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ABSTRACT

We have developed a fast solver for the 3D Helmholtz equa-
tion, in heterogeneous, constant density, acoustic media, in the
high-frequency regime. The solver is based on the method of po-
larized traces, a layered domain-decomposition method, where
the subdomains are connected via transmission conditions pre-
scribed by the discrete Green’s representation formula and arti-
ficial reflections are avoided by enforcing nonreflecting boundary
conditions between layers. The method of polarized traces allows
us to consider only unknowns at the layer interfaces, reducing the
overall cost and memory footprint of the solver. We determine
that polarizing the wavefields in this manner yields an efficient
preconditioner for the reduced system, whose rate of convergence

is independent of the problem frequency. The resulting precondi-
tioned system is solved iteratively using generalized minimum
residual, where we never assemble the reduced system or precon-
ditioner; rather, we implement them via solving the Helmholtz
equation locally within the subdomains. The method is parallel-
ized using Message Passing Interface and coupled with a distrib-
uted linear algebra library and pipelining to obtain an empirical
on-line runtime Oðmaxð1; R∕LÞN logNÞ, where N ¼ n3 is
the total number of degrees of freedom, L is the number of
subdomains, and R is the number of right-hand sides (RHS).
This scaling is favorable for regimes in which the number of
sources (distinct RHS) is large, for example, enabling large-
scale implementations of frequency-domain full-waveform
inversion.

INTRODUCTION

Efficient modeling of time-harmonic wave scattering in hetero-
geneous acoustic or elastic media remains a difficult problem in
numerical analysis, yet it has broad application in seismic inversion
techniques (Chen, 1997; Pratt, 1999; Virieux and Operto, 2009). In
the constant-density acoustic approximation, time-harmonic wave
propagation is modeled by the Helmholtz equation

ΔuðxÞ þ ω2mðxÞuðxÞ ¼ fsðxÞ; in Ω; (1)

with absorbing boundary conditions, and whereΩ is a 3D rectangular
domain, Δ is the 3D Laplacian, x ¼ ðx; y; zÞ, m ¼ 1∕c2ðxÞ is the

squared slowness for velocity cðxÞ, u is the wavefield, and fs are
the sources, indexed by s ¼ 1; : : : ; R. The method presented in this
paper describes a framework for solving frequency-domain wave-
propagation problems, and as such, while we limit our discussion to
this case, there is no essential obstruction to extending the result to
the variable density or elastic cases. We present it in the context
of simpler physics to avoid obfuscating the details of the method.
Throughout this paper, we assume that equation 1 is in the high-

frequency regime, i.e., when ω ∼ n, where n is the number of un-
knowns in each dimension. Although there are other regimes which
can be considered high-frequency, we use the mathematical defini-
tion of high-frequency, which is equivalent to refining the grid
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interval to keep the number of points per wavelength constant. This
notion of high-frequency differs greatly with the one traditionally
used in geometric optics.
There are two primary difficulties in solving equation 1 in the high-

frequency regime: building a stable discretization of the problem and
solving the resulting linear system efficiently. It is difficult to develop
a stable discretization because of pollution error (see Babuska et al.,
1995). That is, if we scale ω ∼ n, then the solution of the discrete
linear systems will eventually degrade with respect to the solution
of the partial differential equation (PDE). Pollution error is typically
masked by increasing the number of points per wavelength, thus over-
sampling the solution. There is extensive literature on this topic, sowe
refer the interested reader to Fang et al. (2017). In this paper, we focus
on the second issue — solving the resulting system efficiently.
Solving the full-waveform inversion (FWI) (Tarantola, 1984)

problem in the frequency domain is the driving force behind these
developments. Using the time-harmonic formulation of the wave
equation in an FWI context affords strategies that can avoid non-
convexities (cycle skipping) in the inverse problem (Alessandrini
et al., 2017). Additionally, given that there can be upward of 106

distinct sources in a high-frequency seismic survey, time-domain
approaches can be computationally wasteful, trading off disk stor-
age (checkpointing) for computation that generally cannot be
reused. In an idealized implementation, frequency-domain methods
for FWI can be very efficient because matrix factorizations can be
reused and minimal data need to be checkpointed. Practically, solv-
ing the FWI problem in the frequency domain is extremely difficult
because current solvers do not perform well at high frequencies in
three dimensions and are not optimally parallelized.
Despite these challenges, and given the importance of solving

equation 1 in geophysical contexts, there has been a renewed inter-
est in developing efficient, parallel algorithms to solve the ill-
conditioned linear system resulting from discretizing the Helmholtz
equation. Recent progress toward an efficient solver, i.e., a solver
with linear complexity, has generally focused on three strategies

1) Fast direct solvers, which couple multifrontal techniques with
compressed linear algebra to obtain efficient direct solvers with
small memory footprint. However, for high-frequency prob-
lems, these methods remain suboptimal.

2) Classical preconditioners, such as incomplete factorization
preconditioners, multigrid-based preconditioners, and other
iterative methods are relatively simple to implement but suffer
from superlinear asymptotic complexity and require significant
tuning to achieve effective runtimes.

3) Sweeping-like preconditioners, which are a relatively recent
domain decomposition-based approach that has been shown
to achieve linear or nearly linear asymptotic complexity.

We present a method that belongs to the third category. Sweeping
preconditioners (e.g., Gander and Nataf, 2005; Engquist and Ying,
2011a, 2011b; Chen and Xiang, 2013a, 2013b; Stolk, 2013; Vion
and Geuzaine, 2014; Liu and Ying, 2015; Zepeda-Núñez and De-
manet, 2016) and their generalizations, i.e., domain-decomposition
techniques coupled with high-quality transmission/absorption con-
ditions, offer the right mix of ideas to attain linear or near-linear
complexity in two dimensions and three dimensions, provided that
the medium does not have large resonant cavities (Zepeda-Núñez
and Demanet, 2016), which are generally not an issue in geophysi-
cal contexts. These methods rely on the sparsity of the linear system

to decompose the domain into layers, within which classical sparse-
direct methods may be used to compute the interactions within the
layer. Interactions across layers are computed by sequentially
sweeping through the subdomains in an iterative fashion.
We will formally introduce the mathematics of polarized traces in

what follows. However, the method has a physical interpretation,
which helps to motivate our developments. Within each layer of
the domain decomposition, the volumetric problem is reduced to
a problem on the layer interfaces, where the values of the wavefield
and its numerical normal derivative at those interfaces are the un-
knowns. This reduced problem is preconditioned by polarization —
decomposing the wavefield into upgoing and downgoing compo-
nents and propagating each component independently across the
domain using a procedure akin to a Rayleigh integral (Berkhout,
1980) at each subdomain. As we will see from numerical experi-
ments in heterogeneous media, when combined with Krylov solv-
ers, the preconditioned system requires a handful of iterations to
converge independently of the frequency.
Following Zepeda-Núñez and Demanet (2016), our parallel,

scalable solver exploits

• local solvers, using efficient sparse direct solvers at each
subdomain

• high-quality transmission conditions between subdomains,
implemented via perfectly-matched layers (PML) (Bérenger,
1994; Johnson, 2010), and

• an efficient preconditioner based on polarizing conditions
imposed via incomplete Green’s integrals.

These concepts combine to yield a global-iterative method that
converges in a small number of iterations. The method has two
stages: an offline stage that can be precomputed independently of
the right-hand sides (RHS) and an online stage that is computed for
each RHS or by batch processing.

Performance context

For current applications, empirical runtimes are a more practical
measure of an algorithm’s performance than asymptotic complex-
ity. This requirement has led to a recent effort to reduce the runtimes
of preconditioners with optimal asymptotic complexity by leverag-
ing parallelism. For example, Poulson et al. (2013) introduce a new
local solver, i.e., a solver for the subproblem defined on each layer,
which carefully handles communication patterns between layers to
obtain impressive timings. Although most sweeping algorithms re-
quire visiting each subdomain in sequential fashion, Stolk (2017)
introduces a modified sweeping pattern, which changes the data
dependencies during the sweeps to improve parallelism. Finally, Ze-
peda-Núñez and Demanet (2016) introduce the method of polarized
traces, which reduces the solver’s runtime by leveraging parallelism
and fast summation methods. We follow from these developments
and seek to improve performance of the method of polarized traces
by finding concurrency outside of individual local solves.
To date, most studies focus on minimizing the parallel runtime or

complexity of a single solve with a single RHS. However, in the
scope of seismic inversion, where there can be tens of thousands
of RHS, it is important to consider the overall runtime or complexity
of solving for all RHS. In this context, we define linear runtime
complexity to be OðRNÞ, where N is the total number of degrees
of freedom and R is the total number of RHS. For three dimensions,
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we define N ¼ n3 and recall that n is the number of degrees of free-
dom in a single dimension of a 3D volume.
In this paper, we present a solver for the 3D high-frequency

