelor model by determining the cell
size and proposed µ1 = 2r3

3 log( 2h
D )

, with the inter-particle spacing h given for

completely random and aligned fibre orientations. In the case of cylindri-
cal slender particles, Shaqfeh & Fredrickson [Shaqfeh & Fredrickson 1990] ob-
tained an expression of µ1 for both random and aligned orientation states.

1.3.2 Non-Newtonian matrix suspensions

Once again, few rheological models were proposed in the non-Newtonian case.
In the case of thermoplastics, Souloumiac and Vincent

[Soulomiac & Vincent 1998] established a stress expression which takes
into account the shear-thinning behaviour of the matrix, represented by a
power-law. They determined the contribution of the fibres to the stress
field using a cell model [Batchelor 1970b], and assumed that hydrodynamic
interactions between the fibres are weak. The total stress field is the sum of
the contributions of the matrix and of the particles and read

σ =− pδ + 2K
∣∣γ̇
∣∣m−1D (1.44)

+ 2Kγ̇φµ1

∫

S
p⊗ p (∇v : (p⊗ p))

∣∣∇v : (p⊗ p)
∣∣m−1ψ(x, t,p) dp,
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with µ1 = rm+1

m+2

(
1−m

m(1− D
2h )

1−m
m

)m
. In this expression, K is the matrix con-

sistency and m is the power-law index of the matrix. If m tends to 1, the
expression for the stress reduces to the expression found by Dinh and Arm-
strong [Dinh & Armstrong 1984]. Moreover, this result is in agreement with
the studies of Goddard [Goddard 1976], who found that the stress is propor-
tional to rm+1 for aligned fibres in a uniaxial extension of a power-law fluid.

In the case of viscoelastic fluid suspensions, some constitutive equations
have been developed to understand flow phenomena in composite processing.
Kitano & Funabashi [Kitano & Funabashi 1986] treat the whole suspension as
a homogeneous viscoelastic fluid. Other models have been proposed for various
viscoelastic constitutive laws: Oldroyd-B [Fan 1992], Giesekus [Azaiez 1996],
FENE-P [Azaiez 1996, Ramazani et al. 1997].

1.4 Dumbbell approach

In this section, we revisit the results of the previous sections using a dumbbell
representation of a suspended fibre [Bird et al. 1987, Chinesta 2013]. In par-
ticular, we show how to obtain Jeffery’s orientation kinematics in the case of
rods, and the expression of the suspension extra-stress using Kramers’ formula.

1.4.1 Kinematics - Derivation of Jeffery’s equation

We consider a Newtonian fluid of viscosity η in which are suspended non-
Brownian rigid fibres (rods). The concentration of rods is assumed to be low
(dilute regime) which means that the rods do not interact with each other.
Moreover, we consider that the presence and orientation of those rods do not
affect the flow kinematics defined by the velocity field v(x, t). Finally, the
velocity gradient ∇v is assumed constant at the scale of the rod (first-gradient
modelling).

As shown in Fig. 1.12, a fibre is idealized as a dumbbell composed of a rod
of length 2L and two inertialess beads on which hydrodynamical interactions
act. In our case, we consider that each bead is subject to a hydrodynamic
Stokes drag. The force acting on the bead is thus simply a friction coefficient ξ
multiplied by the difference of velocities between the fluid at the bead location
and the bead itself. The former is given by v0 +∇v · pL (with v0 the velocity
of the fluid at the centre of gravity G) and the latter reads vG + ṗL (with vG
the velocity of the centre of gravity). Note that we use here the fact that the
velocity gradient is constant at the scale of the fibre. The force acting on the
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G
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FH(pL)

FH(�pL)

2L

Figure 1.12 – Dumbbell representation of a fibre

bead located at pL reads

FH(pL) = ξ(v0 +∇v · pL− vG − ṗL) (1.45)

and the force on the other bead is readily obtained by changing p with −p

FH(−pL) = ξ(v0 −∇v · pL− vG + ṗL). (1.46)

Neglecting inertial effects, balance of forces yields

FH(pL) + FH(−pL) = 2ξ(v0 − vG) = 0 (1.47)

and consequently, v0 = vG, that is, the rod’s centre of gravity is moving with
the fluid velocity.

Balance of torques is only possible if the hydrodynamic force acts along
the direction p of the rod. We can therefore write FH(pL) = λp, with λ ∈ R.
Using Eq. (1.45) and taking into account that v0 = vG, we have

ξL(∇v · p− ṗ) = λp. (1.48)

As p is a unit vector, p · p = 1 and by taking the time derivative we also have
ṗ · p = 0. Premultiplying Eq. (1.48) by p, we obtain easily the value of λ:

λ = ξL(∇v : (p⊗ p)). (1.49)

Note that FH(pL) can thus be written as

FH(pL) = ξL(∇v : (p⊗ p))p = ξL(D : (p⊗ p))p. (1.50)

Combining Eqs. (1.48) and (1.49) gives

ξL(∇v · p− ṗ) = ξL(∇v : (p⊗ p))p, (1.51)
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that is
ṗ = ∇v · p− (∇v : (p⊗ p))p, (1.52)

which is nothing else than Jeffery’s equation for infinite aspect ratio ellipsoids
(Eq. (1.5) with λ = 1). We can notice that the factor ξL vanishes in Eq. (1.51),
hence the rod kinematics do not contain size effects.

The extension to ellipsoids is obtained straightforwardly by considering
a tri-dumbbell representation of the particle. Moreover, this methodology can
also be applied to arbitrary clusters composed of rods, whose kinematics proved
to be the same as an equivalent ellipsoid obtained by an eigendecomposition of
the cluster conformation tensor [Abisset-Chavanne et al. 2015a].

1.4.2 Rheology - Kramers’ formula

The so-called Kramers’ formula, providing an expression for the contribution
of a suspended dumbbell to the stress, is rather simple: consider the dumbbell
depicted in Fig. 1.12, its contribution τ p to the suspension stress reads

τ p = pL⊗ FH(pL) + (−pL)⊗ FH(−pL) (1.53)

= 2Lp⊗ FH(pL). (1.54)

For a dilute suspensions of dumbbells, the contribution to the stress is given
by

τ p ∝ 〈2Lp⊗ FH(pL)〉, (1.55)

where 〈 〉 denotes an ensemble average. Substituting the expression of the
hydrodynamic force FH (Eq. (1.50)), we have

τ p ∝ 2ξL2〈(p⊗ p⊗ p⊗ p) : D〉, (1.56)

that is, using the orientation tensor (Eq. (1.12)),

τ p ∝ A : D. (1.57)

Deriving the Kramers expression in the general case however is no easy task.
Bird and co-authors [Bird & Curtiss 1985, Bird et al. 1987] discuss extensively
the spring-bead, rod-bead, spring-rod-bead systems and how Kramers’ formula
is derived in each case. In the spring-bead model, a simple kinetic theory
derivation can be performed, considering successively the contribution of the
intramolecular potential, external forces and bead motion to the stress. The
final expression depends on the spring force law explicitly, but it is shown how
the stress tensor could be transformed in several other forms, including one
that does not contains the spring force law. This is the expression we have
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1.4. Dumbbell approach

used here. The validity of this expression in other situations, in particular for
rod-bead dumbbells that contain a constraint due to their rigidity, is thus far
from obvious and Kramers formula is often rigorously proved using a complete
phase-space kinetic theory [Bird et al. 1987].

In the sequel, we propose a simple derivation of Kramers’ formula in the
case of the rigid dumbbell depicted in Fig. 1.12.

Consider an arbitrary plane of area S in the suspension, moving with the
local suspension velocity. The orientation of the plane is given by a unit vector
n, see Fig. 1.13. The beads of the dumbbell are labelled “1” and “2”, with
the unit vector p pointing from the first bead to the second. The number

2

1

p

2L

FH(pL)

FH(�pL) n

-

+2L

Figure 1.13 – Volume that may be occupied by bead “1” when the dumb-
bell intersects the shaded plane

of dumbbells with the connector straddling the plane, with bead “1” on the
negative side and bead “2” on the positive side, is given by the product of three
factors: the number of dumbbells per unit volume, n; the volume in which bead
“1” must be, namely (n ·2Lp)S; and the probability ψ(p)dp that the dumbbell
is in the configuration range dp around p. Because of the dumbbells, there
will be a contribution of the “negative material” to the “positive material” in
the amount of FH(−pL). This can be seen in the following way: when all the
“negative material” is replaced by an equivalent continuum, due to the rigidity
of the dumbbell, it is as if this force was exerted by the “negative material” to
the “positive material”. Thus, the contribution of dumbbells of all orientations,
with bead “1” in the negative region and bead “2” in the positive region, to the
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stress (force per unit area) is
∫

all p s.t.
(n·p) is positive

n(n · 2Lp)FH(−pL)ψ(p) dp. (1.58)

Similarly, the contribution of all dumbbells with bead “2” in the negative region
and bead “1” in the positive region is

∫
all p s.t.

(n·p) is negative

n(−n · 2Lp)FH(pL)ψ(p) dp. (1.59)

Since FH(pL) = −FH(−pL) (cf. Eq. (1.50)), the two integrals can thus be
combined to give

−
∫

all p
n(n · 2Lp)FH(pL)ψ(p) dp = −

[
n · n

∫

all p
2Lp⊗ FH(pL)ψ(p) dp

]
.

(1.60)
But this average must be identified with − [n · τ p]; hence, the contribution of
the dumbbells to the suspension stress is

τ p = n

∫

all p
2Lp⊗ FH(pL)ψ(p) dp = n〈2Lp⊗ FH(pL)〉. (1.61)

1.5 Modelling framework composed of 9 concep-
tual bricks

At this point, we can summarize schematically the multi-scale modelling
of non-spherical particle suspensions using 9 conceptual bricks, as de-
picted on Fig. 1.14. This modelling framework was originally proposed in
[Abisset-Chavanne et al. 2015a].

At each scale, the first brick consists in identifying the relevant conforma-
tion to describe the orientation sate of the suspended particle or population of
particles. The second brick provides an equation of evolution for that conforma-
tion. The third brick considers the suspension rheology, that is the contribution
of the particles to the overall stress.

In the remaining of this section, we illustrate these 9 conceptual bricks in
the case of a dilute suspension of rigid rods, using the results derived in the
previous sections.

Brick 1 – Microscopic conformation At the microscopic scale, the
conformation of each rod is described by the unit vector p aligned with the
rod axis and located at the rod’s centre of gravity. This unit vector simply
identifies the orientation of the rod in the suspension.
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1 Conformation description of an 
individual particle M 

I 
C 
R 
O

2 Evolution of the conformation

3 Particle contribution to the stress

4 Population description (pdf) M 
E 
S 
O

5 Evolution of the conformation 
(Fokker-Planck equation and PGD)

6 Population contribution to the 
stress

7 Microstructural macroscopic 
description (moments of the pdf) M 

A 
C 
R 
O

8 Evolution of the conformation

9 Moment-based stress

Computational ressources

Curse of dimensionality

Closure approximations

Figure 1.14 – General modelling framework composed of nine conceptual
bricks exploring the three scales involved in the multi-scale description
of a suspension of particles

Brick 2 – Evolution of the microscopic conformation The evolu-
tion of that conformation is simply given by Jeffery’s equation

ṗ = ∇v · p− (∇v : (p⊗ p))p. (1.62)

We showed in Sec. 1.4.1 how to recover this equation using a dumbbell repre-
sentation of a fibre.

Brick 3 – Microscopic contribution to the stress Applying
Kramers’ formula to the dumbbell, the contribution of a single fibre to the
stress reads

τ p ∝ F(pL)⊗ pL+ F(−pL)⊗ (−pL) = 2ξL2(∇v : (p⊗ p))p⊗ p (1.63)
τ p ∝ 2ξL2(∇v : (p⊗ p⊗ p⊗ p)). (1.64)
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Brick 4 – Mesoscopic conformation As mentioned in Sec. 1.2.2, we
can either adopt a discrete or a continuous approach to describe a population
of rods. Using the continuous approach, the orientation state of the population
is described by the probability density function – pdf – ψ(x, t,p) that gives the
fraction of rods at position x and time t having a conformation p.

Brick 5 – Evolution of the mesoscopic conformation The evolu-
tion of the pdf is governed by the following Fokker-Planck equation

∂ψ

∂t
+∇x · (ẋ ψ) +∇p · (ṗ ψ) = 0, (1.65)

where ẋ = v(x, t) is the fluid velocity field and the rod rotary velocity ṗ is
given by Jeffery’s equation (Eq. (1.62)).

Brick 6 – Mesoscopic contribution to the stress The contribution
of the fibre population to the stress is readily obtained by integrating the in-
dividual effects (Eq. (1.64)) of all the fibres composing the population, that
is

τ (x, t) =

∫

S
τ p ψ(x, t,p) dp (1.66)

∝ 2ξL2

∫

S
(∇v : (p⊗ p⊗ p⊗ p)) ψ(x, t,p) dp. (1.67)

To be consistent with the usual notation, the latter expression is often rewritten
as

τ (x, t) = 2ηNp

∫

S
(∇v : (p⊗ p⊗ p⊗ p)) ψ(x, t,p) dp, (1.68)

where Np accounts for the fibre concentration and the fluid viscosity η is used
instead of the friction coefficient ξ.

Brick 7 – Macroscopic conformation At the macroscopic scale, the
pdf is substituted by its first non-vanishing moments in order to have a descrip-
tor defined in standard physical domains (i.e. only space and time). In view of
the symmetry of the problem, ψ(p) = ψ(−p) (the orientation of a fibre can be
equivalently identified by the unit vector p or −p), odd-order moments vanish.
The first non-zero moment is thus the second-order moment, sometimes called
the second-order orientation tensor

a =

∫

S
(p⊗ p) ψ(p) dp. (1.69)
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Brick 8 – Evolution of the macroscopic conformation The careful
derivation of the equation of evolution for the second-order orientation tensor,
using Jeffery’s equation, is detailed in Sec. 1.2.3 and yields

ȧ = ∇v · a + a · (∇v)T − 2 A : ∇v. (1.70)

Since this equation of evolution for the second-order orientation tensor a de-
pends not only on a, but also on A, the fourth-order orientation tensor, a
closure approximation is required to express the fourth-orientation moment A

as a function of the lower-order moment a. The issue of closure approximations
was discussed in Sec. 1.2.3.2.

Brick 9 – Macroscopic contribution to the stress The expression
for the stress obtained at brick 6 (Eq. (1.68)) can now be rewritten in terms of
the orientation tensors

τ = 2ηNp(A : ∇v). (1.71)

Again, in this expression, a closure approximation is required.

The multi-scale description for dilute fibre suspensions using this 9-brick
modelling framework is summarized in Fig. 1.15.

1 M 
I 
C 
R 
O

2

3

4 M 
E 
S 
O

5

6

7 M 
A 
C 
R 
O

8

9

⌧ (x, t) = 2⌘Np

Z

S
(rv : (p ⌦ p ⌦ p ⌦ p))  (x, tp) dp

@ 

@t
+ rx · (ẋ  ) + rp · (ṗ  ) = 0

 (x, t,p)

⌧ p / 2⇠L2(rv : (p ⌦ p ⌦ p ⌦ p))

ṗ = rv · p � (rv : (p ⌦ p))p

p

a =

Z

S
(p ⌦ p)  (p) dp

⌧ = 2⌘Np(A(a) : rv)

ȧ = rv · a + a · (rv)T � 2 A(a) : rv

Figure 1.15 – Summary of the multi-scale description of dilute fibre sus-
pensions using the proposed modelling framework

43



Chapter 1. Mathematical modelling of suspensions of non-spherical particles

1.6 Overview of the next chapters

With the stage now set, we can review the content of the following chapters
and see how they fit in the proposed framework. The motivation behind each
study is also specified in light of the state of the art reported in this chapter.

1.6.1 Suspensions of inertial particles

Chapter 2 addresses the modelling of suspensions of inertial particles. As dis-
cussed in Sec. 1.2.1, Jeffery’s equation was developed for inertialess particles
and our derivation using a dumbbell representation in Sec. 1.4.1 also neglects
inertia. The main question driving this work is thus to know what is the impact
of inertia on the orientation kinematics of the particle.

Using the dumbbell framework (Fig. 1.16), including inertial effects is
straightforward. Either we impose Newton’s second law of motion and ro-
tation on the whole dumbbell in order to derive its equation of motion, or we
apply d’Alembert’s principle and introduce the so-called inertial pseudo-forces
as forces acting on the dumbbell’s beads. Both approaches are of course equiv-
alent and we choose the latter since it allows for a more direct derivation of the
fibre kinematics.

m

m

G
p

FH(pL)

FH(�pL)

2L

Figure 1.16 – Inertial dumbbell

The inertial pseudo-force FI acting on each bead simply scales with the
acceleration of the bead and thus reads (for the bead located at pL)

FI(pL) = −m(ẍG + p̈L), (1.72)

with m the mass of the bead.
The behaviour of a suspended inertial particle, now governed by a second-

order ordinary differential equation (p̈), is then analysed. We observe the
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appearance of periodic orbits for fibres immersed in a simple shear flow (whereas
inertialess fibres just align in the flow field) and study the impact of inertia on
the period for fibres and for spheroids. In the case of spheroids, the model
also predicts an orbit drift towards the flow-gradient plane, either gradually
(slight inertia) or by first rotating around a moving oblique axis first (massive
particles).

1.6.2 Confined fibre suspensions

Chapter 3 focuses on confined suspensions, that is suspensions flowing in gaps
narrower than the particle length. In such circumstances, particle interactions
with the walls can no longer be neglected and some orientation trajectories
(orbits passing outside the flow domain) are now prohibited. Jeffery’s theory,
developed for bulk suspensions, cannot describe how gap walls restrict the
particle orientation kinematics.

Contact forces between a suspended fibre and the cavity walls can be in-
troduced in the dumbbell framework, as depicted in Fig. 1.17. The contact

Figure 1.17 – Confined dumbbell

force is assumed to act in the direction perpendicular to the wall (ignoring here
possible friction at the wall) and reads

FC(pL) = µn, (1.73)

with the contact force intensity µ determined such as to prevent the beads from
penetrating the walls.

The resulting kinematics are a combination of the unconfined Jeffery kine-
matics and a correction term that prevents the fibre from leaving the flow
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domain, that is
ṗ = ṗJ + ṗC . (1.74)

Complex scenarios such as unilateral contacts or non-uniform strain rates at
the scale of the rod are also studied.

In addition to having extended the standard Jeffery model for rod kine-
matics in a Newtonian fluid in order to take account of confinement effects,
a tentative upscaling of the model at the meso- and macroscopic scale is pro-
posed. An unexpected result from this thorough study is the inability of clas-
sical macroscopic models to handle confinement configurations (independently
of the impact of confinement on the kinematics itself). In other words, the
main challenge with traditional macroscopic models involving moments of the
orientation pdf lies more with representation capabilities in highly confined
conditions than with a suitable description of the induced orientation kinemat-
ics.

We found later that Eq. (1.74) presents significant similarities with equa-
tions of elastoplaticity, drawing a parallel between, on the one hand, the clas-
sical unconfined kinematics and the elastic deformation, and, on the other
hand, the confined motion of the particle and elastoplatic deformation. This
purely phenomenological approach allowed us to revisit the motion of confined
particles in Newtonian and non-Newtonian matrices and we proved that the
confined kinematics provided by this model are identical to those derived from
microstructural approaches.

1.6.3 Data-driven approach to fibre suspensions

Chapter 4 introduces a data-driven approach to fibre suspensions. As discussed
in Sec. 1.2.3, macroscopic descriptors, the so-called second-order orientation
tensor leading the way, are nowadays preferred in industrial applications due
to their low computational cost. The main issue encountered with macroscopic
models however is the inaccuracies introduced by closure approximations. In
the case of dilute fibre suspensions, reliable fitted closures have been proposed
and tested, such as the IBOF closure. In more complex cases, as for example
under confinement conditions, traditional closures often proved to be inade-
quate (cf. Chapter 3) and suitable models have not been developed yet or are
difficult to come up with.

In order to circumvent cumbersome upscaling developments and the in-
accuracies of the mandatory closure approximations at the macroscopic scale,
we move to an innovative approach to fibre suspensions based on data-driven
simulations. Since the physics at the microscopic scale can be modelled rather
reasonably, the idea is to conduct expensive accurate offline direct numerical
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simulations at that scale and to extract the corresponding macroscopic de-
scriptors in order to build a database of scenarios. During the online stage, the
macroscopic descriptors can then be updated quickly by combining adequately
the items from the database instead of relying on an imprecise macroscopic
model.

This strategy is thus presented in the well-known case of dilute fibre suspen-
sions (where it can be compared against closure-based macroscopic models) and
in the case of suspensions of confined or electrically-charged fibres, for which
state-of-the-art closures proved to be inadequate or simply do not exist.

1.6.4 Numerical methods for flow problems in thin ge-
ometries

Chapter 5 discusses efficient numerical methods to simulate fluid flows in thin
geometries. This chapter is quite independent from the previous ones, since
it does not directly relate to fibre suspensions. Still, the motivation behind
this work finds its roots in confined suspensions, for which solving the fluid
flow of the matrix can be a tricky issue in itself. Fluid flows in degenerated
geometries, in which the characteristic length in one direction is much smaller
than in the others, are a challenging task for standard mesh-based simulation
techniques, that often require a tremendous number of discretization points
or elements to provide accurate solutions. Classically, ad-hoc simplifications
or approximations (e.g. lubrication theory) are rather called for in order to
conduct tractable simulations.

In this chapter, we consider, within the Proper Generalized Decomposition
(PGD) framework, an in-plane/out-of-plane separated representation of the so-
lution of the incompressible Navier-Stokes equations in thin geometries. The
PGD solution for the fluid velocity field is thus expressed as a sum of N func-
tional products involving a priori unknown functions depending on the plane
and thickness coordinates: u(x, y, z) =

∑N
i=1 Pi(x, y)Ti(z). The use of such

separated representations let us decouple the meshes in the plane (coarse) and
thickness (fine) directions, allowing a high-resolution representation of the solu-
tion evolution along the thickness coordinate while keeping the computational
complexity characteristic of 2D simulations. This technique is particularly well
suited to obtain efficiently fine and accurate solutions in boundary layers or in
narrow geometries when approximations based on lubrication theory are not
suitable.

Perspectives include coupling this approach with standard finite-element
solvers. Highly-optimized off-the-shelf Navier-Stokes solvers could provide a
coarse solution throughout the whole computational domain that would be
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enriched with high-resolution PGD patches in regions of interest (as a “skin”
around the objects).
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Chapter 2

Suspensions of inertial
particles

Contents
2.1 Modelling the effect of particle inertia on the

orientation kinematics of fibres and spheroids
immersed in a simple shear flow . . . . . . . . . 51

This chapter addresses the modelling of inertial particle suspensions, and
in particular the impact of inertial effects on the orientation kinematics. In-
deed, classical models used to describe the flow of suspensions of non-spherical
particles (ellipsoids, cylinders, fibres etc) are often based on Jeffery’s theory.
Thus, such models neglect the mass of the suspended particles, and therefore
the induced inertial effects.

We adapted our modelling framework based on the dumbbell representation
of a fibre to include inertial forces and analysed the resulting equations of mo-
tion. Multi-Particle Collision Dynamics (MPCD) direct numerical simulations
were then carried out to assess the predictions of the proposed model.

This chapter corresponds to the following paper:
A. Scheuer, G. Grégoire, E. Abisset-Chavanne, F. Chinesta, R. Keunings, Mod-
elling the effect of particle inertia on the orientation kinematics of fibres and
spheroids immersed in a simple shear flow. Computers and Mathematics with
Applications, Submitted for publication.
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Abstract

Simulations of flows containing non-spherical particles (fibres or ellipsoids) rely on
the knowledge of the equation governing the particle motion in the flow. Most mod-
els used nowadays are based on the pioneering work of Jeffery (1922), who obtained
an equation for the motion of an ellipsoidal particle immersed in a Newtonian fluid,
despite the fact that this model relies on strong assumptions: negligible inertia, uncon-
fined flow, dilute regime, flow unperturbed by the presence of the suspended particle,
etc. In this work, we propose a dumbbell-based model aimed to describe the motion
of an inertial fibre or ellipsoid suspended in a Newtonian fluid. We then use this model
to study the orientation kinematics of such particle in a linear shear flow and compare
it to the inertialess case. In the case of fibres, we observe the appearance of periodic
orbits (whereas inertialess fibres just align in the flow field). For spheroids, our model
predicts an orbit drift towards the flow-gradient plane, either gradually (slight inertia)
or by first rotating around a moving oblique axis (heavy particles). Multi-Particle Col-
lision Dynamics (MPCD) simulations were carried out to assess the model predictions
in the case of inertial fibres and revealed similar behaviours.
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1. Introduction

Suspensions of rigid non-spherical particles (ellipsoids or fibres) are encountered
in many biological and engineering systems, including aerosols, papermaking or short-
fibre composite moulding processes such as SMC. Modelling the evolution of the
flowing microstructure is thus necessary to predict the impact of the particles on the
rheology of the suspension, as well as the motion and orientation kinematics of the
suspended particles. In the context of composite manufacturing, changes in fibre ori-
entation correspond to changes in the final mechanical properties of the part. and
similarly in the paper and pulp industry, the orientation distribution of cellulose fibres
in the final product is a key factor of its quality.

Such suspensions have been extensively studied at different modelling scales. De-
pending on the level of details and accuracy required for a particular application, one
may want to address a problem at a specific scale or even to adopt a multi-scale ap-
proach by “upscaling” the properties across the scales. We propose hereunder a suc-
cinct overview of the three different modelling scales usually considered in the context
of fibre suspensions and refer to the review by Petrie [41] or the recent monograph [9]
for further details.

• Microscopic scale: the scale of the particle itself. Each particle’s orientation
is described by a unit vector along its symmetry axis and Jeffery’s theory [30]
(see below) lays the foundation for most models governing its kinematics.

• Mesoscopic scale: the scale of a population of particles, whose orientation state
is described by a probability density function (pdf). Such pdf lies both in physi-
cal (space and time) and conformational space and provides a complete, unam-
biguous description of the fraction of particles oriented along a given direction
at any location and any time. Its evolution is given by a Fokker-Plank equation,
whose solution is often impracticable due to the inherent high-dimensionality
of the problem (the so-called “curse of dimensionality”).

• Macroscopic scale: the scale of the the part, whose conformation state is often
characterised by the first moments of the aforementioned probability density
function. For fibres, the second-order orientation tensor [3] is often chosen as
a coarse, yet concise, description of the orientation state in the part, and its
time evolution is governed by the Folgar-Tucker model [3, 23] built directly
upon Jeffery’s theory. Macroscopic models are often easy-to-compute and of-
fer a crude description of the orientation state. They usually rely however on
mathematical closure approximations [4, 17, 18, 20] whose impact is quite un-
predictable.

Over the last few years, we proposed a modelling framework to describe suspen-
sions of fibres and ellipsoids immersed in a Newtonian matrix based on the dumb-
bell model (originally initiated in [10]) and we extended this model to successively
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Figure 1 – General modelling framework composed of nine conceptual bricks explor-
ing the three scales involved in the multi-scale description of a suspension of particles
[2]. For each scale, the main challenge (either conceptual or computational) is also
mentioned.

address more complex situations [9]. We showed a new way to obtain Jeffery’s kine-
matics for a fibre by considering a Stokesian hydrodynamic drag force acting on the
dumbbell beads [15]. We were then able to activate bending mechanisms by con-
sidering higher gradients of the fluid velocity field at the scale of the particle [1].
Suspensions of charged fibres (as carbon nanotubes for example) were then described
using the same modelling framework in [39]. In [2], we proposed a systematic multi-
scale approach composed of nine conceptual bricks aimed at describing a suspension
of particles using the dumbbell model. At each modelling scale are raised the ques-
tions of describing the conformation of the suspended particles, the evolution of this
conformation, and the contribution to the stress (rheology) of the particles. This sys-
tematic approach is summarized in Fig. 1 and we refer the interested reader to [2]
for further details and the application of this approach to a dilute suspension of rigid
fibres in a Newtonian fluid. This modelling framework was also applied successfully
to describe rigid clusters composed of rods [2]. Recently, we adapted the dumbbell
model to propose a description of fibre suspensions subject to wall and confinement
effects (when the flow gap is narrower than the fibre length) [40, 47]. In the present
work, the dumbbell model is enriched to study the impact of particle inertia on the
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kinematics of a suspended fibre or spheroid (axisymmetric ellipsoid).
Studies dedicated to the effects of inertia on the dynamics of non-spherical parti-

cles in a flow usually make a distinction between fluid inertia and particle inertia. The
former is often characterised by the Reynolds number, defined as Re =

ρ f γ̇L2

µ
(with ρ f

the fluid density, γ̇ the shear rate, L the particle length and µ the fluid viscosity), and
the latter measured by the Stokes number St =

ρp

ρ f
Re =

ρpγ̇L2

µ
(with ρp the density of

the inertial particle) [31]. Hence, four distinct scenarios can be considered.
In his pioneering work, Jeffery [30] derives the orientation kinematics of an in-

ertialess, force-free, torque-free spheroid immersed in a Stokes (Reynolds number
zero) linear shear flow of Newtonian fluid. His model predicts that such a spheroid
is constrained in one of an infinite set of (one-parameter) closed orbits, the so-called
“Jeffery orbits”. The particular choice of orbits, bounded on the one hand by a cir-
cular motion in the shear plane (tumbling) and on the other hand by a rolling motion
around the vorticity axis (log-rolling), depends on the initial orientation. The resulting
motion is often referred to as kayaking.

