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a b s t r a c t 

We address the extension of Jeffery’s model, governing the orientation of rods immersed in a Newto- 

nian fluid, to confined regimes occurring when the thickness of the flow domain is narrower than the 

rod length. The main modelling ingredients concern: (i) the consideration of the rod interactions with 

one or both gap walls and their effects on the rod orientation kinematics; and (ii) the consideration of 

non-uniform strain rates at the scale of the rod, requiring higher-order descriptions. Such scenarios are 

very close to those encountered in real composites forming processes and have never been appropriately 

addressed from a microstructural point of view. We also show that confinement conditions affect the 

rheology of the suspension. 

© 2016 Published by Elsevier B.V. 
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1. Introduction 

Short fibre-reinforced polymer composites are widely used in

manufacturing industries to produce lightweight structural and

functional parts with enhanced mechanical properties. Forming

processes commonly involve injection or compression moulding,

where the short fibre composite behaves as a fibre suspension. The

orientation of the fibres is impacted by the flowing matrix and in-

teractions with the neighbouring fibres and cavity walls. Predicting

the evolution of the orientation state can be extremely complex,

and changes in fibre orientation correspond to changes in the final

mechanical properties of the part. Thus, modelling tools are of cru-

cial importance to predict the orientation of fibres during the pro-

cess and were the subject of intense research over the last decades.

Fibre suspensions can be described at three different scales:

(i) the microscopic scale, the scale of the fibre; (ii) the mesoscopic

scale, the scale of a population of fibres; and (iii) the macroscopic

scale, the scale of the part. 

Most models used to describe such suspensions are built upon

Jeffery’s pioneering work. In his classical 1922 paper [11] , Jeffery

studied the evolution of the orientation of a rigid ellipsoid sus-

pended in a Newtonian fluid in a Stokes flow field and showed that

particles rotate about the vorticity axis. The orientation of the par-
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icle is then given by the time evolution of a unit vector p aligned

ith the fibre axis. Particularized to rods (infinite aspect-ratio el-

ipsoids), the microscopic Jeffery equation thus reads 

˙ 
 = � · p + (D · p − (∇v : (p � p )) p ) , (1)

here D = 

1 
2 (∇v + (∇ v ) T ) and � = 

1 
2 (∇ v − (∇v ) T ) are respec-

ively the symmetric and skew-symmetric components of the ve-

ocity gradient ∇v . 

At the mesoscopic scale, the individuality of fibres is lost in

avour of a statistical description of a population of fibres, and the

onformation is given by ψ( x , t , p ), the probability density func-

ion – pdf – giving for each position x and time t , the fraction of

bres aligned along direction p . The evolution of the pdf follows a

okker–Planck equation: 

∂ψ 

∂t 
+ ∇ x · ( ̇ x ψ) + ∇ p · ( ̇ p ψ) = 0 , (2)

here ˙ x = v (x , t) and the rod rotary velocity ˙ p is given by Jeffery’s

quation. 

Finally, at the macroscopic scale, we coarsen a little bit more

o derive macroscopic descriptors defined in standard physical do-

ains (i.e. only space and time). The pdf is thus substituted by

ome of its moments [3] . The first two non-zero moments are then

he second-order moment or second-order orientation tensor 

 = 

∫ 
S 
(p � p ) ψ(p ) d p (3)

nd the fourth-order moment 

 = 

∫ 
(p � p � p � p ) ψ(p ) d p . (4)
S 
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A wide literature [4,8–10] , developed upon Jeffery’s theory, is

vailable and richer models were proposed. We refer to the review

y Petrie [14] and the reference therein for an overview of the rhe-

logy of fibre suspensions. In particular, the well-known Folgar–

ucker model [7] accurately models the effect of fibre-fibre interac-

ions in the semi-dilute and semi-concentrated regimes by adding

 randomizing diffusion term to Jeffery’s model. 