Helmholtz equation with a sublinear, online, parallel runtime

Oðα2pml maxð1; R∕LÞN log NÞ; (2)

where L ∼ n is the number of subdomains in a layered domain
decomposition and αpml ∼ logω is the number of points needed
to implement a high-quality absorbing boundary condition between
layers. The offline stage, which we do not detail, has complexity
Oðα3pmlNÞ. We achieve sublinear complexity in the online compo-
nent by comprehensive parallelization of all aspects of the algorithm,
including exploiting parallelism in local solves and by pipelining the
RHS. Thus, as long as R ∼ n at minimum, there is a no impact on the
asymptotic complexity. In 3D studies, it is typical that that the num-
ber of sources R ∼ n2 because as frequency and resolution increase,
the number of sources in the inline and crossline direction must also
increase (Li et al., 2015).
We require that the thickness of each layer, in grid points, is held

constant as the problem is scaled. Then, the number of layers must
grow with frequency, so L ∼ n. This hypothesis is critical for
obtaining a quasilinear complexity algorithm and is related to the
complexity of solving a quasi-2D problem using multifrontal meth-
ods (for further details, see Engquist and Ying, 2011b; Poulson et al.,
2013). Each layer is further extended by αpml grid points for the
PML. Poulson et al. (2013) document that αpml must grow with
problem frequency, αpml ∼ log ω, for the PML to remain effective,
which is manifested by the number of Krylov solver iterations re-
quired for convergence scaling as log ω.
Pipelining, a significant source of the parallel performance of our

implementation, for domain-decomposition methods has been pre-
viously considered (Stolk, 2017), albeit without complexity claims
and without a fully tuned communication strategy between subdo-
mains. Here, we present an empirical study of the effectiveness
of pipelining, in the presence of multiple RHS (which scales in
a frequency-dependent manner, similar to how it would during an
acquisition for FWI), and we compare results with an asymptotic
complexity model. We are able to exploit pipelining because the
method of polarized traces only requires degrees of freedom at layer
interfaces for the bulk of the computation, which reduces the
memory footprint per RHS.
Finally, we solve the 3D problem in a high-performance comput-

ing (HPC) environment, under the assumption that the number of
computing nodes in the HPC cluster is Oðn3 logðnÞ∕MÞ, where M
is the memory of a single compute node. Thus, following the
assumption that there are L ∼ n layers, we use Oðn2 logðnÞ∕MÞ
compute nodes for each layer. The restrictions on node growth come
from the fact that computing nodes have finite memory, and thus
more nodes are needed to solve larger problems. As the numerical
examples will show, using more nodes per layer reduces the runtime
per Krylov iteration by enhancing the parallelism of the local solves
in each subdomain, provided that a carefully designed communica-
tion pattern is used to keep the communication overhead low.

Related work

Modern linear algebra techniques, in particular nested-dissection
methods (George, 1973) and multifrontal solvers (Duff and Reid,
1983; Xia et al., 2010), coupled with H-matrices (Boerm et al.,

2006), have been applied to the Helmholtz problem, yielding, for
example, the hierarchical Poincaré-Steklov solver (Gillman et al.,
2015), solvers using hierarchical semiseparable (HSS) matrices
(de Hoop et al., 2011; Wang et al., 2012, 2013), or block low-rank
matrices (Amestoy et al., 2015, 2016). Although these methods take
advantage of compressed linear algebra to gain more efficiency
(e.g., Bebendorf, 2008), in the high-frequency regime, they still suf-
fer from the same suboptimal asymptotic complexity as standard
multifrontal methods (e.g., Demmel et al., 1999; Amestoy et al.,
2001; Davis, 2004).
Multigrid methods (e.g., Brandt and Livshits, 1997; Aruliah and

Ascher, 2002; Laird and Giles, 2002; Erlangga et al., 2006; Mulder,
2006; Sheikh et al., 2013), once thought to be inefficient (approaches
stemming from the complex shifted Laplacian; Erlangga et al. [2006]
can be advantageous if properly tuned. However, in general, they ei-
ther require an expensive solver for the shifted problem or require a
large number of iterations to reach convergence, depending on the
scaling between the complex shift and the frequency [Gander et al.,
2015]) for the Helmholtz problem, have been successfully applied to
the Helmholtz problem by Calandra et al. (2013) and Stolk (2016).
Although these algorithms do not result in a lower computational
complexity, their empirical runtimes are impressive due to their
highly parallelizable nature. Due to the possibility for efficient par-
allelization, there has been a renewed interest on multilevel precondi-
tioners, such as the one in Hu and Zhang (2016).
Within the geophysical community, the analytic incomplete LU

(AILU) method was explored by Plessix and Mulder (2003) and
applied in the context of 3D seismic imaging, resulting in some
large computations (Plessix, 2007). A variant of Kaczmarz precon-
ditioners (Gordon and Gordon, 2010) has been studied and applied
to time-harmonic wave equations by (Li et al., 2015). Another class
of methods, called hybrid direct-iterative methods, has been ex-
plored by Sourbier et al. (2011). Although these solvers have, in
general, relatively low-memory consumption, they tend to require
many iterations to converge, thus hindering practical runtimes.
Domain-decomposition methods for solving PDEs date back to

Schwarz (1870), in which the Laplace equation is solved iteratively
(for a more recent treatise, see Lions, 1989). The application of do-
main decomposition to the Helmholtz problem was first proposed
by Després (1990). Cessenat and Després (1998) further refine this
approach with the development of the ultraweak variational formu-
lation (UWVF) for the Helmholtz equation, in which the basis func-
tions in each element, or subdomain, are solutions to the local
homogeneous equation. The UWVF approach motivated a series
of related methods, such as the partition of unity method of Babuska
and Melenk (1997), the least-squares method of Monk and Wang
(1999), the discontinuous enrichment method by Farhat et al. (2001),
and Trefftz methods by Gittelson et al. (2009) and Moiola et al.
(2011), among many others. A recent and thorough review of Trefftz
and related methods was performed by Hiptmair et al. (2016).
The results of Lions (1989) and Després (1990) have inspired the

development of various domain-decomposition algorithms, which
are now classified as Schwarz algorithms (for a review on classical
Schwarz methods, see Chan and Mathew, 1994; Toselli and Wi-
dlund, 2005; and for other applications of domain-decomposition
methods for the Helmholtz equations, see de La Bourdonnaye et al.,
1998; Ghanemi, 1998; McInnes et al., 1998; Collino et al., 2000;
Magoules et al., 2000; Boubendir, 2007; Astaneh and Guddati,
2016). However, the convergence rate of such algorithms is strongly
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dependent on the boundary conditions prescribed at the interfaces
between subdomains. Gander et al. (2002) introduce an optimal,
nonlocal boundary condition for domain interfaces, which is then
approximated by an optimized Robin boundary condition. This last
work led to the introduction of the framework of optimized Schwarz
methods in Gander (2006) to describe optimized boundary condi-
tions that provides high convergence. The design of better interface
approximations was studied by Gander and Kwok (2011), Bouben-
dir et al. (2012), Gander and Zhang (2013, 2014), and Gander and
Xu (2016), among many others.
Engquist and Zhao (1998) introduce absorbing boundary condi-

tions for domain-decomposition schemes for elliptic problems, and
the first application of such techniques to the Helmholtz problem
traces back to the AILU factorization (Gander and Nataf, 2000).
The sweeping preconditioner, introduced in Engquist and Ying
(2011a, 2011b), was the first algorithm to show that those ideas
could yield algorithms with quasilinear complexity. There exist
two variants of the sweeping preconditioner, which involved using
either H-matrices (Engquist and Ying, 2011a) or multifrontal solv-
ers (Engquist and Ying, 2011b) to solve the local problem in each
thin layer. These schemes are extended to different discretizations
and physics by Tsuji et al. (2012, 2014) and Tsuji and Ying (2012).
Since the introduction of the sweeping preconditioner, several re-
lated algorithms with similar claims have been proposed, such as
the source transfer preconditioner (Chen and Xiang, 2013a, 2013b),
the rapidly converging domain decomposition (Stolk, 2013) and
its extensions (Stolk, 2017), the double sweep preconditioner (Vion
and Geuzaine, 2014), and the method of polarized traces (Zepeda-
Núñez and Demanet, 2016).

Organization

The remainder of this paper is organized as follows: We provide
the numerical formulation of the Helmholtz equation, present the
reduction to a surface integral equation (SIE), and introduce the
method of polarized traces for solving the SIE. Next, we elaborate
on the parallelization and communication patterns and examine the
empirical complexities and runtimes. We demonstrate our claims
empirically with several computational experiments. Finally, prior
to concluding, we address some caveats of the method and discuss
potential extensions to related problems.

NUMERICAL FORMULATION

For this study, we discretize equation 1 using the standard sec-
ond-order finite-difference method on a regular mesh of Ω, with a
grid of size nx × ny × nz and a grid spacing of h. Absorbing boun-
dary conditions are imposed on all sides of the domain via PMLs, as
described by Bérenger (1994). Although we only address this case,
sweeping methods can handle free-surface boundary conditions
with a modest, nonasymptotic increase in the number of iterations
(Poulson et al., 2013; Stolk, 2013).
We describe our PML implementation in detail because the qual-

ity and structure of the PML implementation strongly impact the
convergence properties of the method. Following Johnson (2010),
the PML is implemented via a complex coordinate stretching (We
refer the interested reader to Chew and Weedon [1994] and Koma-
titsch and Martin [2007]). First, we define an extended domain Ω̂
such that Ω ⊂ Ω̂ and we extend the Helmholtz operator from equa-
tion 1 to that domain as follows:

H ¼ Δ̂þmω2inΩ̂; (3)

where m is an extension of the squared slowness to Ω̂ and the
extended Laplacian Δ̂ is constructed by replacing the partial deriv-
atives in the standard Laplacian Δ ¼ ∂xx þ ∂yy þ ∂zz with coordi-
nate-stretched partial derivatives defined on Ω̂:

∂x → βxðxÞ∂x; ∂y → βyðxÞ∂y; ∂z → βzðxÞ∂z: (4)

The complex dilation function βxðxÞ (and similarly βyðxÞ and βzðxÞ)
is defined as

βxðxÞ ¼
1

1þ i σxðxÞω

; (5)

where the PML profile function σxðxÞ (and similarly σyðxÞ and
σzðxÞ) is

σxðxÞ ¼

8>>><
>>>:

C
δpml

�
x

δpml

�
2
; if x ∈ ð−δpml; 0Þ;

0; if x ∈ ½0; Lx�;
C
δpml

�
x−Lx
δpml

�
2
; if x ∈ ðLx; Lx þ δpmlÞ;

(6)

where Lx is the length ofΩ in the x-dimension and δpml is the length
of the extension. In general, δpml grows slowly with the frequency,
i.e., δpml ∝ Oðlog ωÞ, to obtain enough absorption as the frequency
increases. The constant C is chosen to provide enough absorption.
In practice, δpml and C can be seen as parameters to be tuned for
accuracy versus efficiency.
The extended Helmholtz operator provides the definition of the

global continuous problem

Hu ¼ fs; in Ω̂; (7)

which is then discretized using finite differences to obtain the
discrete global problem