There is a long history of deriving equations of motion for suspended particles
taking into account effects of fluid inertia. Saffman [46] addressed the impact of fluid
inertia dynamics of a nearly spherical particle in a shear flow, and Hinch and Leal
[27] discussed later the important role of fluid inertia on the kinematics of inertia-
less particles. More recently, Ding and Aidun [19] solved the Boltzamnn equation to
study the impact of strong fluid inertia on the motion of solid particles (cylinders and
ellipsoids) and then Subramanian and Koch examined the inertial effects of fibres [48]
and ellipsoids [49] motion in a shear flow using a generalization of the reciprocal the-
orem for Stokes flow. Yu et al. [51] studied numerically the rotation behavior of both
prolate and oblate spheroids in Couette flow at moderate Reynolds numbers using the
distributed Lagrangian multiplier based fictitious domain. Over the last few years,
there has been a surge of interest, lead by Lundell and co-authors, in determining
the effects of fluid and particle inertia, either by analytical analysis and perturbation
methods [12, 21, 22] or lattice Boltzmann simulations [34, 42, 43, 44, 45], depicting a
rich dynamics containing several bifurcations between rotational states due to inertial
effects.

The effect of particle inertia alone was investigated by Altenbach [5, 6] for a fibre
suspended in several homogeneous creeping flows. They observed a particle drift
towards the flow plane for flow fields with dominant vorticity (elliptic and rotational
flows). Lundell and Carlsson [31] found a similar behaviour for inertial ellipsoid in
a linear shear flow: for small St the particle slowly drifts from its kayaking motion
towards the flow plane, whereas for larger values of St, rotation around an oblique
axis is exhibited [31, 32].

In this paper, we propose a model describing the orientation kinematics of inertial
particles based on a dumbbell representation of the suspended fibre. This microstruc-
tural approach is then generalized to suspended ellipsoids in a straightforward way,
and we are able to provide an equation of motion, which is the counterpart of the clas-
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sical Jeffery equation for inertial particles. From this microscopic kinematics, we then
pave the way towards a micro-macro description of suspensions of such particles.

The remainder of the paper is organized as follows. The modelling framework and
the dynamical system describing the orientation behaviour of suspended inertial par-
ticles are presented in Section. 2. Sections 3 and 4 show some numerical simulations
illustrating the kinematics of particles, fibres and spheroids, immersed in a simple
shear flow, either by integrating the dynamical system at the microscopic scale (scale
of a single particle) or by solving directly the Fokker-Plank equation describing the
evolution of the orientation probability density function of a population of suspended
particles. In Section 5, we present qualitative comparisons of predictions using our
model and direct numerical simulations performed using Multi-Particle Collision Dy-
namics (MPCD). Finally, Section 6 draws the main conclusions of our work and dis-
cusses some observations as well as possible extensions to our model addressing the
impact of inertia on the orientation of particles immersed in a fluid flow.

Remark 1. In this paper, we consider the following tensor products, assuming
Einstein’s summation convention:

• if a and b are first-order tensors, then the single contraction “·” reads (a · b) =

a j b j;

• if a and b are first-order tensors, then the dyadic product “⊗” reads (a ⊗ b) jk =

a j bk;

• if a and b are respectively second and first-order tensors, then the single con-
traction “·” reads (a · b) j = a jk bk;

• if a and b are second-order tensors, then the double contraction “:” reads (a :
b) = a jk bk j.

2. Kinematics of inertial fibres and spheroids

In this section, we first derive the equations ruling the dynamical system describ-
ing a suspended fibre immersed in a Newtonian fluid of viscosity η and then extend
our microscopic model for a suspended spheroid. The end of this section is an attempt
towards a multi-scale description of a population of suspended inertial particles: first
at the mesoscopic scale, considering the pdf of orientation and its associated Fokker-
Plank evolution, and then at the macroscopic scale, retaining only the first moments
of the pdf.

2.1. Microscopic modelling

2.1.1. Dumbbell model of an inertial fibre
A fibre is modelled as a rigid dumbbell consisting of a rod linking two beads on

which act hydrodynamic forces, as depicted in Fig. 2. In this work, the mass of the
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Figure 2 – Dumbbell representation of a fibre

fibre is not neglected and we thus consider that each bead has a mass m. The rod’s
length is 2L and its 3D-orientation is given by the unit vector p located at the rod
centre of gravity G and aligned with its axis.

The hydrodynamic force FH acting on each bead depends on the difference of
velocities between the fluid at the bead location and the bead itself. For the bead
located at pL, the former is given by v0 + ∇v · pL (with v0 the velocity of the fluid at
the centre of gravity G) and the latter by ẋG + ṗL (with ẋG the velocity of the centre
of gravity G). The hydrodynamic force acting on the bead located at pL thus reads

FH(pL) = ξ(v0 + ∇v · pL − (ẋG + ṗL)), (1)

where ξ is a friction coefficient.
Imposing Newton’s second law of motion and rotation on the whole dumbbell

would provide relations governing the behaviour of the dynamical system. We chose
equivalently to apply d’Alembert’s principle and introduce the so-called inertial forces
as forces acting on the dumbbell’s beads. Imposing Newton’s second laws then re-
duces to enforcing balance of forces and torques.

The inertial pseudo-forces FI acting on each bead simply scales with the acceler-
ation of the bead and thus reads (for the bead located at pL)

FI(pL) = −m(ẍG + p̈L), (2)

with m the mass of the bead.
Balance of forces yields

∑
F = 0 ⇐⇒ FH(pL) + FI(pL) + FH(−pL) + FI(−pL) = 0 (3)

⇐⇒ 2ξ(v0 − ẋG) − 2mẍG = 0 (4)

or
mẍG = ξ(v0 − ẋG). (5)
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Due to the symmetry of the problem, the only possibility for the resulting torque
to vanish is that the total force applied on each bead acts along p, that is

∑
τ = 0 ⇐⇒ FH(pL) + FI(pL) = αp, (6)

with α ∈ R. Thus, using Eq. (5), we can write

ξL(∇v · p − ṗ) − mLp̈ = αp. (7)

Taking into account that p · p = 1, and thus ṗ · p = 0 and p̈ · p + ṗ · ṗ = 0, we can
obtain the value of α by premultiplying Eq. (7) by p

α = ξL(∇v : (p ⊗ p)) + mL(ṗ · ṗ), (8)

Inserting the expression of α back in (7) gives

ξ(∇v · pL − ṗL) − mp̈L = ξL(∇v : (p ⊗ p))p + mL(ṗ · ṗ)p, (9)

or
mp̈ = ξ(∇v · p − (∇v : (p ⊗ p))p − ṗ) − m(ṗ · ṗ)p. (10)

To summarize, the second-order dynamical system governing the kinematics of
an inertial suspended fibre is

mẍG = ξ(v0 − ẋG) (11)
mp̈ = ξ(∇v · p − (∇v : (p ⊗ p))p − ṗ) − m(ṗ · ṗ)p. (12)

The first equation describes the translational displacement of the fibre, whereas the
second equation governs its rotational motion. Note that Eq. (12) contains the expres-
sion of the classical inertialess Jeffery’s equation

ṗ = ∇v · p − (∇v : (p ⊗ p))p, (13)

for infinite aspect ratio ellipsoids (rods). Thus, we observe that when the mass of
the dumbbell beads is set to zero, we recover the usual kinematics: the rod centre of
gravity is moving with the fluid velocity, v0 = ẋG, and the orientation kinematics are
given by Jeffery’s equation Eq. (13).

The orientation kinematics Eq. (12) are the same that the ones derived indepen-
dently by Altenbach and co-authors [5, 6] using a different approach based on the ex-
pression of the hydrodynamic moment exerted on the fibre provided by Brenner [11].
We thus showed here an alternative way of recovering this model using a dumbbell
description, which in our case can be generalized directly to suspended ellipsoids.
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Figure 3 – Bi-dumbbell representation of a 2D spheroid

2.1.2. Dumbbell model of an inertial spheroid
Extending this modelling approach to inertial ellipsoids is now straightforward.

As depicted in Fig. 3, an ellipsoid is described as a bi-dumbbell in 2D (tri-dumbbell
in 3D) with again hydrodynamic forces acting on the inertial beads. In the remainder
of this paper, we restrict our discussions to spheroids, that is axisymmetric ellipsoids.
In the case of inertialess fibres, such a description proved to recover successfully
Jeffery’s kinematics for spheroids [2]

ṗ = Ω · p + λ(D · p − (D : (p ⊗ p))p), (14)

where D and Ω are respectively the symmetric and skew-symmetric parts of the ve-
locity gradient ∇v and λ is the axisymmetric ellipsoid shape factor (defined from the
ellipsoid aspect ratio r)

λ =
r2 − 1
r2 + 1

=
L2

1 − L2
2

L2
1 + L2

2

. (15)

Using the same rationale as in the case of rods: introducing inertial forces (d’Alembert
principle) and enforcing balance of forces and torques, we obtain the dynamical sys-
tem governing the behaviour of a suspended inertial spheroid immersed in a Newto-
nian fluid. The system is actually the same as the one obtained for fibres, except that
it now contains the general form of Jeffery’s equation (Eq. (14))

mẍG = ξ(v0 − ẋG) (16)
mp̈ = ξ(Ω · p + λ(D · p − (D : (p ⊗ p))p) − ṗ) − m(ṗ · ṗ)p. (17)
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The system (16)-(17) is the most general since Eqs (11)-(12) are recovered when
λ = 1 (rods can be seen as infinite aspect ratio ellipsoids); therefore we will use this
formulation for the rest of this paper.

Besides, this system can be rewritten as a system of first-order differential equa-
tions

ẋG = vG (18)

v̇G =
ξ

m
(v0 − vG) (19)

ṗ = w (20)

ẇ =
ξ

m
(Ω · p + λ(D · p − (D : (p ⊗ p))p) − w) − (w · w)p. (21)

2.1.3. Dimensional analysis
For the sake of completeness, we briefly show in this section how to obtain a

dimensionless formulation of the orientation kinematics (17). Introducing the dimen-
sionless time t̃ =

ξ
m t, the first and second derivatives with respect to time now read

d·
dt =

ξ
m

d·
dt̃ and d2·

dt2 =
ξ2

m2
d2·
dt̃2 . The dimensionless dynamical system is thus given by

d2p
dt̃2 =

m
ξ

(Ω · p + λ(D · p − (D : (p ⊗ p))p)) − dp
dt̃
−

(
dp
dt̃
· dp

dt̃

)
p. (22)

If we normalize the fluid velocity gradient by the magnitude of the strain rate tensor
γ̇ =
√

2D : D, Ω = γ̇Ω̃ and D = γ̇D̃, we can now write

d2p
dt̃2 = St (Ω̃ · p + λ(D̃ · p − (D̃ : (p ⊗ p))p)) − dp

dt̃
−

(
dp
dt̃
· dp

dt̃

)
p, (23)

where the Stokes number St =
mγ̇
ξ

is a dimensionless number characterising the inten-
sity of particle inertia.

2.2. Mesoscopic description of a population of inertial particles
We now move to a population of suspended particles. Instead of describing each

particle conformation individually, the microstructure conformation may be charac-
terized by a probability density function – pdf– ψ. Since this paper mainly focusses
on the orientation dynamics, we will assume that ψ = ψ(t,p, ṗ), that is we consider
the orientation distribution independent of the space coordinates. Contrary to the iner-
tialess case where particles are assumed to move with the fluid velocity, here particles
should be transported using the equation of motion (16). Moreover, it is important to
notice that when inertia is considered, the particle rotational velocity ṗ is also a con-
formation coordinate of the pdf. Hence, balance of probability yields the following
Fokker-Plank equation

∂ψ

∂t
+ ∇p · (ṗψ) + ∇ṗ · (p̈ψ) = 0, (24)
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where the angular dynamics of the particle given by Eq. (17) is used for p̈, and ∇p and
∇ṗ are the gradients in conformation space. The pdf ψ is subject to the normalisation
condition ∫∫

ψ(t,p, ṗ) dṗ dp = 1. (25)

Moving from a single particle to a mesoscopic description of a population of par-
ticles by a pdf is a straightforward step. However, the difficulty in practice is the
intrinsic high-dimensionality of the Fokker-Plank equation whose solution is often
intractable using standard methods. Indeed, in the general case above (Eq. (24)), the
pdf actually lies in a 5-dimensional space: 1 for t, 2 for p (a unit vector in 3D can be
represented by two angles) and 2 for ṗ. In Section 4, we present some results obtained
by solving a reduced version of this Fokker-Plank equation in the case of a 2D flow.
Addressing 3D flows and the impact of inertia on the translational motion of the parti-
cles through the complete Fokker-Plank equation (see below) may be possible using a
separation technique such as the PGD [7, 8, 16] to circumvent the so-called “curse of
dimensionality”. Over the last decade, the PGD method was successfully applied to
Fokker-Plank equations of high dimensions (up to 20) encountered in kinetic theory
problems [14].

Addressing the translational and rotational movement of the population of parti-
cles at once using a Fokker-Plank approach is an alternative route that is out of the
scope of this paper. In that case, we may consider the pdf φ(x, ẋ, t,p, ṗ) along with its
associated Fokker-Plank evolution equation

∂φ

∂t
+ ∇x · (ẋφ) + ∇ẋ · (ẍφ) + ∇p · (ṗφ) + ∇ṗ · (p̈φ) = 0, (26)

where Eqs. (16) and (17) are used for ẍ and p̈ respectively. However, the dimension-
ality of that equation now jumps to 11 (3 for x, 3 for ẋ, 1 for t, 2 for p and 2 for
ṗ).

2.3. Towards a macroscopic model

Deriving a macroscopic model for the orientation of inertial particles appears to
be a tedious task, especially since new macroscopic tensors need to be defined, along
with corresponding closure approximations. In App. Appendix A, we pave the way
towards such a macroscopic model and underline the difficulties arising when trying
to obtain a closed model.

3. Numerical simulation of a single particle in a simple shear flow

We consider a simple shear flow given by v =
[
γ̇y 0 0

]T
. This flow is

depicted in Fig. 4. The flow is in the x-direction, the gradient in the y-direction and
the vorticity in the z-direction. The orientation of the particle is described by the unit
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Figure 4 – Spheroid particle placed in a linear shear flow. The flow is in the x-
direction, the gradient in the y-direction and the vorticity in the z-direction. The
orientation of the principal axis of the particle is given by the unit vector p.

vector p aligned with its principal axis, that is, using a spherical coordinate system,
by the two angles φ and θ.

We solved numerically the dynamical system describing the motion of a sus-
pended particle and discuss in this section the various behaviours observed when
starting from different configurations. In practice, we solved Eqs. (18)–(21) using an
implicit Adams-Moulton scheme of order 2 (trapezoidal rule) and a Newton-Raphson
method to solve the nonlinear problem at each time step. In the particular case where
m = 0, Eqs. (18)–(21) are singular and we simply solve the classical (inertialess)
Jeffery model.

For the sake of clarity, we first show some results when the particle principal axis
is initially aligned in the flow-gradient plane (θ0 = π

2 ) and then explore the general
case. The reason is that in the general case the orbits are no longer periodic and we
observe a drift of the particle trajectories towards the flow-gradient plane, as discussed
below.

3.1. Particle initially aligned in the flow-gradient plane
We first study the orientation kinematics of rigid fibres. Figure 5 depicts the com-

ponents px =
[
p
]

x and py =
[
p
]
y of the unit vector pointing in the direction of the fibre,

as well as the angle φ giving its orientation in the xy-plane. The fibre is initially at rest
and lies in the flow-gradient plane with (φ0, θ0) =

(
9π
10 ,

π
2

)
. The results are shown for

various values of the Stokes number from 0 (inertialess case) to 5. Without particle
inertia (grey curve), the particle simply aligns in the flow direction (equilibrium posi-
tion). Once particle inertia is introduced, we now observe periodic orbits, since inertia
induces a jump of the fibre over the equilibrium position. For slightly inertial fibre,
the period can be very long (the inertialess case may be seen as the limit case with an
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Figure 5 – Evolution of the orientation of a fibre immersed in a shear flow for various
values of the Stokes number
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Figure 6 – Evolution of the orientation of a spheroid of aspect ratio r = 4 immersed
in a simple shear flow for various values of the Stokes number

infinite period). Figure 7 shows the evolution of the orientation period as a function of
the Stokes number. We can also notice that the minimum orientation speed is reached
after the particle has jumped over the equilibrium position. Another consequence of
particle inertia on the orientation kinematics is the delay observed when starting the
motion from rest.

Similarly, Fig. 6 depicts the situation for an inertial spheroid of aspect ratio r = 4
under the same conditions. According to Jeffery model, inertialess ellipsoids already
exhibit periodic tumbling orbits, where the particle aligns most of the time with the
flow lines and rotates quickly half a turn periodically (Fig. 6, grey curve). With par-
ticle inertia, the same kinematics are observed but the period is now shortened. The
symmetry of the orbit shape around the equilibrium position is also lost when particle
inertia is considered: the particles approaches the aligned orientation quite quickly
and departs from it slowly. Again, a delay at the start of the shear flow is evidenced
and of course, the more massive the spheroid is, the longer is the delay.

Figure 7 shows the evolution of the orientation period as a function of the Stokes
number in the case of fibres (which can be seen as spheroids of infinite aspect ratio)
(orange line), spheroids of aspect ratio r = 10 (green) and spheroids of aspect ratio
r = 4 (blue). Massive particles tend to rotate with constant angular velocity once
put in motion, as shown in Figs. 5 and 6. In the case of a shear flow with shear rate
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Figure 7 – Rotation period of a fibre (orange line), a spheroid of aspect ratio r = 10
(green) and a spheroid of aspect ratio r = 4 (blue) as a function of the Stokes number

γ̇ = 1 s−1, the particle rotates with the flow vorticity and thus its angular velocity is
φ̇ = −0.5γ̇, leading to an angular period T = 4π

γ̇
, as reported in Fig. 7.

3.2. Particle initially not aligned in the flow-gradient plane

We now move to the general case and focus on the kinematics of spheroids.
In Fig. 8, we depict the orientation trajectories for spheroids of aspect ratio r = 10

for different values of the Stokes number. The initial configuration of the particles
is (φ0, θ0) =

(
0, π8

)
and is shown in orange. In each case, the simulation was run for

tγ̇ ∈ [0, 250]. The orientation is shown as a point on the unit sphere, which is the
direction of the unit vector oriented along the particle principal axis.

A inertialess spheroid (Fig 8(a)) exhibits the classical kayaking motion, with the
so-called periodic Jeffery orbits. When inertial effects are introduced, the trajectories
do not describe periodic orbits anymore. At low Stokes number, the particle is seen
to spiral outwards, that is we observe a slight drift of the particle trajectory towards
the flow-gradient plane (Figs. 8(b)-(c)). When the particle inertia is further increased
a dramatic change in the orientation kinematics occurs. The spheroid now spirals a
little bit before rotating around a tilted axis, that will gradually align with the z-axis
with increasing time Figs. 8(d)-(f). As shown in Fig. 8, the angle of this tilted axis
with the flow gradient plane depends on the intensity of inertial effects, but also on
the initial orientation and aspect ratio of the spheroid.

This complex and somehow strange behaviour was also observed by Lundell and
Carlsson [31], who studied the impact of particle inertia using a different but related
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(a) (b)

(c) (d)

(e) (f)

Figure 8 – Orientation trajectories of spheroids of aspect ratio r = 10 with initial
condition (φ0, θ0) =

(
0, π8

)
(in orange) for different values of the Stokes number
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approach. They obtained an equation of motion for the particle by coupling the an-
alytical expression of the hydrodynamic torque on the spheroid (given by Jeffery)
with the angular-momentum equation for the particle. In particular, the rotation of the
spheroid around a tilted axis is clearly shown in Fig. 4 of [31].

4. Numerical simulation of a population of particles in a simple shear flow

In this section, we show the feasibility of solving the Fokker-Plank equation de-
scribing the orientation kinematics of a population of inertial particles. For the sake
of simplicity, we consider a homogeneous population of 2D spheroids immersed in a
shear flow. In this case, the orientation of a single particle in the xy-plane is described
by the angle φ and the pdf reads ψ = ψ(φ, φ̇). Equation (24) thus reduces to

∂ψ

∂t
+ ∇φ · (φ̇ψ) + ∇φ̇ · (φ̈ψ) = 0, (27)

where φ̈ = − sin(φ)
[
p̈
]

x + cos(φ)
[
p̈
]
y and p̈ is given by Eq. (17).

Figure 9 depicts snapshots of the probability density function ψ(φ, φ̇) obtained by
solving the Fokker-Plank equation (27) for a population of 2D ellipsoids with St = 1
and aspect ratio r = 4 initially at rest around the orientation φ0 = 5π

6 . We used a
finite-difference solver and a 4th-order Runge-Kutta scheme for the time integration.
The problem being purely convective, a slight artificial diffusion is used to stabilize
the numerical solution. The grid size is here (nφ, nφ̇) = (241, 81) and ∆t = 5 · 10−3 s.
We observe that the population of particles rotates in the shear flow, and slows down
when approaching the orientations φ = kπ, k ∈ Z, that is the orientation where the
principal axis of the particle is oriented in the flow field. Due to the inertial effects,
the points where the magnitude of the orientation speed is the smallest are not exactly
at φ = kπ.

5. Comparisons with Multi-Particle Collision Dynamics simulations

We propose here to compare the predictions given by our dumbbell model with
direct numerical simulations using Multi-Particle Collision Dynamics (MPCD) in the
case of inertial fibres.

The MPCD algorithm [33] has been developed to take into account the solvent-
solute interactions, even if those effects are due to thermal fluctuations. The main idea
consists in using particles and in mimicking the mesoscopic behaviours as it has been
done in other techniques such as Dissipative Particles Dynamics [28, 37] or Smooth
Particles Hydrodynamics [13].

As in toy models, where the detail of the microscopic physics is dismissed to retain
only the pertinent symmetries, MPCD schemes are based on peculiar symmetries: the
trajectories of the particles are stochastic but verify classical laws of conservation.
Here we propose to set our system in a micro-canonical ensemble. So we impose
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Figure 9 – Snapshots of the pdf ψ obtained by solving the Fokker-Plank equation (27)
for a population of 2D ellipsoids with St = 1 and aspect ratio r = 4 initially at rest
about the orientation φ0 = 5π

6
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the conservation of the number of particles, the volume and the energy. The linear
momentum and the angular momentum are also conserved. To insure the extensive
property of the system, these constraints have to be checked at the scales of the coarse-
graining.

The usual MPCD algorithm [24] consists of two steps. First particles move through
a streaming process during a time step ∆t (Eq. (28)). The ballistic motion of the par-
ticles insures the advection of the fluid. This process is off-lattice. Secondly, particles
collide (Eqs. (29) and (30)). In each cell ξ of an regular grid of mesh size d0, the
particles get the momentum of the centre of mass except some fluctuations. These
ones are updated with a random rotation Ωt

ξ (Eq. (30)). Because of the linearity of the
rotation and because it conserves the scalar product, this so-called collision conserves
the linear momentum and the kinetic energy:

rt+∆t
i = rt

i + ∆t vt
i, (28)

Vt
ξ =

1∑
mi

∑

i∈ξ
mivt

i, (29)

vt+∆t
i = Vt

ξ + Ωt
ξ

[
vt

i − Vt
ξ

]
. (30)

But, it has been shown that there is a lack of conservation of the Galilean boost [29]
and that the conservation of the angular momentum is violated [25] in this algorithm.

The first problem is due to the presence of a fixed grid. This is solved by using a
global stochastic displacement δt of the grid [29]. The second problem has been cured
by many variations [24, 38, 50]. But usually angular momentum and kinetic energy
cannot be both conserved in micro-canonical ensemble. We propose an adapted al-
gorithm where positions and velocities follow the same stochastic rotation around the
position Rt

ξ of the centre of mass:

Rt
ξ =

1∑
mi

∑

i∈ξ
mirt

i, (31)

Vt
ξ =

1∑
mi

∑

i∈ξ
mivt

i, (32)

vt+∆t
i = Vt

ξ + Ωt
ξ

[
vt

i − Vt
ξ

]
, (33)

rt
i = Rt

ξ + Ωt
ξ

[
rt

i − Rt
ξ

]
, (34)

rt+∆t
i = rt

i + ∆t vt+∆t
i + δt. (35)

In this scheme, we neglect the time of collision and the energy cost of the rearrange-
ments occurring during it (Eqs. (33) and (34)). Therefore, both the angular momen-
tum and the kinetic energy are constant during collisions. Equation (35) contains the
streaming step and the jiggling of the grid.

To decrease the computing time, we adapt the initial two-dimensional algorithm
of [33] to the three-dimensional problem. The operators Ωt

ξ are chosen in a set of
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nr given rotations of a single angle ω around nr axes which are regularly distributed
over the unitary sphere. For any axis of vector u, we added the constraint to use the
opposite axis, i.e. −u. Then there is no net rotation in average.

Equivalently, nδ three-dimensional displacements δ of the grid are stochastically
drawn from an urn without replacement, but periodically refilled such that the mean
< δ >nδ= 0. The maximum displacement along each direction is also less than d0/2.

We will show elsewhere [26] that the obtained fluid is a Maxwell gas for which
the linear hydrodynamic laws hold. And we are able to measure classical transport
coefficients as a function of nr, nδ, the angle ω and the density of the fluid ρ.

We modelled a rodR as a line of N equally disposed beads, with no width, but with
a mass mb. The order of magnitude of the inter-distance re is d0, so each microscopic
part of the rod follows the microscopic motion of the fluid but we study a macroscopic
rod, i.e. N � 1. The mass of the bead mb is a free parameter and can be different
from the mass of fluid particles m f . The dynamics of beads is composed of two steps.
First they exchange momentum and energy with the ambient fluid. Therefore, they
take part in the sum of Eqs. (31), (32) and (33). This implies also that the rod is
thermalised at the fluid temperature. Secondly, the assembly of beads follows the
kinematics of a perfect solid. So the fibre gets a motion of translation at a velocity vt

G,

vt
G =

1
N

∑

i∈R
vt

i, (36)

and a rotation around the axis of the angular momentum in the framework of the
centre of mass of the rod rt

G,

Lt
G =

∑

i∈R
mi(rt

i − rt
G) × vt

i, (37)

with a rotation speed αt = |Lt
G |/J, where J is the momentum of inertia. We consider

that nothing happens at a smaller time scale than ∆t. So we compute the kinematics
at the first order, using an explicit Euler algorithm. The updated velocity of each bead
is just its relative displacement during this step.

We first wanted to use a cubic system of linear size ` with periodic boundary
conditions for the positions and the Lees-Edwards conditions for the velocity. Such
boundary conditions conserve the temperature of the MPCD fluid alone. But the
kinematics of the rod are purely deterministic. This leads to a total decrease of energy
and creates a heat well. To maintain a constant energy we choose to introduce a
third sort of particles constituting a thermostat. To do so, these particles of mass mT

enter in the collision process of MPCD when we compute the properties of centre of
mass (Eqs. (31) and (32)). The streaming process does not hold for the thermostat
particles. We fix their positions at constant values in the physical framework, and so
they follow the stochastic motion δ on the grid. Initially, there is a layer of particles at
y ∈ [−d0/2; 0[ and another one at y ∈ [`; `+ d0/2[. Their velocity is updated to mimic
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nr ω nδ min(δ) ρ ` m f ∆t d0 mT kBT N re

1986 π/2 54 0.01 4 128 1 1 1 100 1 200 0.5

Table 1 – Table of MPCD parameters

a moving surface at temperature T :

vi = [γ̇`Θ(y − `) + η 0 0]T , (38)

where Θ is the Heaviside function and η is a Gaussian distributed noise with a variance
kBT/mT . We will show elsewhere [26] that this thermostat succeeds in maintaining
the temperature constant. However there is a discrepancy between the temperature we
want to reach Tr and the measured temperature Tm. This discrepancy can be overcome
since there is a linear dependency between Tr and Tm for a given system.

In MPCD algorithms, the fluid is a gas. To avoid longitudinal waves, one has to
check that the Mach number remains negligible : Ma � 1. This implies a condition
on the shear rate : γ̇` � √

kBT/m f . Here, we set γ̇ = 1/320. The value of the other
MPCD parameters are listed in Table 1.

With these three types of particles, we get a thermostated sheared fluid with an
infinitely thin but inertial rod. We follow the rod dynamics for different bead mass
mb. Our direct simulations presented in Fig. 10 are consistent with the results of our
dumbbell model (Fig. 5), except that MPCD algorithm is intrinsically driven by the
thermal fluctuations. Thus, when mb is low, the rod performs one flip in the flow and
then stops its rotation. Although the mechanical model does not allow any rotation,
the MPCD dynamics shows a regime of stochastic motion (see the purple curve in
Fig. 10). The amplitude of this motion depends on the length of the rod. As there
are more beads, the stochastic rotation is smoothened. For larger mass, the inertial
effects become predominant and destroy the thermal fluctuations. We recover the
same rotations which tend to be sinusoidal as the rod mass is increased.

6. Conclusion

In this paper, we addressed the modelling of inertial fibres and spheroids immersed
in a simple shear flow and focussed on the orientation kinematics of such particles. We
extended the so-called dumbbell model to include inertial forces and derived a dynam-
ical system giving the equations of motion and orientation of a suspended particle in
a Newtonian fluid. This approach, able to address fibre and ellipsoidal particles (seen
as bi- or tri-dumbbells) allows us to unify and to generalize the few studies dedicated
to the effects of particle inertia in the literature [5, 31]. We observed the appearance
of periodic orbits for fibres immersed in a simple shear flow (whereas inertialess fi-
bres just align in the flow field) and studied the impact of inertia on the period for
fibres and for spheroids. In the case of spheroids, our model also predicts an orbit
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Figure 10 – MPCD simulations of the evolution of the orientation of a fibre immersed
in a shear flow for various fibre masses

drift towards the flow-gradient plane, either gradually (slight inertia) or by first ro-
tating around a moving oblique axis first (massive particles). We also explored the
multi-scale modelling of suspensions of inertial particles and showed that the Fokker-
Plank approach was an appealing route to describe the orientation state a population
of particles. Finally, a qualitative validation of our model using MPCD was proposed.

When addressing non-dilute suspensions, interparticle interactions can no longer
be neglected. In order to take those into account in the case of inertial particles, an
approach at the microscopic level is to use the equations of motion derived in this work
within a direct numerical simulation framework as the one proposed in [35, 36] (that
is currently based on the classical Jeffery kinematics). At the meso- and macroscopic
scales, the effects of fibre-fibre interactions proved to be reasonnably well described
by diffusion mechanisms as proposed by Folgar & Tucker [23].