Model predictions using the Folgar–Tucker model compared to

xperimental results suggest however that the rate of fibre ori-

ntation is slower than theory predicts. Hence, the models were

urther enriched [6,15,17,18] in order to take into account the ob-

erved delay (attributed for a long time to fibre-fibre interactions),

ither by introducing a “slip” parameter in the model or by tak-

ng into account interaction mechanisms in a multi-scale approach.

n [13] , we pointed out the impact that confinement can have on

he orientation kinematics of suspended fibres in flow processes

ith narrow gaps, i.e. when the fibre length is of the same order

f magnitude as the flow domain. In particular, we showed the in-

dequacy of classical macroscopic models to address confinement

onditions, which exhibit faster orientation rate than microscopic

imulation based on the same physics. 

In our previous work [13] , we proposed a multi-scale descrip-

ion of rod orientation in confined conditions and simple shear

ows. In this work, we extend the confined microscopic model

ithin a second-gradient framework in order to address more real-

stic flows (i.e. parabolic velocity profiles encountered in Poiseuille

r squeeze flows). We also consider the interaction of a rod with

 single gap wall and predict “pole-vaulting” patterns as reported

n experimental works [16] . Finally, we investigate the rheology of

onfined rod suspensions and discuss the problem of macroscopic

escriptors in confined conditions 

The paper is organized as follows: Section 2 is devoted to the

erivation of a microscopic model for a confined fibre. This model

s an extension of that introduced in [13] and is based on a dumb-

ell representation of a suspended fibre. In Section 3 , the model is

pplied successively to Poiseuille and squeeze flows. Then, the is-

ue of representing a confined suspension at the macroscopic scale

s discussed in Section 4 . Finally, the contribution of a confined rod

o the rheology is considered in Section 5 . 

emark 1. In this paper, we consider the following tensor products,

ssuming Einstein’s summation convention: 

• if a and b are first-order tensors, then the single contraction “·”
reads (a · b ) = a j b j ; 

• if a and b are first-order tensors, then the dyadic product “�”

reads (a � b ) jk = a j b k ; 
• if a and b are respectively second and first-order tensors, then

the single contraction “·” reads (a · b ) j = a jm 

b m 

; 
• if a and b are second-order tensors, then the double contraction

“:” reads (a : b ) = a jk b k j ; 
• if a and b are respectively second and fourth-order tensors,

then the double contraction “:” reads (a : b ) jk = a ml b ml jk . 

. Second-gradient modelling of confined fibres 

We consider a Newtonian fluid of viscosity η and a non-

rownian, inertialess, high aspect ratio rod of length 2 L immersed

n it. The 3D-orientation of the rod is described by the unit vec-

or p located at the rod centre of gravity G and aligned with its

xis. We assume that the presence and orientation of the rod do

ot affect the flow velocity field defined by v . The first and second

radient of the fluid velocity field are respectively denoted by ∇v

nd H . 

The flow occurs in a narrow gap � × [ −H, H] , with [ x y ] ∈ � ⊆
 

2 assumed large enough and z ∈ [ −H, H] . Unless otherwise speci-

ed, we assume H < L to ensure confinement conditions. 
In the sequel, we consider the rigid dumbbell model to repre-

ent the rod [2,5] , enriched with an extra bead located at its cen-

re of gravity. The value of the hydrodynamic friction coefficient

ssigned to this extra bead is adjusted in order to ensure the hy-

othetical right rod motion as discussed below. 

The use of the classical 2-bead representation would result in

nmoving rods as soon as the end beads interact with the walls

since the fluid velocity vanishes at the domain boundaries in a

oiseuille flow). Such a situation was considered as unphysical and

otivated the introduction of the third bead at the rod’s centre of

ravity. This extra bead ensures that the rod is experiencing the

uid flow at any time. 

