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a b s t r a c t

The classical Jeffery model allows for the prediction of the flow-induced orientation in dilute fibre sus-
pensions. In most industrial applications, however, fibre suspensions are concentrated and fibre-fibre
interactions cannot be ignored any longer. These interactions have been traditionally modelled at the
mesoscopic and macroscopic scales by introducing a phenomenological diffusion term inducing a ran-
domizing effect. In the so-called Folgar & Tucker (F&T) model, widely used in applications, the diffusion
coefficient is assumed to scale linearly with the flow intensity, the latter being described by the second
invariant of the rate of strain tensor. Modifications and alternatives to the F&T model have been proposed
in view of the difficulty for the F&T model to explain an apparent orientation delay observed experimen-
tally in injection-moulded parts. The noticed deviations were attributed to the intense fibre-fibre inter-
actions, thus pointing to the limitations of a phenomenological diffusion term for describing them. In the
present work, we revisit the F&T model and compare its predictions with those obtained bysimplified yet
state-of-the-art direct numerical simulation (DNS) in unconfined and confined simple shear flows for a
range of shear rates and concentrations, the latter ensuring intense fibre-fibre interactions. In unconfined
flows, we find that the F&T model agrees quantitatively with the DNS results once an adequate closure
relation is considered for approximating the fourth-order orientation tensor involved in the F&T model.
Thus, the results seem to confirm, at least in simple shear flows, the F&T assumption for the form of the
isotropic rotary diffusion function scaling linearly with the magnitude of the scalar rate of deformation.
Also, a linear scalingof the diffusivity with the fibre concentration is observed. This conclusion remains
unexpectedly valid under moderately-confined flow conditions as soon as an advanced fitted closure, like
the IBOF, is considered within the F&T model. Other simpler closures (e.g. quadratic or hybrid), however,
definitively fail to address confinement issues as also reported in our former work for the dilute regime.
Obviously, these conclusions rest on the validity of the considered state-of-the-art DNS, which remains at
present an open question.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

As discussed in [2], the multiscale modelling of suspensions
involving rods involves nine conceptual bricks, the first three con-
cerning the microscopic scale, the next three the mesoscopic scale,
and finally the last three the macroscopic scale. At each scale, the
first brick deals with the definition of conformation variables able
to describe the relevant physics; the second concerns the equation
describing their evolution, and finally the third one addresses their
contribution to the stress tensor, and thus to the suspension’s
rheology.

The microscopic scale describes the evolution of each individual
particle, e.g. each rod in the case of fibre suspensions, through its
orientation vector p. Even though it could be considered too coarse
from the point of view of the finer scales of ab initio or molecular
dynamics simulations, it currently constitutes the finest scale of
representation in practical applications. This scale allows us to
account explicitly for fibre-fibre interactions by considering both
lubrication and contact forces, and then quantifying interaction
effects on the suspension kinematics and more precisely on the ori-
entation state. A full direct numerical simulation – DNS – can be
envisaged at the microscopic scale, but the difficulty of solving
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the Stokes flow problem for describing the fluid-fibre interactions
and the flow-induced fibre orientation, as well as the excessive
computational complexity that it involves, limits the practical
use of this approach to the analysis of a small number of suspended
particles, as considered in [20].To our knowledge, there is nowa-
days no simulation at that scale able to address many particles sce-
narios involving intense hydrodynamic and contact interactions.
The use of few particles does not allow one to recreate the right
representative volume element to conclude about the impact of
particles on the kinematics of the fluid-particles ensemble. Such
a simulation, with the required number of particles for ensuring
the required amount of interactions, is currently unfeasible. Thus,
in the present paper, we adopt a simplified yet state-of-the-art
DNS, a coarse grained formulation, successfully used in
[9,18,19,25,26,30,31,35], wherein it is assumed that fluid-fibre
interactions are governed by hydrodynamic and contact forces that
lead in absence of fibre-fibre interactions to the classical Jeffery
model for dilute suspensions [28]. Although the presence of fibres
is expected to alter the microscopic flow kinematics in highly con-
centrated suspensions, the simplified approach to DNS neglects
this effect while addressing in a sophisticated way fibre-fibre inter-
actions via the modelling of lubrication and contact forces. Simula-
tions involving thousands of suspended fibres can thus be
performed to study fibre-fibre interactions in some detail.