As mentioned previously, this work focusses solely on the impact of particle in-
ertia while fluid inertia continues to be neglected. Thus, strictly speaking, the present
model is only valid only for Reynolds number zero (Re = 0), but this analysis can
however give some indications on the behaviour of heavy suspended particles when
fluid inertia is weak or negligible. The dumbbell model itself seems unable to incor-
porate the effects of fluid inertia and in situations where this cannot be neglected, other
modelling and simulations strategies, either based on analytical expansions or lattice
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Boltzmann and MPCD, must be considered. The effects of fluid and particle inertia
are thought to be in competition [42]. Fluid inertia, characterized by the Reynolds
number Re, is the dominating effect when the particle is close to being aligned with
the vorticity direction (and as long as the major axis is almost stationary) and leads to
a non-planar motion (in particular to the log-rolling and inclined rolling states) [42].
On the other hand, particle inertia, characterized by the Stokes number St, leads to a
drift towards a planar tumbling about the minor axis (as shown in this work and in
[31]). This competition in the Re − St plane thus determines the transitions between
the different rotational states (tumbling, log-rolling, kayaking). This work focussed
on the regime with St > 0 and Re = 0. However, the rich dynamical behaviour and bi-
furcations brought to light for combined particle and fluid inertia, either in the case of
neutrally-buoyant particles for which Re = St (a line in the parameter-space) [42], or
in the case Re , St [44] (see in particular Fig.11 in [44] showing a state-plot diagram
with the different rotational states depending on the value of Re and St), suggests that
both effects are strongly coupled and intricate.

Finally, the translational motion of inertial particles was out of the scope of this
paper but is also an important question in industrial applications to study potential
migration phenomena. For that purpose, the proposed model could be enriched using
a higher-order gradient description [1] to address flows where the velocity gradient is
now longer constant at the scale of the fibre. Moreover, another important question
is sedimentation, since high-density particles may be subject to gravity and thus their
trajectories would not follow the flow streamlines anymore.

Appendix A. A tentative macroscopic model

In this appendix, we pave the way towards a macroscopic model describing the
orientation of inertial particles and underline the difficulties arising when trying to
obtain a closed model.

At the microscopic scale the pdf is usually replaced by its first non-vanishing
moments. However, in the case of inertial particles, the classical second-order ori-
entation tensor a (second moment of the pdf) is not enough to build a macroscopic
model. Indeed, this orientation tensor reads

a(t) =

∫∫

S
(p ⊗ p) ψ(t,p, ṗ) dp dṗ, (A.1)

(with S the unit sphere on which p is defined) and its first and second derivatives with
respect to time respectively read

ȧ =

∫∫

S
(ṗ ⊗ p + p ⊗ ṗ) ψ dp dṗ, (A.2)

and
ä =

∫∫

S
(p̈ ⊗ p + 2(ṗ ⊗ ṗ) + p ⊗ p̈) ψ dp dṗ. (A.3)
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A careful derivation of these expressions is given in App. Appendix B.
A first problem arises when inserting the expression for the particle kinematics

p̈ = p̈(p, ṗ) given by Eq. (17) in Eq. (A.3) since it is not possible to express ä as a
function of a and ȧ due to the presence of the term ṗ⊗ ṗ. It is thus needed to introduce
another macroscopic tensor. We choose

b =

∫∫

S
(ṗ ⊗ ṗ) ψ dp dṗ. (A.4)

Equipped with this new tensor, insertion of Eq. (17) in Eq. (A.3) yields

ä =
ξ

m
(Ω · a − a ·Ω + λ(D · a + a · D − 2A : D) − ȧ) − 2 Tr(b)a + 2b, (A.5)

where A is the fourth moment of the distribution. Similarly to the microscopic case,
this kinematics contain the expression of the classical macroscopic Jeffery model ȧJ =

Ω · a − a ·Ω + λ(D · a + a · D − 2A : D).
However, the macroscopic kinematics (A.5) require: (i) a closure approximation

for the fourth moment A [4, 17, 18, 20]; (ii) an evolution equation for the new macro-
scopic tensor b. The latter reads

ḃ =

∫∫

S
(p̈ ⊗ ṗ + ṗ ⊗ p̈) ψ dp dṗ, (A.6)

but unfortunately, inserting the particle kinematics given by Eq. (17) in this expression
does not allow us to express ḃ as a function of a, ȧ and b. Thus this problem does not
admit a closed form, and designing the appropriate closure approximations required
here is a delicate task out of the scope of this work.

Appendix B. Time derivatives of the second-order orientation tensor

The expression of the time derivatives of the second-order orientation tensor a
must be derived carefully. Without any loss of generality, we consider the element at
index (i, j), i, j = 1, 2, 3 of Eq. (A.1)

ai j =

∫∫

S
pi p j ψ dp dṗ. (B.1)

By taking the derivative of this equation with respect to time, we have

ȧi j =

∫∫

S
pi p j ψ̇ dp dṗ, (B.2)

and using Fokker-Plank equation Eq. (26), we have

ȧi j =

∫∫

S
pi p j

(
−∂(ṗkψ)

∂pk
− ∂( p̈lψ)

∂ṗl

)
dp dṗ. (B.3)
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Performing integration by parts on the surface of the unit sphere S (no boundary) and
sorting the terms, we obtain

ȧi j =

∫∫

S

∂(pi p j)
∂pk

ṗkψ dp dṗ +

∫∫

S

∂(pi p j)
∂ṗl

p̈lψ dp dṗ, (B.4)

ȧi j =

∫∫

S
(δik p j + piδ jk) ṗkψ dp dṗ + 0, (B.5)

ȧi j =

∫∫

S
( ṗi p j + pi ṗ j) ψ dp dṗ + 0, (B.6)

(δi j is the Kronecker delta, δi j = 1 if i = j, else δi j = 0). Finally, coming back to a
tensor notation, the time evolution of the second-order moment a is given by

ȧ =

∫∫

S
(ṗ ⊗ p + p ⊗ ṗ) ψ dp dṗ. (B.7)

Following the same rationale, the second derivative with respect to time of the
second-order orientation tensor reads

ä =

∫∫

S
(p̈ ⊗ p + 2(ṗ ⊗ ṗ) + p ⊗ p̈) ψ dp dṗ. (B.8)
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[26] G. Grégoire et al., An effective fluid for multi-physical process: microcanonical algorithm of stochas-
tic rotation dynamics. In preparation (2017).

[27] J. Hinch, G. Leal, The effect of Brownian motion on the rheological properties of a suspension of
non-spherical particles. J. Fluid Mech., 52, 683-712 (1972).

[28] P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dis-
sipative Particle Dynamics. Europhys. Lett., 19, 155 (1992).

[29] T. Ihle, D.M. Kroll, Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid
flow. Phys. Rev. E, 63, 020201 (2001).

[30] G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London,
A102, 161-179 (1922).

[31] F. Lundell, A. Carlsson, Heavy ellipsoids in creeping shear flow: Transitions of the particle rotation
rate and orbit shape. Phys. Rev. E, 81, 016323 (2010).

[32] F. Lundell, The effect of particle inertia on triaxial ellipsoids in creeping shear: From drift toward

2.1. Modelling the effect of particle inertia on the orientation kinematics of
fibres and spheroids immersed in a simple shear flow

75



chaos to a single periodic solution. Phys. Fluids, 23, 011704 (2011).
[33] A. Malevanets, R. Kapral, Mesoscopic model for solvent dynamics. J. Chem. Phys., 110, 8605-8613

(1999).
[34] W. Mao, W. Alexeev, Motion of spheroid particles in shear flow with inertia. J. Fluid Mech., 749,

145-166 (2014).
[35] R. Mezher, E. Abisset-Chavanne, J. Frec, G. Ausias, F. Chinesta, Direct simulation of concentrated

fiber suspensions subjected to bending effects. Modelling Simul. Mater. Sci. Eng., 23, 055007 (2015).
[36] R. Mezher, M. Perez, A. Scheuer, E. Abisset-Chavanne, F. Chinesta, R. Keunings, Analysis of the

Folgar & Tucker model for concentrated fibre suspensions in unconfined and confined shear flows via
direct numerical simulation. Composites, Part A, 91, 388-397 (2016).

[37] H. Noguchi, G. Gompper, Transport coefficients of dissipative particle dynamics with finite time step.
Europhys. Lett., 79, 36002 (2007).

[38] H. Noguchi, G. Gompper, Transport coefficients of off-lattice mesoscale-hydrodynamics simulation
techniques. Phys. Rev. E, 78, 016706 (2008).

[39] M. Perez, E. Abisset-Chavanne, A. Barasinski, F. Chinesta, A. Ammar, R. Keunings, On the multi-
scale description of electrical conducting suspensions involving perfectly dispersed rods. Adv. Model.
and Simul. in Eng. Sci., 2, 23 (2015).

[40] M. Perez, A. Scheuer, E. Abisset-Chavanne, F. Chinesta, R. Keunings, A multi-scale description of
orientation in simple shear flows of confined rod suspensions. J. Non-Newtonian Fluid Mech., 233,
61-74 (2016).

[41] C. Petrie, The rheology of fibre suspensions. J. Non-Newtonian Fluid Mech., 87, 369-402 (1999).
[42] T. Rosén, F. Lundell, C. K. Aidun, Effect of fluid inertia on the dynamics and scaling of neutrally

buoyant particles in shear flow. J. Fluid Mech., 738, 563590 (2014).
[43] T. Rosén, M. Do-Quang, M. C.K. Aidun, F. Lundell, Effect of fluid and particle inertia on the rotation

of an oblate spheroidal particle suspended in linear shear flow. Phys. Rev. E, 91, 053017 (2015).
[44] T. Rosén, M. Do-Quang, C.K. Aidun, F. Lundell, The dynamical states of a prolate spheroidal particle

suspended in shear flow as a consequence of particle and fluid inertia. J. Fluid Mech., 771, 115-158
(2015).

[45] T. Rosén, J. Einarsson, A. Nordmark, C.K. Aidun, F. Lundell, B. Mehlig, Numerical analysis of the
angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers. Phys. Rev.
E, 92, 063022 (2015).

[46] P. G. Saffman, On the motion of small spheroidal particles in a viscous liquid. J. Fluid Mech., 1,
540-553 (1956).

[47] A. Scheuer, E. Abisset-Chavanne, F. Chinesta, R. Keunings, Second-gradient modelling of orientation
development and rheology of dilute confined suspensions. J. Non-Newtonian Fluid Mech., 237, 54-64
(2016).

[48] G. Subramanian, D. Koch, Inertial effects on fibre motion in simple shear flow. J. Fluid Mech., 535,
383-414 (2005).

[49] G. Subramanian, D. Koch, Inertial effects on the orientation of nearly spherical particles in simple
shear flow. J. Fluid Mech., 557, 257296 (2006).

[50] M. Theers, R.G. Winkler, Bulk viscosity of multiparticle collision dynamics fluids. Phys. Rev. E, 91,
033309 (2015).

[51] Z. Yu, N. Phan-Thien, R. Tanner, Rotation of a spheroid in a Couette flow at moderate Reynolds
numbers. Phys. Rev. E, 76, 026310 (2007).

Chapter 2. Suspensions of inertial particles

76



Chapter 3

Confined fibre suspensions

Contents
3.1 A multi-scale description of orientation in sim-

ple shear flows of confined rod suspensions . . . 79
3.2 Second-gradient modelling of orientation devel-

opment and rheology of dilute confined suspen-
sions . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.3 Microscopic modelling of orientation kinematics
of non-spherical particles suspended in confined
flows using unilateral mechanics . . . . . . . . . 133

This chapter focuses on the modelling of confined fibre suspensions, that
is rod suspensions flowing in narrow gaps whose thickness is smaller than the
rod length. Under these conditions, the fibre orientation kinematics as well as
the suspension rheology are expected to be affected by confinement effects.

We develop a micromechanical model to derive the kinematics of a sin-
gle rod interacting with a gap wall, extending Jeffery’s equation to confined
configurations. We present then a multi-scale description of such confined sus-
pensions, based on the proposed kinematics. Then, this confinement model is
further enriched to include unilateral contacts and non-uniform strain rates at
the scale of the rod. Finally, we discuss a phenomenological analogy between
our model and equations of elastoplaticity, drawing a parallel between, on the
one hand, the classical unconfined rod kinematics and the elastic deformation,
and, on the other hand, the confined motion of the particle and elastoplatic
deformation.

These topics are addressed in three published papers that constitute this
chapter:

• M. Perez, A. Scheuer, E. Abisset-Chavanne, F. Chinesta, R. Keunings,
A Multi-Scale Description of Orientation in Simple Shear Flows of Con-
fined Rod Suspensions. Journal of Non-Newtonian Fluid Mechanics, 233,
61-74, 2016.
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• A. Scheuer, E. Abisset-Chavanne, F. Chinesta, R. Keunings, Second-
gradient modelling of orientation development and rheology of dilute con-
fined suspensions. Journal of Non-Newtonian Fluid Mechanics, 237, 54-
64, 2016.

• A. Scheuer, E. Abisset-Chavanne, F. Chinesta, R. Keunings, Micro-
scopic modelling of orientation kinematics of non-spherical particles sus-
pended in confined flows using unilateral mechanics. Comptes Rendus
Mecanique, 346, 48-56, 2018.
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Abstract

The multi-scale description of dilute or semi-dilute suspensions involving rods has
been successfully accomplished and applied in many scenarios of industrial interest.
Many processes involve, however, the flow of rod suspensions in very narrow gaps
whose thickness is much smaller that the rod length. In these conditions, the evolution
of rod orientation is expected to be affected by confinement effects. In the present
work, we propose a multi-scale description of rod orientation in confined conditions
and simple shear flows.

Keywords: Confined suspension flows, Jeffery’s equation, Multiscale modelling

1. Introduction

Fibre suspensions can be described at different scales: (i) microscopic, the scale
related to the fibre; (ii) mesoscopic, the scale related to the particle population within
a representative volume of the local macroscopic conditions; and (iii) the macroscopic
scale that is related to the process and the final composite part.

Suspensions involving particles can be described at the microscopic scale by track-
ing the motion of each individual particle involved in the system. This approach is
based on two main elements: (i) the knowledge of the equation governing the parti-
cle motion in the fluid flow, and (ii) the availability of computational resources for
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(Roland Keunings)
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tracking efficiently millions of particles. In dilute suspensions, the motion of ellip-
soidal particles immersed in a Newtonian fluid can be accurately described by using
Jeffery’s equation [22]. For circumventing the difficulties related to simulations at the
microscopic scale where too many particles are present, these difficulties being more
computational than conceptual, coarser models were introduced.

Mesoscopic kinetic theory models result from coarsening microscopic descrip-
tions. In kinetic theory models, the individuality of the particles is lost in favour of a
statistical description that substitutes the entities by a series of conformation coordi-
nates [6] [12]. For example, when considering a suspension of rods, the mesoscopic
description consists in giving the fraction of rods that at position x and time t are
oriented along direction p. This information is contained in a probability distribution
function – pdf – whose evolution is governed by a Fokker-Planck equation. Fokker-
Planck equations being multidimensional (in time, physical space and conformation
space), standard mesh-based discretization techniques fail when addressing their nu-
merical solution. This issue is known as the “curse of dimensionality”. The direct
solution of Fokker-Planck equations has been made feasible in many cases with the
introduction of the Proper Generalized Decomposition (PGD) approach [8] [9].

At the macroscopic scale, the pdf is substituted by some of its moments. Here
the level of detail and the involved physics are sacrificed in favour of computational
efficiency. The equations governing the time evolution of these moments usually
involve closure approximations whose impact on the results must be evaluated.

In the case of dilute suspensions of short fibres in a Newtonian fluid, the three
scales have been extensively considered without major difficulties to model the asso-
ciated systems. Challenges appear, however, as soon as the concentration increases.
In the semi-dilute and semi-concentrated regimes, fibre-fibre interactions occur, but
in general they can be accurately modelled by introducing a randomizing diffusion
term [15]. There is a wide literature on the modelling of dilute and semi-dilute sus-
pensions, e.g. [4] [17] [18] [19] [20] [27]. Available models describe quite well the
experimental observations.

When fibre orientation predictions are compared with experimental results in in-
jection processes involving concentrated suspensions of short fibres, a noticeable de-
lay in the orientation kinematics are observed. Some ad hoc modelling approaches
were proposed to delay the orientation kinematics predicted with the Folgar & Tucker
model [15]. In these models, a fluid-particle sliding mechanism is introduced or dif-
ferent rate equations for the eigenvalues and eigenvectors of the orientation tensor are
used [28] [31] [32]. A more physically-based approach was proposed by Ferec and
co-authors in [14], where the interaction mechanisms were taken into account within
a multi-scale framework.

All these studies concerned unconfined flows, despite the fact that processes of
industrial interest often involve narrow gaps where fibres may have length greater than
the gap and wall effects cannot be ignored. The orientation delay was indeed observed
in such confined flows (e.g. [24]), wherein the orientation process could probably
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differ from the one predicted by the standard Jeffery equation and the mesoscopic and
macroscopic models derived from it.

In the present paper, we propose a multi-scale description of rod orientation in
confined conditions and analyse the impact of initial conditions on rod kinematics un-
der confinement constraints. It is well known that the orientation kinematics of fibres
located near the wall deviate from Jeffery’s predictions, even when the fibres never
enter in contact with the wall [16, 21, 25, 30]. The model proposed here does not take
into account these hydrodynamic confinement effects, but rather it considers physi-
cal contact between rods and gap walls through the introduction of the contact force
ensuring wall impenetrability. In order to consider the rod kinematics perturbation
in absence of physical contact with the wall, we should consider an extra hydrody-
namic force acting on the dumbbell beads describing the rod (see below); this force
would depend on the distance to the wall and the approaching velocity. The model
proposed in this work aims at capturing the first-order effects of confinement. The
effect of the wall proximity on the fiber kinematics constitutes a second-order effect,
to be addressed in future works.

In what follows, we use the following notation together with Einstein’s summation
convention:

• if a and b are first-order tensors, then the single contraction “·” reads (a · b) =

a j b j;

• if a and b are first-order tensors, then the dyadic product “⊗” reads (a ⊗ b) jk =

a j bk;

• if a and b are respectively second and first-order tensors, then the single con-
traction “·” reads (a · b) j = a jk bk;

• if a and b are respectively third and first-order tensors, then the single contrac-
tion “·” reads (a · b) jk = a jkm bm;

• if a and b are second-order tensors, then the double contraction “:” reads (a :
b) = a jk bk j;

• if a and b are respectively second and fourth-order tensors, then the double
contraction “:” reads (a : b) jk = aml bml jk.

2. Modelling confined suspensions of rods

We consider a dilute suspension of rigid, non-Brownian, high-aspect-ratio fibres
suspended in a Newtonian fluid of viscosity η. The fibres are modelled as rigid rods
of length 2L. The rod orientation is given by the unit vector p located at the rod
centre of gravity G and aligned along the rod axis. Inertial effects are neglected in
the sequel. We assume that the presence and orientation of the rods do not affect the
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flow kinematics that is defined by the velocity field vT = (γ̇z, 0, 0) describing a simple
shear flow. Elongation is not considered in this work because it tends to reduce and
even suppress all confinement effects when its intensity with respect to shear is large
enough. In the case of pure elongation, the rods align monotonically in the extension
direction and can never enter in contact with the gap walls. The flow occurs in a
narrow gap Ω × [−H,H], with xT = (x, y) ∈ Ω ∈ R2 assumed large enough and
z ∈ [−H,H] with H < L for ensuring confinement conditions. We consider first an
individual rod whose center of gravity is located in the mid plane zG = 0. Thus, both
rod extremities enter in contact or lose contact with the gap walls simultaneously.
Without loss of generality, we consider that the unit vector p related to bead located
at pL points towards the upper wall, and consequently −p points towards the opposite
wall.

As just indicated, this work only considers confined flow exhibiting constant shear
rate throughout the gap thickness in order to ensure a constant shear rate along the rod
length. This flow is conceptually of interest because it allows one to identify the differ-
ences between the standard (unconfined) Jeffery model and the one that results when
confinement effects take place. It remains, however, quite far from the applicative
processing conditions that in general involve more complex flows, in many cases of
Poiseuille type. In processing conditions, almost-parabolic velocity profiles through-
out the gap thickness are usually encountered, implying that the velocity gradient is
no longer constant along the length of the rod when its extremities approach both
walls. In these circumstances, one should consider second-order kinematics in the
derivation of the rod rotary velocity, as done in [2, 7] for unconfined flows. In that
applicative perspective, one should also take into account non-Newtonian rheology
of the suspending fluid, which adds a major difficulty as discussed in [7]. All these
issues will be presented and discussed in ongoing publications. In the present work,
we concentrate on simple shear flows, Newtonian suspending fluids, and we assume
incompressible and isothermal conditions.

2.1. Microscopic description of confined kinematics of an individual rod

It is well known that the kinematics of a rod with infinite aspect ratio immersed
in an unconfined simple shear flow with velocity gradient ∇v is given by Jeffery’s
equation [22]

ṗ = ∇v · p − (∇v : (p ⊗ p))p. (1)

Jeffery’s equation predicts full alignment in the flow direction. For finite aspect ratio
ellipsoidal particles, periodic trajectories known as Jeffery’s orbits are predicted in-
stead. Brownian effects also avoid full alignment and are generally introduced at the
rod population level.

When the domain thickness is smaller that the rod length (H < L), some Jef-
fery’s trajectories are forbidden, i.e. those trajectories involving Lp(t) · n > H, where
n = (0, 0, 1)T is the unit vector defining the thickness direction. In that case, the rod
kinematics are defined by the standard Jeffery model (1) while p · n < H/L and are
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Figure 1 – Hydrodynamic and contact forces acting on a confined rod immersed in a
simple shear flow.

perturbed as soon as the rod reaches the upper and lower walls. In order to determine
the perturbed rod kinematics, we represent the rod as a dumbbell [1] with hydrody-
namic and contact forces acting on the dumbbell beads as illustrated in Fig. 1. We
assume that hydrodynamic forces applied on each bead FH depend on the difference
of velocities between the fluid and the bead, the first one given by v0 + ∇v · pL and
the second one by vG + ṗL. Thus, the force FH(pL) is given by

FH(pL) = ξ(v0 + ∇v · pL − vG − ṗL), (2)

where ξ is the friction coefficient, v0 the fluid velocity at the rod center of gravity, and
vG the velocity of the center of gravity. The contact force is assumed to act in the
direction perpendicular to the wall (we thus ignore possible friction at the wall):

FC(pL) = µn, (3)

with FC(pL) = −FC(−pL). The contact force intensity µ is unknown at this stage and
will be determined such as to prevent the beads from penetrating the walls.

Thus, the total force acting on the bead located at pL is F(pL) = FH(pL)+FC(pL).
As inertia is neglected, the resultant force acting on the dumbbell vanishes. Since
FC(pL) = −FC(−pL), the force balance yields FH(pL) = −FH(−pL) and thus

vG = v0, (4)

i.e. the velocity of the rod center of gravity coincides with the velocity of the fluid
at that position. This ensures that both beads are simultaneously in contact with the
walls.
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The resulting torque must also vanish, that is F = FH + FC = λp, with λ ∈ R.
Since v0 = vG, we have

ξ(∇v · pL − ṗL) + µn = λp. (5)

Premultiplying Eq. (5) by p and taking into account that p · p = 1 and ṗ · p = 0, we
obtain

λ = ξL(∇v : (p ⊗ p)) + µpz, (6)

with pz = p · n. Injecting this expression for λ into Eq. (5) yields

ξL(∇v · p − ṗ) + µn = ξL(∇v : (p ⊗ p))p + µpzp, (7)

or
(∇v · p − ṗ) +

µ

ξL
n = (∇v : (p ⊗ p))p +

µ

ξL
pzp. (8)

The rotary velocity ṗ is thus given by

ṗ = ∇v · p − (∇v : (p ⊗ p))p +
µ

ξL
(n − pzp) = ṗJ + ṗC . (9)

Here, ṗJ denotes the Jeffery rotary velocity component given by Eq. (1), while the
confined component is defined as ṗC =

µ
ξL (n − pzp).

We now need to determine the contact force intensity µ. In order to obtain its
value we must consider that the contact force appears in order to avoid that the bead
leaves the flow domain, that is ṗ · n ≤ 0, with µ , 0 if pzL = H and ṗJ · n > 0. The
contact force µn must ensure that the resulting velocity is tangent to the wall. Because
dynamical effects are neglected, the bead cannot rebound. It thus suffices to enforce
the condition ṗ · n = 0. Multiplying Eq. (9) by n yields

0 = ṗJ · n +
µ

ξL
(1 − p2

z ) =
[
ṗJ

]
z
+

µ

ξL
(1 − p2

z ), (10)

or
µ = − ξL

1 − p2
z

[
ṗJ

]
z
. (11)

Equation (9) thus reduces to

ṗ = ṗJ − 1
1 − p2

z

[
ṗJ

]
z
(n − pz p) = ṗJ + ṗC , (12)

with ṗJ given by Eq. (1), pz = p · n and
[
ṗJ

]
z

= ṗJ · n.
The first term in Eq. (12) corresponds to the standard, unconfined Jeffery kine-

matics, while the second term avoids that rod beads leave the flow domain. While
preparing this paper, it came to our attention that Eq. (12) had been derived indepen-
dently in [26] using similar arguments but a different procedure.

Chapter 3. Confined fibre suspensions

84



Equation (9) can be rewritten as

ṗ −Ω · p = D · p − (D : (p ⊗ p))p +
µ

ξL
(n − pzp), (13)

from which we can conclude that the rate of strain due to the flow kinematics and
the reaction forces induce an effective rotation ṗ − Ω · p, thus ensuring the model
objectivity.

So, to sum up, the kinematics of a rigid rod of length 2L in a simple shear flow oc-
curring in a narrow gap of thickness 2H are given by the following confined Jeffery
model: 

ṗ = ṗJ if pzL < H
ṗ = ṗJ if pzL = H & ṗJ · n ≤ 0
ṗ = ṗJ + ṗC if pzL = H & ṗJ · n > 0

, (14)

where the rods are in contact with the walls if pz = H/L. It is important to notice
that expression (12) only applies if the trial Jeffery velocity is such that ṗJ · n > 0.
When pzL < H, ṗ reduces to the standard Jeffery contribution ṗJ . When pzL = H and
ṗJ · n ≤ 0, the rotary velocity also reduces to the Jeffery contribution. The contact
being unilateral, a rod can detach from the wall as soon as its velocity induces the
detachment. These conditions, known as Kuhn and Tucker or Signorini conditions,
are similar to those encountered when describing unilateral contact or elastoplasticity.
When projecting Eq. (12) in the thickness direction, we have ṗ · n = 0, thus ensuring
that the rod beads do not leave the flow domain.

In the numerical tests discussed below, we will occasionally assume fully-confined
conditions, meaning that fibres are assumed to be and always remain in contact with
the walls, while their orientation evolution is governed by Eq. (12). In such case,
the contact is bilateral and fibres are prevented to detach from the wall even when
ṗJ · n ≤ 0. A reaction force must appear to maintain contact and avoid detachment
of the rod bead from the wall. In the sequel, this particular model will be referred to
as the fully-confined Jeffery model. Although not entirely physical, it will be useful
for validation purposes.

2.2. Mesoscopic description of a population of rods
Having described the kinematics of individual rods in confined flows, we now turn

to a population of non-interacting rods. There are two natural approaches for doing
so, i.e. discrete and continuous.

2.2.1. Discrete description
The discrete approach consists in computing the orientation of each individual rod

belonging to a large discrete ensemble of N rods. Thus, the population is described
from the individuals composing it, whose conformation is given by vectors pi, i =

1, ...,N , each governed by Eq. (14). The main drawback of this approach lies in the
necessity of tracking the evolution of each rod by solving the corresponding equation,
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and even if conceptually there is no major difficulty, the computing cost could be
excessive in most practical applications.

2.2.2. Continuous description
The continuous approach uses the pdf ψ(x, t,p) that gives the fraction of rods

that are oriented along direction p at position x and time t. This description avoids
the complexity related to the immense number of fibres involved in suspensions of
practical interest.

The pdf satisfies the normalisation condition:
∫

S
ψ(x, t,p) dp = 1, ∀x, ∀t, (15)

where S is the rod conformation space, i.e. the surface of the unit sphere in the
unconfined case.

Conservation of probability leads to the so-called Fokker-Planck equation

∂ψ

∂t
+ ∇x · (ẋ ψ) + ∇p · (ṗ ψ) = 0, (16)

where the rod rotary velocity ṗ is given by the confined Jeffery’s equation (14) and
ẋ = v(x, t).

In the confined case, the permitted orientation domain is obtained by removing
from the surface of the unit sphere S both polar regions located beyond the parallels
z = ±H. Moreover, if the pdf is defined in the resulting 2D surface, boundary layers
are expected on parallels z = ±H, where rods orient while keeping contact with the
upper and lower walls, which implies a mesh dependence of the discrete solution
because rods concentrate on the parallels that have a null measure on the unit sphere.
Appendix A discusses a possible alternative route for accomplishing mesoscopic
modelling and simulation, however that route is not considered in the present work.

2.3. Macroscopic description
A macroscopic model describes the suspension microstructure via suitable mo-

ments of the pdf, defined in standard physical domains involving space and time.
These moments can be computed either via a discrete or continuous approach.

2.3.1. Discrete approach
Consider for example the second-order moment of the pdf, also known as the

second-order orientation tensor. In the discrete approach, we integrate Eq. (14) for
the N rods of the population and compute at each instant the associated orientation
tensor according to the ensemble average

adisc(t) =
1
N

N∑

i=1

pi(t) ⊗ pi(t). (17)
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Here, the superscript disc refers to the discrete approach.
As mentioned before, the main disadvantage of this approach is the computational

cost due to the extremely large number of particles to be considered.