Each inertialess bead is subject to a hydrodynamic force (Stokes

rag) due to the surrounding flow. An additional contact force ap-

ears on the external beads as soon as the rod touches the gap

all. Thus, 

• The hydrodynamic force F H acting on each bead depends on

the difference of velocities between the fluid at the bead loca-

tion and the bead itself. For the bead located at p L , the former

is given by v 0 + ∇v · p L + H : (p � p ) L 2 (with v 0 the velocity of

the fluid at the centre of gravity G ) and the latter by v G + 

˙ p L

(with v G the velocity of the centre of gravity G ). We consider

here a second-gradient modelling framework and the compo-

nents of H read H i jk = 

1 
2 

∂v i 
∂ x j ∂ x k 

. The hydrodynamic force acting

on the bead located at p L reads 

F H (p L ) = ξ (v 0 + ∇v · p L + H : (p � p ) L 2 − v G − ˙ p L ) , (5)

where ξ is a friction coefficient. 
• The contact force is assumed to act perpendicularly to the wall:

F C (p L ) = μn , (6)

with n 

T = [0 0 1] and F C (p L ) = −F C (−p L ) . The value of the in-

tensity parameter μ is of course unknown and will be deduced

from the underlying physics. In order to obtain it, we enforce

that the contact force appears to prevent the rod from leaving

the flow domain. In other words, the contact force μn must en-

sure that the resulting velocity is tangent to the upper surface,

that is 

(v G + 

˙ p L ) · n = 0 . (7)

This equation is referred as the impenetrability condition . 
• The friction force between the interacting bead and the wall,

sacaling with the bead velocity, could also be added, 

F F (p L ) = −ν(v G + 

˙ p L ) , (8)

where ν is the friction coefficient at the wall. This frintion force

is however not considered in the proposed model. 

In the remainder of this section, we successively review the fol-

owing scenarios: (i) the rod does not interact with the walls –

nconfined motion ( Fig. 1 (a)); (ii) the rod interacts with one of the

alls through one of its beads – wall effects ( Fig. 1 (b)); and (iii)

oth extremities of the rod are in contact with the gap walls –

onfined motion ( Fig. 1 (c)). 

.1. Unconfined motion 

In the first scenario, the rod does not interact with the sur-

ounding walls ( Fig. 1 (a)) and thus only hydrodynamic forces act

n the beads. 

The hydrodynamic forces on the three beads read 

 

H (p L ) = ξ (v 0 + ∇v · p L + H : (p � p ) L 2 − v G − ˙ p L ) , (9) 

 

H 
G = ξ ′ (v 0 − v G ) , (10) 
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Fig. 1. Forces acting on a suspended rod. 
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F H (−p L ) = ξ (v 0 − ∇v · p L + H : (p � p ) L 2 − v G + 

˙ p L ) , (11)

where ξ and ξ ′ are friction coefficients. 

On the one hand, balance of forces F H (p L ) + F H (−p L ) + F H 
G 

= 0

yields 

v G = v 0 + 

2 ξ

2 ξ + ξ ′ H : (p � p ) L 2 , (12)

that is, the rod center of gravity has a relative velocity (drift) with

respect to the fluid at this position 

On the other hand, balance of torques provides the rod rotary

velocity, which in this case is simply Jeffery’s result ˙ p 

J for ellipsoids

with infinite aspect ratio [11] : 

˙ p = 

˙ p 

J = ∇v · p − (∇v : (p � p ) p ) . (13)

The detailed derivation is given in [13] and is not modified nei-

ther by the second-gradient term, nor by the extra bead. 

In order to obtain ξ ′ , the friction coefficient assigned to the ex-

tra bead, we assume that the velocity of the rod centre of gravity is

the same as if the hydrodynamic forces act all along the rod length

[1] . At each position p s , with s ∈ [ −L, L ] , the hydrodynamic force is

now given by 

F H (p s ) = ξ̄ (v 0 + ∇v · p s + H : (p � p ) s 2 − v G − ˙ p s ) , (14)

where the friction coefficient ξ̄ is defined per unit of length. 
With this approach, the balance of forces 
 L 

−L 

F H (p s )d s = 0 , (15)

mplies that 

 L ̄ξv 0 − 2 L ̄ξv G + H : (p � p ) 
2 L 3 ξ̄

3 

= 0 . (16)

omparing this equation with Eq. (12) leads to ξ ′ = 4 ξ . We use

his value in the remainder of this work. 