The above modelling approach is unable to address applications
of industrial interest as it remains limited in practice to several
thousands of fibres. For this reason, microscopic models are usually
coarsened by introducing as a suitable microstructural descriptor
the probability distribution function – pdf – Wðx; t;pÞ, which gives
the fraction of fibres that at position x and time t are oriented in
direction p. The equation governing the evolution of the pdf is
the so-called Fokker-Planck equation, that must be solved in both
physical and conformation spaces. This mesoscopic approach is a
reasonable compromise between the detailed microscale mod-
elling and the coarser macroscopic approach discussed below. Its
main limitations are twofold: (i) the high-dimensional nature of
the Fokker-Planck equation, which limits the use of mesh-based
discretization techniques [11,32–34] and requires specific numer-
ical strategies based on the use of particles [1,6,10,12–14] or sepa-
rated representations within the PGD framework [7,8,15,16]; and
(ii) the difficulty of accounting for fibre-fibre interactions. The lat-
ter can only be modelled phenomenologically at this level of
description.

To account for fibre-fibre interactions, Folgar & Tucker [24] thus
added a phenomenological diffusion term to the Fokker-Planck
equation. The rotary diffusion coefficient is assumed to scale with
the flow intensity, quantified by the second invariant of the rate of
strain tensor. Once coarsened to the macroscopic scale (see below),
this leads to the so-called Folgar & Tucker (F&T) model. For
addressing anomalous experimental orientation findings at odds
with F&T predictions, in particular a delay in the orientation rates,
other models of fibre-fibre interactions have been proposed
[22,23,37,39,40]. In these studies, the observed delay was attribu-
ted to the intense fibre-fibre interactions and modelled either with
a modified diffusion term, a microscopic description of interac-
tions, or by introducing a sliding mechanism between fibres and
fluid. In [36], we revisited this issue and attributed the anomalous
behaviour to the confinement effects discussed later in the present
paper.

Numerical simulations of industrial forming processes call for
mascroscopic models. These can obtained from a mesoscopic
description in the form of an evolution equation for the so-called
orientation tensors [3,4], i.e. the moments of the pdf Wðx; t;pÞ.
The main price to pay in this approach is the use of closure approx-
imations and their possibly significant impact on the model predic-
tions. In particular, closure relations are needed to express the
fourth-order moment of the pdf as a function of the second-order
moment. Several closure relations have been proposed
[5,21,17,29,38], but no universally-valid solution exists.

In the context of fibre suspensions, the macroscopic model is
the most widely used. It assimilates fibres to ellipsoids, considers
as macroscopic descriptor the second-order orientation tensor
aðx; tÞ defined by

aðx; tÞ ¼
Z
S
p� p Wðx; t;pÞ dp; ð1Þ

where S is the surface of the unit sphere and it uses the Jeffery
equation [28] for modelling the ellipsoid kinematics

_p ¼ X � pþ k D � p� D : ðp� pÞpð Þ: ð2Þ

Here, rv is the velocity gradient, D and X are the rate of strain

and vorticity tensors respectively, 2D ¼ rv þ ðrvÞT and
2X ¼ rv � ðrvÞT , and the shape factor k depends on the ellipsoid
aspect ratio r, k ¼ r2�1

r2þ1.
The macroscopic F&T model is an evolution equation for the ori-

entation tensor a, that results from taking the time derivative of Eq.
(1), substituting the Jeffery rotary velocity (2) and considering a
randomizing term to account for fibre-fibre interactions:

_a ¼ X � a� a �Xþ k D � aþ a � D� 2Aclr : D
� �

� 6Dr a� I
3

� �
; ð3Þ

where I is the unit tensor and the diffusion coefficient Dr is assumed
to scale with the flow intensity, i.e.

Dr ¼ CI _c; ð4Þ

where CI is the so-called interaction coefficient, and _c is the second
invariant of the rate of strain, that is _c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D : D

p

For the typical fibres considered in the present work, assumed
in the sequel as elongated ellipsoids with r ¼ 20, we have k � 1
so that Eq. (3) reduces to

_a ¼ rv � aþ a � ðrvÞT � 2Aclr : D� 6Dr a� I
3

� �
: ð5Þ

The symbol Aclr denotes a suitable closure relation that gives the
fourth-order moment A of the pdf in terms of the second-order ten-
sor a.

The main aim of the present paper is to validate the F&T model
by means of DNS simulations of shear flows in both unconfined
and confined conditions. In the next section, we revisit the main
ingredients of DNS that account for fibre-fibre interactions and
thus allow us to address the concentrated regime. In Section 3,
we analyse the effect of these interactions on the orientation rate
in the unconfined flow regime. In Section 4, we establish the
dependencies of the diffusion parameter of the F&T model on the
effective rate of strain and the fibre concentration. Finally, we per-
form in Section 5 a similar analysis under confined flow conditions.