2.3.2. Continuous approach: the two limiting cases
In the continuous approach, the orientation distribution function is substituted by

its moments for describing the microstructure [3] at the macroscale, and an evolution
equation for these moments is derived from the Fokker-Planck equation. Usually,
macroscopic descriptions of rod suspensions are based on the use of the first two non-
vanishing moments, i.e. the second and fourth-order moments, a and A, respectively
defined by

a =

∫

S
p ⊗ p ψ(x, t,p) dp, (18)

and
A =

∫

S
p ⊗ p ⊗ p ⊗ p ψ(x, t,p) dp. (19)

Odd moments vanish in view of the symmetry of the pdf: ψ(x, t,p) = ψ(x, t,−p).
We consider two extreme situations, namely the unconfined case which yields the

standard macroscopic description based on Jeffery’s equation, and the fully-confined
case wherein all rods are in contact with the gap walls. The latter is certainly relevant
in conditions of intense confinement, namely for H � L. In this case, we can further
assume that rod orientations are distributed in the allowed region of the unit sphere
but under a lubrication kinematical constraint. These three modelling frameworks are
described below.

• The unconfined case.
For unconfined rods, the orientation is defined on the surface of the unit sphere
S, and the associated Fokker-Planck equation is readily exploited to derive the
classical evolution equation for the second-order orientation tensor associated
to the standard Jeffery model [5]:

ȧJ = ∇v · aJ + aJ · (∇v)T − 2 AJ : ∇v. (20)

Here, the superscript J indicates that we consider the orientation tensors asso-
ciated with the standard Jeffery model for unconfined systems.

• The fully-confined case.
In the other limiting case, we assume that all rods in the suspension are in
contact with the walls and that the contact is bilateral, i.e. rods can orient but
always remain in contact with the walls. In this situation, we can derive an
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evolution equation for what we call the fully-confined orientation tensor aC

defined as
aC =

∫

C
p ⊗ p ψ(p) dp, (21)

with C = {p, pz = ±H/L}.
Indeed, we have

ȧC =

∫

C
p ⊗ p ψ̇(p) dp, (22)

where
ψ̇ = −∇p · (ṗ ψ(p)). (23)

Integration by parts with respect to coordinates p yields

ȧC =

∫

C
(ṗ ⊗ p + p ⊗ ṗ) ψ(p) dp. (24)

In the confined case

p =

(
q
pz

)
, (25)

with pz = ±H/L, from which Eq. (21) gives

aC =

∫

C

(
q ⊗ q pzq
pzqT p2

z

)
ψ(p) dp. (26)

Considering now Eq. (24), with

ṗ ⊗ p =

(
q̇
0

)
⊗

(
q
pz

)
, (27)

and

p ⊗ ṗ =

(
q
pz

)
⊗

(
q̇
0

)
, (28)

we obtain

ȧC =

∫

C

(
(q̇ ⊗ q + q ⊗ q̇) pzq̇

pzq̇T 0

)
ψ(p) dp. (29)

Now, we define the in-plane second-order orientation tensor b according to

b =

∫

C
q ⊗ q ψ(p) dp. (30)

This new tensor does not have a unit trace since ‖q‖2 = 1 − H2

L2 . We also define
a vector c,

c =

∫

C
q pz ψ(p) dp, (31)
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which does not vanish because the pdf is symmetric, i.e. ψ(p) = ψ(−p) and q
and pz have opposite sign on each parallel z = ±H defining C.

With these definitions and Eq. (26), we obtain the orientation tensor aC ,

aC =

(
b c
cT H2

L2

)
, (32)

and its time derivative reads

ȧC =

(
ḃ ċ
ċT 0

)
, (33)

with ḃ and ċ given by Eq. (29).

In order to obtain ḃ and ċ, we need to derive the expression of q̇. For that
purpose, we decompose the velocity gradient according to

∇v =

(
G g
jT G

)
, (34)

such that

∇v · p =

(
G g
jT G

) (
q
pz

)
=

(
G · q + gpz

jT · q + Gpz

)
. (35)

As detailed in Appendix B, we obtain

q̇ = G · q − δ1(G : (q ⊗ q)) q + δ2g−
δ3(qT · g) q , (36)

with δ1 = 1
1−p2

z
, δ2 = pz and δ3 =

pz

1−p2
z

= δ1δ2.

Thus, the time derivative of tensor b is given by

ḃ = G · b + b ·GT − 2δ1G : B+

(g ⊗ c + c ⊗ g) − 2δ3B · g , (37)

with B and B being respectively the third and fourth-order in-plane orientation
tensors related to the in-plane orientation q. Both will be expressed from c and
b through adequate closure relations. The simplest closure consists in assuming

{
B = 1

pz
b ⊗ c

B = b ⊗ b
. (38)

It is exact when the rods are fully aligned (i.e. when the pdf reduces to a Dirac
delta distribution). In the general case, its validity must be checked carefully.
The development of more accurate closure approximations following the ratio-
nale considered in [10, 11, 23, 29] constitutes a work in progress that will be
reported in future publications.
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Finally, we obtain the time evolution of the first-order moment c

ċ =

∫

C
q̇ pz ψ(p) dp, (39)

by considering the expression of q̇ given by Eq. (36),

ċ = G · c − δ1δ2G : B + δ2
2g − δ3δ2b · g. (40)

• The lubrication simplified model.

Inspired by lubrication theory that successfully reduces the 3D flow equations
in the case of thin gaps by neglecting out-of-plane velocities, in the case of
intense confinement, i.e. H/L < 0.3, we could assume ṗz ≈ 0. Moreover, the
in-plane components of ṗJ and of its confined counterpart ṗ given by (12) are
very close in such situation. Thus, one could ignore the unconfined motion of
rods in the thin gap and consider that all rods are each fully confined by an
imaginary wall located at the initial bead z-coordinates.

This is equivalent to computing the fully-confined solution aC at each z, aC(t; z),
z ∈ [0,H], and then considering the average

ãC(t; H) =

∫ H

0
ω(z) aC(t; z) dz, (41)

where ω(z) is the fraction of rods that initially have a bead located at z (the other
bead being at −z).

Thus, ãC could be retained as a simplified orientation descriptor when confine-
ment becomes dominant.

In what follows, ãC is calculated by integrating aC at different coordinates zi

uniformly distributed in the gap [0,H] and then averaging these solutions. For
an isotropic initial distribution in the gap, we obtain the through-the-thickness
average of aC .

Another possibility, not exploited in the present paper, consists in deriving the
equation governing the time evolution of tensor ãC by introducing Eqs. (37)
and (40) into the time derivative of equation (41) and then performing inte-
gration. The derivation is detailed in Appendix C, where we show that, even
though a closed evolution equation does not exist, suitable approximate expres-
sions can be obtained.

3. Model predictions in simple shear flow

In this section, we discuss the predictions of the proposed models for the case of a
simple shear flow with velocity vT = (γ̇z, 0, 0) and γ̇ = 1 s−1. Since we consider a unit
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shear rate, the time coordinate in most of the graphical representations that follow can
be viewed as a shear strain coordinate.

In all simulations carried out and discussed below, the coupling between flow
and orientation is voluntarily neglected. The reasons are threefold. First, we wish
to focus on the orientation process for a given unperturbed velocity field in order
to analyze the confinement effects without having other disturbances than the ones
related to the orientation mechanisms. Second, before addressing the semi-dilute or
semi-concentrated flow regimes, we believe that the dilute case must be understood
beforehand. Third, the constitutive equation relating the extra-stress to the orientation
description should be revisited and probably modified in view of confinement effects.
This analysis is currently underway within our group.

3.1. Evaluating the trajectory of a single rod

First, we consider the evolution of a single rod, or equivalently, of a population
of rods all them aligned in the same direction, using both the proposed extension of
Jeffery’s equation to confined systems and the equations governing the evolution of
the moments of the distribution function under confinement conditions.

3.1.1. Solution of the confined Jeffery equation
Here, we track the orientation of a rod initially unconfined, that is pzL < H, but

whose Jeffery trajectory implies at a certain instant that pJ
z (t)L > H. It is important to

note that in our model all initial orientations associated with Jeffery trajectories never
reaching the domain wall (or reaching it at the highest point where the trajectory be-
comes tangent to the wall) will follow a Jeffery trajectory without any perturbation. As
indicated in the introduction, hydrodynamic effects appear when the rod approaches
the gap walls. These second-order effects are ignored in the simulations that follow.

Figure 2 shows the orientation trajectory followed by the rod. At the beginning,
because the rod is unconfined, it follows the trajectory dictated by Jeffery’s equation
(1). The actual trajectory p(t) is depicted in red whereas the unconfined Jeffery motion
pJ(t) is represented by the broken blue curve. Until reaching the walls, as expected,
both trajectories superpose and consequently cannot be distinguished. As soon as one
of the rod beads reaches the upper wall pzL = H (the other bead reaches simulta-
neously the lower wall, but by using symmetry arguments we only refer to the one
touching the upper wall), with ṗJ ·n > 0 for both trajectories, the actual trajectory and
the one associated to the unconfined Jeffery motion bifurcate from each other. The
Jeffery trajectory continues its unconfined motion with pJ

z L > H whereas the confined
rod continues to slide on the upper wall pzL = H until it detaches from it.

The orientations satisfying the contact condition pzL = H define the two thick
black parallels depicted in Fig. 2. Thus, we notice that during a time interval the
rod orients toward the flow direction while remaining in contact with the walls. In
fact, during this period of time, the confined rod is crossing an infinity of forbidden
Jeffery trajectories with ṗJ · n > 0. Finally, at a certain instant the rod reaches an
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Figure 2 – Orientation evolution for H/L = 0.8. Confined versus unconfined trajecto-
ries.

unconfined Jeffery orbit that is tangent to the wall. This means that even if pzL =

H, we have ṗ · n = 0 and then the contact force vanishes. The rod having thus
reached a permitted, unconfined Jeffery trajectory, it follows it for the remainder of
the simulation. Although the final orientation, i.e. full alignment of the rod with the
flow, is the same as the one reached by the purely unconfined Jeffery motion, the
confined trajectory has a slightly higher time of flight.

In order to evaluate the effect of confinement on the orientation time, we consider
different confinement ratios H/L and calculate the time elapsed between the instant
at which the confined and unconfined trajectories (having the same starting point)
diverge (after reaching the wall) and the instant at which both trajectories reach an
orientation degree quantified by px = 0.9. The different unconfined versus confined
trajectories followed by the fibres are depicted in Fig. 3, and the delay time normalized
by the unconfined flight time (given by Jeffery’s solution) for the different confinement
ratios are reported in Table 1.
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Figure 3 – Orientation evolution for H/L = 0.8 (top-left), H/L = 0.6 (top-right),
H/L = 0.4 (bottom-left) and H/L = 0.2 (bottom-right)

H/L ∆t/tJ
f l

0.8 1.3
0.6 1.9
0.4 2.6
0.2 4.1

Table 1 – Orientation time delay for different degrees of confinement H/L.
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Figure 4 – Confined Jeffery solution adisc(t) versus fully-confined macroscopic orien-
tation tensor aC(t) in the case of rods aligned in the same direction. It can be noticed
that the planar components of the orientation tensor evolve smoothly whereas the out-
of-plane component shows a localized evolution when, after a period of time during
which the fibre beads slide at the wall, they detach from it.

3.1.2. Fully-confined orientation tensor
Here, the initial confined orientation is given by pT (t = 0) = (−px, py,H/L), with

py ≈ 0, H/L = 0.2 and such that ‖p(t = 0)‖ = 1. The confined Jeffery equation
(14) was integrated with the initial condition p(t = 0). The orientation tensor at each
time step adisc(t) was calculated from adisc(t) = p(t)⊗ p(t) (having all rods oriented in
the same direction is equivalent to consider N = 1 in Eq. (17)), and compared with
the fully-confined orientation tensor aC(t) obtained by integrating Eq. (33) from the
initial condition aC(t = 0) = p(t = 0) ⊗ p(t = 0) that allowed to define b(t = 0) and
c(t = 0).

Figure 4 compares both solutions. It can be noticed that they are in perfect agree-
ment at the beginning of the orientation process when confinement is intense, while
they differ slightly from each other at the end when fibres detach. As just mentioned,
the confined macroscopic model involving aC prevents detachment.

It is important to notice that in this case the quadratic closures (38) involved in the
evolution equation (33) for aC are exact. Thus, any difference between both solutions
is probably due to the fact that the description given by aC assumes fully-confined
rods (i.e. they never detach from the wall), while Eq. (14) allows rods to detach from
the wall.

In order to confirm this hypothesis on the origin of the noticed deviations, we
solved the same problem but, when integrating the confined Jeffery equation, fibres
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Figure 5 – Fully-confined Jeffery solution adisc, f c (fibre detachment from the wall is
prevented) versus fully-confined macroscopic description aC(t) in the case of rods
aligned in the same direction

were not allowed to detach from the wall and remained in contact with the wall for the
remainder of the simulation. Figure 5 shows, that when full-confinement conditions
apply, both solutions are in perfect agreement. It is important also to notice that
when the orientation distribution is fully concentrated, i.e. given by a Dirac delta
distribution, the third and fourth-order closures of B and B respectively, involved in
Eqs. (37) and (40), are exact and then the discrete and continuous solution procedures
remain in perfect agreement.

3.2. Evolution of a population of rods
We now consider a population of rods having different initial orientations and thus

following different trajectories.

3.2.1. Discrete calculation of the orientation tensor
We consider a population of N = 4000 rods having an almost isotropic initial

orientation on the allowed part of the unit ball surface, the one limited by the parallels
z = ±H, as shown in Fig. 6. The trajectory of each pi(t) is obtained by integrat-
ing the confined Jeffery model (14). The results will be compared with those of the
unconfined case, pJ

i (t), governed by the standard Jeffery equation (1).
At each instant, the second-order orientation tensor is computed for both the con-

fined and the unconfined systems, adisc(t) and aJ,disc(t) respectively, according to:

adisc(t) =
1
N

N∑

i=1

pi(t) ⊗ pi(t), (42)
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Figure 6 – Isotropic initial orientation distribution for H/L = 0.2 and N = 4000

and

aJ,disc(t) =
1
N

N∑

i=1

pJ
i (t) ⊗ pJ

i (t). (43)

In Fig. 7, one notices that the orientation adisc
xx experiences a slight delay with

respect to aJ,disc
xx , and the peak in aJ,disc

zz disappears when confinement effects act.
When considering a population of rods rather than a single rod, the delaying effect

of confinement is less noticeable due to the averaging of results involving a number
of unconfined trajectories associated with rods that never reach the walls. Thus, we
can conclude that the impact of confinement is quite moderate in what concerns the
orientation moments.

3.2.2. Impact of the closure relation
We now assume a population of rods with a fully-confined initial isotropic distri-

bution, isotropic in what concerns the in-plane confined tensor b(t = 0) as depicted in
Fig. 8.

The solution of the fully-confined macroscopic model for aC(t) is compared with
the integration of the confined Jeffery model (14). Figure 9 compares both solutions
and differences are noticed from the very beginning of the orientation process. These
differences could be attributed to the closure relations (38) involved in the formulation
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Figure 7 – Evolution of the confined (continuous line) and unconfined (discontinuous
line) components of the second-order orientation tensor for H/L = 0.2

of aC . It is easy to verify that the closure relations previously introduced for express-
ing B and B as a function of b and c are only exact in the case of full alignment (when
the orientation pdf reduces to a Dirac distribution).

In order to quantify more precisely the impact of the closures on the computed so-
lution aC , Fig. 10 compares aC with the second-order orientation tensor obtained from
the integration of the fully-confined Jeffery equation (12) for all fibres in the popu-
lation, integration that prevents their detachment from the wall. From these results,
we conclude that errors introduced by the closure relations (38) accelerate noticeably
the dynamics of alignment in confined suspensions, but cannot explain entirely the
differences that Fig. 9 reveals.

3.2.3. Unconfined versus confined Jeffery models
The results just discussed indicate that confinement only has a slight influence on

the kinematics of the orientation process, as Fig. 7 reveals. It is thus of interest to have
a further look at the unconfined Jeffery equation (1) and the associated evolution equa-
tion (20) for the orientation tensor aJ when considering a confined initial orientation
distribution. Here, we use the quadratic and hybrid closure relations for expressing
the fourth-order orientation tensor AJ in terms of aJ [27]. Other closures exist, such as
the natural and the orthotropic ones [10, 11, 13]. The former does not, however, have
an explicit expression in the 3D case and the latter predicts spurious oscillations in
absence of diffusion. For these reasons, we consider the quadratic are hybrid closures
that are expected to perform reasonably well in unconfined conditions.

In the numerical experiments that follow, we specify initially two Gaussian ori-
entation states on the allowed part of the unit ball surface, both depicted in Fig. 11,
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Figure 8 – Initial in-plane isotropic orientation distribution related to the fully-
confined simulation on z = H, H/L = 0.2, implying pz = 0.2 for all fibres
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Figure 9 – Confined Jeffery’s orientation tensor adisc(t) versus fully-confined macro-
scopic description aC(t) for a population of rods with the fully-confined initial
isotropic distribution depicted in Fig. 8
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Figure 10 – Fully-confined Jeffery’s orientation tensor adisc, f c(t) versus fully-confined
macroscopic description aC(t) for a population of rods with the fully-confined initial
isotropic distribution depicted in Fig. 8

limited by the parallels z = ±H, with H/L = 0.2 and 0.8. Thus, for integrating
Eq. (20), we specify

aJ(t = 0) =
1
N

N∑

i=1

pi(0) ⊗ pi(0), (44)

where the initially-confined discrete orientations pi(0) are those shown in Fig. 11.
Figure 11 compares the confined and unconfined solutions computed by using

a population of rods large enough to ensure their use as reference solutions, and the
orientation tensor aJ(t) obtained by integrating Eq. (20) using the quadratic and hybrid
closure relations, for the two initial confined orientation distributions depicted in that
figure. The main conclusions that can be drawn from these results are:

• The out-of-plane component (•zz) for the unconfined Jeffery model is only
slightly different from the one related to the confined model;

• For confined initial conditions, confined kinematics delay slightly the evolution
of the second-order orientation tensor obtained from a population of rods large
enough to consider the computed solution as almost exact statistically (i.e. solv-
ing the corresponding Fokker-Planck equation would give the same result). The
delay increases with the degree of confinement, as measured by the reciprocal
of the ratio H/L;

• Closure relations are responsible for artificially accelerating the evolution of the
second-order moment resulting from the integration of its unconfined evolution
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equation with confined initial conditions. Closure approximations become less
accurate (i.e. the orientation process accelerates) as the degree of confinement
increases (i.e. as H/L decreases);

• The quadratic and hybrid closures produce similar results.

Two main reasons could be advanced for explaining the noticed deviations: (i)
standard closure relations are inappropriate in presence of confinement; and (ii) the
second-order moment alone is not an accurate descriptor of a constrained probability
distribution.

A natural route is the development of empirical closure relations, inspired from the
works of [10, 11, 13] that were successfully implemented in [23, 29]. This could be a
valuable route indeed, and a fitted closure should of course work well as long as the
operating conditions remain similar to the ones that served to construct it. Although
useful from an applicative point of view, this approach has two main limitations: (i)
it could hide the real physical reasons for the noticed deviations; and (ii) a closure
fitted from a particular confined flow could fail as soon as the flow and degree of
confinement differ significantly from the ones that were used to obtain the particular
fit.

In order to analyze the ability of a second-order tensor to represent a confined
orientation distribution, we decided to compute the solution of aJ(t) from Eq. (20),
but instead of using a closure relation for the fourth-order orientation tensor AJ , we
obtained it from the solution of the equation governing its time evolution that in its
turn involves the sixth-order orientation tensor AJ(t). In order to avoid once again
the use of a closure relation, we computedAJ(t) from its evolution equation that now
involves the eight-order orientation tensor. We finally substituted the latter with the
closure approximation AJ(t) ⊗ aJ(t). Despite these efforts to consider a formulation
up to order 6, involving aJ , AJ and AJ with their 32 + 34 + 36 components and their
corresponding evolution equations (in fact much less, due to normalization conditions
and symmetry properties), the computed solution was found to be very poor.

Following the rationale described in [3], we attempted to describe the initial con-
fined distribution depicted in Fig. 6 from its associated moments a, A and A. Use of
the first three non-vanishing moments was found insufficient for approximating the
actual distribution. Many additional higher-order moments would be needed, which
is not practical and would compromise the efficiency of the solution procedure. As
discussed in [3], the orientation tensors can be viewed as the Fourier series expansion
coefficients of the orientation distribution function. Limitations of Fourier series for
approximating rectangular functions like the ones associated to a uniform distribution
in a region of the conformation space (surface of unit sphere) are well known. In that
situation, it is preferable to consider the direct solution of the Fokker-Planck equation,
which constitutes an appealing route for further developments [8] [9].
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Figure 11 – Comparison of confined adisc and unconfined aJ,disc solutions computed
by using a population of rods large enough to ensure their use as reference solutions,
and the orientation tensor aJ(t) obtained by integrating Eq. (20) using the quadratic
and hybrid closure relations, aquad and ahybr respectively, for different initial confined
orientation distributions.

3.3. Lubrication approach

In order to validate the lubrication approach of the fully confined macroscopic
model (Section 2.3.2), we compare in Fig. 12 for two different degrees of confine-
ment, H/L = 0.2 and H/L = 0.3, the solutions obtained from the confined Jeffery
model (14) that is considered as the reference solution, associated to an initially uni-
form orientation distribution in the allowed region of the unit sphere (Fig. 6), and the
lubrication counterpart of the fully-confined macroscopic model. It can be noticed
that the orientation kinematics are described quite well by the proposed macroscopic
model, which thus seems a valuable tool for calculating the orientation evolution in
highly-confined systems.

In order to understand the lubrication mechanisms and more concretely the ef-
fects of averaging between different fully-confined orientation evolutions, we depict
in Fig. 13 the fully-confined solutions obtained for different confinement ratios H/L.
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Figure 12 – Comparing the orientation development for two different degrees of con-
finement: H/L = 0.2 (top) and H/L = 0.3 (bottom): lubrication fully-confined macro-
copic ãC(t; H) versus confined Jeffery’s adisc(t,H).

4. Conclusions

In this paper, we have extended the standard Jeffery model for rod kinematics in
a Newtonian fluid in order to take account of confinement effects in a simple shear
flow occurring in a narrow gap. The proposed confined Jeffery model (14) is meant to
describe the kinematics of individual rods in confined flows. It is in principle easily
exploited for a discrete description of a population of non-interacting, confined rods
(Section 2.2.1). The development of a continuous mesoscopic description is more
delicate. Although a sophisticated, confined Fokker-Planck model, based on the use
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Figure 13 – Fully-confined solutions aC(t) for different degrees of confinement H/L

of two probability distribution functions, is derived in Appendix A, we did not pursue
this route in view of the anticipated numerical challenges. Finally, we have devel-
oped a continuous model for the macroscopic scale in the limiting case where rods
can orient but always remain in contact with the walls. Using suitable closure approx-
imations, we have thus obtained the evolution equation (33) for the fully-confined
second-order orientation tensor aC , as detailed in Section 2.3.2 and Appendix B. In
the case of intense confinement, i.e. H/L < 0.3, we can ignore the unconfined motion
of rods in the thin gap and consider, in the spirit of lubrication theory, that each rod is
fully confined by an imaginary wall located at its extremities. This led us to retain the
gap-averaged, fully-confined orientation tensor ãC as suitable descriptor when con-
finement is dominant. It can be computed either via the average (41) involving values
of aC through the gap, or else as solution of an evolution equation derived in Appendix
C.

Numerical experiments have been conducted for a simple shear flow, with rods
having initial orientations on the allowed part of the unit ball surface, i.e. the one
limited by the walls. We found that the orientation kinematics predicted with the con-
fined and unconfined Jeffery models applied to a population of rods are quite similar,
with only a slight delay in confined systems.

In view of this result, we performed the same simulations with the unconfined
Jeffery equation (1) and the associated macroscopic evolution equation (20) for the
second-order orientation tensor aJ . To our surprise, radically different results were
obtained: the evolution of orientation as predicted by the macroscopic model for
the orientation tensor aJ(t), i.e. the second moment of the orientation pdf, is much
faster than that obtained by computing with the Jeffery model the orientation evolu-
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tion aJ,disc(t) of a discrete population of rods. The origin of this difference is due to the
impossibility of describing the confined orientation pdf and its time evolution using
only the second-order moment of the pdf. Consideration of additional higher-order
moments (up to order 6) was found insufficient in this regard.

Thus, we conclude from this study that the main challenge with traditional macro-
scopic models involving moments of the orientation pdf lies more with representa-
tion capabilities in highly confined conditions than with a suitable description of the
induced orientation kinematics. Use of the averaged fully-confined macroscopic de-
scriptor ãC proposed in this paper is recommended in future theoretical developments.

Appendix A. Advanced mesoscopic modelling

For representing accurately the orientation distribution at the mesoscopic scale,
we could consider two pdf’s, ψJ(x, t,p ∈ J) and ψC(x, t,p ∈ C), with

{ J = {p, pz ∈ (−H/L,H/L)}
C = {p, pz = ±H/L} , (A.1)

where the normalization condition reads
∫

J
ψJ(x, t,p) dp +

∫

C
ψC(x, t,p) dp = 1. (A.2)

Now, assuming homogeneous flow for the sake of simplicity and without loss of
generality, the dependence of both pdf’s on the space coordinates x can be ignored
and the Fokker-Planck equation reads:


∂ψJ

∂t + ∇p · (ṗJψJ) = 0, p ∈ J
∂ψC

∂t + ∇p · (ṗMψC) = Q+ − Q−, p ∈ C+
, (A.3)

where, due to symmetry considerations, we only consider the upper parallel C+ =

{p, pz = H/L}, and ṗM represents the velocity on the manifold, defined from

ṗM =

{
ṗ if ṗ · n = 0
0 if ṗ · n , 0 , (A.4)

with ṗ given by Eq. (14).
Here, Q+ = (ṗ+ · t) ψJ(p) represents the unconfined rods reaching the manifold

C+, t being the unit vector tangent to the unit sphere S, normal to the manifold C+

and pointing outward of the allowed region J , with the upstream velocity ṗ+ given
by

ṗ+ =

{
ṗJ i f ṗJ · n > 0
0 otherwise . (A.5)
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On the other hand, confined rods leaving the manifold C+ are given by Q−, with
Q− = −(ṗ− · t) ψC(p), with

ṗ− =

{
ṗJ i f ṗJ · n < 0
0 otherwise . (A.6)

The only boundary condition to be prescribed at the boundary of J to ensure
conservation of probability reads

ψJ(p)|∂J− = ψC(p)|C∩∂J− , (A.7)

where ∂J− denotes the part of the boundary of J through which rods leaving the
manifold C come into domain J .

Note that in the Fokker-Planck model (A.3), domains C and J exchange rods
while ensuring conservation of probability. Domain J , due to its 2D nature, ex-
changes rods through its boundary, whereas C being 1D, the rod exchange appears as
a source term in the balance equation (in fact C as previously defined is unbounded).

The numerical treatment of the resulting mesoscopic model is quite delicate be-
cause rods leaving the manifold C usually group on the two trajectories in J con-
sisting of the unconfined Jeffery orbits tangent to the manifold C that implies a Dirac
delta distribution in J . For this reason, discretization based on the use of continuous
approximations remains extremely difficult even when considering two pdf’s. The use
of a particle-based integration technique constitutes however a plausible route.

Appendix B. Evolution equation for the confined orientation tensor

In this appendix, we address the obtention of Eq. (36). For that purpose, we
consider the confined Jeffery equation

ṗ = ṗJ − 1
1 − p2

z

[
ṗJ

]
z
(n − pz p) , (B.1)

where p is written as

p =

(
q
pz

)
, (B.2)

and the gradient of velocity as

∇v =

(
G g
jT G

)
. (B.3)

The first term of Eq. (B.1) involves

∇v · p =

(
G g
jT G

) (
q
pz

)
=

(
G · q + gpz

jT · q + Gpz

)
, (B.4)

3.1. A multi-scale description of orientation in simple shear flows of confined
rod suspensions

105



and (
pT · ∇v · p

)
· p =

((
qT pz

) ( G g
jT G

) (
q
pz

)) (
q
pz

)
=

(
qT ·G · q +

(
qT · g

)
pz +

(
jT · q

)
pz + Gp2

z

) ( q
pz

)
. (B.5)

Operating on the second term of Eq. (B.1), we obtain
[
ṗJ

]
z

= jT · q + Gpz −
(
qT ·G · q

)
pz −

(
qT · g

)
p2

z −
(
jT · q

)
p2

z − Gp3
z (B.6)

and

(n − pz · p) =

(
0
1

)
− pz

(
q
pz

)
=

( −pzq
1 − p2

z

)
. (B.7)

Thus, we finally obtain

q̇ = G · q + gpz −
(
qT ·G · q

)
q −

(
qT · g

)
pzq −

(
jT · q

)
pzq − Gp2

z q−

1
1 − p2

z

(
−

(
jT · q

)
pzq − Gp2

z q +
(
qT ·G · q

)
p2

z q+

(
qT · g

)
p3

z q +
(
jT · q

)
p3

z q + Gp4
z q

)
, (B.8)

that can be rewritten as

q̇ = G · q − δ1

(
qT ·G · q

)
q + δ2 g − δ3

(
qT · g

)
q, (B.9)

with δ1 = 1
1−p2

z
, δ2 = pz and δ3 =

pz

1−p2
z
.