.2. Wall effects 

In the second scenario, we consider (without any loss of gen-

rality) that the bead located at p L is in contact with the upper

ap wall ( Fig. 1 (b)). The other beads remain in the fluid domain

ithout interacting with the bottom wall. 

The forces acting on the three beads read 

 

H (p L ) = ξ (v 0 + ∇v · p L + H : (p � p ) L 2 − v G − ˙ p L ) , (17)

 

C (p L ) = μn , (18)

 

H 
G = ξ ′ (v 0 − v G ) , (19)

 

H (−p L ) = ξ (v 0 − ∇v · p L + H : (p � p ) L 2 − v G + 

˙ p L ) , (20)

here F C is the contact force exerted by the wall on the bead and

 

T = [0 0 1] . 

Again, balance of forces and torques lead respectively to an

quation for the velocity of the centre of gravity 

 G = v 0 + 

2 ξ

2 ξ + ξ ′ H : (p � p ) L 2 + 

μ

2 ξ + ξ ′ n , (21)

nd for the evolution of the rod orientation 

˙ 
 = 

˙ p 

J + 

μ

2 ξL 
(n − p z p ) . (22)

he detailed derivation of the latter equation is given in

ppendix A . 

Imposing the impenetrability condition Eq. (7) , we obtain the

ntensity μ of the contact force that prevents the rod from leaving

he flow domain: 

= − 2 ξL 

1 − p 2 z 

(
1 

L 
v G · n + [ ̇ p 

J ] z 

)
, (23)

here [ ̇ p 

J ] z = 

˙ p 

J · n . 

Using Eqs. (21) –(23) , we can summarize the kinematics of a fi-

re having a single contact with a gap wall as follows: (
I + 

2 ξ

2 ξ + ξ ′ 
n � n 

(1 − p 2 z ) 

)
v G 

= v 0 + 

2 ξ

2 ξ + ξ ′ 

(
H : (p � p ) L 2 − L 

(1 − p 2 z ) 
[ ̇ p 

J ] z n 

)
, (24)

nd 

˙ 
 = 

˙ p 

J − 1 

(1 − p 2 z ) 

(
1 

L 
v G · n + [ ̇ p 

J ] z 

)
(n − p z p ) = 

˙ p 

J + 

˙ p 

C . (25)

he final result is simply Jeffery’s kinematics ˙ p 

J plus a correction

erm 

˙ p 

C that prevents the rod from leaving the flow domain. This

xpression for the rod rotary velocity is similar to the one we pro-

osed in [13] . In other words, the orientation kinematics is the

ame whether one or both extremities of the rod interact with the

ap walls and is not modified by the second-gradient description. 
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.3. Confined motion 

In the last scenario, both extremities of the rod are in contact

ith the gap walls ( Fig. 1 (c)). A contact force is now acting at each

xtremity of the rod. 

The forces acting on the rod thus read 

 

H (p L ) = ξ (v 0 + ∇v · p L + H : (p � p ) L 2 − v G − ˙ p L ) , (26) 

 

C (p L ) = μn , (27) 

 

H 
G = ξ ′ (v 0 − v G ) , (28) 

 

C (−p L ) = −μn , (29) 

 

H (−p L ) = ξ (v 0 − ∇v · p L + H : (p � p ) L 2 − v G + 

˙ p L ) . (30) 

This last scenario was similarly addressed in [13] and following

he same rationale (impenetrability condition and balance of forces

nd torques), the velocity of the centre of gravity is given by 

 G = v 0 + 

2 ξ

2 ξ + ξ ′ H : (p � p ) L 2 , (31)

hereas the evolution of rod orientation follows 

˙ 
 = 

˙ p 

J + 

μ

ξL 
(n − p z p ) , (32)

ith 

= − ξL 

1 − p 2 z 

(
1 

L 
v G · n + [ ̇ p 

J ] z 

)
, (33) 

esulting in the same kinematics as in the case of wall effects ( Eq.

25) ). 

. Simulations in Poiseuille and squeeze flows 

In this section, we present numerical simulations of the pro-

osed model for confined suspensions in Poiseuille and squeeze

ows. These flows, close to those encountered in real forming pro-

esses, exhibit a through-the-gap parabolic velocity profile that can

e captured within the second-gradient framework. 