2. Direct numerical simulation

In this section, we revisit the main ingredients of the direct
numerical simulation technique – DNS – developed in [35]. It is
based on a number of simplifying assumptions, the most important
ones being: (i) the regime is concentrated enough for ensuring
numerous lubrication and contact interactions; (ii) the suspending
fluid is Newtonian and incompressible; (iii) the flow is laminar;
(iv) the velocity gradient is constant in the considered representa-
tive volume containing the population of fibres; (v) the fluid veloc-
ity is unperturbed by the presence and orientation of the fibres
immersed in it; (vi) the mass of the fibres is negligible and inertial
effects can be ignored; (vii) fibres are considered as rigid prolate
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spheroids; (viii) interactions between fibres act through contact
and lubrication forces, (ix) initially and before the flow starts, the
fibres are randomly distributed inside the representative volume
with the only constraint of avoiding interpenetration, and (x) the
initial orientation state is almost isotropic.

As described in [35], the flow applies on each fibre an hydrody-
namic force (Stokes drag) that, in absence of interaction forces,
implies that the fibre centre of gravity moves with the local fluid
velocity and that the fibre rotates as dictated by Jeffery’s model.

When fibre-fibre interactions occur, the fibre kinematics are
modified. Two kinds of interactions are considered: (i) the one
associated to lubrication whose intensity scales with both the dis-
tance between interacting fibres and with its rate of change, and
(ii) the one related to physical contact that ensures impenetrabil-
ity. Interaction forces act on a pair of interacting fibres at their con-
tact point, with the same intensity but opposite directions
(according to the Newton’s law). At present, friction forces at the
contact point are neglected, and contact forces are thus perpendic-
ular to the involved fibres.

As described and discussed in [35], two fibres are assumed to
interact as soon as the distance between them becomes lower than
a small-enough threshold value. The simulation time step
decreases with decreasing threshold. In our simulations, the
threshold distance is specified as 0:01 times the fibre diameter,
as proposed in [9]. In all cases, convergence was checked with
respect to the number of fibres and the choice of threshold
distance.

The approach rate between interacting fibres can be computed
from the velocity of their respective centres of gravity and their
rotary velocities, both consisting of the Jeffery contributions com-
plemented by the contributions due to interaction forces. Thus, we
obtain a linear system of equations from which all interaction
forces can be determined, and from them their contributions to
the fibre kinematics. Finally, the centre of gravity position and
Fig. 1. Representative volume. Even though the fibres are depicted here as
cylinders, they are considered as elongated ellipsoids in the models and DNS
studies. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 1
Simulated scenarios.

Case L (in mm) D (in mm) / (i

1 20 1 11
2 20 1 11
the orientation of each fibre are updated. For more details, the
interested reader can refer to [35] and the references therein.

The discrete simulation is performed in a representative ele-
mentary volume – REV – containing both fibres and fluid, as
depicted in Fig. 1. The REV is then replicated in order to ensure
periodic conditions. Thus, the motion of a fibre in the original
REV implies the same motion of its images in the neighbouring
cells, a fibre leaving the REV results in one of its images entering
it. Moreover, we assume that each fibre within the REV interacts
with its neighbouring fibres within the REV or in each of the neigh-
bouring cells. Once the position and orientation of each fibre
within the REV is updated, it is replicated in all neighbouring cells.

3. Orientation rate in concentrated unconfined flows

We consider a monodisperse population of fibres characterised
by the parameters given in Table 1. Here, L is the fibre length, D its
diameter, / the fibre concentration, NI t ¼ 0ð Þ the initial number of
interactions between fibres, and NF the total number of fibres. Two
different cases are considered, which only differ in the initial num-
ber of fibre interactions, 500 and 800 respectively. A simple shear
flow of intensity _c is applied, with a velocity field given by
vT ¼ ð _cy;0;0Þ.

Once the simulation has started, the centre of gravity position
Xn

i and orientation pn
i of each fibre i ¼ 1; . . . ;NF are updated at each

time step tn ¼ nDt, according to the procedure summarised in the
previous section.