Appendix C. Time evolution of the averaged confined orientation tensor based
on the lubrication approximation

By introducing Eqs. (37) and (40) into the time derivative of Eq. (41), we obtain

˙̃b = G · b̃ + b̃ ·GT − 2G :
∫ H

0 ω(z)δ1B dz+

(g ⊗ c̃ + c̃ ⊗ g) − 2
(∫ H

0 ω(z)δ3B dz
)
· g , (C.1)

and
˙̃c = G · c̃ −G :

∫ H
0 ω(z)δ1δ2B dz+(∫ H

0 ω(z)δ2
2 dz

)
g −

(∫ H
0 ω(z)δ3δ2b dz

)
· g , (C.2)

with pz = z/L and δ1 = 1
1−p2

z
, δ2 = pz and δ3 =

pz

1−p2
z

= δ1δ2.
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A closed solution cannot be derived, but approximate expressions can be obtained
by closing the integral terms. For that purpose, we define



b̃ =
∫ H

0 ω(z)b dz

c̃ =
∫ H

0 ω(z)c dz

B̃ =
∫ H

0 ω(z)B dz

B̃ =
∫ H

0 ω(z)B dz

, (C.3)

leading to the decomposition


b = b̃ + ∆b
c = c̃ + ∆c
B = B̃ + ∆B
B = B̃ + ∆B

, (C.4)

with, by construction, 

∫ H
0 ω(z)∆b dz = 0∫ H
0 ω(z)∆c dz = 0∫ H
0 ω(z)∆B dz = 0∫ H
0 ω(z)∆B dz = 0

. (C.5)

The co-factors involving the delta coefficients in Eqs. (C.1) and (C.2) are noted
for the sake of notational simplicity as D1 = δ1, D2 = δ3, D3 = δ1δ2, D4 = δ2

2 and
D5 = δ2δ3. They accept the decomposition

Di = D̃i + ∆Di, i = 1, · · · , 5, (C.6)

with
∫ H

0 ω(z)∆Di dz = 0, ∀i.

Thus, neglecting integrals involving products of variations, as for example
∫ H

0 ω(z)∆D1∆b dz ≈
0, and taking into account that tilde variables do not depend on the z-coordinate and
that

∫ H
0 ω(z) dz = 1, Eqs. (C.1) and (C.2) read:

˙̃b = G · b̃ + b̃ ·GT − 2D̃1G : B̃ + (g ⊗ c̃ + c̃ ⊗ g) − 2D̃2B̃ · g , (C.7)

and
˙̃c = G · c̃ − D̃3G : B̃ + D̃4g − D̃5b̃ · g . (C.8)

These equations require appropriate closure relations for the average higher-order ori-
entation moments B̃ and B̃.
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Abstract

We address the extension of Jeffery’s model, governing the orientation of rods im-
mersed in a Newtonian fluid, to confined regimes occurring when the thickness of the
flow domain is narrower than the rod length. The main modelling ingredients con-
cern: (i) the consideration of the rod interactions with one or both gap walls and their
effects on the rod orientation kinematics; and (ii) the consideration of non-uniform
strain rates at the scale of the rod, requiring higher-order descriptions. Such scenarios
are very close to those encountered in real composites forming processes and have
never been appropriately addressed from a microstructural point of view. We also
show that confinement conditions affect the rheology of the suspension.

Keywords: Confinement, Fibre suspensions, Jeffery’s equation, Poiseuille and
squeeze flows

1. Introduction

Short fibre-reinforced polymer composites are widely used in manufacturing in-
dustries to produce lightweight structural and functional parts with enhanced me-
chanical properties. Forming processes commonly involve injection or compression
moulding, where the short fibre composite behaves as a fibre suspension. The ori-
entation of the fibres is impacted by the flowing matrix and interactions with the
neighbouring fibres and cavity walls. Predicting the evolution of the orientation state
can be extremely complex, and changes in fibre orientation correspond to changes in
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the final mechanical properties of the part. Thus, modelling tools are of crucial im-
portance to predict the orientation of fibres during the process and were the subject of
intense research over the last decades.

Fibre suspensions can be described at three different scales: (i) the microscopic
scale, the scale of the fibre; (ii) the mesoscopic scale, the scale of a population of
fibres; and (iii) the macroscopic scale, the scale of the part.

Most models used to describe such suspensions are built upon Jeffery’s pioneering
work. In his classical 1922 paper [11], Jeffery studied the evolution of the orientation
of a rigid ellipsoid suspended in a Newtonian fluid in a Stokes flow field and showed
that particles rotate about the vorticity axis. The orientation of the particle is then
given by the time evolution of a unit vector p aligned with the fibre axis. Particularized
to rods (infinite aspect-ratio ellipsoids), the microscopic Jeffery equation thus reads

ṗ = Ω · p + (D · p − (∇v : (p ⊗ p))p), (1)

where D = 1
2 (∇v + (∇v)T ) and Ω = 1

2 (∇v− (∇v)T ) are respectively the symmetric and
skew-symmetric components of the velocity gradient ∇v.

At the mesoscopic scale, the individuality of fibres is lost in favour of a statistical
description of a population of fibres, and the conformation is given by ψ(x, t,p), the
probability density function – pdf – giving for each position x and time t, the fraction
of fibres aligned along direction p. The evolution of the pdf follows a Fokker-Planck
equation:

∂ψ

∂t
+ ∇x · (ẋ ψ) + ∇p · (ṗ ψ) = 0, (2)

where ẋ = v(x, t) and the rod rotary velocity ṗ is given by Jeffery’s equation.
Finally, at the macroscopic scale, we coarsen a little bit more to derive macro-

scopic descriptors defined in standard physical domains (i.e. only space and time).
The pdf is thus substituted by some of its moments [3]. The first two non-zero mo-
ments are then the second-order moment or second-order orientation tensor

a =

∫

S
(p ⊗ p) ψ(p) dp (3)

and the fourth-order moment

A =

∫

S
(p ⊗ p ⊗ p ⊗ p) ψ(p) dp. (4)

A wide literature [4, 8, 9, 10], developed upon Jeffery’s theory, is available and
richer models were proposed. We refer to the review by Petrie [14] and the reference
therein for an overview of the rheology of fibre suspensions. In particular, the well-
known Folgar-Tucker model [7] accurately models the effect of fibre-fibre interactions
in the semi-dilute and semi-concentrated regimes by adding a randomizing diffusion
term to Jeffery’s model.
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Model predictions using the Folgar-Tucker model compared to experimental re-
sults suggest however that the rate of fibre orientation is slower than theory predicts.
Hence, the models were further enriched [6, 15, 17, 18] in order to take into ac-
count the observed delay (attributed for a long time to fibre-fibre interactions), either
by introducing a “slip” parameter in the model or by taking into account interaction
mechanisms in a multi-scale approach. In [13], we pointed out the impact that con-
finement can have on the orientation kinematics of suspended fibres in flow processes
with narrow gaps, i.e. when the fibre length is of the same order of magnitude as
the flow domain. In particular, we showed the inadequacy of classical macroscopic
models to address confinement conditions, which exhibit faster orientation rate than
microscopic simulation based on the same physics.

In our previous work [13], we proposed a multi-scale description of rod orienta-
tion in confined conditions and simple shear flows. In this work, we extend the con-
fined microscopic model within a second-gradient framework in order to address more
realistic flows (i.e. parabolic velocity profiles encountered in Poiseuille or squeeze
flows). We also consider the interaction of a rod with a single gap wall and predict
“pole-vaulting” patterns as reported in experimental works [16]. Finally, we investi-
gate the rheology of confined rod suspensions and discuss the problem of macroscopic
descriptors in confined conditions

The paper is organized as follows: Section 2 is devoted to the derivation of a
microscopic model for a confined fibre. This model is an extension of that introduced
in [13] and is based on a dumbbell representation of a suspended fibre. In Section 3,
the model is applied successively to Poiseuille and squeeze flows. Then, the issue of
representing a confined suspension at the macroscopic scale is discussed in Section 4.
Finally, the contribution of a confined rod to the rheology is considered in Section 5.

Remark 1. In this paper, we consider the following tensor products, assuming
Einstein’s summation convention:

• if a and b are first-order tensors, then the single contraction “·” reads (a · b) =

a j b j;

• if a and b are first-order tensors, then the dyadic product “⊗” reads (a ⊗ b) jk =

a j bk;

• if a and b are respectively second and first-order tensors, then the single con-
traction “·” reads (a · b) j = a jm bm;

• if a and b are second-order tensors, then the double contraction “:” reads (a :
b) = a jk bk j;

• if a and b are respectively second and fourth-order tensors, then the double
contraction “:” reads (a : b) jk = aml bml jk.
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2. Second-gradient modelling of confined fibres

We consider a Newtonian fluid of viscosity η and a non-Brownian, inertialess,
high aspect ratio rod of length 2L immersed in it. The 3D-orientation of the rod is
described by the unit vector p located at the rod centre of gravity G and aligned with
its axis. We assume that the presence and orientation of the rod do not affect the flow
velocity field defined by v. The first and second gradient of the fluid velocity field are
respectively denoted by ∇v and H.

The flow occurs in a narrow gap Ω× [−H,H], with [x y] ∈ Ω ⊆ R2 assumed large
enough and z ∈ [−H,H]. Unless otherwise specified, we assume H < L to ensure
confinement conditions.

In the sequel, we consider the rigid dumbbell model to represent the rod [2, 5],
enriched with an extra bead located at its centre of gravity. The value of the hydrody-
namic friction coefficient assigned to this extra bead is adjusted in order to ensure the
hypothetical right rod motion as discussed below.

The use of the classical 2-bead representation would result in unmoving rods as
soon as the end beads interact with the walls (since the fluid velocity vanishes at the
domain boundaries in a Poiseuille flow). Such a situation was considered as unphysi-
cal and motivated the introduction of the third bead at the rod’s centre of gravity. This
extra bead ensures that the rod is experiencing the fluid flow at any time.

Each inertialess bead is subject to a hydrodynamic force (Stokes drag) due to the
surrounding flow. An additional contact force appears on the external beads as soon
as the rod touches the gap wall. Thus,

• The hydrodynamic force FH acting on each bead depends on the difference of
velocities between the fluid at the bead location and the bead itself. For the
bead located at pL, the former is given by v0 + ∇v · pL + H : (p ⊗ p)L2 (with
v0 the velocity of the fluid at the centre of gravity G) and the latter by vG + ṗL
(with vG the velocity of the centre of gravity G). We consider here a second-
gradient modelling framework and the components of H read Hi jk = 1

2
∂vi

∂x j∂xk
.

The hydrodynamic force acting on the bead located at pL reads

FH(pL) = ξ(v0 + ∇v · pL + H : (p ⊗ p)L2 − vG − ṗL), (5)

where ξ is a friction coefficient.

• The contact force is assumed to act perpendicularly to the wall:

FC(pL) = µn, (6)

with nT = [0 0 1] and FC(pL) = −FC(−pL). The value of the intensity parame-
ter µ is of course unknown and will be deduced from the underlying physics. In
order to obtain it, we enforce that the contact force appears to prevent the rod
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from leaving the flow domain. In other words, the contact force µn must ensure
that the resulting velocity is tangent to the upper surface, that is

(vG + ṗL) · n = 0. (7)

This equation is referred as the impenetrability condition.

• The friction force between the interacting bead and the wall could also be
added,

FF(pL) = −ν(vG + ṗL), (8)

where ν is the friction coefficient at the wall, scaling with the bead velocity.
This friction force is however not considered in the proposed model.

In the remainder of this section, we successively review the following scenarios:
(i) the rod does not interact with the walls – unconfined motion (Fig. 1(a)); (ii) the rod
interacts with one of the walls through one of its beads – wall effects (Fig. 1(b)); and
(iii) both extremities of the rod are in contact with the gap walls – confined motion
(Fig. 1(c)).

2.1. Unconfined motion

In the first scenario, the rod does not interact with the surrounding walls (Fig. 1(a))
and thus only hydrodynamic forces act on the beads.

The hydrodynamic forces on the three beads read

FH(pL) = ξ(v0 + ∇v · pL + H : (p ⊗ p)L2 − vG − ṗL), (9)

FH
G = ξ′(v0 − vG), (10)

FH(−pL) = ξ(v0 − ∇v · pL + H : (p ⊗ p)L2 − vG + ṗL), (11)

where ξ and ξ′ are friction coefficients.
On the one hand, balance of forces FH(pL) + FH(−pL) + FH

G = 0 yields

vG = v0 +
2ξ

2ξ + ξ′
H : (p ⊗ p)L2, (12)

that is, the rod center of gravity has a relative velocity (drift) with respect to the fluid
at this position

On the other hand, balance of torques provides the rod rotary velocity, which in
this case is simply Jeffery’s result ṗJ for ellipsoids with infinite aspect ratio [11]:

ṗ = ṗJ = ∇v · p − (∇v : (p ⊗ p)p). (13)

The detailed derivation is given in [13] and is not modified neither by the second-
gradient term, nor by the extra bead.
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Figure 1 – Forces acting on a suspended rod.
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In order to obtain ξ′, the friction coefficient assigned to the extra bead, we as-
sume that the velocity of the rod centre of gravity is the same as if the hydrodynamic
forces act all along the rod length [1]. At each position ps, with s ∈ [−L, L], the
hydrodynamic force is now given by

FH(ps) = ξ̄(v0 + ∇v · ps + H : (p ⊗ p)s2 − vG − ṗs), (14)

where the friction coefficient ξ̄ is defined per unit of length.
With this approach, the balance of forces

∫ L

−L
FH(ps)ds = 0, (15)

implies that

2Lξ̄v0 − 2Lξ̄vG + H : (p ⊗ p)
2L3ξ̄

3
= 0. (16)

Comparing this equation with Eq. (12) leads to ξ′ = 4ξ. We use this value in the
remainder of this work.

2.2. Wall effects

In the second scenario, we consider (without any loss of generality) that the bead
located at pL is in contact with the upper gap wall (Fig. 1(b)). The other beads remain
in the fluid domain without interacting with the bottom wall.

The forces acting on the three beads read

FH(pL) = ξ(v0 + ∇v · pL + H : (p ⊗ p)L2 − vG − ṗL), (17)

FC(pL) = µn, (18)

FH
G = ξ′(v0 − vG), (19)

FH(−pL) = ξ(v0 − ∇v · pL + H : (p ⊗ p)L2 − vG + ṗL), (20)

where FC is the contact force exerted by the wall on the bead and nT = [0 0 1].
Again, balance of forces and torques lead respectively to an equation for the ve-

locity of the centre of gravity

vG = v0 +
2ξ

2ξ + ξ′
H : (p ⊗ p)L2 +

µ

2ξ + ξ′
n, (21)

and for the evolution of the rod orientation

ṗ = ṗJ +
µ

2ξL
(n − pzp). (22)

The detailed derivation of the latter equation is given in Appendix A.
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Imposing the impenetrability condition Eq. (7), we obtain the intensity µ of the
contact force that prevents the rod from leaving the flow domain:

µ = − 2ξL
1 − p2

z

(
1
L

vG · n + [ṗJ]z

)
, (23)

where [ṗJ]z = ṗJ · n.
Using Eqs. (21), (22) and (23), we can summarize the kinematics of a fibre having

a single contact with a gap wall as follows:
(
I +

2ξ
2ξ + ξ′

n ⊗ n
(1 − p2

z )

)
vG = v0 +

2ξ
2ξ + ξ′

(
H : (p ⊗ p)L2 − L

(1 − p2
z )

[ṗJ]zn
)
, (24)

and

ṗ = ṗJ − 1
(1 − p2

z )

(
1
L

vG · n + [ṗJ]z

)
(n − pzp) = ṗJ + ṗC . (25)

The final result is simply Jeffery’s kinematics ṗJ plus a correction term ṗC that pre-
vents the rod from leaving the flow domain. This expression for the rod rotary velocity
is similar to the one we proposed in [13]. In other words, the orientation kinematics
are the same whether one or both extremities of the rod interact with the gap walls
and is not modified by the second-gradient description.

2.3. Confined motion
In the last scenario, both extremities of the rod are in contact with the gap walls

(Fig. 1(c)). A contact force is now acting at each extremity of the rod.
The forces acting on the rod thus read

FH(pL) = ξ(v0 + ∇v · pL + H : (p ⊗ p)L2 − vG − ṗL), (26)

FC(pL) = µn, (27)

FH
G = ξ′(v0 − vG), (28)

FC(−pL) = −µn, (29)

FH(−pL) = ξ(v0 − ∇v · pL + H : (p ⊗ p)L2 − vG + ṗL). (30)

This last scenario was similarly addressed in [13] and following the same ratio-
nale (impenetrability condition and balance of forces and torques), the velocity of the
centre of gravity is given by

vG = v0 +
2ξ

2ξ + ξ′
H : (p ⊗ p)L2, (31)

whereas the evolution of rod orientation follows

ṗ = ṗJ +
µ

ξL
(n − pzp), (32)
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with

µ = − ξL
1 − p2

z

(
1
L

vG · n + [ṗJ]z

)
, (33)

resulting in the same kinematics as in the case of wall effects (Eq. (25)).

3. Simulations in Poiseuille and squeeze flows

In this section, we present numerical simulations of the proposed model for con-
fined suspensions in Poiseuille and squeeze flows. These flows, close to those encoun-
tered in real forming processes, exhibit a through-the-gap parabolic velocity profile
that can be captured within the second-gradient framework.

3.1. Poiseuille flow
We first consider a parabolic Poiseuille flow, whose velocity field is expressed as

vT = [β(H2 − z2) 0 0], with z ∈ [−H,H] and β = 1 m−1s−1. The velocity vanishes at
the walls.

We show here complete 3D-microscopic simulations, tracking the position, veloc-
ity and orientation of a handful of suspended rigid fibres. The initial orientation is set
as θ0 = 2π

5 (or the maximum possible value at that height in case this orientation is
not possible due to the confining walls) in the xz−plane. In such case, the orientations
remain in this plane.

Figure 2 depicts the evolution of the position and orientation of short (left) and
long (right) non-interacting fibres immersed in a Poiseuille flow. The fibres are rep-
resented by the blue lines, and the red curves show the trajectories of their centre of
gravity.

In both cases, the fibres tend to align with the flow lines. During the orientation
process, the upper fibres interact with the upper gap wall and are pulled away from it.
In the case of short fibres, only the first (upper) rod interacts with the gap wall. As
soon as the distance between the rod centre of gravity and the wall is L, the rod
no longer moves away from the wall. This “pole-vaulting” pattern was observed
experimentally by Stover and Cohen [16]. This feature is depicted in detail in Fig. 3.
In the case of long fibres, the rods in the upper half of the domain first interact with
the upper wall. The lower extremity of these rods gradually approaches the lower gap
wall. As soon as both extremities are in contact with the domain boundaries, the rods
no longer try to orient, and they slide on the frictionless walls. They are unable to
align with the flow lines.

The initial orientation in the xz−plane proposed in this subsection (and the next
one) is of course a special case, but it was chosen for the sake of clarity and visualiza-
tion, in order to highlight the pole-vaulting patterns observed when a fibre interacts
with a cavity wall. Initial orientations not aligned in the xz−plane also exhibit such
behaviours but were difficult to rend on a static 2D plot and depend strongly on how
fibres are initially oriented. Section 4 provides numerical results of the evolution of
the orientation state starting from a general 3D orientation distribution.
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Figure 2 – Microscopic simulation of fibres immersed in a Poiseuille flow: (left) short
fibres, L = 0.3 H; (right) long fibres, L = 1.5 H.
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Figure 3 – Short fibre interacting with a gap wall - Pole vaulting pattern
NB It seems that the length of the fibre is not constant, but this is only an optical
illusion.
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3.2. Squeeze flow

We then consider a squeeze flow between two parallel disks. Initially, the disks
are separated by a distance 2H0 and move with a constant velocity ḣ. We denote
h = h(t) the half-distance between the gap walls. Based on lubrication theory, the
velocity field reads (in cylindrical coordinates) [5]:

v =


vr

vθ
vz

 =



3
4

(−ḣ)
h r

[
1 −

(
z
h

)2
]

0
3
2 ḣ

[(
z
h

)
− 1

3

(
z
h

)3
]


. (34)

In this case, it is important to notice that the impenetrability condition Eq. (7)
reads

(vG + ṗL) · n = ±ḣ, (35)

(+ḣ at the upper gap wall, −ḣ at the lower gap wall), resulting in an additional term in
the expression (23) of the contact force intensity µ.

Figure 4 depicts the evolution of the position and orientation of short (left) and
long (right) non-interacting fibres immersed in a squeeze flow. In such flow, intense
interactions with the gap walls occur. The initial orientation is set as θ0 = 2π

5 (or
the maximum possible value at that height in case this orientation is not possible due
to the confining walls) in the xz−plane. In such case, the orientations remain in this
plane. Again, the fibres are represented by the blue lines, and the red curves show the
trajectories of their centre of gravity.

4. Macroscopic descriptors for confined suspensions

At the macroscopic scale, the orientation of suspended particles is usually de-
scribed by the second-order orientation tensor a [3]. In a continuous framework, this
tensor is actually the second moment of the probability distribution function ψ(p, x, t)
that gives at each location and time, the fraction of particles aligned along direction
p:

a =

∫

S
(p ⊗ p)ψ(p)dp, (36)

where S is the unit sphere on which p is defined. Using a discrete approach, this ori-
entation tensor can be computed as an ensemble average over N suspended particles
(N → ∞):

adiscr =
1
N

N∑

i=1

pi ⊗ pi. (37)

In our previous work [13], we showed that standard macroscopic models based on
the second-order orientation tensor fail to address confinement conditions. We would
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Figure 4 – Microscopic simulation of fibres immersed in a squeeze flow with ḣ
H0

=

−0.02 s−1: (left) short fibres, L = 0.3 H0; (right) long fibres, L = 1.2 H0.
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(a) Short fibres

(b) Long fibres

Figure 5 – Initial orientation for a population of 10 groups of 50 fibres distributed
along the channel height, in which fibres are oriented uniformly over the possible 3D
orientations at that height. The lower half (not shown) is obtained by symmetry.

like to emphasize here that the second-order orientation tensor is not an adequate
description of fibre orientation in confined suspensions.

In the case of confined suspensions, the length of the fibres is of the same order
of magnitude than the narrow gap wherein the suspension flows. Thus, there is no
separation of scales between what we usually refer to as the microscopic scale (the
scale of the fibre) and the macroscopic scale (the scale of the process or the composite
part). Under such conditions, the definition of standard macroscopic descriptors is ill-
posed and a representative volume element (RVE) is hard to define. This issue appears
when we consider a population of fibres and specify initial conditions for the fibre
orientation. Defining an isotropic initial condition is ambiguous, because depending
on the height of the fibre in the channel, the possible orientations are constrained. Our
choice was thus to consider groups of fibres distributed along the channel height, in
which fibres are oriented uniformly over the possible 3D orientations at that height
(Fig. 5). Unless otherwise specified, we use these initial orientations for simulations
of populations of short and long fibres.

Figures 6 and 8 show the evolution of the diagonal components of the second-
orientation tensor (Eq. (37)) for a population of rods immersed in a Poiseuille and
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squeeze flow, respectively. As discussed in the previous paragraph, the initial condi-
tion consists in 10 groups of 50 fibres distributed along the channel height and oriented
in the possible directions at that height (Fig. 5). This setting implies a significant dis-
parity between the initial condition for short (top) and long (bottom) fibres.

In the case of a Poiseuille flow (Fig. 6), we find that all fibres tend to align in the
direction of the flow. However, when considering long fibres (Fig. 6, right), the third
component azz does not reach zero, meaning that the final state is not fully aligned
with the flow lines. This behaviour was already evidenced in the previous section,
however only a few fibres are unable to align.

Figure. 6 could suggest that the evolution of orientation for short and long fibres is
radically different, meaning that size effects may play a role in the kinematic process.
This interpretation is not correct. The difference actually arises from the change in
the initial condition induced by confinement. As shown in Fig. 7, the evolution of a
population of short fibres initially oriented as long fibres is similar to the kinematics
of long fibres observed in Fig. 6 (right).

Considering now a squeeze flow, Fig. 8 could also suggest a significant difference
between the kinematics of short and long fibres. A squeeze flow consists in compres-
sion and is not really elongational. Near the gap walls, the shearing nature of the flow
is however dominating, and short fibres thus tend to align quickly in the flow, whereas
in the middle of the channel, the motion is more like a rigid motion. This behaviour
can be observed in Fig. 9 where only one group of short fibres is immersed in the
middle of the flow. In this case, the first two diagonal components of the orientation
tensor do not evolve significantly, only the zz−component tends towards zero due to
the compression.

5. Rheology of confined suspensions

In this section, we study the impact of confinement on the rheology of the dilute
suspension. The contribution of a suspended particle to the stress is given by Kramers’
formula [5]

τp = pL ⊗ F(pL) − pL ⊗ F(−pL), (38)

where F(±pL) is the total force acting on the bead located at position ±pL.
The extra-stress in the suspension due to the presence of the N suspended non-

interacting particles is obtained by summing these individual contributions:

τ =

N∑

i=1

τpi . (39)

5.1. Unconfined motion

In the case of unconfined motion, only hydrodynamic forces act on the rod and
the well-known expression for the contribution of a single particle to the extra-stress
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Figure 6 – Diagonal components of the orientation tensor for a population of N = 500
fibres immersed in a Poiseuille flow: (top) short fibres, L = 0.3 H; (bottom) long
fibres, L = 1.5 H. Initial configurations are depicted in Fig. 5.
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Figure 7 – (left) Initial condition (short fibres initially oriented as long fibres); (right)
Diagonal components of the orientation tensor for a population of N = 500 short
fibres immersed in a Poiseuille flow (L = 0.3 H0)

in a fibre suspension is readily obtained:

τp = τp,J = pL ⊗ FH(pL) − pL ⊗ FH(−pL), (40)

= 2ξL2(∇v : (p ⊗ p))p ⊗ p, (41)

= 2ξL2(∇v : (p ⊗ p ⊗ p ⊗ p)), (42)
(43)

where the FH(pL) is given by Eq. (17) and p follows Jeffery’s kinematics Eq. (13).

5.2. Confined motion
When the particle interacts with the gap walls, additional contact forces act on the

end beads. The particle contribution to the stress thus reads

τp = pL ⊗ (FH(pL) + FC(pL)) − pL ⊗ (FH(−pL) + FC(−pL)). (44)

Inserting the confined kinematics (32) in the expression (17) of the hydrodynamic
force, we can write

FH(pL) = ξ(v0 + H : (p ⊗ p)L2 − vG) + ξL(∇v : (p ⊗ p))p − µ(n − pzp), (45)

and

FH(pL) + FC(pL) = ξ(v0 + H : (p ⊗ p)L2 − vG) + ξL(∇v : (p ⊗ p))p + µpzp. (46)
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Figure 8 – Diagonal components of the orientation tensor for a population of N = 500
fibres immersed in a squeeze flow: (top) short fibres, L = 0.3 H0; (bottom) long fibres,
L = 1.2 H0. Initial configurations are depicted in Fig. 5.
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Figure 9 – (left) Initial condition (only one group of fibres at the centre of the channel);
(right) Diagonal components of the orientation tensor for a population of N = 500
short fibres immersed in a squeeze flow (L = 0.3 H0)

The particle contribution to the stress finally reads

τp = 2ξL2(∇v : (p ⊗ p ⊗ p ⊗ p))︸                             ︷︷                             ︸
τp,H

+ 2µpz(p ⊗ p)︸        ︷︷        ︸
τp,C

(47)

with µ given by Eq. (33). It consists in a contribution τp,H due to hydrodynamic forces
and a contribution τp,C arising from the contact forces induced by confinement.

5.3. Shear flow

We show here the impact of confinement on the rheology in the case of a simple
shear flow, whose velocity field is expressed as vT = [γ̇z 0 0], with z ∈ [−H,H] and
γ̇ = 1 s−1.

Figure 10 depicts the evolution of the normal stresses and normal stress differences
for a population of N = 2000 rods of length L oriented uniformly along all possible
orientations in a narrow gap of width H = 0.2L. The orange curve shows τ = τH +τC ,
whereas the broken green curve shows only the classical hydrodynamic contribution
τH (see Eq. (47)). We can observe that the contribution τC can be neglected. Even
when considering the contribution of a single particle to the stress, the contribution
due to the contact force τp,C is nearly zero. The blue curve depicts the rheology (τJ) of
hypothetical unconfined fibres following the standard Jeffery kinematics and starting
from the same initial conditions. From Fig. 10, we thus conclude that confinement
conditions have a significant impact on the rheology of confined suspensions. This
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Figure 10 – Rheology of a confined suspension under a shear flow in a narrow gap
(H = 0.2L). The orange curve shows τ = τH + τC , whereas the broken green curve
shows only the classical hydrodynamic contribution τH . The blue curve depicts the
rheology (τJ) of hypothetical unconfined fibres following the standard Jeffery kine-
matics and starting from the same initial conditions.

impact does not arise from the contribution of the contact forces, but from the confined
kinematics of the suspended fibres.

Figure 11 depicts the evolution of non-diagonal component of the stress tensor
τ13, measuring the apparent viscosity η =

τ13
γ̇

of the suspension in this shear flow
[12] with respect to time (or equivalently, strain, since the strain rate γ̇ is constant
and equal to one). Once again, the orange curve shows the evolution for the con-
fined suspension, whereas the blue curve accounts for unconfined fibres starting from
the same configurations. We observe that, under confinement, the viscosity follows
a monotonic evolution. The absence of overshoot is explained by the confinement
configuration that prevents the fibres to directly tumble and align in the flow.

6. Conclusion and Perspectives

In this paper, we have extended the modelling framework introduced in [13] to
describe confined fibre suspensions. We have considered non-uniform strain rates at
the scale of the fibre (second-gradient modelling) in order to address more complex
flows. We showed that the orientation kinematics are the same whether one or both
extremities of the rod interact with the gap walls. They consist in Jeffery’s kinematics
with an additional term to prevent the fibre from leaving the flow domain.
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Figure 11 – Viscosity of a confined suspension under a shear flow in a narrow gap
(H = 0.2L). The orange curve shows the evolution for the confined suspension,
whereas the blue curve accounts for unconfined fibres starting from the same config-
urations.

We applied our model to parabolic flows encountered in industrial applications
(Poiseuille and squeeze flows), recovering behaviours observed in experimental works.

The use of macroscopic descriptors for confined suspensions remains a challenge.
Standard representations (such as the second-order orientation tensor) appear to be
inadequate under confinement conditions where separation of scale between the sus-
pended particles and the scale of the flow is not established.

Finally, the impact of confinement on the rheology was investigated. We showed
that the confined orientation of the particles significantly affects the rheology of the
dilute suspension, but the impact of the wall contact force can be neglected.