.1. Poiseuille flow 

We first consider a parabolic Poiseuille flow, whose velocity

eld is expressed as v T = [ β(H 

2 − z 2 ) 0 0] , with z ∈ [ −H, H] and

= 1 . The velocity vanishes at the walls. 

We show here complete 3D-microscopic simulations, tracking

he position, velocity and orientation of a handful of suspended

igid fibres. The initial orientation is set as θ0 = 

2 π
5 (or the max-

mum possible value at that height in case this orientation is not

ossible due to the confining walls) in the xz−plane. In such case,

he orientations remain in this plane. 

Fig. 2 depicts the evolution of the position and orientation of

hort (left) and long (right) non-interacting fibres immersed in a

oiseuille flow. The fibres are represented by the blue lines, and

he red curves show the trajectories of their centre of gravity. 

In both cases, the fibres tend to align with the flow lines. Dur-

ng the orientation process, the upper fibres interact with the up-

er gap wall and are pulled away from it. In the case of short fi-

res, only the first (upper) rod interacts with the gap wall. As soon

s the distance between the rod centre of gravity and the wall is L ,

he rod no longer moves away from the wall. This “pole-vaulting”

attern was observed experimentally by Stover and Cohen [16] .
his feature is depicted in detail in Fig. 3 . In the case of long fibres,

he rods in the upper half of the domain first interact with the up-

er wall. The lower extremity of these rods gradually approaches

he lower gap wall. As soon as both extremities are in contact with

he domain boundaries, the rods no longer try to orient, and they

lide on the frictionless walls. They are unable to align with the

ow lines. 

The initial orientation in the xz−plane proposed in this sub-

ection (and the next one) is of course a special case, but it was

hosen for the sake of clarity and visualization, in order to high-

ight the pole-vaulting patterns observed when a fibre interacts

ith a cavity wall. Initial orientations not aligned in the xz−plane

lso exhibit such behaviours but were difficult to rend on a static

D plot and depend strongly on how fibres are initially oriented.

ection 4 provides numerical results of the evolution of the orien-

ation state starting from a general 3D orientation distribution. 

.2. Squeeze flow 

We then consider a squeeze flow between two parallel disks.

nitially, the disks are separated by a distance 2 H 0 and move with a

onstant velocity ˙ h . We denote h = h (t) the half-distance between

he gap walls. Based on lubrication theory, the velocity field reads

in cylindrical coordinates) [5] : 

 = 

[ 

v r 
v θ
v z 

] 

= 

⎡ 

⎢ ⎢ ⎣ 

3 
4 
( − ˙ h ) 

h 
r 

[ 
1 −

(
z 
h 

)2 
] 

0 

3 
2 

˙ h 

[ (
z 
h 

)
− 1 

3 

(
z 
h 

)3 
] 
⎤ 

⎥ ⎥ ⎦ 

. (34) 

In this case, it is important to notice that the impenetrability

ondition Eq. (7) reads 

(v G + 

˙ p L ) · n = ± ˙ h , (35)

 + ̇

 h at the upper gap wall, − ˙ h at the lower gap wall), resulting

n an additional term in the expression (23) of the contact force

ntensity μ. 

Fig. 4 depicts the evolution of the position and orientation of

hort (left) and long (right) non-interacting fibres immersed in a

queeze flow. In such flow, intense interactions with the gap walls

ccur. The initial orientation is set as θ0 = 

2 π
5 (or the maximum

ossible value at that height in case this orientation is not possi-

le due to the confining walls) in the xz−plane. In such case, the

rientations remain in this plane. Again, the fibres are represented

y the blue lines, and the red curves show the trajectories of their

entre of gravity. 