Hu ¼ fs: (8)

Local formulation

In the method of polarized traces,Ω is decomposed into a set of L
layers, fΩlgLl¼1. Without loss of generality and to match the physi-
cal intuition, we describe the decomposition in the z-dimension. In
practice, however, to avoid excessive reflection in the direction of
sweeps and to optimize the layer-communication volume, we con-
struct the sweeps along a dimension orthogonal to the z-dimension.
Each subdomain Ωl is extended to include an absorbing region, as
above, yielding the extended subdomain Ω̂l. For boundaries of Ω̂l

shared with Ω̂, the absorbing layer is considered to be inherited
from the global problem. For the intralayer boundaries of Ωl, i.e.,
those due to the partitioning of Ω, the extension to the additional
absorbing layers in Ω̂l are necessary to prevent reflections at layer
interfaces, which are detrimental to convergence.
Then, the local Helmholtz problem is

Hlvl ≔ ΔlvlðxÞ þmlω2vlðxÞ ¼ fls ðxÞ in Ω̂l; (9)

T316 Zepeda-Núñez et al.
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where ml and fl are the local restrictions of the model parameters
and source functions to Ω̂l, generated by extending mχΩl and fχΩl

to Ω̂l, where χΩl is the characteristic function ofΩl. The local Lap-
lacian Δl is defined using the same coordinate stretching approach
as above, except on Ω̂l. As before, δpml, and thus αpml, must scale as
log ω to obtain the convergence rate claimed in this paper.
We discretize the local problem in equation 9 resulting in the

discrete local Helmholtz system

Hlvl ¼ fls : (10)

For the finite-difference implementation in this paper, we assume
a structured, equispaced Cartesian mesh with mesh points
xi;j;k ¼ ðxi; yj; zkÞ ¼ ðih; jh; khÞ. Assuming the same ordering as
Zepeda-Núñez and Demanet (2016), we write the global solution
in terms of the depth index

u ¼ ðu1; u2; : : : ; unzÞ; (11)

where uk is a plane sampled at constant depth zk (In MATLAB
notation, uk ¼ ðu∶;∶;kÞ).
Let ul be the local restriction of u to Ωl; i.e., ul ¼ χΩlu.

Following the above notation, ulk is the local solution trace in
the plane at local depth zlk . For notational convenience, we renum-
ber the local depth indices so that ul1 and u

l
nl

are the top and bottom
planes of the bulk domain. Points due to the PML are not considered
(with this renumbering, the local depth index zlk
maps to the global depth index znlcþk, where
nlc ¼

P
l−1
j¼1 n

j). Finally, we concatenate all the
vectors containing the degrees of freedom at the
interfaces, resulting in

u ¼ ðu1n1 ; u21; u2n2 ; : : : ; uL−11 ; uL−1nL−1 ; u
L
1 Þt;
(12)

which is the vector of interface traces for all L
layers. This is illustrated in the fourth panel of
Figure 1, where u1n1 are the degrees of freedom
above the light-blue dots at the bottom of the top
subdomain, u21 are the degrees of freedom below
the light-blue dots at the top of the middle sub-
domain, and so on.
To map the solution vectors at fixed depth

planes back to the discretized whole volume of
Ωl, we define the Dirac delta at a fixed depth

ðδðz − zpÞvqÞi;j;k ¼
�
0 if k ≠ p;
ðvqÞi;j
h3 if k ¼ p:

(13)

This definition of the numerical Dirac delta is specific to a classical
finite-difference discretization. If the discretization changes, it is
still possible to define a numerical Dirac delta using the approach
developed in Zepeda-Núñez and Demanet (2018).
The offline computations on local subdomains are detailed in

Algorithm 1.

Reduction to surface integral equation

The global solution is related to the local layer solutions by cou-
pling the subdomains using the Green’s representation formula
(GRF) within each layer. The resulting SIE, posed at the interface
between layers, effectively reduces the problem from the global
domain Ω to the interfaces between layers. The resulting SIE has
the form

Mu ¼ f; (14)

whereM is formed by interface-to-interface Green’s functions, u is
defined in equation 12, and f is the RHS, formed as in line 8 of
Algorithm 2, where a high-level sketch of the algorithm to solve
the 3D high-frequency Helmholtz equation is given.
The matrix M is a block banded matrix (Figure 2) of size

2ðL − 1Þn2 × 2ðL − 1Þn2. Theorem 1 of Zepeda-Núñez and Dema-
net (2016) reveals that the solution of equation 14 is exactly the
restriction of the solution of equation 8 to the interfaces between
layers.
Consequently, if the traces of the exact solution are known, then it

is possible to apply the GRF to locally reconstruct exactly the global
solution within each layer. Equivalently, the reconstruction can be
performed by modifying the local source with a measure supported
on the layer interfaces and solving the local system with the local
solver (lines 11–12 of Algorithm 2).
To efficiently solve the 3D problem, it is critical that the matrixM

is never explicitly formed. Instead, a matrix-free approach (Zepeda-

Figure 1. Sketch in 2D of the partition of the domain in layers. The domain Ω is ex-
tended to Ω̂ by adding the PML nodes (orange). After decomposition into subdomains
Ωl, the internal boundaries are padded with extra PML nodes (light blue) resulting in the
subdomains Ω̂l.

Algorithm 1. Offline computation.

1: function ½Ll; Ul� = FACTORIZATION(m, ω)

2: for l ¼ 1∶L do

3: Hl ¼ Δl þmlω2 ▹Build the local system

4: LlUl ¼ Hl ▹ Compute the LU factorization

5: end for

6: end function
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Núñez and Demanet, 2018) is used to apply the blocks of M via
applications of the local solver, using equivalent sources supported
at the interfaces between layers, as shown in Algorithm 3. More-
over, as seen in Algorithm 3, the application of M is easily imple-
mented in parallel, with a small communication overhead. The only
nonembarrassingly parallel stage of Algorithm 2 is the solution of
equation 14, which is inherently sequential.
Given thatM is never explicitly formed, an iterative method is the

natural choice for solving equation 14. In practice, the condition
number ofM is very large and it has a wide spectrum in the complex
plane, which implies that a large number of iterations is required to
achieve convergence. To alleviate this problem, we apply the
method of polarized traces, as an efficient preconditioner for equa-
tion 14, which we describe below.

Preconditioning with polarized traces

Reducing the Helmholtz problem to an SIE allows us to effi-
ciently parallelize most of the computation required to solve equa-
tion 8. The only remaining sequential bottleneck is the solution of

equation 14. Given the size and the distributed nature ofM, iterative
methods such as generalized minimum residual (GMRES) (Saad
and Schultz, 1986) or Bi-CGSTAB (van der Vorst, 1992), are
the logical approach for solving equation 14. However, numerical
experiments indicate that the condition number of M scales as
Oðh−2Þ, or as Oðω2Þ in the high-frequency regime (Zepeda-Núñez
and Demanet, 2016). The number of iterations required for Krylov
methods to converge is usually proportional to the condition num-
ber of the system, yielding poor scalability for solving the SIE at
high frequencies. To alleviate this problem, we use the method of
polarized traces to convert the SIE to an equivalent problem, which
is easily preconditioned. This preconditioned system only requires
OðlogωÞ GMRES iterations (this scaling is empirically deduced,
under the assumption that no large resonant cavities are present
in the media), i.e., it is essentially independent of the frequency.
Here, we provide a high-level review of the method of polarized
traces and its implementation and we direct the reader to Ze-
peda-Núñez and Demanet (2016) for a detailed exposition.
To precondition the SIE (equation 14) with the method of polar-

ized traces, the solution at the interfaces is decomposed in upgoing
and downgoing components, such that

u ¼ u↑ þ u↓; (15)

which defines the polarized wavefield

u ¼
�
u↓

u↑

�
: (16)

By introducing the polarized wavefield, we have deliberately
doubled the unknowns and produced an underdetermined system.
To close the system, we impose annihilation, or polarizing, condi-
tions (see section 3 of Zepeda-Núñez and Demanet, 2016) that are
encoded in matrix form as

Algorithm 3. Application of the boundary integral matrix M.

1: function u = BOUNDARY INTEGRAL (v)

2: ~f1 ¼ −δðzn1þ1 − zÞv1nl þ δðzn1 − zÞv2n1
3: w1 ¼ ðH1Þ−1~f1
4: ul

nl
¼ wl

nl
− vl

nl

5: for l ¼ 2∶L − 1

6: ~fl ¼ δðz1 − zÞvl−1
nl−1

− δðz0 − zÞvl1
− δðznlþ1 − zÞvl

nl
þ δðznl − zÞvlþ1

1

7: wl ¼ ðHlÞ−1~fl ▹ inner solve

8: ul1 ¼ wl
1 − vl1 ; u

l
nl

¼ wl
nl
− vl

nl

9: end for

10: ~fL ¼ δðz1 − zÞvL−1nL−1 − δðz0 − zÞvL1
11: wL ¼ ðHLÞ−1~fL
12: uL1 ¼ wL

1 − vL1
13: end functionFigure 2. Sparsity pattern of the SIE matrix in equation 14 (left) and

the polarized SIE matrix in equation 18 (right).

Algorithm 2. Online computation using the SIE reduction.