Appendix A. Detailed derivation of the confined kinematics

In the case of wall effects (only one contact with the gap walls), the forces acting
on the beads are given by Eqs. (17)–(20). Balance of torques read

pL × (FH(pL) + FC(pL)) − pL × FH(−pL) = 0. (A.1)

Substituting the forces by their expression, we obtain

pL ×
(
2ξL(∇v · p − ṗ) + µn

)
= 0, (A.2)

or alternatively
2ξL(∇v · p − ṗ) + µn = λp, (A.3)
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with λ ∈ R.
Pre-multiplying Eq. (A.3) by p and taking into account that fact that p is a unit

vector, p · p = 1 and thus p · ṗ = 0, we obtain an expression for λ:

2ξL(∇v : (p ⊗ p)) + µpz = λ, (A.4)

with pz = p · n.
Finally, substituting Eq. (A.4) in Eq. (A.3) yields the orientation kinematics

2ξL(∇v · p − ṗ) + µn = 2ξL(∇v : (p ⊗ p))p + µpzp, (A.5)

or
ṗ = ∇v · p − ∇v : (p ⊗ p))p︸                        ︷︷                        ︸

ṗJ

+
µ

2ξL
(n − pzp). (A.6)

The derivation in the case of confinement (both extremities of the rod in contact
with the gap walls) is obtained using the same rationale.
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Abstract

Properties of reinforced polymers strongly depend on the microstructure state, that is
the orientation state of the fibres suspended in the polymeric matrix, induced by the
forming process. Understanding the flow-induced anisotropy is thus a key element to
optimize both materials and process. Despite the important progresses accomplished
in the modelling and simulation of suspensions, few works addressed the fact that
usual processing flows evolve in confined configurations, where particles character-
istic lengths may be greater than the thickness of the narrow gaps in which the flow
takes place. In those circumstances, orientation kinematics models proposed for un-
confined flows must be extended to the confined case. In this short communication, we
propose an alternative modelling framework based on the use of unilateral mechanics
and consequently exhibiting a clear analogy with plasticity and contact mechanics.
This framework allows us to revisit the motion of confined particles in Newtonian
and non-Newtonian matrices. We also prove that the confined kinematics provided by
this model are identical to those derived from microstructural approaches [M. Perez,
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1. Introduction

Over the last decades, composite materials, made of a suspending matrix and a
reinforcement composed of fibres used to fortify the matrix in terms of strength and
stiffness, were successfully introduced in the aerospace and automotive industries and
proved to be a lightweight alternative to produce structural and functional parts. Me-
chanical properties of such reinforced polymers however strongly depend on the ori-
entation state of their microstructure, which is established during the forming process
[2]. Predicting the evolution of this orientation state is thus a key yet complex task
since the motion of the reinforcing fibres is impacted by the flowing matrix and inter-
actions with the neighbouring fibres and cavity walls. Thus, flow-induced anisotropy
must be understood and modelled in order to optimize both materials and processes.

There is a long history of studies of the motion of slender bodies suspended in
a viscous fluid, starting from the seminal work of Jeffery back in 1922 [15]. A vast
literature dedicated to fibre and non-spherical particle suspensions is available, study-
ing extensively different modelling scales and exploring the impact of the concentra-
tion regime and the nature of the suspending matrix. Schematically, the three main
modelling scales involved when addressing the orientation kinematics of suspended
particles can be summarized as follows: (i) the microscopic scale, the scale of a single
particle; (ii) the mesoscopic scale, the scale of a population of particle, whose confor-
mation is usually represented by a probability density function (pdf) of orientation,
giving an unambiguous and complete description of the orientation state; and (iii) the
macroscopic scale, the scale of the part, whose conformation is often given by the first
moments of the aforementioned pdf, providing a coarse yet concise description of the
orientation state in the part. Depending on the level of detail and accuracy required
for a given application, a specific scale, or a combination of them might be chosen.
For further detail on that subject, including the so-called multiscale approached, we
refer to the review [20] and the monograph [4] and the references therein. Only a
succinct overview of the microscopic modelling is proposed thereafter.

In [15], Jeffery derived the expression of the hydrodynamic torque exerted on an
ellipsoidal particle immersed in an unbounded creeping flow of Newtonian fluid. He
then obtained an equation of motion by assuming that the particle rotates so as to
achieve instantaneous zero torque, resulting in the so-called Jeffery equation. Consid-
ering spheroid (axisymetric ellipsoid) and defining the orientation of a particle by the
unit vector p along its principal axis, Jeffery’s equation reads

ṗJ = Ω · p + κ(D · p − (D : (p ⊗ p)p)), (1)

where Ω and D are respectively the skew-symmetric and symmetric part of the un-
perturbed velocity gradient ∇v of the flow, and κ is the shape factor of the spheroid,
given by κ = r2−1

r2+1 with r the aspect-ratio of the particle. Slender bodies like fibres and
rods can be assimilated as infinite aspect ratio ellipsoids (κ ≈ 1).

Jeffery’s equation was experimentally verified by Taylor [23] and Mason [24].
Bretherton [3] showed that the equation is also valid for any axisymmetric particle
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providing that an effective aspect ratio is determined. Hinch and Leal [10, 11, 12, 13]
also studied Jeffery’s model, addressing the impact of Brownian motion and proposing
constitutive equations for the behaviour of suspensions. However, only a few works,
either experimental [17, 22] or numerical and theoretical [14, 18], address the fact
that flows of industrial interest take place in narrow gaps, whose thickness is of the
same order of magnitude or smaller than the length of the reinforcing fibres, thus
constraining the space of possible orientation and as a consequence the kinematics.

In [19], we proposed a multiscale model to describe the orientation development
of a dilute suspension of fibres confined in a narrow gap. The microscopic model was
based on a dumbbell representation [5] of the confined rod, with hydrodynamic and
contact forces (normal to the gap wall) acting on it. This confinement model was later
extended in [21] to include unilateral contacts and non-uniform strain rates at the scale
of the rod. In any case, the resulting kinematics are a combination of the unconfined
Jeffery kinematics and a correction term that prevents the fibre from leaving the flow
domain, that is

ṗ = ṗJ + ṗC . (2)

The equation of motion of such a confined rod, derived in [19] and summarized in
Eq. (2), presents thus significant similarities with equations of elastoplaticity. Indeed,
we could draw a parallel between, on the one hand the classical unconfined kinematics
and the elastic deformation, and on the other hand the confined motion of the particle
and elastoplatic deformation.

Hence, the purpose of this short communication is to explore the alternative mod-
elling framework based on unilateral mechanics to revisit the motion of confined par-
ticles in Newtonian and non-Newtonian matrices.

The paper is organised as follows. In Section 2, we derive the model for the con-
fined kinematics of suspended particles using unilateral mechanics. Then in Section 3,
we discuss how this general framework allows us to build the confined kinematics of
fibres and spheroids immersed in a Newtonian (based on Jeffery’s model [15]) or
second-order (based on Brunn’s model [7]) viscoelastic fluid. Finally, in Section 4,
we draw the main conclusions and present some perspectives of this approach.

Remark. In this paper, we consider the following tensor products, assuming Ein-
stein’s summation convention:

• if a and b are first-order tensors, then the single contraction “·” reads (a · b) =

a j b j;

• if a and b are first-order tensors, then the dyadic product “⊗” reads (a ⊗ b) jk =

a j bk;

• if a and b are respectively second and first-order tensors, then the single con-
traction “·” reads (a · b) j = a jk bk;

• if a and b are second-order tensors, then the double contraction “:” reads (a :
b) = a jk bk j.
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2. Confined orientation kinematics using unilateral mechanics

In this section, we derive step-by-step the kinematics of a confined suspended
particle using the framework of unilateral mechanics.

1. Additive decomposition. We assume that the particle kinematics (particle rotary
velocity) can be decomposed into an unconfined (U) and confined (C) contri-
bution, according to

ṗ = ṗU + ṗC . (3)

By definition, the orientation vector is subject to the normalization condition

p · p = 1. (4)

2. Unconfined contribution. The unconfined equation of motion ṗU is either given
by a model from the literature, e.g. Jeffery’s equation [15] for ellipsoidal par-
ticles immersed in a Newtonian fluid or Brunn’s model [7] in the case of a
second-order (non-Newtonian) matrix, or could be estimated from experimen-
tal observations. In order to satisfy the normalization condition Eq. (4), the
unconfined kinematics should verify ṗU · p = 0.

3. Allowed domain and confinement condition. We define a function f : S → R
called the confinement condition (the equivalent of the yield condition in plas-
ticity mechanics) and constrain the admissible orientation states p ∈ S (with S
the unit sphere) to lie in the flow domainD, ensuring the gap walls impenetra-
bility, defined as

D =

{
p ∈ S | f (p) = p · n − H

L
≤ 0

}
, (5)

where L is the semi-length of the particle, H the gap semi-width and n denotes
a unit vector normal to the gap wall. We assume without loss of generality, that
p points towards the upper hemisphere.

We refer to the interior of D, denoted by int(D) and defined as int(D) =

{p ∈ S | f (p) < 0}, as the unconfined domain, whereas the boundary ∂D, given
by ∂D = {p ∈ S | f (p) = 0}, is called the confinement surface.

4. Confined contribution and consistency requirement. The confined kinematics
ṗC is obtained from the gradient of the confinement condition introduced above,
i.e.

ṗC = −γd f
dp

(6)

where γ is the consistency parameter. The derivative of f (p) with respect to p,
enforcing the normalization condition, reads

d f
dp

= n − (p · n)p, (7)
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which is obtained by subtracting from the derivative of f (p) with respect to p
its projection onto direction p in order to ensure that ṗC · p = 0.

The consistency parameter γ is assumed on the one hand to obey the Kuhn-
Tucker complementary conditions

γ ≥ 0, f (p) ≤ 0, and γ f (p) = 0, (8)

and on the other hand, to satisfy the consistency requirement

γ ḟ (p) = 0. (9)

To obtain the derivative of f with respect to time, we proceed as follows

ḟ =
d f
dp
· ṗ (10)

= (n − (p · n)p) · (ṗU − γ(n − (p · n)p)) (11)

= ṗU · n − γ(1 − (p · n)2). (12)

Thus the value of γ is given by

γ =
(ṗU · n)

(1 − (p · n)2)
. (13)

5. Summary. The resulting kinematics can be summarized as follows:

f < 0⇐⇒ p ∈ int(D), γ = 0 =⇒ ṗ = ṗU (unconfined)

f = 0⇐⇒ p ∈ ∂D,


ḟ = 0 and γ > 0 =⇒ ṗ = ṗU + ṗC (confinement)
ḟ = 0 and γ = 0 =⇒ ṗ = ṗU (force-free contact)
ḟ < 0 =⇒ γ = 0 =⇒ ṗ = ṗU (unconfined detachment).

(14)
The force-free contact actually corresponds to the case where the confined par-
ticle is touching the gap wall but is not trying to leave the flow domain (to
“push” on the wall).

Remark 2.1:. For the sake of clarity we assumed in the present section and throughout
the remainder of this article that under confinement, both extremities of the suspended
particle are in contact with the gap walls and the centre of gravity of the particle is
fixed in the mid-plane of the flow channel. These assumptions are however relaxed in
Appendix A where we address, using the same framework just introduced, the general
case by introducing the position of the particle centre of gravity in the confinement
condition, allowing in the meantime contact with only one gap wall.
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3. Discussion

The confined kinematics obtained in the previous section read

ṗ = ṗU + ṗC = ṗU − (ṗU · n)
(1 − (p · n)2)

(n − (p · n)p), (15)

which coincides exactly with the expression obtained in [19] following a microstruc-
tural approach for a confined rod immersed in a Newtonian fluid (ṗU was thus given
by Jeffery’s kinematics).

However, the unilateral mechanics approach developed in the previous section
does not assume anything on the shape of the suspended particles or the nature of the
matrix fluid. Only an expression of the unconfined kinematics is actually necessary,
which allows us to extend straightforwardly our model describing the motion of a
confined particle to situations where the microstructural approach from [19] might be
tedious.

In this section, we thus discuss three scenarios: (i) a rod immersed in a Newtonian
fluid (developed in [19]), (ii) a spheroid in a Newtonian fluid and (iii) a spheroid
in a second-order fluid. We also provide some numerical illustrations in the case of
a linear shear flow v =

[
γ̇z 0 0

]T
, with γ̇ = 1 s−1 in a channel of height

H = 0.25L. Since we consider a unit shear rate, the time coordinate used in the
graphical representations can thus be viewed as a shear strain coordinate.

3.1. Confined rod suspended in a Newtonian fluid
Inserting Jeffery’s equation for rods ṗJ

rod = ∇v · p − (∇v : (p ⊗ p)p) as unconfined
kinematics in Eq. (15), we recover the kinematics derived in [19] using a microstruc-
tural approach (hydrodynamic and contact forces acting on the dumbbell representa-
tion of a rod).

Figure 1 depicts the evolution of the orientation of a rigid fibre immersed in a
shear flow of a Newtonian fluid. The solid line shows the trajectory of the confined
rod and the dotted line the trajectory of an hypothetical unconfined particle starting
from the same initial orientation. Figure 1a shows the evolution of the rod orientation
as a trajectory on the unit sphere. Starting from the same initial condition, the confined
(solid red) and unconfined (dotted blue) rods both follow the same Jeffery orbit. When
it touches the wall, the confined rod is constrained to slide along the gap wall and
finally catches an unconfined Jeffery orbit tangent to the wall and aligns in the flow.
This abrupt change in the trajectory as it touches the gap wall can also be observed on
Fig. 1b, where the components of the unit vector of orientation p are represented.

3.2. Confined ellipsoid suspended in a Newtonian fluid
Considering spheroidal particles (axisymmetric ellipsoids), we insert now the gen-

eral Jeffery equation Eq. (1) in Eq. (15). The equivalence with the kinematics obtained
from a microstructural approach on a tri-dumbbell is detailed in Appendix B.
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(a) Particle trajectory

0 20 40 60 80 100
-1

-0.5

0

0.5

1

p
x

p
y

p
z
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Figure 1 – Confined rod suspended in a Newtonian fluid (solid line: confined particle -
dotted line: unconfined particle)
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(a) Particle trajectory
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(b) Components of the orientation vector p

Figure 2 – Confined spheroid (aspect ratio r = 4) suspended in a Newtonian fluid
(solid line: confined particle - dotted line: unconfined particle)
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Figure 2 depicts the evolution of the orientation of a spheroid of aspect ratio r = 4
immersed in the same shear flow of Newtonian fluid. The unconfined particle (dotted
blue) undergoes its classical kayaking motion, whereas the confined one (solid red)
first slides along the wall and is then constrained on the largest kayaking orbit possible
in the narrow gap, that is the orbit tangent to both gap walls. Note that the orbit points
tangent to the channel walls thus correspond to force-free contacts.

3.3. Confined ellipsoid suspended in a second-order fluid
Leal [16] and Brunn [7] published some important theoretical works to describe

respectively the motion of a rod and an ellipsoid in a second-order fluid, in the limit
of low Weissenberg number, which constitutes the counterpart of Jeffery’s equation
in the case of a viscoelastic suspending matrix. The constitutive equation for the
second-order fluid is given by Giesekus [9]

σ = −pI + 2ηD + 2η
[
k(11)

0 D · D + k(2)
0

(
∂D
∂t

+ v · ∇D + Ω · D − D ·Ω
)]
, (16)

where k(11)
0 and k(2)

0 are material parameters. Brunn [7] derived the equation of evolu-
tion of the orientation of a particle and the resulting kinematics read

ṗB = Ω ·p+κ(D ·p−(D : (p⊗p)p))−(I−p⊗p) ·D ·(H2D ·p+H1(D : (p⊗p))p), (17)

where H1 and H2 depend on the material parameters and the ellipsoid aspect ratio as
given in Brunn [7].

In Appendix C, we briefly show how to write Brunn’s kinematics Eq. (17) in the
form of Jeffery’s kinematics Eq. (1) with an effective velocity gradient ∇̃v. Conse-
quently, the microstructural validation developed in Appendix B can also be used in
this section.

In the case of a second-order fluid, it is well-known that the kayaking motion of
the particle drifts towards the shear plane for oblate spheroids (r < 1) or towards the
vorticity axis for prolate spheroids (r > 1) [6, 7, 8].

Figure 3 depicts the evolution of the orientation of a spheroid of aspect ratio r = 4
immersed in the same shear flow but now the suspending matrix is a second-order fluid
(in this illustration, we have k(11)

0 = 0.144 and k(11)
0 = −0.09, and thus, H1 = 0.084

and H2 = 0.0056). Again, the confined spheroid (solid red) is constrained to exert its
kayaking and drifting motion towards the vorticity axis of the flow in the narrow flow
domain.

4. Conclusion and perspectives

This work proposes an alternative route for deriving the confined orientation kine-
matics of dilute suspensions of fibres and ellipsoidal particles. This approach, based
on unilateral mechanics, allows us to extend directly our previous microstructural
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Figure 3 – Confined spheroid (aspect ratio r = 4) suspended in a second-order fluid
(solid line: confined particle - dotted line: unconfined particle)
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model developed for confined rods in a Newtonian fluid [19] to ellipsoidal particles
and viscoelastic matrices.

The same strategy might then be applied at the macroscopic scale, working on
the so-called second-order orientation tensor a [1], a =

∫
(p ⊗ p) ψ(p) dp, to derive

a macroscopic model for confined suspensions. However, defining the adequate con-
finement condition f (a) ≤ 0 in that case is a delicate task that will be addressed in a
future work.

Appendix A. Confined orientation kinematics using unilateral mechanics - In-
teraction with only one gap wall

In this appendix, we extend the framework introduced in Section 2 in situations
where the suspended particle centre of gravity does not necessarily lies in the channel
mid-plane, allowing interaction with only one gap wall. In that case, the confinement
condition now reads

f (p) = (xG + pL) · n ≤ H, (A.1)

with xG the position of the particle centre of gravity G. The allowed domainD is thus
now given by

D =

{
p ∈ S | f (p) =

1
L

(xG · n) + (p · n) − H
L
≤ 0

}
. (A.2)

Note that in this case, we consider the case where G lies in the upper-half of the
channel.

Using these new definitions, the derivation of the confined kinematics is obtained
following the same rationale presented in the step (iv) in Section 2. The derivation of
f with respect to p (Eq. (7)) is left unchanged, whereas the derivation of f with respect
to time (Eq. (10)) now reads

ḟ =
∂ f
∂xG
· ẋG +

∂ f
∂p
· ṗ (A.3)

=
1
L

(n · ẋG) + (n − (p · n)p) · ṗ (A.4)

=
1
L

(n · ẋG) + (n − (p · n)p) · (ṗU − γ(n − (p · n)p)) (A.5)

=
1
L

(vG · n) + (ṗU · n) − γ(1 − (p · n)2), (A.6)

with vG = ẋG the velocity of the particle centre of gravity. Finally, the value of the
consistency parameter γ is given by

γ =

1
L (vG · n) + (ṗU · n)

(1 − (p · n)2)
, (A.7)
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Figure B.4 – Hydrodynamic and contact forces acting on a confined suspended
spheroid

leading to the following expression for the confined kinematics

ṗ = ṗU + ṗC = ṗU −
1
L (vG · n) + (ṗU · n)

(1 − (p · n)2)
(n − (p · n)p). (A.8)

This expression is exactly the one we derived in [21] when addressing the kinemat-
ics of a confined particle interacting with only one gap wall using a microstructural
approach (dumbbell).

Appendix B. Confined kinematics of an ellipsoid using the dumbbell approach

In order to address the confined kinematics of an ellipsoid immersed in a New-
tonian fluid flow, we consider its corresponding tri-dumbbell representation. For the
sake of simplicity, we consider in this appendix the 2D case, that is the bi-dumbbell
represented in Fig. B.4, which will provide the orientation kinematics of a spheroid
(axisymmetric ellipsoid). The orientation of the two principle axes are given by the
unit vectors p1 and p2.

On each bead acts a hydrodynamic force (Stokes drag), scaling with the difference
of velocity between the fluid at the bead position and the bead itself. For the bead
located at p1L1, that force reads

FH(p1L1) = ξ(v0 + ∇v · p1L1 − vG − ṗ1L1), (B.1)

where ξ is a friction coefficient and vG and v0 denote respectively the velocity of
the centre of gravity G and the velocity of the the fluid at G. Without any loss of
generality, we assume that L1 is the spheroid longest axis, on which contact with the
gap wall will occur. The contact forces on the upper and lower beads read

FC(p1L1) = µn and FC(−p1L1) = −µn, (B.2)
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with n =
[
0 0 1

]T
(since the contact force is orthogonal to the wall as soon as

friction is neglected – it could be easily introduced –) and its intensity µ is a priori
unknown.

When both beads of the dumbbell aligned along direction p1 are in contact with
the gap walls (more general situations were analysed in [21]), balance of forces yields

2ξ(v0 − vG) = 0, (B.3)

that is, v0 = vG, the particle’s centre of gravity is moving with the fluid velocity at
that position.

Balance of torques thus yields

2p1L1 ×
(
∇v · p1L1 − ṗ1L1 +

µ

ξ
n
)

+ 2p2L2 × (∇v · p2L2 − ṗ2L2) = 0. (B.4)

Introducing the fact that ṗi = ω × pi, i = 1, 2 (with ω the angular velocity vector) and
taking into account that pi × ω × pi = ω, i = 1, 2, we have

ω =
L1

L2
1 + L2

2

(p1 × (∇v · p1L1 +
µ

ξ
n)) +

L2

L2
1 + L2

2

(p2 × (∇v · p2L2)). (B.5)

Thus, the spheroid rotary velocity is given by

ṗ1 = ω×p1 =
L1

L2
1 + L2

2

((p1× (∇v ·p1L1 +
µ

ξ
n))×p1)+

L2

L2
1 + L2

2

((p2× (∇v ·p2L2))×p1).

(B.6)
Applying the triple vector product formula (a×b)× c = (a · c)b− (b · c)a, the previous
equation reads

ṗ1 =
L1

L2
1 + L2

2

((∇v · p1L1 +
µ

ξ
n) − ((∇v · p1L1) · p1 +

µ

ξ
(n · p1))p1)

− L2

L2
1 + L2

2

(((∇v · p2L2) · p1)p2).
(B.7)

We now develop the last term of this equation in order to obtain an expression that only
depends on p1. First, we decompose the velocity gradient according to ∇v = D + Ω,

((∇v · p2) · p1)p2 = ((D · p2) · p1)p2 + ((Ω · p2) · p1)p2. (B.8)

Then we develop each of these terms. Using the fact that D is symmetric, we have

((D · p2) · p1)p2 = p2(pT
1 · D · p2) = p2(pT

2 · D · p1) = (p2 ⊗ p2) · D · p1. (B.9)

Since p1 and p2 are mutually perpendicular,

(p1 ⊗ p1) + (p2 ⊗ p2) = I, (B.10)
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and thus Eq. (B.9) now reads

((D · p2) · p1)p2 = (I − (p1 ⊗ p1)) · D · p1. (B.11)

Similarly, using the fact that Ω is skew-symmetric, we have

((Ω · p2) · p1)p2 = p2(pT
1 ·Ω · p2) = −p2(pT

2 ·Ω · p1) = −(p2 ⊗ p2) ·Ω · p1. (B.12)

and thus
((Ω · p2) · p1)p2 = −(I − (p1 ⊗ p1)) ·Ω · p1. (B.13)

Finally, coming back to Eq. (B.7) we have

ṗ1 =
L1

L2
1 + L2

2

((∇v · p1L1 +
µ

ξ
n) − ((∇v · p1L1) · p1 +

µ

ξ
(n · p1))p1)

− L2
2

L2
1 + L2

2

(D · p1 − (p1 ⊗ p1) · D · p1 −Ω · p1 + (p1 ⊗ p1) ·Ω · p1)
(B.14)

or

ṗ1 = Ω +
L2

1 − L2
2

L2
1 + L2

2

D · p1 −
L2

1 − L2
2

L2
1 + L2

2

(p1 ⊗ p1) · D · p1

+
L1

L2
1 + L2

2

(
µ

ξ
(n − (n · p1)p1)).

(B.15)

The first part of Eq. (B.15) is actually the classical Jeffery equation for spheroid since
L2

1−L2
2

L2
1+L2

2
= r2−1

r2+1 = λ is the spheroid shape factor and the second part is thus the confine-
ment contribution,

ṗ1 = ṗJ
1 +

L1

L2
1 + L2

2

(
µ

ξ
(n − (n · p1)p1)). (B.16)

Imposing the impenetrability condition [19]

(vG + ṗ1L1) · n = 0 (B.17)

allows us to obtain the intensity µ of the contact force. Since the particle centre of
gravity is in the mid-plane of the shear flow, vG = 0 and thus

ṗ1L1 · n = ṗ1
J L1 · n +

L2
1

L2
1 + L2

2

(
µ

ξ
(1 − (n · p1)2)) = 0. (B.18)

The value of µ is then given by

µ = −L2
1 + L2

2

L2
1

ξL1

(1 − (n · p1)2)
(ṗ1

J · n). (B.19)

Eventually, the confined kinematics of a rigid spheroid are given, as expected, by

ṗ1 = ṗJ
1 −

(ṗ1
J · n)

(1 − (n · p1)2)
(n − (n · p1)p1). (B.20)
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Appendix C. Rewriting Brunn kinematics with an effective velocity gradient

Brunn’s orientation kinematics for a spheroid particle immersed in a second-order
fluid read [7]

ṗB = Ω ·p+κ(D ·p−(D : (p⊗p)p))−(I−p⊗p) ·D ·(H2D ·p+H1(D : (p⊗p))p), (C.1)

where the spheroid shape factor is given by κ = r2−1
r2+1 with r the aspect-ratio of the par-

ticle, and H1 and H2 are given by Brunn, H1 = (r2 − 1)H2 = −2
(

r2−1
r2+1

)2 (
k(2)

0 + 1
4 k(11)

0

)
.

Developing Eq. (C.1), we have

ṗB = Ω · p + κ(D · p − (D : (p ⊗ p)p))

− H2D2 · p + H2(p ⊗ p) · D2 · p
− H1(D : (p ⊗ p)) D · p + H1(D : (p ⊗ p)) (p ⊗ p) · D · p.

(C.2)

We now define an effective velocity gradient

∇̃v = ∇v − H2

κ
D2 − H1

κ
(D : (p ⊗ p))D, (C.3)

and the effective vorticity and strain rate tensors Ω̃ = 1
2

(
∇̃v − ∇̃vT )

and D̃ = 1
2

(
∇̃v + ∇̃vT )

.
Equipped with this effective velocity gradient, Brunn’s kinematics Eq. (C.1) can be
rewritten in the same form as Jeffery’s kinematics Eq. (1), that is

ṗB = Ω̃ · p + κ(D̃ · p − (D̃ : (p ⊗ p)p)). (C.4)
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Chapter 4

Data-driven approach to fibre
suspensions

Contents
4.1 Data-driven upscaling of orientation kinematics

in suspensions of rigid fibres . . . . . . . . . . . . 151

This chapter introduces a data-driven approach to the predictions of ori-
entation in fibre suspensions.

Chapter 3 discusses how upscaling the confined microscopic model to the
meso- and macroscopic scales turned out to be difficult. In a confined sus-
pension, some particles interact with the walls (confined setting) and others
do not (unconfined setting). Consequently, all the particles are not governed
by the same kinematics, but this behaviour is hard to render in a statistical
description (pdf or moments) of the orientation state of the suspension. Sepa-
rated descriptors (pdf or moments) for confined and unconfined particles, along
with their equation of evolution, can of course be derived, but their intricate
coupling is far from obvious.

In order to circumvent these difficulties and the inaccuracies of the manda-
tory closure approximations at the macroscopic scale (see Sec. 1.2.3.2), we
moved to an innovative approach to fibre suspensions based on data-driven
simulations. Since the physics at the microscopic scale can be modelled rather
reasonably, the idea is to conduct accurate offline direct numerical simulations
at that scale and to extract the corresponding macroscopic descriptors in order
to build a database of scenarios. During the online stage, the macroscopic de-
scriptors can then be updated quickly by combining adequately the items from
the database instead of relying on an imprecise macroscopic model.

This chapter corresponds to the following paper:
A. Scheuer, A. Ammar, E. Abisset-Chavanne, E. Cueto, F. Chinesta, R. Keun-
ings, S.G. Advani, Data-driven upscaling of orientation kinematics in suspen-
sions of rigid fibres. Computer Modeling in Engineering & Sciences, Submitted
for publication.

149





Data-driven upscaling of orientation kinematics in
suspensions of rigid fibres

Adrien Scheuera,b, Amine Ammarc, Emmanuelle Abisset-Chavannea, Elias Cuetod,
Francisco Chinestae, Roland Keuningsb, Suresh G. Advanif

aICI & ESI GROUP Chair, Ecole Centrale de Nantes, Rue de la Noe 1, F-44300 Nantes, France
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Abstract

Describing the orientation state of the particles is often critical in fibre suspension
applications. Macroscopic descriptors, the so-called second-order orientation tensor
(or moment) leading the way, are often preferred due to their low computational cost.
Closure problems however arise when evolution equations for the moments are de-
rived from the orientation distribution functions and the impact of the chosen closure
is often unpredictable. In this work, our aim is to provide macroscopic simulations
of orientation that are cheap, accurate and closure-free. To this end, we propose an
innovative data-based approach to the upscaling of orientation kinematics in the con-
text of fibre suspensions. Since the physics at the microscopic scale can be modelled
reasonably enough, the idea is to conduct accurate offline direct numerical simula-
tions at that scale and to extract the corresponding macroscopic descriptors in order
to build a database of scenarios. During the online stage, the macroscopic descriptors
can then be updated quickly by combining adequately the items from the database
instead of relying on an imprecise macroscopic model. This methodology is pre-
sented in the well-known case of dilute fibre suspensions (where it can be compared
against closure-based macroscopic models) and in the case of suspensions of con-
fined or electrically-charged fibres, for which state-of-the-art closures proved to be
inadequate or simply do not exist.

Keywords: Fibre suspensions, Data-driven upscaling, Closure approximations
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1. Introduction

In processes involving fibre suspensions (e.g. composite manufacturing, paper-
making, biological and pharmaceutical applications, food-processing and cosmetics
industries, etc), predicting the evolution of particle orientation is critical since the
rheology of the material and its final properties depend on the microstructure. Classi-
cally, three modelling scales can be distinguished: the microscopic, mesoscopic and
macroscopic scales.