. Macroscopic descriptors for confined suspensions 

At the macroscopic scale, the orientation of suspended particles

s usually described by the second-order orientation tensor a [3] . In

 continuous framework, this tensor is actually the second moment

f the probability distribution function ψ( p, x , t ) that gives at each

ocation and time, the fraction of particles aligned along direction

 : 

 = 

∫ 
S 
(p � p ) ψ(p )d p , (36)

here S is the unit sphere on which p is defined. Using a discrete

pproach, this orientation tensor can be computed as an ensemble

verage over N suspended particles ( N → ∞ ): 

 

discr = 

1 

N 

N ∑ 

i =1 

p i � p i . (37)

In our previous work [13] , we showed that standard macro-

copic models based on the second-order orientation tensor fail
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Fig. 2. Microscopic simulation of fibres immersed in a Poiseuille flow: (left) short fibres, L = 0 . 3 H; (right) long fibres, L = 1 . 5 H. 
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to address confinement conditions. We would like to emphasize

here that the second-order orientation tensor is not an adequate

description of fibre orientation in confined suspensions. 

In the case of confined suspensions, the length of the fibres is

of the same order of magnitude than the narrow gap wherein the

suspension flows. Thus, there is no separation of scales between

what we usually refer to as the microscopic scale (the scale of the

fibre) and the macroscopic scale (the scale of the process or the

composite part). Under such conditions, the definition of standard
acroscopic descriptors is ill-posed and a representative volume

lement (RVE) is hard to define. This issue appears when we con-

ider a population of fibres and specify initial conditions for the

bre orientation. Defining an isotropic initial condition is ambigu-

us, because depending on the height of the fibre in the channel,

he possible orientations are constrained. Our choice was thus to

onsider groups of fibres distributed along the channel height, in

hich fibres are oriented uniformly over the possible 3D orien-

ations at that height ( Fig. 5 ). Unless otherwise specified, we use
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Fig. 4. Microscopic simulation of fibres immersed in a squeeze flow with 
˙ h 

H 0 
= −0 . 02 s −1 : (left) short fibres, L = 0 . 3 H 0 ; (right) long fibres, L = 1 . 2 H 0 . 
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hese initial orientations for simulations of populations of short

nd long fibres. 

Figs. 6 and 8 show the evolution of the diagonal components of

he second-orientation tensor ( Eq. (37) ) for a population of rods

mmersed in a Poiseuille and squeeze flow, respectively. As dis-

ussed in the previous paragraph, the initial condition consists in

0 groups of 50 fibres distributed along the channel height and

riented in the possible directions at that height ( Fig. 5 ). This set-

ing implies a significant disparity between the initial condition for

hort (left) and long (right) fibres. 

In the case of a Poiseuille flow ( Fig. 6 ), we find that all fibres

end to align in the direction of the flow. However, when consid-

ring long fibres ( Fig. 6 , right), the third component a zz does not

each zero, meaning that the final state is not fully aligned with

he flow lines. This behaviour was already evidenced in the previ-

us section, however only a few fibres are unable to align. 
Fig. 6 could suggest that the evolution of orientation for short

nd long fibres is radically different, meaning that size effects may

lay a role in the kinematic process. This interpretation is not cor-

ect. The difference actually arises from the change in the initial

ondition induced by confinement. As shown in Fig. 7 , the evolu-

ion of a population of short fibres initially oriented as long fibres

s similar to the kinematics of long fibres observed in Fig. 6 (right).

Considering now a squeeze flow, Fig. 8 could also suggest a sig-

ificant difference between the kinematics of short and long fibres.

 squeeze flow consists in compression and is not really elonga-

ional. Near the gap walls, the shearing nature of the flow is how-

ver dominating, and short fibres thus tend to align quickly in the

ow, whereas in the middle of the channel, the motion is more

ike a rigid motion. This behaviour can be observed in Fig. 9 where

nly one group of short fibres is immersed in the middle of the

ow. In this case, the first two diagonal components of the orien-
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(a) Short fibres

(b) Long fibres

Fig. 5. Initial orientation for a population of 10 groups of 50 fibres distributed along the channel height, in which fibres are oriented uniformly over the possible 3D 

orientations at that height. The lower half (not shown) is obtained by symmetry. 
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Fig. 6. Diagonal components of the orientation tensor for a population of N = 500 fibres immersed in a Poiseuille flow: (left) short fibres, L = 0 . 3 H; (right) long fibres, 

L = 1 . 5 H. Initial configurations are depicted in Fig. 5 . 
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tation tensor do not evolve significantly, only the zz−component

tends towards zero due to the compression. 