1: function u = HELMHOLTZ SOLVER f

2: for l ¼ 1∶L
3: fl ¼ fχΩl ▹ partition the source

4: end for

5: for l ¼ 1∶L
6: vl ¼ ðHlÞ−1fl ▹ solve local problems

7: end for

8: f ¼ ðv1n1 ; v21; v2n2 ; ; vL1 Þt ▹ form RHS

9: Mu ¼ f ▹ solve equation 14

10: for l ¼ 1∶L

11:
gl ¼ fl þ δðz1 − zÞul−1

nl−1
− δðz0 − zÞul1

−δðznlþ1 − zÞul
nl
þ δðznl − zÞulþ1

1

12: ul ¼ ðHlÞ−1gl ▹ inner solve

13: end for

14: u ¼ ðu1; u2; ; uL−1; uLÞt ▹ concatenate

15: end function
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A↑u↑ ¼ 0; and A↓u↓ ¼ 0: (17)

Requiring that the solution satisfies both equation 14 and the an-
nihilation conditions yields another equivalent formulation

Mu ¼ fs; (18)

where

M ¼
�
M M
A↓ A↑

�
; and fs ¼

�
fs
0

�
: (19)

Following a series of algebraic operations and permutations (for full
details, see Zepeda-Núñez and Demanet, 2016), we obtain an equiv-
alent formulation of the polarized SIE matrix in equation 18

M ¼
�
D↓ U
L D↑

�
: (20)

There exists straightforward, parallel algorithms for applying the
subblocks of the block matrices D↓, D↑, L, and U. By construction
D↓ andD↑ can be easily inverted using block forward and backward
substitution because they are block triangular with identity blocks
on their diagonals. The blocks that appear in the sparsity pattern of
M (Figure 2) are a direct manifestation of interactions between the
layer interfaces.
Although the resulting block linear system can be solved using

standard matrix-splitting iterations, such as block Jacobi iteration or
block Gauss-Seidel iteration (Saad, 2003), it is natural to continue
to use GMRES to solve the system due to the parallelizable nature
of applying the constituent blocks of M. Particularly, the structure
of M is convenient for using a single iteration of Gauss-Seidel as a
preconditioner

PMu ¼ Pfs; (21)

where the preconditioning matrix is

P ¼
�
D↓ O
L D↑

�
−1
: (22)

In the subsequent sections, we will elaborate on the physical and
numerical meanings of the constituent blocks of M and P.

Polarization

The main novelty of the method of polarized traces is due to the
polarization conditions, which are encoded in the matrices A↑ and
A↓. The polarizing conditions provide a streamlined way to define
an iterative solver using standard matrix splitting techniques, and thus
an efficient preconditioner for Krylov methods, such as GMRES.
The polarization conditions are constructed by projecting the sol-

ution on two orthogonal sets, physically given by waves traveling
upward and downward. Similar constructs are well-known to the
geophysics community because methods that decompose wave-
fields into distinct downgoing and upgoing components are the
backbone of several imaging techniques (see Zhang, 2006). Com-
monly, the decomposition is obtained using discretizations of pseu-
dodifferential operators, which can be interpreted as separating the

wavefield into a set of wave atoms traveling in different directions,
which are then propagated accordingly. Methods for decomposing
and locally extrapolating directionally decomposed wavefields are
well-documented (Wu, 1994; Collino and Joly, 1995; Ristow and
Ruehl, 1997; de Hoop et al., 2000).
In our case, we rewrite the decomposition condition as an integral

relation between the Neumann and Dirichlet data of the wavefield,
which ultimately leads to the annihilation conditions in equation 17.
The pair composed of the Neumann and Dirichlet traces should lie
within the null space of an integral operator defined on an interface,
which allows the decomposition of the total wavefield into the up-
going and downgoing components, with each having a clear physi-
cal interpretation. In particular, an upgoing wavefield is a wavefield
generated by a source located beneath the interface and it satisfies a
radiation condition at positive infinity and a downgoing wavefield is
a wavefield generated by a source located above the interface and it
satisfies a radiation condition at negative infinity. As detailed in Ze-
peda-Núñez and Demanet (2016), defining the decomposition in
this manner allows us to extrapolate each component in a stable
manner using an incomplete Green’s integral.
The extrapolation of upgoing components is performed algorith-

mically by the inversion ofD↑ and, in the same fashion, the extrapo-
lation of downgoing components is performed by the inversion of
D↓. Moreover, the application of the operator L isolates the upgoing
reflections due to downgoing waves interacting with the material in
each subdomain and similarly for the operator U.
The application of the preconditioner to a decomposed wavefield

P
�
v↓

v↑

�
¼

� ðD↓Þ−1v↓
ðD↑Þ−1r

�
; (23)

for r ¼ ðv↑ − LðD↓Þ−1v↓Þ, can be physically interpreted as follows:
• ðD↓Þ−1v↓: extrapolate the downgoing components by propa-

gating them downward.
• r ¼ ðv↑ − LðD↓Þ−1v↓Þ: compute the local reflection of the

extrapolated field and add them to the upgoing components.
• ðD↑Þ−1r: extrapolate the upgoing components by propagat-

ing them upward.

Algorithms

As with the application of M in Algorithm 3, we construct ma-
trix-free methods for solving ðD↓Þ−1 and ðD↑Þ−1 (Algorithms 4 and
5), where local solves are applied in an inherently sequential fash-
ion. To complete the preconditioner, a matrix-free (and embarrass-
ingly parallel) algorithm for applying L is given in Algorithm 6.
Similar algorithms for applying U, D↑, and D↓, as well as the
complete matrix-free algorithm for applying M, are provided in
Appendix A.
In solving the systems for ðD↓Þ−1 and ðD↑Þ−1, each application of

the local solver is local to each layer, which means that some com-
munication is required to transfer solution updates from one layer to
the next. The sequential nature of the method for solving these sys-
tems implies that only one set of processors, those assigned to the
current layer, is working at any given stage of the algorithm. This
is illustrated in Figure 3, where each block represents a local solve
and the execution path moves from left to right. As explained in
Zepeda-Núñez and Demanet (2016), it is possible to apply D↓
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and L simultaneously, thus decreasing the number of local solves
per layer.

Physical intuition

We deliberately present the preconditioner in a purely algebraic
fashion because it is instructive for implementing the method. How-
ever, there is a physical interpretation of the steps in the precondi-
tioner, which we describe below.
As alluded to previously, the application of the preconditioner,

and in particular the block back-substitution in Algorithms A-2
and A-3, can be seen as a sequence of depth extrapolation steps.
Indeed, lines 4 and 5 in Algorithm 4 are the discrete counterpart of
the incomplete Green’s integral defined by

u↓ðxÞ ¼
Z
Γl−1;l

ðGlðx; yÞ∂zu↓ðyÞ − ∂zGlðx; yÞu↓ðyÞÞdSy;

(24)

which is equivalent to the Rayleigh integral used to extrapolate a
wavefield measured in the surface toward the interior of the earth
by Berkhout (1980). Likewise, lines 4 and 5 of Algorithm 5 are the
discrete counterpart to an upgoing discrete Green’s integral.

The quality of the extrapolation depends directly on the quality
of the approximation of the local Green’s function Gl with respect
to the global Green’s function. In the reductive case, if the local
Green’s function is precisely the global Green’s function, the
method will converge in two iterations (see Gander, 2006). How-
ever, this is equivalent to solving the global problem, which is pro-
hibitively expensive. Instead, we compute a local approximation of
the Green’s function, such that the GRF is valid within the layer
only, not globally. As expected with domain-decomposition meth-
ods, incorrect local approximations introduce numerical artifacts,
which are typically due to truncating the domain in a manner that
is inconsistent with the underlying physics. In the method of polar-
ized traces, these issues are mitigated with judicious use of high-
order absorbing boundary conditions in the form of PMLs. As a
physical consequence, the local Green’s function can only see local
features within a particular layer. Far-field interactions, reflections
induced by material changes in the other layers, will not be ob-
served by the local Green’s function and must be handled itera-
tively, by sequentially sweeping through the domains.
An important consequence of the Green’s integral representation

is that it completely eliminates the difficulties that most domain-
decomposition methods have with seamlessly connecting subdo-
mains together. Rather than assigning data-dependent boundary
conditions, the coupling is performed using potentials defined on
the physical interfaces, and the absorbing boundary conditions in
an extended domain effectively dampen spurious reflections. The
transmission conditions given by the discrete GRF are algebraically
exact; thus, there is no need for tuning parameters.

PARALLELIZATION STRATEGIES

The computational effort needed to solve industrial scale 3D
problems requires aggressive parallelization and optimization of the
algorithm. To obtain a scalable implementation, the algorithm and
code must be designed to balance the use and occupancy of three
key resources: the computing cores, memory, and communication
network. In this section, we describe our parallel implementation of

Algorithm 4. Downward sweep, application of �D↓�−1.

1: function u↓ = DOWNWARD SWEEP (v↓)

2: u↓;1n1 ¼ −v↓;1n1

3: u↓;1
n1þ1

¼ −v↓;1
n1þ1

4: for l ¼ 2∶L − 1

5: ~fl ¼ δðz1 − zÞu↓;l−1
nl−1

− δðz0 − zÞu↓;l−1
nl−1þ1

6: wl ¼ ðHlÞ−1~fl
7: u↓;l

nl
¼ wnl − v↓;l

nl

8: u↓;l
nlþ1

¼ wnlþ1 − v↓;l
nlþ1

9: end for

10: u↓ ¼ ðu↓;1n1 ; u
↓;1
n1þ1

; u↓;2n2 ; : : : ; u
↓;L−1
nL−1 ; u↓;L−1nL−1þ1

Þt
11: end function

Algorithm 5. Upward sweep, application of �D↑�−1.

1: function u↑ = UPWARD SWEEP (v↑)

2: u↑;L0 ¼ −v↑;L0

3: u↑;L1 ¼ −v↑;L1

4: for l ¼ L − 1∶2
5: ~fl ¼ −δðznlþ1 − zÞu↑;lþ1

0 þ δðznl − zÞu↑;lþ1
1

6: wl ¼ ðHlÞ−1~fl
7: u↑;l1 ¼ wl

1 − v↑;l1

8: u↑;l0 ¼ wl
0 − v↑;l0

9: end for

10: u↑ ¼ ðu↑;20 ; u↑;21 ; u↑;30 ; : : : ; u↑;L0 ; u↑;L1 Þt
11: end function

Algorithm 6. Upward reflections, application of L.