At the microscopic scale, the orientation of a single particle is identified by a unit
vector p aligned with the particle axis. In the case of a Newtonian suspending fluid,
the evolution of the rod orientation is governed by Jeffery’s equation [25]

ṗJ = ∇v · p − (∇v : (p ⊗ p))p, (1)

whith ∇v the unperturbed fluid velocity gradient. These kinematics, derived under
the assumptions of a Stokes flow, lay the foundation for nearly all models used today.
Extending Jeffery’s theory to account for various internal or external effects, including
Brownian effects [12], bending phenomena [1], particle inertia [34], electrical forces
[28], wall effects [29, 32] is readily achievable using a dumbbell representation of a
rod [6, 8]. Despite the richness of the possible descriptions at the microscopic scale,
the computational effort to efficiently track millions of particles (as in scenarios of
industrial interest) is in general unaffordable. Coarser descriptors are thus called for.

At the mesoscopic scale, the information regarding the orientation state of a popu-
lation of particles is contained in a scalar probability density function (pdf) ψ(x, t,p),
that provides the fraction of particles with a given conformation p at any position x
and time t. Solving the associated Fokker-Planck equation, governing the time evo-
lution of the pdf, is however a challenge for traditional numerical methods, due to
the inherent high-dimensionnality of the problem. Particle methods have long been
used to conduct simulations at that scale [27], and very few works addressed the con-
tinuous Fokker-Planck equation [26, 10]. Notable progress were made recently [11]
with the introduction of the Proper Generalized Decomposition [4, 5], able to address
high-dimensional PDEs.

At the macroscopic scale, the pdf is substituted by its first moments, provinding
a crude, yet concise description of the orientation state in the material. In the case
of fibres, due to the symmetry of the pdf, odd-order moments vanish. The so-called
second and fourth order orientation tensors, introduced by Advani & Tucker [2], read
respectively

a(x, t) =

∫

S
(p ⊗ p)ψ(x, t,p)dp (2)

Emmanuelle.Abisset-chavanne@ec-nantes.fr (Emmanuelle Abisset-Chavanne),
ecueto@unizar.es (Elias Cueto), Francisco.Chinesta@ensam.eu (Francisco Chinesta),
Roland.Keunings@uclouvain.be (Roland Keunings), advani@udel.edu (Suresh G. Advani)
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and
A(x, t) =

∫

S
(p ⊗ p ⊗ p ⊗ p)ψ(x, t,p)dp. (3)

The time evolution of the second-order orientation tensor is readily obtained using
Jeffery’s kinematics Eq. (1)

ȧ = ∇v · a + a · (∇v)T − 2A : ∇v. (4)

However, this expression involves the fourth-order orientation tensor A. Unfortu-
nately, the time derivative of the fourth-orientation tensor, using the same rationale,
involves the sixth-orientation tensor and so on. Thus, a closure approximation is re-
quired.

Much research has focused on developing accurate and stable closure approxima-
tions, indicating that the problem is far from being solved. We propose in the sequel
an overview of the closures proposed in the literature; an in-depth discussion of the
subject can be found in [20, 23].

• Simple closures: linear (LIN) [16] (exact in the case of isotropic orientations),
quadratic (QUAD) [17] (exact for aligned fibres) and hybrid (HYBR) [2] (com-
bining the two previous ones);

• Composite closures: attempting to approximate directly the second-order ten-
sor A : ∇v [17];

• Orthotropic closures: attempting to express A in the principal axis of a [14];

• Natural closures: natural (NAT) [15] and IBOF [13] are fitted closures based
on the most general expansions of A in terms of a and ∇v;

• Neural-newtork-based closures: NNET [24] and NNORT [31];

• Closures for the sixth-order orientation tensor: such as LIN6, QUAD6, HYBR6
[3], or even invariant-based fitted closures INV6 and IBF6 [21, 22].

The macroscopic scale offers a simple and crude description of the microstructure.
Simulations at that scale are thus much cheaper, explaining why this description is
preferred in industrial applications. The pdf is substituted by some of its moments,
sacrificing the level of detail and the involved physics in favour of computational
efficiency. Closure approximations remain however an issue.

In this work, we propose a methodology aimed at providing data-driven macro-
scopic simulations of orientation kinematics that are cheap and closure-free. The
approach consists of an offline step, the construction of a database of scenarios ob-
tained from accurate microscopic simulations, and an online step, the data-driven
macroscopic simulation itself.

The paper is structured as follows. Section 2 explains the main idea of our data-
driven upscaling approach. In Section 3, this methodology is first illustrated in the
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well-known case of dilute fibre suspensions, where it can be compared against macro-
scopic closure-based models. Its relevance is then shown in the case of confined fibre
suspensions, for which closures proved to be inadequate [29, 32]. Finally, we apply
this framework in a more complex case involving semi-concentrated suspensions of
electrically-charged rods, for which no reliable macroscopic model is available. We
draw in Section 4 the main conclusions of this work.

2. Data-driven upscaling of orientation kinematics

The main idea behind our data-driven approach is the following: since the physics
at the microscopic scale can be modelled reasonably enough, we can conduct expen-
sive accurate offline direct numerical simulations at that scale and extract the corre-
sponding macroscopic descriptors in order to build a database of scenarios. During the
online stage, the macroscopic descriptors can then be updated quickly by combining
adequately the items from the database instead of relying on a sometimes imprecise
macroscopic model (usually involving closure approximations).

This methodology is depicted schematically in Fig. 1. Specifically, the two stages
are as follows:

• Offline stage: construction of the data-base. A large amount of microscopic
simulations involving populations of N fibres are run, exploring a wide range
of initial orientation configurations. Moreover, the different scenarios may also
include variations in the suspension parameters, such as the flow velocity gra-
dient, the fibre volume fraction (influencing the inter-particle interactions), the
confinement state (see below), the applied electric field in the case of charged
particles (see below); these parameters are collectively referred to as α. For
each population of fibres, the macroscopic descriptors, (a, ȧ, α), are computed
from the microscopic ones, (pi, ṗi, α), i = 1, . . . ,N, in order to build a database
of scenarios. An additional step, not explored in this paper, is to reconstruct a
map ȧ = f (a, α) from interpolations of the items in the database.

• Online stage: macroscopic data-driven simulation. At each time step, we iden-
tify in the database the closest items to the current orientation state (and suspen-
sion parameters) a(t, α) and combine them to obtain the instantaneous evolution
kinematics. In the case where the mapping f was built, this evolution is readily
obtained using f . And so on for the next time steps.

3. Illustration of the framework

In this section, we propose an illustration of the methodology that has just been
presented, in the case of suspensions of rods. In particular, we explain how to practi-
cally construct the database and the metrics use to measure the distance between ori-
entation tensors. We first discuss the classical unconfined dilute case, for which there
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Figure 1 – Data-driven approach to fibre orientation kinematics

is a long history of macroscopic models, allowing us to assess the performance of our
approach. We will then discuss the relevance of the method for confined suspensions,
for which traditional macroscopic models fail. Finally, we will discuss the case of
semi-concentrated suspensions of electrically-charged fibres, using microscopic di-
rect numerical simulations inspired by molecular dynamics.

3.1. Unconfined dilute suspensions of rods immersed in a simple shear flow

In the case of dilute suspensions of rods immersed in a Newtonian fluid, the kine-
matics of each particle follow Jeffery’s equation, Eq. (1). In this section, we consider
that the suspension undergoes a simple shear flow, whose velocity field is given by
v =

[
γ̇z 0 0

]T
, with γ̇ = 1 s−1. Since we consider a unit shear rate, the time

coordinate used in the graphical representations can thus be viewed as a shear strain
coordinate. In this flow, it is known that the fibres simply align in the flow field (x-
direction).

3.1.1. Database construction
The database is built by following the evolution of populations of N = 5000 parti-

cles. In order to cover a wide range of initial configurations, a physically-reasonable
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Figure 2 – Example of distributions of initial orientations used to build the database

choice is to consider initial orientations as “Gaussian” distributions. Since fibre ori-
entations can be depicted as points on the unit sphere, we consider Von Mises-Fisher
distribution of mean m (unit orientation vector) and variance s. Fig. 2a depicts an
example of such a distribution. In this study, we construct two databases, the first
with (nm, ns) = (10, 15) (150 initial configurations), and the second, more compre-
hensive with (nm, ns) = (20, 12) (240 initial configurations). The nm individual mean
values are uniformly distributed over the sphere and the ns variances range from 0.05
(fibres nearly aligned) to 1.75 (fibres nearly uniformly distributed all over the sphere).
For each population, we run the flow simulation during 30 seconds, and compute
each 10−1 second the macroscopic descriptors a and ȧ from the individual pi and ṗi

(i = 1, . . . ,N) as

a =
1
N

N∑

i=1

pi ⊗ pi (5)

and

ȧ =
1
N

N∑

i=1

ṗi ⊗ pi + pi ⊗ ṗi. (6)

3.1.2. Data-driven simulation
During the online stage, we identify in the database the K items adb

k (k = 1, . . . ,K)
closest to the current orientation tensor a(t). To do so, we use the euclidean distance
applied to the vectorized forms of the orientation tensors, composed of its independent
components:

vec(a) =
[
a11 a22 a12 a13 a23

]T
. (7)
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Then, we compute a weighted average of the K corresponding kinematics ȧdb
k to

derive the instantaneous evolution ȧ that can be applied to have the orientation tensor
at the next time step, that is

a(t + ∆t) = a(t) + ∆t ȧ. (8)

The reconstruction weights are obtained by solving the minimization problem

minwk

∥∥∥∥∥∥∥
vec

(
a(t)

) −
K∑

k=1

wkvec
(
adb

k
)
∥∥∥∥∥∥∥

2

(9)

such that

K∑

k=1

wk = 1 (10)

wk ≥ 0. (11)

Remark:. The choice of the definition of distance is definitely a delicate question. An
ideal choice would be to have access to the “geodesic” distance on the manifold de-
scribed by the trajectories of the second-order orientation tensors, but such a distance
is far from obvious. In this work, we choose to stick with the Euclidean distance
(as described above), that provided satisfactory results, as long as there are enough
samples on the manifold.

Figure 3 shows two examples of simulations. In each case, only the diagonal
components of the orientation tensors are depicted: the solid colour lines correspond
to the discrete orientation tensor (computed for validation purposes); the discontin-
uous colour lines correspond to the data-driven orientation tensor (here K = 5) and
the discontinuous grey lines correspond to the closure-based macroscopic models (for
the QUAD, HYBR and IBOF closures). In these examples, we can see that the data-
driven simulations perform quite well, as does the macroscopic model using the fitted
IBOF closure. The QUAD and HYBR closures tend however to accelerate the orien-
tation transients.

Regarding the computational costs, closure-based models run two order of mag-
nitude faster (0.03s) than microscopic simulations (30s using N = 5000 fibres). The
data-driven approach lies in-between, requiring 3s, but there is room for improve-
ments since we consider here, as a proof-of-concept, a naive implementation (using
extensive searches in the database to identify the neighbouring points for example).

3.1.3. Performance assessment
In order to assess properly the performance of our approach, we compare the pre-

dictions of the macroscopic data-driven simulations and closure-based macroscopic
models with microscopic simulations. Specifically, we average the L2 relative error
computed on the first diagonal component a11 of the second-order orientation tensor
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Figure 3 – Evolution of the diagonal components of the orientation tensor a for un-
confined dilute suspensions of rods. The solid colour lines correspond to the discrete
approach (computed for validation purposes); the discontinuous colour lines corre-
spond to the data-driven approach and the discontinuous grey lines correspond to the
closure-based macroscopic models (for the QUAD, HYBR and IBOF closures).
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Figure 4 – Average L2 relative upscaling error for the macroscopic models either
computed using the data-driven approach (DB) or a closure approximation (QUAD,
HYBR, IBOF).

over nc random initial distributions composed of N fibres. The average L2 relative
error is defined as

Ē =
1
nc

nc∑

c=1

Ec, (12)

with

E =

√√√√√∫ (
amacro

11 (t) − amicro
11 (t)

)2
dt

∫ (
amicro

11 (t)
)2

dt
, (13)

where amacro(t) is computed either using the data-driven approach or a closure-based
model. As before, we consider the QUAD, HYBR and IBOF closure approximations
and amicro(t) is obtained form the expensive discrete microscopic simulations.

The results of this comparative study (nc = 500) are shown in Fig. 4. We observe
that the data-driven approach shows improved performance compared to conventional
closure-based models (QUAD or HYBR) but state-of-the-art fitted closures (IBOF)
still provides the lowest upscaling error. As expected, using the most comprehensive
database (with (nm, ns) = (20, 12)) improves the accuracy of the data-driven method.

3.2. Confined dilute suspensions of rods immersed in a simple shear flow

We now move to confined suspensions of rods, that is suspensions flowing in gaps
narrower than the fibre length. The gap walls now prevent the particle from rotating
freely and some trajectory, passing outside the flow domain are thus forbidden. We
have shown in previous work [29, 32, 33] that in that case, the fibre kinematics can
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be written as Jeffery’s equation augmented with an additional term that prevents the
fibre from leaving the flow domain,

ṗ = ṗJ + ṗC, (14)

where ṗC = − (ṗJ ·n)
(1−(p·n)2) (n − (p · n)p), with n a unit vector normal to the gap wall (the

contact force is assumed to be orthogonal to the wall, friction being neglected).
Equipped with these new fibre kinematics, we can follow the same rationale as in

the unconfined case. We consider a configuration where the confinement is strong:
the ratio between the gap height H and the fibre length L is set to H

L = 0.2. The
suspension undergoes the same simple shear flow as before.

Database construction. The construction of the database is similar as in the previous
case, except that the initial orientation states are now given by distributions that are
Gaussian in the azimuthal direction and uniform across the narrow gap height. An
example is depicted in Fig. 2b. The mean vectors m are uniformly distributed on
the equator, and the variance s ranges from 0.05 (concentrated) to 1.75 (all over the
allowed domain).

Data-driven simulation. The data-driven simulation proceeds exactly as described in
the unconfined case. Figure. 5 shows two examples of simulations. In each case, only
the diagonal components of the orientation tensors are depicted: the solid colour lines
correspond to the discrete orientation tensor using the confined kinematics Eq. (14)
(computed for validation purposes); the discontinuous -. colour lines to the dis-
crete orientation tensor using Jeffery’s kinematics Eq. (1) (computed to assess the
impact of confinement); the discontinuous -- colour lines correspond to the data-
driven orientation tensor (here K = 5) and the discontinuous grey lines correspond to
the closure-based macroscopic models (for the QUAD, HYBR and IBOF closures).
In both examples, we note that the closure-based macroscopic models completely fail
to address confinement configurations, even when the impact of confinement on the
kinematics itself is low (in situations where few fibres actually interact with the gap
wall as in Fig. 5, bottom). In other words, and as concluded in our previous work
[29, 32], the main challenge with traditional macroscopic models involving moments
of the orientation pdf lies more with representation capabilities in highly confined
conditions than with a suitable description of the induced orientation kinematics. On
the other hand, the data-driven approach reproduces quite well the predictions pro-
vided by the expensive microscopic simulations.

Performance assessment. We use the same method as before to assess the perfor-
mances of the method (here nc = 100). The results are depicted in Fig. 6. This com-
parative study confirms the observations of the previous figure (Fig. 5). As shown
in Fig. 6(right), traditional closure-based models (even using a robust fitted closure)
tend to mispredict the orientation kinematics by more than 15%, whereas the data-
driven approach still concedes only 5% of relative error. For the sake of completeness,
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Figure 5 – Evolution of the diagonal components of the orientation tensor a for un-
confined dilute suspensions of rods. The solid colour lines correspond to the discrete
orientation tensor using the confined kinematics Eq. (14) (computed for validation
purposes); the discontinuous -. colour lines to the discrete orientation tensor us-
ing Jeffery’s kinematics Eq. (1) (computed to assess the impact of confinement); the
discontinuous -- colour lines correspond to the data-driven orientation tensor (here
K = 5) and the discontinuous grey lines correspond to the closure-based macroscopic
models (for the QUAD, HYBR and IBOF closures).
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Figure 6 – Average L2 relative upscaling error for the macroscopic models either
computed using the data-driven approach (DB) or a closure approximation (QUAD,
HYBR, IBOF): (left) comparison against the unconfined kinematics Eq. (1); (right)
comparison against the confined kinematics Eq. (14).

Fig. 6(left), computes the relative error with respect to the (hypothetical) unconfined
kinematics, to support our claim that closure approximations are inadequate for initial
confined configurations (independently of the kinematics itself).

3.3. Dilute suspensions of rods immersed in a complex flow
If we consider that the particles are immersed in a complex flow (instead of a

simple shear flow), the same rationale can be applied. Indeed, in the dilute regime,
the fibre kinematics are governed by Jeffery’s kinematics Eq. (1), which shows a linear
dependency with the velocity gradient. Thus, databases can be built for elementary
flows (for example: shear flow in the x-, y- and z-directions, uniaxial elongation in the
x- and y-directions and rotation flow around the x-, y- and z-directions), and during the
online stage, the local velocity gradient is decomposed in its elementary contributions,
and the outcomes of the different databases are weighted accordingly.

3.4. Semi-concentrated suspensions of electrically-charged rods
In the remainder of this section, we address the kinematics of electrically-charged

rods (dipoles) immersed in a Newtonian fluid and subject to an external electric field
E. A multi-scale modelling of such suspensions (in the dilute case) was already pro-
posed in [28]. A microscopic model governing the evolution ṗ of a single rod is
obtained from a micromechanical derivation using a dumbbell representation of the
particle and reads ṗ = ṗJ + ṗE, where ṗE depends on the external electric field E and
the charge q of the rod dipole. The proposed macroscopic model is however tainted
with non-reliable closure approximations that make it impractical to use.

Chapter 4. Data-driven approach to fibre suspensions

162



We could of course apply the same rationale again, building on top of this mod-
ified Jeffery equation. However, we want to consider here a semi-concentrated sus-
pension, that is we want to account for the effects of fibre-fibre interactions as well.
Moreover, we want to emphasize that the data-driven methodology proposed in this
work is general and does not depend on the technique used to conduct the microscopic
simulations. Therefore, we use microscopic direct numerical simulations inspired by
molecular dynamics (MD).

This fine scale simulation technique is based on the following assumptions: (i)
each rod consists of a set of connected particles; (ii) inter-particle interactions are
described from appropriate potentials, in particular, the Lennard-Jones potential VLJ

and two other potentials, VE and VB, used to describe respectively the rod elongation
and bending; (iii) the rods are subject to inertial, hydrodynamic (drag) and electrical
forces. A description of the inner workings of this molecular dynamics simulation is
out of the scope of this paper but the details can be found in [30].

Specifically, the microscopic MD simulations follow the evolution of N electrically-
charged rods interacting with each other in a periodic representative volume element.
Figure 7a shows the initial isotropic configuration of the particles. As before, we con-
sider here a simple shear flow, whose velocity field is given by v =

[
γ̇z 0 0

]T
, with

γ̇ = 1 s−1. The electric field points upwards in the z-direction and the charge q on
each rod extremity is set to q = 1 C . In the absence of an electric field, the fibres
tend to align in the flow field, as illustrated in Fig. 7b, that shows the final orientation
state of the fibres when E = 0 NC−1. Conversely, when the electric field is strong, the
fibres cannot align in the flow and the final orientation is along an inclined axis (the
inclination depends on the intensity of the electric field), as illustrated in Fig. 7b, that
shows the final orientation state of the fibres when E = 50 NC−1.

Database construction. In this illustration, we only vary the number of particles N
in the suspension (that is the concentration of the suspension and thus the potential
number of inter-particles interactions) and the intensity of the external electric field E.
Adding a variation of the shear rate γ̇ or the initial orientation state (as in two previous
illustrations) is a straightforward extension. Therefore, the databases are built by fol-
lowing the evolution of populations of N = 100, 200, . . . 800 particles subjected to an
electric field E of intensity ranging from 0 to 60 NC−1. The shear rate is fixed, γ̇ = 1
s−1 and the isotropic orientation state is always chosen as initial configuration. In each
case, we run the MD simulation during 10 seconds, and compute each 10−1 second
the macroscopic descriptors a and ȧ from the individual pi and ṗi (i = 1, . . . ,N). Due
to the stochastic nature of the MD simulations, the simulations are run ten times and
the results are averaged over the ten realizations.

Data-driven simulation. The data-driven simulation is a bit different from what was
presented in the two previous illustrations, since we now have two parameters that
influence the kinematics of the suspension: the number of particles in the system N
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Figure 7 – Periodic representative volume element containing N = 500 interacting
electrically-charged fibres used in the molecular dynamics simulations. The suspen-
sion is subject to a simple shear flow and an electric field E is applied in the +z-
direction.
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(that influences the amount of fibre-fibre interactions) and the intensity of the external
electric field E. During the online stage, we intend to carry a simulation character-
ized at each time t by the current number of fibres in the system (Nt) and the current
value of the electric field intensity (Et). Among the databases at our disposal, we then
identify the ones that best match the value of the current parameters (for example if
(Nt, Et) = (225, 35) we keep the four databases built for N = 200 and 300 and E = 30
and 40 NC−1) and compute the weights needed for a bilinear interpolation of these
results. For each one of these, we proceed as described before, looking within the
individual database to find the K closest orientation tensors to the current orientation
tensor and combining them adequately. Finally, these individual results are then com-
bined using the bilinear weights computed just before. These manipulations might
appear a bit tedious but are fairly easy and they actually provide a flexible way to
handle for example time-varying electric fields from the static databases. Proceeding
in this way allows us to actually interpolate among the parameter space, even though
the parameters are not of the same order of magnitude. Indeed, interpolating directly
on the data triplet (N, E, a) would not have provided meaningful results, at least with
the Euclidean distance, due to disparity of the quantities at stake.

Figure 8 shows three examples of simulations, in the case of weak, medium and
strong external electric field. In each case, only the diagonal components of the orien-
tation tensors are depicted: the solid colour lines correspond to the discrete orientation
tensor obtained from MD simulations (computed for validation purposes) and the dis-
continuous colour lines correspond to the data-driven orientation tensor.

As described previously, in the case of a nearly zero electric field (Fig. 8, top), the
fibres tend to align in the flow field (x-direction) and thus the first diagonal component
of the orientation tensor is dominant. On the contrary, when the electric field is strong
(Fig. 8, bottom), the particles are mostly aligned in the z-direction and thus the third
diagonal component of a is important. When the electric field is of medium intensity
(Fig. 8, middle), the fibres tend to align in an intermediate orientation and the first and
third components of a are in balance. In the three examples, the data-driven approach
was in excellent agreement with the fine-scale simulations.

Performance assessment. Again, we use the same method as before to assess the
performances of the method. The number of random configurations (value of N and
E) is nc = 100. In this case, there is however no macroscopic model to compare
with. We found that the data-driven method concedes only 5.9% of relative error with
respect to fine-scale MD simulations.

Regarding the computational costs, in this example, the data-driven approach runs
in less than a second whereas MD simulations, inherently expensive, require from 30
to 500 seconds depending on the number of particles in the system.
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Figure 8 – Evolution of the diagonal components of the orientation tensor a for semi-
concentrated suspensions of electrically-charged rods. The solid colour lines corre-
spond to the discrete approach obtained from MD simulations (computed for val-
idation purposes) and the discontinuous colour lines correspond to the data-driven
approach. Weak (top) and medium (bottom) external electric field E.
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Figure 8 (continued) – Evolution of the diagonal components of the orientation tensor
a for semi-concentrated suspensions of electrically-charged rods. The solid colour
lines correspond to the discrete approach obtained from MD simulations (computed
for validation purposes) and the discontinuous colour lines correspond to the data-
driven approach. Strong external electric field E.

4. Conclusion and Perspectives

We presented a data-driven methodology aimed at providing efficient closure-free
macroscopic simulations of the orientation of suspended rigid fibres, using a database
of pre-computed scenarios obtained from accurate direct computations at the micro-
scopic scale. We show the relevance of this approach in the well-known case of dilute
fibre suspensions, where it performs as well as state-of-the-art closure based models,
but also for suspensions of confined or electrically charged fibres, for which con-
ventional closure-based methods proved to be inadequate and reliable macroscopic
models are simply not available. Therefore, this method appears as an appealing and
“easy-to-set-up” technique in situations where closure-based models are unsatisfac-
tory or have not been developed yet, including in situations where the physics at stake
is complex (for example in the case of fibre-fibre interactions), provided that adequate
microscopic simulation techniques are available.

In addition to the many situations where this methodology could be applied, many
perspectives are envisioned for a data-driven approach in the context of fibre suspen-
sions. First, even at the microscopic scale, Jeffery’s equation could be replaced by
some kinematics learned from experimental observations, especially in the case of
non-Newtonian matrix suspensions for which there is no counterpart available (with
the exception of Brunn’s work [7] for second-order fluid in the limit of low Weis-
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senberg and the recent multi-scale modelling based on that model [9]). Second, a
data-driven approach to predictions of the suspension rheology is to be explored.

Another track, mentioned in the description of our data-driven approach but not
explored in this paper, is the possibility of interpolating the items in the databases
in order to build an approximation map that could be used directly during the online
stage. The recent works on multi-dimensional interpolation techniques based on the
Proper Generalized Decomposition (PGD), in particular the sparse PGD [18] and the
local PGD [19], open the way for interesting perspectives in that direction.
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Chapter 5

Numerical methods for flow
problems in thin geometries

Contents
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Stokes equations in thin geometries . . . . . . . 173

This final chapter addresses efficient numerical methods to simulate fluid
flows in thin geometries.

We consider, within the Proper Generalized Decomposition (PGD) frame-
work, an in-plane / out-of-plane separated representation of the solution of the
incompressible Navier-Stokes equations. The use of such separated represen-
tations let us decouple the meshes in the plane (coarse) and thickness (fine)
directions, allowing for a high-resolution representation of the solution evolu-
tion along the thickness coordinate while keeping the computational complexity
characteristic of 2D simulations.

This chapter constitutes a paper in preparation:
A. Scheuer, R. Ibáñez, E. Abisset-Chavanne, F. Chinesta, R. Keunings, In-
plane/out-of-plane separated representation of the solution of the incompressible
Navier-Stokes equations in thin geometries. In preparation.
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Abstract

Fluid flows in degenerated geometries, in which the characteristic length in one di-
rection is much smaller than in the others, are a challenging task for standard mesh-
based simulation techniques, that often require a tremendous number of discretization
points or elements to provide accurate solutions. Classically, ad-hoc simplifications
or approximations (e.g. lubrication theory) are called for in order to conduct tractable
simulations. In this work, we consider, within the Proper Generalized Decomposition
(PGD) framework, an in-plane/out-of-plane separated representation of the solution
of the incompressible Navier-Stokes equations in thin geometries. The use of such
separated representations let us decouple the meshes in the plane (coarse) and thick-
ness (fine) directions, allowing for a high-resolution representation of the solution
evolution along the thickness coordinate while keeping the computational complexity
characteristic of 2D simulations.

Keywords: Navier-Stokes equations, Proper Generalized Decomposition (PGD),
Thin geometries

1. Introduction

The numerical simulation of complex fluid flows generally gives rise to very large
systems that cannot be easily solved numerically. Classically, two families of ap-
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proaches have been proposed to address such problems: (i) simplifications and ap-
proximations that often rely on assumptions and adaptations of the underlying physics
of the problem, a well-known example is lubrication theory for fluid flows in narrow
gaps; and (ii) model-order reduction techniques that try to decrease the computing
time.

There are two classes of model reduction methods:

• A posteriori methods (POD framework, snapshots-based) build a reduced ap-
proximation basis from pre-computed solutions that is then used to solve similar
problems.

In this framework, it is assumed that the solution u of a physical problem can
be approximated with reasonable accuracy by

u(x) =

M∑

i=1

αiΦi(x), (1)

where the Φi(x), form the so-called reduced-basis of the problem, M is the
size of the basis (that is much smaller than the original problem size) and the
weights αi are solutions of a very low-order system obtained by projection of
the initial equation of the problem over the basis. The most popular technique
is the Proper Orthogonal Decomposition (POD), that extracts the reduced basis
from an eigen-decomposition of solution snapshots.

The main drawback of a posteriori model-order reduction however is the need
of already computed solutions in order to build the reduced basis.

• A priori methods (PGD framework) look for a solution to a PDE as a sum of
products of unknown functions of each coordinate (see below). This technique
can also be used to compute offline a parametric solution containing the solution
of all possible scenarios, that is then particularized online.

The PGD makes use of separated representations in order to ensure that the
complexity scales linearly with the model dimensionality. It basically consists
in constructing by successive enrichment an approximation of the solution in
the form of a finite sum of functional products involving functions of each
coordinate. Consider a problem defined in a space of dimension D. The un-
known field is denoted by u(x1, x2, . . . , xD) where xi represents any usual co-
ordinate, either in space, time or conformation space (PGD can even handle
physical parameters or boundary conditions as extra-coordinates). The solution
for (x1, x2, . . . , xD) ∈ Ω1×Ω2×· · ·×ΩD is approximated in the PGD framework
by

u(x1, x2, . . . , xD) ≈
N∑

i=1

F1
i (x1)F2

i (x2) . . . FD
i (xD). (2)
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Neither the number of terms in the sum N, nor the individual functions Fd
i

are known a priori. The latter are obtained by introducing the approximate
separated representations into the weak formulation of the original problem and
solving the resulting non-linear equations iteratively. The overall enrichment
process itself ends when an appropriate stopping criterion, assumed to be an
adequate measure of the approximation error, is satisfied. In most cases, when
the solution is sufficiently regular, the number of terms in the sum is quite small
(a dozen).