5. Rheology of confined suspensions 

In this section, we study the impact of confinement on the rhe-

ology of the dilute suspension. The contribution of a suspended
article to the stress is given by Kramers’ formula [5] 

p = p L � F (p L ) − p L � F (−p L ) , (38)

here F ( ± p L ) is the total force acting on the bead located at po-

ition ± p L . 

The extra-stress in the suspension due to the presence of the N

uspended non-interacting particles is obtained by summing these
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Fig. 7. (left) Initial condition (short fibres initially oriented as long fibres); (right) diagonal components of the orientation tensor for a population of N = 500 short fibres 

immersed in a Poiseuille flow ( L = 0 . 3 H 0 ). 
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Fig. 8. Diagonal components of the orientation tensor for a population of N = 500 fibres immersed in a squeeze flow: (left) short fibres, L = 0 . 3 H 0 ; (right) long fibres, 

L = 1 . 2 H 0 . Initial configurations are depicted in Fig. 5 . 
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ndividual contributions: 

= 

N ∑ 

i =1 

τ p i . (39) 

.1. Unconfined motion 

In the case of unconfined motion, only hydrodynamic forces act

n the rod and the well-known expression for the contribution of

 single particle to the extra-stress in a fibre suspension is readily

btained: 

p = τ p,J = p L � F H (p L ) − p L � F H (−p L ) , (40) 

= 2 ξL 2 (∇v : (p � p )) p � p , (41) 

= 2 ξL 2 (∇v : (p � p � p � p )) , (42) 

here the F H ( p L ) is given by Eq. (17) and p follows Jeffery’s kine-

atics Eq. (13) . 
.2. Confined motion 

When the particle interacts with the gap walls, additional con-

act forces act on the end beads. The particle contribution to the

tress thus reads 

p = p L � (F H (p L ) + F C (p L )) − p L � (F H (−p L ) + F C (−p L )) . (43)

nserting the confined kinematics (32) in the expression (17) of the

ydrodynamic force, we can write 

 

H (p L ) = ξ (v 0 + H : (p � p ) L 2 − v G ) 

+ ξL (∇v : (p � p )) p − μ(n − p z p ) , (44) 

nd 

 

H (p L ) + F C (p L ) = ξ (v 0 + H : (p � p ) L 2 − v G ) 

+ ξL (∇v : (p � p )) p + μp z p . (45) 

The particle contribution to the stress finally reads 

p = 2 ξL 2 (∇v : (p � p � p � p )) ︸ ︷︷ ︸ 
τ p,H 

+ 2 μp z (p � p ) ︸ ︷︷ ︸ 
τ p,C 

(46) 
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Fig. 9. (left) Initial condition (only one group of fibres at the centre of the channel); (right) diagonal components of the orientation tensor for a population of N = 500 short 

fibres immersed in a squeeze flow ( L = 0 . 3 H 0 ). 

Fig. 10. Rheology of a confined suspension under a shear flow in a narrow gap ( H = 0 . 2 L ). The orange curve shows τ = τH + τC , whereas the broken green curve shows only 

the classical hydrodynamic contribution τH . The blue curve depicts the rheology ( τ J ) of hypothetical unconfined fibres following the standard Jeffery kinematics and starting 

from the same initial conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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with μ given by Eq. (33) . It consists in a contribution τp, H due

to hydrodynamic forces and a contribution τp, C arising from the

contact forces induced by confinement. 

5.3. Shear flow 

We show here the impact of confinement on the rheology in

the case of a simple shear flow, whose velocity field is expressed

as v T = [ ̇ γ z 0 0] , with z ∈ [ −H, H] and ˙ γ = 1 . 