1: function u↑ = UPWARD REFLECTIONS (v↓)

2: for l ¼ 2∶L − 1

3: fl ¼ δðz1 − zÞv↓;l0 − δðz0 − zÞv↓;l1

−δðznlþ1 − zÞv↓;lþ1
0 þ δðznl − zÞv↓;lþ1

1

4: wl ¼ ðHlÞ−1fl
5: u↑;l1 ¼ wl

1 − v↓;l1

6: u↑;l0 ¼ wl
0

7: end for

8: fL ¼ δðz1 − zÞv↑;L0 − δðz0 − zÞv↑;L1

9: wL ¼ ðHLÞ−1fL
10: u↑;L1 ¼ wL

1 − v↓;L1

11: u↑;L0 ¼ wL
0

12: u↑ ¼ ðu↑;20 ; u↑;21 ; u↑;30 ; : : : ; u↑;L0 ; u↑;L1 Þt
13: end function
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the method of polarized traces, with a focus on maximizing the use
of these resources.
In the previous section, we formally introduced a matrix-free

approach for preconditioning the SIE system on layer interfaces.
However, this approach still relies on local solves that are imple-
mented using a direct solver. It is possible to use specially designed
iterative local solvers by nesting the method of polarized traces
within each layer (Zepeda-Núñez and Demanet, 2018) or a recur-
sive version of the sweeping factorization (Liu and Ying, 2015).
However, such an approach would require a complicated code with
a very carefully implemented communication pattern. For simplic-
ity, and to broaden the portability of the framework, we use a hybrid
approach, in which the local solves use off-the-shelf numerical lin-
ear algebra libraries and the polarization is matrix-free. We will ad-
dress the parallelism on two fronts: intra- and interlayer parallelism.

Pipelining the many RHS

First, we address parallelism due to the layer decomposition.
Primarily, the parallelism across layers is due to the SIE and the
preconditioner used to help solve it. There are five trivially parallel
(by layer) applications of the local solver: four due to M and one
due to the appearance of L in the preconditioner. However, in the
preconditioner application, there are sequential bottlenecks due to
the applications of ðD↑Þ−1 and ðD↓Þ−1 via block back-substitution.
Despite the trivial parallel nature of the other local solver applica-
tions, applying the preconditioner using Algorithms 4 and 5 permits
work to be done on only one layer at a time, thus forcing most of the
computer to remain idle. This is illustrated in the top half of Fig-
ure 3, where each blue box represents a local solve and algorithm
execution moves from left to right. Supposing that each local solve
costs γðnÞ time, then following Figure 3, each GMRES iteration can
be performed in 5γðnÞ þ 2LγðnÞ, ignoring communication costs.
To alleviate the sequential bottleneck, we leverage the fact that

seismic problems have thousands of RHS and introduce pipelining.
Pipelining allows us to process multiple right sides simultaneously,
each at different levels of progress through the sweeps, which helps
to balance the computational load on the layers, reducing the idle
time and increasing the computational efficiency. The pipelining
principle is demonstrated in the bottom half of Figure 3, where the
boxes represent a local solve and the blue, green, and orange colors
indicate distinct RHS. Pipelining allows the layers to perform work
for different RHS simultaneously. Indeed, as long as there are at
least 2L RHS, the pipeline can be completely full and all available
compute resources will be occupied. For the pipelined algorithm,
again disregarding communication costs, the runtime of a GMRES
iteration is 5RγðnÞ þ 2ðLþ RÞγðnÞ. Recalling that L ∼ n, R ∼ n,
and γðnÞ ¼ Oðα2pmln

2 log nÞ, the cost ratio for solving R RHS
compared with one RHS is constant:

5RγðnÞ þ 2ðLþ RÞγðnÞ
5γðnÞ þ 2LγðnÞ ¼ Oð1Þ: (25)

One of the advantages of the method of polarized traces is that the
memory requirement to store the intermediate representation of the
solution is lower than other methods because it requires solutions
for the degrees of freedom involved in the SIE only. Thus, for each
RHS, only N∕q data need to be stored, where q is the thickness of
the interface. This reduction in storage, when combined with the

reduced storage due to the relatively small number of GMRES iter-
ations required for convergence, yields a smaller memory footprint
for the outer GMRES iteration than methods requiring to update the
full volume. It is possible to further reduce the memory footprint by
using Bi-CGSTAB instead of GMRES, keeping the computational
cost almost constant (Zepeda-Núñez and Demanet, 2018).

Parallel multifrontal local solves

To obtain good parallel performance, we use a high-performance
distributed linear algebra library to solve the local problems within
each layer. Due to the sparsity pattern of the linear system at each
layer, a typical recipe for the local solves is to reorder the degrees of
freedom to increase stability and reduce numerical fill-in, perform a
multifrontal factorization, and solve the resulting factorized system
with forward- and backward-substitution, often called triangular
solves. There exist many techniques to parallelize the multifrontal
factorization and the triangular solves (for a recent and extensive
review of different techniques for solving sparse systems, see
Davis et al., 2016). A popular approach is to use supernodal elimi-
nation trees (Ashcraft et al., 1987) defined through nested dissec-
tion, which results in highly scalable factorizations (Gupta et al.,
1997), albeit with less efficient triangular solves Joshi et al. (1997).
To avoid the poor scalability of dense triangular solves due to this
approach, Raghavan (1998) introduces a scheme called selective
inversion, which is applied by Poulson et al. (2013), specifically
for the Helmholtz problem. Although very efficient, using the tech-
niques mentioned before requires lengthy and complex code and we
choose to use off-the-shelf libraries, which can be effortlessly
changed if necessary.
For the results in this paper, we use STRUMPACK (Rouet et al.,

2016) to perform the local solves. STRUMPACK is a state-of-the-
art distributed sparse linear solver library that relies on supernodal
factorizations (it uses a ULV factorization when the compression is
turned on; Chandrasekaran et al., 2006; Xia, 2013), a 2D block-
cyclic distribution of the matrix, and a static mapping technique to
assign tasks to Message Passing Interface (MPI) processes based on
proportional mapping (Pothen and Sun, 1993) to achieve good

Figure 3. Sketch of the load of each node in the GMRES iteration.
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parallel performance. The implementation is competitive with other
distributed linear algebra solvers with liberal licenses, such as
SuperLU-DIST (Li and Demmel, 2003) and MUMPS (Amestoy
et al., 2001), while providing the user more freedom to arrange
the distribution of the matrix and RHS, within a distributed memory
environment, in a manner that is optimal for specific applications.
A strong advantage of STRUMPACK is that the factorization and

solve processes can be accelerated using compressed linear algebra,
in particular, HSS compression with nested bases, using randomized
sampling techniques. In general, using compressed formulations re-
duces the memory footprint and in some cases results in faster algo-
rithms. For the high-frequency regime, it is known that solvers based
on compression techniques do not provide a lower asymptotic com-
plexity, due to the fact that the ranks of the off-diagonal blocks are
frequency dependent (Engquist and Zhao, 2018). However, these
solvers still tend to provide smaller memory footprints for the cases
that we consider in this paper, albeit, with much bigger runtimes.
Therefore, we deliberately do not consider the performance of the
adaptive compression in this paper and leave such treatment for
future work.
The STRUMPACK solver addresses parallelism within layers in

two ways: classical distribution of tasks with MPI and synchronous
processing within each task with OpenMP, which we exploit for the
results presented in our numerical results. STRUMPACK’s hybrid
parallelism model allows us to maximize the use of computational
resources. We have designed the distribution of MPI tasks to exploit
highly asynchronous communication patterns, thus reducing the
communication time substantially.
Finally, in most of the experiments shown in the sequel, we proc-

ess at most one RHS per layer. It is possible to solve more than one
RHS per layer and take advantage of BLAS3 routines. Moreover, a

quick inspection to the algorithms within the preconditioner shows
that the RHS are sparse. Indeed, the sources are supported on the
interfaces, and the solutions are only needed at the boundaries. In
principle, it is possible to take advantage of the sparsity of the sol-
ution and the RHS to reduce the constants by removing some
branches from the elimination tree. These techniques would cer-
tainly reduce the constants, but they would have little impact on
the asymptotic scaling; hence, they were not explored in this study.
Support for these features is present in current revisions of the high-
performance linear algebra package, MUMPS (Amestoy et al.,
2001); however, at the time of development of our solver code,
the communication pattern and the data locality at each node
was not flexible enough to obtain the scalings reported in this paper.

Communication pattern

As is common in massively parallel applications, there is a bottle-
neck due to the communication between parallel tasks, which is
strongly dependent on the distribution of the tasks on the cluster.
For this implementation, we assume a very simple topology for
the distribution of unknowns. We distribute the parallel tasks follow-
ing the layer structure. For each slab of unknowns, we assign Oðn2Þ
tasks, and using MPI directives enforce that the tasks are contiguous
within physical computing nodes. Each slab is divided into Oðn2Þ
cubes, as illustrated in Figure 4, and the parallel tasks associated with
that slab are divided evenly and contiguously amongst the cubes.
Each cube contains a contiguous block of the solution, as shown in
Figure 4, and the associated entries of the local matrix.
Within the slab, the topology is designed such that each cube only

communicates with its neighboring cubes in the same slab, generally
inside the local solver. Across slabs, cubes only communicate with
the cube in the same position on the adjacent slabs immediately
above and below it, as illustrated in Figure 5. Under this particular
topology, we can distinguish two main communications bottlenecks:

1) the communication between parallel tasks within the distributed
linear algebra solver, and

2) the communication of the boundary data between slabs, during
the application of the preconditioner.

As a consequence of using third-party distributed linear algebra
solvers, we have little control over the communication pattern, par-
ticularly because STRUMPACK uses MC64 (Duff and Koster,
2001) for enhancing stability and ParMetis (Karypis and Kumar,
1998) to optimally reorder the matrix to reduce fill-in during the
factorization. To have the desired distribution of the degrees of free-
dom among the cubes, we reorder the matrix with a Z-ordering
(Asano et al., 1997), so that smallest division corresponds exactly
to the degrees of freedom within a cube. Then, the matrix is then
assembled and passed to the linear solver in a distributed fashion.
Communication between slabs is a product of the application of

the preconditioner in equation 22, in which back- and forward-sub-
stitution are used to apply ðD↑Þ−1 and ðD↓Þ−1. Algorithms A-2 and
A-3 require a local solve in each slab, followed by communication
of the trace information to the next slab, in which another local
solve is performed. This operation is repeated until all slabs are vis-
ited within the sweep.
By dividing the slabs into cubes, the communication of the trace

information between slabs is very efficient. Given that each cube
communicates with the cube directly above and below, it is possible

Figure 4. Sketch of the decomposition of the degrees of freedom of
the slabs in cubes.