The PGD was originally proposed in [1, 2] to solve high-dimensional Fokker-
Planck equations in the context of computational rheology but proved to be a new
general approach to address high-dimensional PDEs. We refer to the recent mono-
graph [6] for a detailed explanation of the method and its applications. PGD de-
compositions were already introduced in Stokes flows, mainly in problems involving
composite laminates [8, 9, 10], where lubrication approaches fail to handle the dif-
ferent viscosities of the plies across the thickness. To our knowledge, the only work
that addresses the Navier-Stokes system within a PGD framework is [7], where a frac-
tional step method is employed to decouple the pressure and velocity fields.. In the
present work, we use a coupled velocity-pressure formulation of the Navier-Stokes
system and focus on flows in thin geometries adopting an in-plane/out-of plane sep-
arated representation of the pressure and velocity fields. Such in-plane/out-of-plane
decompositions have already been successfully introduced in the context of elasticity
problems [4, 5] to provide 3D solutions in plate and shell geometries.

The paper is structured as follows. Section 2 discusses the separated formula-
tion of the incompressible Navier-Stokes equations. We show how the incremental
in-plane/out-of-plane solutions are found by solving a succession of 2D and 1D prob-
lems. The linearisation strategy for the convective term is also presented. Section 3
illustrates the performance of the PGD approach compared to a standard 3D finite
element solver and some flow solutions in narrow geometries are depicted. Finally,
Section 5 draws the main conclusions of this work and presents some perspectives for
future developments.

2. 3D modelling of Navier-Stokes flow in thin geometries

We consider the solution of the 3D incompressible Navier-Stokes equations using
an in-plane/out-of-plane representation of the pressure and velocity fields.

2.1. Navier-Stokes formulation
The steady-state Navier-Stokes system, defined in Ξ = P × T (P ⊂ R2, T ⊂ R),

is written as

∇ · v = 0, (3)
ρ(v · ∇v) = −∇p + η∆v + f, (4)
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where ρ is the constant fluid density and η the fluid viscosity. In the following, we
ignore external body forces, thus f = 0.

For all suitable test pressure p∗ and test velocity v∗, v∗ vanishing on the domain
boundary ΓD where the velocity is prescribed, the corresponding weak form of the
coupled velocity-pressure Navier-Stokes system can be written as

∫

Ξ

p∗(∇ · v)dx = 0, (5)
∫

Ξ

v∗ · ρ(v · ∇v)dx =

∫

Ξ

v∗ · (−∇p + η∆v)dx. (6)

By performing integration by parts on the right-hand side of Eq. (6) and assuming a
null traction on the domain boundary Γ \ ΓD, the weak form is finally given by

∫

Ξ

p∗(∇ · v)dx = 0, (7)
∫

Ξ

v∗ · ρ(v · ∇v)dx =

∫

Ξ

(∇ · v∗)pdx −
∫

Ξ

η(∇v∗ : ∇v)dx. (8)

2.2. In-plane/out-of-plane separated representation

Within the PGD framework, the pressure and velocity fields are expressed as a
sum of N modes composed of functions of the plane (P) and thickness (T) coordinates:

p(x, y, z) ≈
N∑

i=1

Pp
i (x, y) T p

i (z), (9)

and

v(x, y, z) =


u(x, y, z)
v(x, y, z)
w(x, y, z)

 ≈


∑N
i=1 Pu

i (x, y) T u
i (z)∑N

i=1 Pv
i (x, y) T v

i (z)∑N
i=1 Pw

i (x, y) T w
i (z)

 =

N∑

i=1

Pv
i (x, y) ◦ Tv

i (z), (10)

where ◦ is the entrywise (or Hadamard) product.
The separated representation of the velocity gradient reads

∇v =



∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z


≈

N∑

i=1



∂Pu
i

∂x
∂Pu

i
∂y Pu

i
∂Pv

i
∂x

∂Pv
i

∂y Pv
i

∂Pw
i

∂x
∂Pw

i
∂y Pw

i


◦



T u
i T u

i
∂T u

i
∂z

T v
i T v

i
∂T v

i
∂z

T w
i T w

i
∂T w

i
∂z


=

N∑

i=1

Pi(x, y) ◦ Ti(z).

(11)
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2.3. Progressive construction of the PGD separated representation

At each enrichment step n, we have already computed the n − 1 first terms of the
PGD approximation,

vn−1(x, y, z) =

n−1∑

i=1

Pv
i (x, y) ◦ Tv

i (z), (12)

pn−1(x, y, z) =

n−1∑

i=1

Pp
i (x, y) T p

i (z), (13)

and wish to compute the next term to obtain the enriched PGD solution

vn(x, y, z) = vn−1(x, y, z) + Pv
n(x, y) ◦ Tv

n(z), (14)

pn(x, y, z) = pn−1(x, y, z) + Pp
n (x, y) T p

n (z). (15)

The new functions are unknown at the current enrichment step and they appear in
the form of a product. The resulting problem is thus non-linear and a suitable iterative
scheme is required. We use an alternating direction strategy. Using the index q to
denote a particular iteration, Pv

n,q and Pp
n,q are obtained from Tv

n,q−1 and T p
n,q−1, and

then Tv
n,q and T p

n,q from Pv
n,q and Pp

n,q. Arbitrary guesses Tv
n,0 and T p

n,0 are specified
to start the iteration process. The non-linear iterations proceed until reaching a fixed
point within a user-specified tolerance. The enrichment step n thus ends with the
assignments Pv

n ← Pv
n,q and Tv

n ← Tv
n,q (and similarly for the pressure).

The enrichment process itself stops when an appropriate measure of convergence
becomes small enough.

In the remainder of this section, we discuss how to obtain a separated formulation
of the continuity equation (7). For the sake of completeness, the detail derivation
related to the momentum equation. (8) is presented in Appendix A. Nevertheless,
a careful discussion on the treatment of the non-linearity of the convective term is
proposed at the end of the section.

Computing Pv
n,q and Pp

n,q from Tv
n,q−1 and T p

n,q−1
In this case, the approximations read

vn(x, y, z) =

n−1∑

i=1

Pv
i (x, y) ◦ Tv

i (z) + Pv
n,q(x, y) ◦ Tv

n,q−1(z), (16)

pn(x, y, z) =

n−1∑

i=1

Pp
i (x, y) T p

i (z) + Pp
n,q(x, y) T p

n,q−1(z), (17)

where all functions are known except Pv
n,q(x, y) and Pp

n,q(x, y).

5.1. In-plane/out-of-plane separated representation of the solution of the
incompressible Navier-Stokes equations in thin geometries

177



The simplest choices for the test functions are

v∗(x, y, z) = Pv,∗
n (x, y) ◦ Tv

n,q−1(z), (18)

p∗(x, y, z) = Pp,∗
n (x, y) T p

n,q−1(z). (19)

Injecting Eqs. (16) and (19) into Eq. (7), we obtain

∫

Ξ

(
Pp,∗

n T p
n,q−1

) 
∂Pu

n,q

∂x
T u

n,q−1 +
∂Pv

n,q

∂y
T v

n,q−1 + Pw
n,q

∂T w
n,q−1

∂z

 dxdydz

= −
∫

Ξ

(
Pp,∗

n T p
n,q−1

)


n−1∑

i=1

[
∂Pu

i

∂x
T u

i +
∂Pv

i

∂y
T v

i + Pw
i

∂T w
i

∂z

] dxdydz. (20)

Since Ξ = P × T , we can rearrange the integrals as

∫

P
Pp,∗

n
∂Pu

n,q

∂x
dxdy

∫

T
T p

n,q−1T u
n,q−1dz +

∫

P
Pp,∗

n
∂Pv

n,q

∂y
dxdy

∫

T
T p

n,q−1T v
n,q−1dz

+

∫

P
Pp,∗

n Pw
n,qdxdy

∫

T
T p

n,q−1

∂T w
n,q−1

∂z
dz

= −
n−1∑

i=1

[∫

P
Pp,∗

n
∂Pu

i

∂x
dxdy

∫

T
T p

n,q−1T u
i dz +

∫

P
Pp,∗

n
∂Pv

i

∂y
dxdy

∫

T
T p

n,q−1T v
i dz

+

∫

P
Pp,∗

n Pw
i dxdy

∫

T
T p

n,q−1

∂T w
i

∂z
dz

]
. (21)

Since all functions related to the thickness are known in the above expression, we can
compute the following one-dimensional integrals over T :



γT,u =
∫
T T p

n,q−1T u
n,q−1dz; γT,u

i =
∫
T T p

n,q−1T u
i dz;

γT,v =
∫
T T p

n,q−1T v
n,q−1dz; γT,v

i =
∫
T T p

n,q−1T v
i dz;

δT,w =
∫
T T p

n,q−1
∂T w

n,q−1

∂z dz; δT,w
i =

∫
T T p

n,q−1
∂T w

i
∂z dz.

(22)

Thus, Eq. (21) becomes

∫

P
Pp,∗

n

(
∂Pu

n,q

∂x
γT,u +

∂Pv
n,q

∂y
γT,v + Pw

n,qδ
T,w

)
dxdy

= −
n−1∑

i=1

∫

P
Pp,∗

n

(
∂Pu

i

∂x
γT,u

i +
∂Pv

i

∂y
γT,v

i + Pw
i δ

T,w
i

)
dxdy. (23)

We have thus obtained the weak formulation of a two-dimensional problem defined
over P that can be solved (along with a separated formulation of Eq. (8)) to compute
the plane functions Pv

n,q(x, y) and Pp
n,q(x, y) we are looking for.
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Computing Tv
n,q and T p

n,q from Pv
n,q and Pp

n,q

Having thus computed Pv
n,q and Pp

n,q, we are now ready to proceed with the second
step of iteration q. The procedure exactly mirrors what we have done above, sim-
ply exchanging the roles played by all relevant functions of the plane and thickness
coordinates. The current approximations read

vn(x, y, z) =

n−1∑

i=1

Pv
i (x, y) ◦ Tv

i (z) + Pv
n,q(x, y) ◦ Tv

n,q(z), (24)

pn(x, y, z) =

n−1∑

i=1

Pp
i (x, y) T p

i (z) + Pp
n,q(x, y) T p

n,q(z), (25)

where all functions are known except Tv
n,q(z) and T p

n,q(z),.
We now make the particular choice of the following test functions

v∗(x, y, z) = Pv
n,q(x, y) ◦ Tv,∗

n (z), (26)

p∗(x, y, z) = Pp
n,q(x, y) T p,∗

n (z). (27)

Injecting Eqs. (24) and (27) into Eq. (7), we obtain

∫

Ξ

(
Pp

n,q T p,∗
n

) (∂Pu
n,q

∂x
T u

n,q +
∂Pv

n,q

∂y
T v

n,q + Pw
n,q

∂T w
n,q

∂z

)
dxdydz

= −
∫

Ξ

(
Pp

n,q T p,∗
n

)


n−1∑

i=1

[
∂Pu

i

∂x
T u

i +
∂Pv

i

∂y
T v

i + Pw
i

∂T w
i

∂z

] dxdydz. (28)

As all functions of the plane coordinates are known, the integrals over P can be com-
puted 

δP,u =
∫
P Pp

n,q
∂Pu

n,q

∂x dxdy; δP,u
i =

∫
P Pp

n,q
∂Pu

i
∂x dxdy;

δP,v =
∫
P Pp

n,q
∂Pv

n,q

∂x dxdy; δP,u
i =

∫
P Pp

n,q
∂Pv

i
∂x dxdy;

γP,w =
∫
P Pp

n,qPw
n,qdxdy; γP,w

i =
∫
P Pp

n,qPw
i dxdy.

(29)

Thus, Eq. (28) becomes

∫

T
T p,∗

n

(
T u

n,qδ
P,u + T v

n,qδ
P,v +

∂T w
n,q

∂z
γP,w

)
dz

= −
n−1∑

i=1

∫

T
T p,∗

n

(
T u

i δ
P,u
i + T v

i δ
P,v
i +

∂T w
i

∂z
γP,w

i

)
dz. (30)

We have now obtain the weak formulation of a one-dimensional problem defined on
T that we can solve (along with a separated formulation of Eq. (8)) to compute the
thickness functions Tv

n,q(z) and T p
n,q(z).
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2.4. Treatment of the non-linearity in the convective term
A careful treatment of the non-linear inertia (or convective) term

∫
Ξ

v∗ ·ρ(v ·∇v)dx
is necessary.

When considering a standard finite element Navier-Stokes solver, an iterative pro-
cedure is used to solve the non-linear system of equations. In general such a procedure
consists of the following steps: (i) make an initial estimation; (ii) as long as it hasn’t
converged, linearise the non-linear equations based on the previous solution and solve
the resulting system of linear equations. Classical linearisation approaches include
Newton, quasi-Newton or Picard methods. Considering Picard iterations, three alter-
natives (in which one or both terms are taken from the previous level) are possible:

(v · ∇v)k+1 ' vk · (∇v)k; (31)

(v · ∇v)k+1 ' vk+1 · (∇v)k; (32)

(v · ∇v)k+1 ' vk · (∇v)k+1, (33)

where k is the index of the non-linear iterations. However, only the latter (Eq. (33)
proves to produce a good convergence.

In the case of the PGD, the classical Picard method would be expensive, since it
would require to compute all PGD modes in order to update the velocity field in the
convective term and then run the PGD again. Instead, we propose a modified Picard
method that takes advantage of the greedy nature of the PGD algorithm. Specifically,
at enrichment step n, the velocity gradient is approximated from all the modes (the
previous known modes + the new one), (∇v)n =

∑n
i=1 Pi◦Ti, whereas the velocity field

itself is approximated from the previous known modes only, vn−1 =
∑n−1

i=1 Pv
i ◦Tv

i . The
non-linear term is thus updated “on the fly” since the PGD approximation converges
to the solution as it is enriched with new PGD modes.

The detailed separated formulation of this non-linear convective term is presented
in Appendix A.3.

3. Numerical simulations

In this section, we compare our in-plane/out-of-plane PGD solver with a classical
3D finite element solver in order to validate the approach and assess its performance
in terms of accuracy and CPU time.

3.1. 3D finite element and PGD solvers
The 3D finite element (FEM) solver uses hexaedral elements to compute a solution

to the Navier-Stokes weak formulation (7)-(8). The non-linearity of the convective
term is handled using the classical Picard iteration scheme (33). The iterative process
is stopped when the solution does not evolve anymore within a given threshold. In
order to satisfy the so-called LBB condition, second-order elements are chosen for
the velocity field, whereas first-order elements are chosen for the pressure field.
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Figure 1 – Thin channel with a plug flow as entrance flow. The discontinuous red line
indicates the cutting plane where the solution will be shown.

The PGD solver is also implemented using finite elements to solve the separated
weak forms. 2D quadrilaterals are used for the plane contributions and 1D elements
for the thickness contributions. As discussed in our previous work [10], in order to
satisfy the LBB condition, it is sufficient to apply the same restrictions as before on
the separated representations. Hence, we again use second-order elements for the
velocity and first-order elements for the pressure field.

Both solvers are based on the same (non-optimized) finite element implementa-
tion, which makes the comparison relevant.

3.2. Flow geometry

We consider a thin channel of length L, width W and height H, as depicted in
Fig. 1. The entrance flow (on the left) is a plug flow given by vin =

[
U 0 0

]T
. We

enforce non-slip boundary conditions on the bottom and top plates and perfect-slip
boundary conditions on the front and back plates. The outlet is left traction free. The
discontinuous red line indicates the cutting plane where the solution will be shown.
Considering this geometry, a parabolic Poiseuille flow is to be expected.

In the following, we set (L,W,H) = (5, 5, 1) m, U = 1 ms−1, the fluid dynamic
viscosity η = 1 Pa s and the fluid density ρ varies from 0 (Stokes flow, no inertia) to
200 kg m−3. Thus, we consider Reynolds numbers Re =

ρUH
η

ranging from 0 to 200.

3.3. Comparison between the FEM and PGD solvers

In order to assess the accuracy of the PGD solution, Fig. 2 compares the FEM and
the PGD solutions (x-component of the velocity field) for the thin channel considered
in Fig. 1 at Re = 100. Both solvers use the same mesh, composed of 41 degrees of
freedom in the x- and z-directions (20 elements). As depicted at the bottom of Fig. 2,
the absolute error is very small.
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Figure 2 – Comparison of the FEM and PGD solutions (x-component of the velocity
field) for the thin channel considered in Fig. 1 at Re = 100

While keeping the plane mesh unchanged, with 41 degrees of freedom (20 ele-
ments) in the x-direction and 21 dof (10 elements) in the y-direction, we now observe
the evolution of the CPU time when increasing the number of degrees of freedom in
the thickness z-direction, from 21 (10 elements) to 81 (40 elements). The result is
depicted in Fig. 3 for Re = 0 (top) and Re = 100 (bottom). In the case Re = 0, the
PGD approach always requires the same amount of time. Indeed, the solution of the
1D problems along the thickness is negligible compared to the time required to solve
the 2D problems involving the plane coordinates, that always keep the same size here.
In the case Re = 100, the trend is the same. Note that in that case, the PGD algorithm
requires a few more modes to converge, but the FEM solver requires a dozen Picard
iterations to converge as well, which penalizes this method even more severely.
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Figure 3 – CPU time required to solve the thin channel problem depicted in Fig. 1 at
Re = 0 (top) and Re = 100 (bottom) with respect to the number of degrees of freedom
along the thickness direction (the mesh in the plane is unchanged)
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Reynolds number Number of modes CPU time [s]
0 5 117
50 8 253

100 12 507
200 15 749

Table 1 – Number of modes and CPU time required for the simulations depicted in
Fig. 4

3.4. High-resolution PGD solutions

The standard 3D FEM solver restricts us to coarse solutions. We thus now show
the full potential of the PGD approach for fine discretizations. Figure 4 shows high-
resolution solutions of the x-component of the velocity field for the thin channel prob-
lem at various Reynolds numbers. There are 401 degrees of freedom (200 elements)
in the x- and z-directions. As expected, the channel entrance length is proportional to
the Reynolds number.

Table 1 summarizes the number of modes until convergence and CPU time re-
quired in each case. As already pointed previously, the higher the Reynolds number,
the higher the number of modes required for the PGD algorithm to converge. In any
case, such high-resolution computations would not be tractable using the standard 3D
FEM solver.

4. Perspective - Coupling finite elements and PGD

As a perspective, we would like to couple the PGD strategy presented above with
a standard 3D finite element method. A coarse FEM solution on the whole compu-
tational domain, which may not be easily separable (i.e., obtained from the Cartesian
product of low-dimensional domains), would then be enriched locally with“ PGD
patches” providing a high-resolution solution in regions of interest. In particular, the
in-plane/out-of-plane setting seems suitable to capture localized behaviours as bound-
ary layers near surface boundaries.

We use a superposition strategy, with a global (coarse) finite element mesh on
the whole computational domain on which a local (refined in the thickness direction)
PGD mesh is superimposed, see Fig. 5. This strategy is similar to [3], where on the
contrary a global separated representation was locally enriched with finite elements.

The approximation for the velocity field is given by

v(x, y, z) = vFEM(x, y, z) + vPGD(x, y, z), (34)

where vFEM is defined on the whole domain Ξ, whereas the PGD enrichment vPGD is
defined only within Ξl ⊂ Ξ (thus vanishing on Ξ \ Ξl). To ensure the continuity of
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Figure 4 – Thin channel problem: x-component of the velocity field at various
Reynolds numbers obtained from the in-plane/out-of-plane PGD strategy with 401
degrees of freedom in the x- and z-directions (for the sake of clarity, the mesh is
omitted)
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Figure 5 – Superposition of a global coarse finite element mesh (blue) and a local
PGD mesh refined in the thickness direction (red)

the approximation, we enforce that vPGD is zero on the boundary of Ξl. The resulting
approximation thus reads

v(x, y, z) =

M∑

j=1

V j ◦Ψ j(x, y, z) +

N∑

i=1

Pv
i (x, y) ◦ Tv

i (z), (35)

where Ψ j(x, y, z) are the standard finite element shape functions and V j the corre-
sponding nodal weights. Due to the contribution of vPGD in Ξl, the nodal value V j in
that region do not correspond to the values of the unknown field v(x, y, z) at the node
position (x j, y j, z j).

This coupling constitutes a work in progress, thus explaining why this section is
presented as a perspective.

5. Conclusion and Perspectives

We have proposed a new procedure to solve the incompressible Navier-Stokes
equations in thin geometries. This procedure is based on the use of an in-plane/out-
of-plane separated representation of the velocity and pressure fields within the frame-
work of the Proper Generalized Decomposition. Decoupling the meshes in the plane
(coarse) and thickness (fine) directions, allows us to obtain detailed 3D solutions
while keeping the computational complexity characteristic of 2D simulations. Thus,
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very high resolutions in the thickness direction, able to capture localized behaviours,
can be achieved.

In order to use this PGD approach in complex problems of interest, two main
issues must be addressed. First, the convergence of the PGD can be difficult to es-
timate: currently, the enrichment step is stopped when the contribution of the new
mode is small compared to the mode previously computed. A more accurate way to
ensure that the convergence is reached would be to compute the actual residual of the
problem. A separated formulation of that residual is however required. Second, in this
work, no stabilization technique of the Navier-Stokes system has been considered. In
order to avoid deficiencies in convection-dominated problems, some stabilization is
however recommended. Therefore a separated formulation of the so-called SUPG
technique is under investigation.

Addressing the transient Navier-Stokes equations is another challenge and to do
so, two strategies seem possible: (i) introduce time as extra coordinate in the PGD
algorithm; (ii) use a time-marching scheme and apply the PGD at each time-step.
Finally, other perspectives include the ability to handle complex geometries, either
using adequate coordinate changes (as developed in [5] for elastic problems in shell
geometries), or using the PGD approach locally in conjunction with standard solvers.

Appendix A. Separated formulation of the Navier-Stokes momentum equation

In this section, we present the separated formulation of the three terms involved
in the Navier-Stokes momentum equation.

Appendix A.1. Pressure term
The separated formulation of the pressure term, whose weak form reads

∫

Ξ

(∇ · v∗)pdx, (A.1)

is very similar to the one developed in Sec. 2.3.
We first show how to compute Pv

n,q and Pp
n,q from Tv

n,q−1 and T p
n,q−1.

In that case, the approximations are given by Eqs. (16) and (17), where all func-
tions are known except Pv

n,q(x, y) and Pp
n,q(x, y), and the chosen test functions are given

by Eqs. (18) and (19).
Injecting Eqs. (17) and (18) into Eq. (A.1), we obtain

∫

Ξ


∂Pu,∗

n

∂x
T u

n,q−1 +
∂Pv,∗

n

∂y
T v

n,q−1 + Pw,∗
n

∂T w
n,q−1

∂z


(
Pp

n,q T p
n,q−1

)
dxdydz

= −
∫

Ξ


∂Pu,∗

n

∂x
T u

n,q−1 +
∂Pv,∗

n

∂y
T v

n,q−1 + Pw,∗
n

∂T w
n,q−1

∂z




n−1∑

i=1

Pp
i T p

i

 dxdydz. (A.2)
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Carefully rearranging the integrals finally yields to

∫

P

∂Pu,∗
n

∂x
Pp

n,qdxdy
∫

T
T u

n,q−1T p
n,q−1dz +

∫

P

∂Pv,∗
n

∂y
Pp

n,qdxdy
∫

T
T v

n,q−1T p
n,q−1dz

+

∫

P
Pw,∗

n Pp
n,qdxdy

∫

T

∂T w
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∂z
T p

n,q−1dz
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[∫
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i dxdy
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n Pp
i dxdy
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T

∂T w
n,q−1

∂z
T p

i dz
 . (A.3)

Since all functions related to the thickness are known in the above expression, we can
compute the one-dimensional integrals over T . Therefore, Eq. (A.3) is the weak for-
mulation of a two-dimensional problem defined over P that can be solved to compute
the plane functions Pv

n,q(x, y) and Pp
n,q(x, y) we are looking for.

The second step consisting of computing Tv
n,q and T p

n,q. from Pv
n,q and Pp

n,q obeys
the same rationale.

Appendix A.2. Viscous term

Omitting the fluid viscosity η, the weak form of this term reads
∫

Ξ

(∇v∗ : ∇v)dx, (A.4)

that is
∫

Ξ

[
∂u∗

∂x
∂u
∂x

+
∂u∗

∂y
∂u
∂y

+
∂u∗

∂z
∂u
∂z

+ . . . (idem for v) . . . + . . . (idem for w) . . .
]

dxdydz.

(A.5)
Again, we only show how to compute Pv

n,q and Pp
n,q from Tv

n,q−1 and T p
n,q−1.

In that case, the approximations are given by Eqs. (16) and (17), where all func-
tions are known except Pv

n,q(x, y) and Pp
n,q(x, y), and the chosen test functions are given

by Eqs. (18) and (19).
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Injecting Eqs. (16) and (18) into Eq. (A.5), we obtain

∫

Ξ
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(A.6)

Carefully rearranging the integrals finally yields to
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(A.7)

Again, all functions related to the thickness are known in the above expression
and the one-dimensional integrals over T can be computed. Therefore, Eq. (A.7) is
the weak formulation of a two-dimensional problem defined over P.

Appendix A.3. Non-linear convective term
Omitting the fluid density ρ, the weak form of this term reads

∫

Ξ

v∗ · (v · ∇v)dx, (A.8)

that is
∫
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(A.9)
Again, we only show how to compute Pv

n,q and Pp
n,q from Tv

n,q−1 and T p
n,q−1.
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In that case, the approximations are given by Eqs. (16) and (17), where all func-
tions are known except Pv

n,q(x, y) and Pp
n,q(x, y), and the chosen test functions are given

by Eqs. (18) and (19).
Injecting Eqs. (16) and (18) into Eq. (A.9) and using the linearisation strategy

presented in Sec. 2.4, we obtain
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Carefully rearranging the integrals finally yields to
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. (A.11)

Again, all functions related to the thickness are known and Eq. (A.11) is actually
the weak formulation of a two-dimensional problem defined over P. Of course, the
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linearisation strategy implies here that operators coming from all the previous modes
appear in both sides of Eq. (A.11).
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Conclusions and Perspectives

This thesis was devoted to the multi-scale mathematical modelling of fibre
suspensions along with the efficient numerical simulations required to address
those problems.

The purpose of this thesis was twofold. First, we addressed the multi-
scale modelling of inertial fibre suspensions and confined fibre suspensions, two
limiting aspects of the classical Jeffery theory. In both cases, we proposed a
realistic microscopic model addressing this situation and studied thoroughly the
issues raised by the upscaling from the micro to the macro scale. We then came
up with an innovative data-driven upscaling approach that could be applied in
more general situations. Second, we developed efficient numerical methods to
simulate fluid flows in thin geometries.

Kinematics of suspended fibres

Our modelling framework is based on a dumbbell representation of a particle.
In addition to recovering the classical Jeffery kinematics in the simplest set-
ting of an unconfined flow of Newtonian fluid, this dumbbell approach already
proved to be convenient to account for various internal or external effects on
the particle kinematics, including Brownian effects, bending phenomena, or
electrical forces.

In Chap. 2, we thus showed how to introduce inertial pseudo-forces on the
dumbbell to account for the effect of particle inertia. The resulting kinematics
exhibit some orbit drifts compared to the inertialess case, but these modifica-
tions might not be important in applications of industrial interest. In Chap. 3,
we introduced contact forces with mould walls to account for wall and con-
finement effects on the particle kinematics. To our knowledge, the problem of
confinement was never appropriately addressed from a micromechanical point
of view.

The versatility of the dumbbell framework and its ability to address situa-
tions where the physics at stake is complex make it an appealing approach to
extend the classical theories governing the kinematics of suspended rigid fibres.
Hence, the various physical phenomena (whether mechanical, electrical, elastic,
Brownian, etc) experienced by a suspended particle can be introduced at the
microscopic scale by adequate forces and torques acting on the dumbbell repre-
sentation of said particle. However, two important challenges can be identified
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in this approach. First, the fluid flow is generally considered undisturbed by
the presence of the particles and in concentrated suspensions the effects of the
particle on the flow (acting in turn on the particles) may be significant. Second,
the adaptation of the dumbbell approach to the non-Newtonian case is still an
open question.

Moreover, our study of confinement confronted us with two critical issues
inherent to such multi-scale approaches: (i) upscaling this confined microscopic
model to the meso- and macroscopic scales turned out however to be difficult. In
a confined suspension, some particles interact with the walls (confined setting)
and others do not (unconfined setting). Consequently, all the particles are
not governed by the same kinematics, but this behaviour, although quite clear
at the microscopic scale, is hard to render in a statistical description (pdf or
moments) of the orientation state of the suspension. Separated descriptors (pdf
or moments) for confined and unconfined particles, along with their equation
of evolution, can of course be derived, but their intricate coupling is far from
obvious; (ii) the mandatory closure approximations at the macroscopic level
are usually difficult to come up with for complex problems, and even when
some closures are available, inaccuracies and inadequacies may quickly appear
if they are used in situations for which they were not designed.

These observations motivated our data-driven approach, presented in
Chap. 4, aimed at providing efficient closure-free macroscopic simulations of
the orientation of suspended rigid fibres, using a database of pre-computed
scenarios obtained from accurate direct computations at the microscopic scale.

The conjunction of the adaptability of the dumbbell approach (and the
richness of the description possible at the microscopic scale) along with the
data-driven upscaling thus opens the way to a new multi-scale approach to
suspensions.

Numerical methods for flow problems in thin geometries

In Chap. 5, we used the Proper Generalized Decomposition (PGD) to obtain
an in-plane/out-of-plane separated representation of the solution of the incom-
pressible Navier-Stokes equations in thin geometries. Decoupling the meshes in
the plane (coarse) and thickness (fine) directions, allows for a high-resolution
representation of the solution evolution along the thickness coordinate while
keeping the computational complexity characteristic of 2D simulations.

As discussed at the end of the chapter, we emphasize that these promising
results are really the early stages of a new research topic. Important steps,
regarding the stabilization of the problem or the treatment of the transient
system, still need to be overcome. Handling curved geometries is another
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extension of the method to be considered. Finally, domain decomposition
or superposition approaches making possible the coupling between the PGD
solver and 3D classical formulations are required to address complex scenar-
ios. Highly-optimized off-the-shelf Navier-Stokes solvers could provide a coarse
solution throughout the whole computational domain that would be enriched
with high-resolution PGD patches in regions of interest.
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