Fig. 10 depicts the evolution of the normal stresses and normal

stress differences for a population of N = 20 0 0 rods of length L ori-

ented uniformly along all possible orientations in a narrow gap of

width H = 0 . 2 L . The orange curve shows τ = τH + τC , whereas the

broken green curve shows only the classical hydrodynamic contri-
ution τH (see Eq. (46) ). We can observe that the contribution τC 

an be neglected. Even when considering the contribution of a sin-

le particle to the stress, the contribution due to the contact force
p, C is nearly zero. The blue curve depicts the rheology ( τ J ) of

ypothetical unconfined fibres following the standard Jeffery kine-

atics and starting from the same initial conditions. From Fig. 10 ,

e thus conclude that confinement conditions have a significant

mpact on the rheology of confined suspensions. This impact does

ot arise from the contribution of the contact forces, but from the

onfined kinematics of the suspended fibres. 

Fig. 11 depicts the evolution of non-diagonal component of the

tress tensor τ 13 , measuring the apparent viscosity η = 

τ13 
˙ γ of the

uspension in this shear flow [12] with respect to time (or equiva-
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Fig. 11. Viscosity of a confined suspension under a shear flow in a narrow gap ( H = 0 . 2 L ). The orange curve shows the evolution for the confined suspension, whereas the 

blue curve accounts for unconfined fibres starting from the same configurations. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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ently, strain, since the strain rate ˙ γ is constant and equal to one).

nce again, the orange curve shows the evolution for the confined

uspension, whereas the blue curve accounts for unconfined fibres

tarting from the same configurations. We observe that, under con-

nement, the viscosity follows a monotonic evolution. The absence

f overshoot is explained by the confinement configuration that

revents the fibres to directly tumble and align in the flow. 

. Conclusion and perspectives 

In this paper, we have extended the modelling framework intro-

uced in [13] to describe confined fibre suspensions. We have con-

idered non-uniform strain rates at the scale of the fibre (second-

radient modelling) in order to address more complex flows. We

howed that the orientation kinematics are the same whether one

r both extremities of the rod interact with the gap walls. They

onsist in Jeffery’s kinematics with an additional term to prevent

he fibre from leaving the flow domain. 

We applied our model to parabolic flows encountered in in-

ustrial applications (Poiseuille and squeeze flows), recovering be-

aviours observed in experimental works. 

The use of macroscopic descriptors for confined suspensions re-

ains a challenge. Standard representations (such as the second-

rder orientation tensor) appear to be inadequate under confine-

ent conditions where separation of scale between the suspended

articles and the scale of the flow is not established. 

Finally, the impact of confinement on the rheology was inves-

igated. We showed that the confined orientation of the particles

ignificantly affects the rheology of the dilute suspension, but the

mpact of the wall contact force can be neglected. 
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ppendix A. Detailed derivation of the confined kinematics 

In the case of wall effects (only one contact with the gap walls),

he forces acting on the beads are given by Eqs. (17) –(20) . Balance
f torques read 

 L × (F H (p L ) + F C (p L )) − p L × F H (−p L ) = 0 . (A.1)

ubstituting the forces by their expression, we obtain 

 L ×
(

2 ξL (∇v · p − ˙ p ) + μn 

)
= 0 , (A.2)

r alternatively 

 ξL (∇v · p − ˙ p ) + μn = λp , (A.3)

ith λ ∈ R . 

Pre-multiplying Eq. (A.3) by p and taking into account that fact

hat p is a unit vector, p · p = 1 and thus p · ˙ p = 0 , we obtain an

xpression for λ: 

 ξL (∇v : (p � p )) + μp z = λ, (A.4)

ith p z = p · n . 

Finally, substituting Eq. (A.4) in Eq. (A.3) yields the orientation

inematics 

 ξL (∇v · p − ˙ p ) + μn = 2 ξL (∇v : (p � p )) p + μp z p , (A.5)

r 

˙ 
 = ∇v · p − ∇v : (p � p )) p ︸ ︷︷ ︸ 

˙ p J 

+ 

μ

2 ξL 
(n − p z p ) . (A.6)

The derivation in the case of confinement (both extremities of

he rod in contact with the gap walls) is obtained using the same

ationale. 
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