Figure 5. Sketch of the asynchronous communication between
slabs.
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to perform asynchronous point-to-point communication between
the cubes of two adjacent slabs, as shown in Figure 5. This allows
the communication to be performed in nearly constant time, up to
saturation of the network. Moreover, the trace information is al-
ready distributed for distributed assembly of the RHS within the
subsequent slab. As stated before, it is possible to use topologies
better suited for the multifrontal solver, such as the one due to Poul-
son et al. (2013). However, such an implementation requires a very
precise understanding of the reordering mechanism within the
solver, which we do not generally have for black-box solvers.

COMPLEXITY OF POLARIZED TRACES

The runtime complexity of the polarized traces preconditioner is
driven by the costs of computation and communication. Achieving
optimal performance requires delicately balancing the parallel
distribution of the problem depending on the characteristics of the
target HPC system. In this section, we develop models for compu-
tation and communication costs, which guide problem parameter
selection in HPC environments.

Computation

As before, each layer has Oððnz þ αpmlÞ × n2Þ grid points; i.e.,
they are nz grid points thick with αpml additional points due to the
PML. We have that nz ¼ Oð1Þ because L ∼ n, which implies that
we are solving a quasi-2D problem. The additional cost is due only
to the points used to implement the absorbing boundary conditions.
When applying 2D nested dissection to the quasi-2D problem, we
haveOðαpmlnÞ degrees of freedom in the biggest front, thus leading
to a complexity of Oðα3pmln

3Þ for the factorization of the systems
local to each layer and Oðα2pmln

2 log nÞ for the application of the
triangular solver (Duff and Reid, 1983). Sequentially, the complex-
ity of Algorithm 1 is Oðα3pmlN

4∕3Þ, but given that the loop in line 2
of Algorithm 1 is embarrassingly parallelizable, Algorithm 1 can be
performed in Oðα3pmlNÞ time (as will be seen in the numerical ex-
periments, this scaling can be further reduced due to the parallelism
at the level of the multifrontal solver). Due to the sequential nature
of Algorithms 4 and 5, applying the preconditioner requires 2L
local solves per iteration, applied sequentially. Consequently, the
total complexity for the application of the preconditioner is
Oðα2pmlN log NÞ. For αpml ∼ log n, at most Oðlog nÞ iterations are
empirically needed to converge; thus, the complexity of the solver is
linear (up to polylogarithmic factors), provided that L ∼ n and that
the number of iterations for convergence grows slowly.
It is possible to relax the restriction that L ∼ n, instead allowing

L ∼ nb, where b < 1. However, in this regime, maintaining the over-
all linear complexity requires that we exchange the multifrontal
solver for an iterative solver (Liu and Ying, 2015; Zepeda-Núñez
and Demanet, 2018). The main disadvantage of this approach is that
it reduces the possible parallelism due to using multifrontal solvers,
which makes an efficient implementation of the pipelining difficult
and makes the communication patterns more complicated.

Pipelining

We introduced pipelining of R RHS to alleviate the sequential
nature of applying the preconditioner. To understand the runtime
impact of pipelining multiple RHS, we consider its impact on
the complexity of applying M and applying the preconditioner.

Given that the runtime cost of each local solve is
Oðα2pmln

2 log nÞ and recalling that applying M is embarrassingly
parallel, the cost of applying M to R RHS is Oðα2pmlRn

2 log nÞ.
As long as R ∼ L ∼ n, applying the preconditioner costs
OðLα2pmln

2 log nÞ. However, when R ≳ L, the additional RHS
are treated sequentially, resulting in a cost of Oðα2pmlRn

2 log nÞ.
Using the fact that L ∼ n and that N ¼ n3, we obtain the advertised
runtime of Oðα2pml maxð1; R∕LÞN logNÞÞ.

Communication

We treat the distributed linear algebra solver as a black box;
therefore, we do not analyze the costs of communication within
the local solve. Thus, we only consider the cost of communication
due to the global solve, that is, the costs of communicating between
subdomains across layers. We assume that that each subdomain has
fast access to its corresponding patch of the R wavefields and the R
sources. Moreover, we assume that each subdomain assembles and
stores its portion of the global solution (approaches stemming from
the complex shifted Laplacian; Erlangga et al., 2006) can be advan-
tageous if properly tuned. However, in general, they either require
an expensive solver for the shifted problem or require a large num-
ber of iterations to reach convergence, depending on the scaling
between the complex shift and the frequency (Gander et al., 2015).
The offline stage of the algorithm, assembly of the local matrices,

and the local factorizations, are embarrassingly parallel under the
assumptions described above. The online part has three stages:

1) the preparation of the RHS (lines 2–8 in Algorithm 2),
2) the solve of the SIE (lines 9 in Algorithm 2), and
3) the assembly of the global solution (lines 10–14 in Algorithm 2).

Of these, the first and third stages require no communication
under the above assumptions.
Solving the SIE has two main phases: the application of M and

the application of the preconditioner. Applying M, as shown in Al-
gorithm 3, is an embarrassingly parallel operation with zero com-
munication. On the other hand, applying the preconditioner, which
is fully sequential, requires communication of Oðn2Þ unknowns
from one layer to the next. In our implementation, these unknowns
are distributed evenly between Oðn2Þ MPI tasks. Using a point-to-
point communication strategy, each of the MPI tasks assigned to a
layer only communicates with one corresponding MPI task in the
adjacent (above and below) layers, as illustrated in Figure 5. Thus,
by exploiting asynchronous communication, the communication
between layers can be performed in Oð1Þ time up to saturation of
the bandwidth, which is asymptotically negligible with respect to
solving the local linear systems. This communication must be per-
formed OðLÞ times during each sweeping operation in Algorithms
4 and 5. Consequently, the total communication cost of applying the
preconditioner is OðnÞ, up to the saturation of the bandwidth.

NUMERICAL EXPERIMENTS

In this section, we present the results of several numerical experi-
ments used to verify the complexity described above. In particular,
we demonstrate the performance of the 3D preconditioner in various
heterogeneous media for a single source and then illustrate the impact
of pipelining on parallel performance. Our polarized traces imple-
mentation is written in C and compiled with the 2015 Intel compiler
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suite. The current implementation uses the IEEE double-precision
floating point. To perform the local solves, we use STRUMPACK
v1.1.0 with Intel MKL support for fast linear algebra operations.
The preconditioner is parallelized with MPI, and STRUMPACK is
parallelized with MPI and OpenMP. The experiments were per-
formed on Total’s “Laure” SGI ICE-X cluster, where each computing
node contains dual eight-core Intel Sandy Bridge processors, 64GB
of RAM and are connected with an Infiniband interconnect.

Homogeneous media

First, we demonstrate the effectiveness of the preconditioner by
solving the Helmholtz problem in homogeneous media. For this
model, and all non-SEAM synthetic models, the domain and the
wavespeed are rescaled and nondimensionalized, so that the length
of the domain and the slowest wavespeed are one. With no reflec-
tors in the medium, the convergence of the algorithm is only depen-
dent on the frequency and the quality of the absorbing boundary
condition at the layer interfaces. In this experiment, as well as
the subsequent experiments, αpml has sufficient points to minimize
artificial reverberations while simultaneously keeping the number
of iterations low. For higher frequencies, to preserve the low iter-
ation count, we would need to scale αpml as Oðlog nÞ. In practice,
we add one point each time we double the frequency starting from
four points at lowest frequency considered.
In this experiment, we test four sizes, n ¼ 50, 100, 200, and 400,

which corresponds to frequencies of 8, 16, 32, and 64 Hz. The source
frequency is scaled with the problem size to stay in the high-fre-
quency regime, and sources are assumed to be point sources. The
number of layers is also scaled with the problem, L ¼ 5, 10, 20,
and 40. Due to memory limitations on the computing node, in some
cases, the nodes were saturated before all cores could be assigned to
anMPI task. For these cases, we allow the remaining cores to be used

for multithreaded processing with OpenMP. The outer GMRES iter-
ation terminates when the residual of the preconditioned system is
reduced to 10−7, which is excessive in a production, single-precision
environment; however, it shows the favorable behavior of the solver
under more challenging conditions. Lower tolerances can produce
misleading results when frequencies are not high enough, only
revealing a preasymptotic behavior. For each configuration, we report
the wall-clock times for initialization, matrix assembly, matrix fac-
torization, and total online time for R ¼ 1 and R ¼ L with pipelin-
ing. For each experiment, R is large enough to fill the pipeline and
demonstrate that we are in the asymptotic regime. Additionally, we
track the number of GMRES iterations required to achieve the desired
convergence.
The solution at 64 Hz is provided in Figure 6. The full results of

the experiment are given in Table 1 and the observed runtimes, com-
pared with the theoretical runtimes for R ¼ 1 and R ¼ L pipelined
RHS are shown in Figures 7 and 8, respectively. Only when R ≥ L
does the theoretical scalability break the linear threshold; however,
in both cases, the method of polarized traces scales better than the
theoretical scaling, which we attribute to optimizations and paral-
lelism in the local solver. Of note in Table 1, the number of GMRES
iterations grows very slowly with the frequency, even when we do
not scale αpml optimally. In the experiments in which hybrid paral-
lelism (MPI-OpenMP) is used, the runtimes are reduced almost lin-
early for medium-sized problems; however, the improvements fade
as the size of the problem increases. This behavior is due to the
linear solver, whereas for large problems, the memory access time
in the triangular solves becomes dominant, reducing the parallelism.

Smooth heterogeneous media

Using the same configurations as above, we solve the Helmholtz
problem in the smoothed random media shown in Figure 9 to

Table 1. Runtime (in seconds) for one and several RHS for the solution of the Helmholtz equation using a homogeneous model.

N 503 1003 1003 2003 2003 4003 4003 4003

L 5 10 10 20 20 40 40 40

MPI tasks 5 10 10 80 80 640 640 640

OpenMP threads per task 1 1 2 1 2 1 2 3

Total cores 5 10 20 80 160 640 1280 1920

Total nodes 1 1 2 5 10 80 80 128

Single RHS

# GMRES iterations 4 4 4 5 5 6 6 6

Initialization (s) 0.2 1.0 0.9 6.9 4.4 18.9 18.9 18.4

Factorization (s) 4.1 41.1 21.9 153.2 78.3 320.5 200.1 148.6

Online (s) 4.0 39.2 22.6 182.0 109.7 696.6 401.4 315.5

Average GMRES (s) 0.9 8.4 4.8 32.0 19.2 103.5 59.3 46.6

Pipelined RHS

R (number of RHS) 5 10 10 20 20 40 40 40

Online (s) 15.8 189.4 106.2 1255.5 668.5 3994.2 2654.4 1878.1

Average GMRES (s) 3.4 40.6 22.7 223.8 118.6 599.9 401.0 283.0

Online per RHS (s) 3.2 18.9 10.6 62.8 33.4 99.9 66.4 47.0

Average GMRES per RHS (s) 0.7 4.1 2.3 11.2 5.9 15.0 10.0 7.1

T324 Zepeda-Núñez et al.

D
ow

nl
oa

de
d 

10
/1

0/
19

 to
 1

8.
20

.1
79

.2
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



demonstrate the effectiveness of the solver in heterogeneous media.
This test demonstrates that the method is particularly robust to
media, where the rays can bend and develop caustics. The solution
for the configuration equivalent to that of Figure 6 is given in
Figure 10. In Figure 10, it is clear that the features of the model
are comparable to the wavelength used, thus the solution presents
interference, caustics, nonspherical wavefronts. Table 2 contains the
complete experimental results, where we observe that the variation
in the media has little real effect on the runtime or convergence
properties. In this case, even if the rays bend, the preconditioner
does a remarkable job at tracking the rays in the correct direction
and propagating them accordingly. The wall times are shown in
Figures 7 and 8.

Fault model

In general, iterative methods are very sensitive to discontinuous
media. At a high frequency, interaction with short-wavelength
structures, such as discontinuities, increases the number of reflec-
tions. Each additional reflection requires additional iterations to
convergence, hindering the efficiency of iterative methods.
Using the same configuration as for the homogeneous model,

with the discontinuous velocity given in Figure 11, we demonstrate
that the method of polarized traces deteriorates only marginally as a

Figure 6. Solution of the Helmholtz equation, at 64 Hz, in constant
wavespeed 1 (unitless).

0.125 1 8 64
100

101

102

103

104

105

Theoretical
Linear O(RN)
Constant OMP 1
Constant OMP 2

Smooth OMP 1
Smooth OMP 2
Fault OMP 1
Fault OMP 2

Figure 7. Observed runtime as a function of N for homogeneous
media (green), smooth heterogeneous media (blue), and the “fault”
model (orange), with pure MPI (solid) and hybrid MPI-OpenMP
(dashed) for R ¼ 1 RHS. For comparison, theoretical scaling of po-
larized traces algorithm is given (solid black) as well as linear scal-
ing (dashed black).

0.125 1 8 64
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104

105
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Theoretical
Linear O(RN)
Constant OMP 1
Constant OMP 2

Smooth OMP 1
Smooth OMP 2
Fault OMP 1
Fault OMP 2

Figure 8. Observed runtime as a function of N for homogeneous
media (green), smooth heterogeneous media (blue), and the fault
model (orange), with pure MPI (solid) and hybrid MPI-OpenMP
(dashed) for R ¼ L RHS. For comparison, theoretical scaling of
polarized traces algorithm is given (solid black) as well as linear
scaling (dashed black).

Figure 9. Randomly generated smooth heterogeneous medium.
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function of the frequency and number of subdomains. A solution at
64 Hz is given in Figure 12, and the runtime scalability is again
given in Figures 7 and 8. As shown in Table 3, we observe the same
behavior as in the previous cases and that the strong reflection is
handed efficiently by the transmission and polarizing conditions.

SEAM model

Beyond mere sensitivity to discontinuities of the medium, itera-
tive solvers are highly sensitive to the roughness and heterogeneity
of the velocity model, due to the complexity of interactions, reflec-
tions, and drastic changes of direction of waves in the presence of
high gradients in the wavespeed. However, the performance method
of polarized traces degrades only marginally for highly hetero-

Figure 10. Real part of the solution to the Helmholtz equation using
the random smooth medium.

Table 2. Runtime (in seconds) for one and several RHS for the solution of the Helmholtz equation for the smooth model in
Figure 9.

N 503 1003 1003 2003 2003 4003 4003 4003

L 5 10 10 20 20 40 40 40

MPI tasks 5 10 10 80 80 640 640 640

OpenMP threads per task 1 1 2 1 2 1 2 3

Total cores 5 10 20 80 160 640 1280 1920

Total nodes 1 1 2 5 10 80 80 128

Single RHS

# GMRES iterations 5 5 5 5 5 6 6 6

Initialization (s) 0.2 1.1 1.0 7.3 4.6 21.3 21.2 20.8

Factorization (s) 3.8 41.1 21.8 156.0 79.4 323.7 204.5 151.5

Online (s) 4.6 45.9 26.1 202.2 106.9 717.0 400.1 314.5

Average GMRES (s) 0.8 8.1 4.6 35.5 18.7 106.4 59.2 46.5

Pipelined RHS

R (number of RHS) 5 10 10 20 20 40 40 40

Online (s) 17.1 225.1 118.8 1260.9 650.2 4085.0 2714.8 1872.1

Average GMRES (s) 3.0 39.8 20.9 223.6 115.6 613.3 409.2 281.9

Online per RHS (s) 3.4 22.5 11.9 63.0 32.5 102.1 67.9 46.8

Average GMRES per RHS (s) 0.6 4.0 2.1 11.2 5.8 15.3 10.2 7.0

Figure 11. Simple fault model.
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geneous media, except in the presence resonant cavities, where the
increase in number of reflections leads to an increase in iterations
required for convergence (for a detailed study of the limitations of
the method of polarized traces, see Zepeda-Núñez and Demanet,
2018). We demonstrate this desirable performance on the SEAM
Phase I velocity model (Fehler and Keliher, 2011), shown in Fig-
ure 13, which contains rough heterogeneities such as a complex salt
body and several stratified regions. In this experiment, we test three

problem sizes, N ¼ 0.65, 5.16, and 41.2M degrees of freedom,
which use L ¼ 12; 24, and 48 layers, respectively. The remainder
of the experimental setup is unchanged. An example solution, plot-
ted over the velocity model, is given in Figure 14.
As seen in the data in Table 4 and plotted in Figures 15 and 16,

the runtimes are sublinear with respect to the total number of un-
knowns. Interestingly, we also observe a sublinear runtime in the
offline stages of the algorithm, which we attribute to the parallelism

Figure 12. Real part of the solution to the Helmholtz equation using
the simple fault model.

Table 3. Runtime (in seconds) for one and several RHS for the solution of the Helmholtz equation for the fault model.

N 503 1003 1003 2003 2003 4003 4003 4003

L 5 10 10 20 20 40 40 40

MPI tasks 5 10 10 80 80 640 640 640

OpenMP threads per task 1 1 2 1 2 1 2 3

Total cores 5 10 20 80 160 640 1280 1920

Total nodes 1 1 2 5 10 80 80 128

Single RHS

# GMRES iterations 4 5 5 5 5 6 6 6

Initialization (s) 0.4 1.1 1.0 7.3 4.7 20.4 20.3 21.0

Factorization (s) 3.8 40.4 22.1 152.2 79.9 317.6 199.5 152.5

Online (s) 3.7 46.2 26.2 188.5 109.8 713.2 395.8 315.6

Average GMRES (s) 0.8 8.1 4.6 33.0 19.2 106.2 58.7 46.5

Pipelined RHS

R (number of RHS) 5 10 10 20 20 40 40 40

Online (s) 13.7 226.7 122.4 1222.7 647.1 4031.6 2710.6 1838.9

Average GMRES (s) 2.9 40.1 21.6 216.5 114.7 605.0 409.9 276.3

Online per RHS (s) 2.7 22.7 12.2 61.1 32.4 100.8 67.7 46.0

Average GMRES per RHS (s) 0.6 4.0 2.2 10.8 5.7 15.1 10.2 6.9

Figure 13. Plot of the SEAM model.
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in the multifrontal factorization. This is expected because the
factorization is more computationally intensive than memory inten-
sive. In the more memory-intensive, and thus less parallel, solve
phase, we still see an improvement over the theoretical curve, but
the improvement is less pronounced.
Finally, for the largest test case, we demonstrate the impact of

pipelining by comparing the scalability of our method with the theo-

retical scalability, as a function of R. As shown in Figure 17,
experimental results indicate that we obtain the expected scalability.
A slight divergence from the theoretical curve is expected once the
pipeline is fully saturated because the theoretical curve does not
take into account the cost of filling and flushing the pipeline.
Finally, Figure 17 depicts the behavior of the pipelining as we

increase the number of RHS. As expected, as we add more and more
RHS to be solved simultaneously, the runtime per RHS decreases,
until the pipeline is full, when the average runtime remains almost
constant.

Figure 14. Real part of the solution of the Helmholtz equation us-
ing the SEAM model.

Table 4. Runtime (in seconds) for one and several RHS for the solution of the Helmholtz equation for the SEAM model. The
application of the polarized system defined in equation 18 is achieved by applying each block as shown in Algorithm A-1.

N 6.51 · 105 5.16 · 106 4.12 · 107 4.12 · 107

L 12 24 48 48

MPI tasks 12 48 384 384

OpenMP threads per task 1 2 2 3

Total cores 12 96 768 1152

Total nodes 1 6 77 77

Single RHS

# GMRES iterations 4 5 6 6

Initialization (s) 0.6 2.3 10.4 10.7

Factorization (s) 15.2 46.5 111.4 97.9

Online (s) 21.4 85.6 269.8 228.4

Average GMRES (s) 4.6 14.9 40.0 33.7

Pipelined RHS

R (number of RHS) 12 24 48 48

Online (s) 106.3 474.8 1527.1 1415.4

Average GMRES (s) 22.8 83.9 229.4 212.9

Online per RHS (s) 8.8 19.8 31.8 29.5

Average GMRES per RHS (s) 1.9 3.5 4.8 4.4

52.1471.556.0
101

102

103

104

105

Theoretical Linear O(RN) SEAM

Figure 15. Observed runtime as function of N for the SEAMmodel
for R ¼ 1 RHS. For comparison, we show the theoretical scaling of
the polarized trace algorithm (solid black), as well as a linear scaling
(dashed black).
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DISCUSSION

Accuracy of the global solution

Although the focus of this paper is on solving equation 3, for
completeness, we provide an overview of challenges associated
with the discretization.
From the Shannon-Nyquist sampling theorem, an oscillatory

function at frequency ω requires OðωdÞ degrees of freedom to be
accurately represented, without aliasing. For example, to accurately
represent the solution of equation 1, onlyOðω3Þ degrees of freedom
are required. At this limit, the accuracy is still limited by the error in
the discretization of the differential operator. Even if the medium is
very smooth, standard methods based on finite differences and finite
elements are subject to pollution error: The ratio between the error
of the numerical approximation and the best approximation cannot
be bounded independently of ω (Babuska et al., 1995; Ihlenburg
and Babuska, 1995; Babuska and Banerjee, 2012).
The direct consequence of pollution error is that the approxima-

tion error, i.e., the error between the analytical and the numerical
solution to the linear system, increases with the frequency, even if
n ∼ ω. Thus, to obtain a bounded approximation error independent
of the frequency, one must oversample the wavefield, relative to the
Shannon-Nyquist criterion — n must grow faster than ω. Unfortu-
nately, oversampling provides discretizations with a suboptimal
number of degrees of freedom with respect to the frequency.
To alleviate pollution error, several new approaches have been

proposed, which can be broadly classified into two groups:

1) methods using standard polynomial bases with modified varia-
tional formulations (Goldstein, 1986; Melenk and Sauter, 2011;
Melenk et al., 2013; Moiola and Spence, 2014; Graham
et al., 2015)

2) methods based on well-known variational formulations but us-
ing a nonstandard basis, such as plane waves (Hiptmair et al.,
2016; Perugia et al., 2016), polynomials modulated by plane
waves (Betcke and Phillips, 2012; Nguyen et al., 2015), or other
specially adapted functions.

Even though the methods mentioned above have been successful
in reducing pollution error, the resulting linear systems cannot, in
general, be solved in quasilinear time or better because the matrices
either have a high degree of interconnectivity or are extremely ill-
conditioned. However, under some hypothesis, it is possible to use
asymptotic information or a reformulation as an integral equation to
bypass the pollution error.
In that regard, the method of polarized traces has been be ex-

tended to take advantage of these special cases to solve equation 1
without pollution error and with quasilinear complexity for smooth
media (Fang et al., 2017) and for media with compactly supported
heterogeneities (Zepeda-Núñez and Zhao, 2016). For highly hetero-
geneous media, the accuracy of finite elements has not been exten-
sively studied; however, the method of polarized traces has been
coupled with efficient hybridizable discontinuous Galerkin discre-
tizations for highly heterogeneous media (Taus et al., 2016).
In this paper, we assume that waves will propagate in very gen-

eral and highly heterogeneous media; thus, we do not have a theo-
retical framework to assess the accuracy. Instead, we use numerical
experiments to check the accuracy of the solution. We compare our
solution with one generated by solving the PDE on a grid with twice
the number of points per wavelength, and we obtain a higher order
accurate solution via Richardson extrapolation. In this regime, we
observed a relative error of less than 10% between our solution and
the numerical baseline.

Extensions of the method

Other discretizations

Although the method of polarized traces is not restricted to the
second-order finite differences used in this study, applying higher
order finite-difference schemes makes the numerical implementation
slightly more complicated and expensive. The increased size of higher
order stencils requires thicker (in terms of grid points) coupling layers
in the interface regions, which increases the memory footprint. The
resulting computation is slightly more complicated but is definitely
still feasible.

52.1471.556.0
101

102

103

104

105

Theoretical Linear O(RN) SEAM

Figure 16. Observed runtime as function of N for the SEAMmodel
for R ¼ L RHS. For comparison, we show the theoretical scaling of
the polarized traces algorithm (solid black), as well as a linear scal-
ing (dashed black).

1 2 4 8 16 32 64 128
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102
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104
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Figure 17. The impact of scalability on pipelining for the SEAM
model. N is held constant and R is increased. The observed runtime
as function of R is in green, and the dashed black line illustrates the
theoretical scalability.
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Also, although we present our method in the context of finite
differences, the framework is also valid in the context of finite-element
(Taus et al., 2016; Fang et al., 2017) and integral-equation (Zepeda-
Núñez and Zhao, 2016) formulations. Additionally, the method can be
easily extended to finite elements with unstructured meshes using, for
example, the PML proposed in Bermúdez et al. (2007), with the ca-
veat that the partition of the medium in slabs may become slightly
more cumbersome to work with.

Attenuation

In this study, we have not explicitly addressed the Helmholtz
equation in the presence of interior attenuation. Attenuation can
be interpreted as a complex shift in frequency, which provides addi-
tional dampening throughout the attenuated region, which generally
improves the performance of iterative and hybrid solvers. For a
sweeping method preconditioned with polarized traces, one can ex-
pect a reduction in the number of Krylov solver iterations required,
due to the reduction in reflections caused by the attenuation. How-
ever, in heavily attenuated cases, for similar reasons, the problem
may be easier to solve with other methods, such as multigrid meth-
ods. For an extensive review of attenuated Helmholtz equations, we
refer to Gander et al. (2015).

Nonacoustic physics

Our method relies only on the sparsity of the matrix and an
efficient implementation of an absorbing boundary condition for
an efficient implementation. The efficiency and scalability are
not due our choice of isotropic acoustic physics for this study.
The sparsity pattern in the discrete time-harmonic wave equation
is a by-product of the discretization, and it can be manipulated to
extend the method to other regimes, e.g., the time-harmonic elastic
case. Such an extension can be obtained using, e.g., a finite-difference
discretization of the time-harmonic elastic wave equation, and
after reordering the degrees of freedom by clustering unknowns as-
sociated to grid points nearby in space, it is possible to obtain a block-
banded system. The mathematical and computational machinery de-
veloped in this paper, and related results (e.g., Zepeda-Núñez and
Demanet, 2018), are then applicable. For example, Zepeda-Núñez
and Zhao (2016) extend the method of polarized traces to solve
an unphysical discretization coming from a minimization problem,
in which the main challenge was building the nonreflecting boundary
conditions.

CONCLUSION

We have presented a new and efficient solver for the 3D high-
frequency Helmholtz equation in heterogeneous media. The solver
achieves sublinear runtimes by leveraging the pipelining and effec-
tive communication patterns surrounding a well-parallelized black-
box local solver. The method presented in this paper broadens the
applicability of parallel direct methods by embedding them in a do-
main-decomposition method whose rate of convergence is indepen-
dent of the frequency, subject to the constraint that there are no
subwavelength structures oriented perpendicularly to the sweeping
direction and that there are no large resonant structures in the medium.
Although the results obtained in our study show excellent perfor-
mance in relatively simple media and in the complicated SEAM
model, we would expect the performance to degrade in these regimes

in which there will be more reflections. That said, in some cases, the
performance degradation can be mitigated by decomposing the
domain in different dimensions.
Our implementation of the proposed solver shows that it is

possible to scale the problem size and the number of RHS, while
preserving a compute time that scales sublinearly with respect to the
total number of degrees of freedom. A next step would be to in-
crease the number of RHS, processing them in batches. In our treat-
ment, we restricted our usage to a single RHS per layer, which is
overly conservative. By using BLAS3 operations supporting multi-
ple RHS, one would expect only a slight increase of the overall
runtime with no degradation to the asymptotic performance.
A scalable solver for the time-harmonic wave equation is critical

to make feasible solving the subsurface inversion problem in the
frequency domain. By exploiting pipelining, the approach we have
presented makes optimal use of HPC systems and optimal reuse of
numerical calculations. Specifically, by paying an upfront factori-
zation cost that is always proportional to the cost of the current best-
available direct or hybrid solvers on the subdomains, we can opti-
mally saturate HPC clusters by processing multiple RHS simulta-
neously. By holding the number of subdomains proportional to the
number of RHS, this approach easily scales to the number of RHS
necessary to solve FWI problems. With parallelism over subdo-
mains, within the local subdomain solves, and across multiple prob-
lems (RHS), the method presented here makes maximal use of
parallelism.
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APPENDIX A

ALGORITHM

To apply the blocks in a matrix-free fashion, we use
Algorithms A-2 and 6 in line 4 of Algorithm A-1, and we use
Algorithms A-3 and A-4 in line 5 of Algorithm A-1. All algorithms
in this section are embarrassingly parallel at the level of the layers as
depicted in Figure 3.

Algorithm A-1. Application of M.

1: function u = APPLICATION POLARIZED (v)

2: ðv↓; v↑Þ ¼ v

3: u↓ ¼ D↓v↓ þ Uv↑

4: u↑ ¼ D↑v↑ þ Lv↓

5: u ¼ ðu↓; u↑Þ
6: end function
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Algorithm A-4. Downward reflections, application of U.
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