From this information, the second-order orientation tensor
aDNSðtnÞ can be computed at time tn via its discrete definition

aDNSðtnÞ ¼
1
NF

XNF

i¼1

pn
i � pn

i : ð6Þ

It is expected, and numerically observed, that fibres tend to almost
align along the flow direction. In view of fibre-fibre interactions,
however, full alignment is impossible and a quasi-steady orienta-
tion aDNS

1 ¼ aDNSðt ! 1Þ is reached instead.
We now consider the F&T model (5). It is an evolution equation

for the second-order orientation tensor a whose single adjustable
parameter, i.e. the diffusion coefficient Dr , will be computed such
as to almost reach the same steady state aF&Tðt ! 1Þ � aDNS

1 as pre-
dicted by DNS. It is important to note that the fitted value of Dr

depends on the closure relation adopted in Eq. (5). In order to min-
imise the impact of the closure relation, we consider a quite robust
and accurate closure, the IBOF [17], because the hybrid closure
tends to overestimate in shear flows both the orientation rate
and its long-time value. Moreover, the IBOF was itself originally fit-
ted by considering, among many flow regimes, simple shear flows
like the one addressed here, so that it is expected to have a mini-
mal impact on the computed results. Once the diffusion coefficient
has thus been fitted, both transient solutions aDNSðtÞ and aF&TðtÞ can
be compared in order to conclude on the ability of the F&T model
to describe the orientation evolution when intense fibre-fibre
interactions occur.

For the first scenario of Table 1, the fitted diffusion coefficient
was found to be Dr ¼ 0:00015. The corresponding time evolution
of the components aij of the orientation tensor computed from
DNS and the integration of the F&T model (5) are compared in
n %) NI t ¼ 0ð Þ _c (s�1) NF

.5 500 1 512

.5 800 1 512



Fig. 2. Comparing aDNS
ij ðtÞ and aF&T

ij ðtÞ for NIðt ¼ 0Þ ¼ 500. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 3. Time evolution of the number of interactions for NIðt ¼ 0Þ ¼ 500. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 2 (components a13 and a23 almost vanish and are thus not
shown). Fig. 3 depicts the time evolution of the number NIðtÞ of
fibre-fibre interactions. Agreement between DNS and the F&T
model is striking in view of the phenomenological description of
fibre-fibre interactions that the latter provides.

The second scenario of Table 1 was considered to study the
effect of increasing the number of fibre-fibre interactions. For that
purpose, when introducing randomly a fibre, if it does not interact
with any of its neighbours, the fibre is ignored and another tenta-
tive fibre is randomly created. If in one of the trials the test fibre
interacts with one of its neighbours, it is retained and the algo-
rithm goes to the next one. We defined a limit number of trials
T , such that if during T consecutive trials no interaction is found,
the fibre is added to the REV and the algorithm proceeds to search
for the next one. By changing the limit number of trials T , one can
modify the initial number of interactions. In the cases shown in
Table 1, T was respectively 6 and 12. When increasing the number
of initial fibre-fibre interactions, from 500 to 800 (second scenario
in Table 1), and without changing the previously-fitted diffusion
coefficient in the F&T model, the solution was mostly the same
as that obtained in the first case with 500 initial fibre-fibre interac-
tions. Moreover, the time evolution of the number of interactions is
in both cases almost the same, independently of the initial value: a
decrease at first, followed by a slight overshootas shown in Fig. 3,
before almost reaching a steady-state plateau when an essentially
steady-state orientation is established, shown and discussed in
[35].

From the DNS results, we can notice a quite high long-time
value of the orientation a11ðt ! 1Þ � 0:95 characteristic of semi-
dilute suspensions, even if the concentration and fibre aspect-
ratio clearly indicate a concentrated regime (in the confined case
discussed in the last section, the long-time orientation mostly
agrees with the expected values of alignment). The explanation
for this apparently too high value of the long-time orientation lies
in the fact that when applying an unconfined shear flow the parti-
cles try to almost align in the flow direction, and consequently the
number and intensity of the fibre interactions decrease ( as dis-
cussed in [35]). Thus, even if the considered concentrations clearly
indicate that we are operating in the concentrated regime, the
long-time solution implies about one interaction on average per
fibre, which for the concentrations and particle aspect ratios con-
sidered here characterises the semi-concentrated regime. The type
of regime depends on the concentration, on the particle aspect
ratio but also on the flow-induced conformation. In all cases, it is
important to recall that we neglect the incidence of the particle ori-
entation on the microscopic flow kinematics (i.e. on the local fluid
velocity at each point of the RVE),and then, as indicated in the
abstract, these conclusions rest on the validity of the state-of-
the-art DNS considered here, that future works, operating at the
real DNS scale by solving the Stokes equations while accounting
for the rich inter-particle interactions, should confirm.

We carried out a final DNS in which fibres do not interact with
their neighbouring particles, and then each of them follows the
kinematics dictated by the Jeffery equation. It was found that the
solution remains very close to the one obtained when considering
interactions, the main difference being found at long-times when
the Jeffery solution tends to full alignment whereas the one includ-
ing interactions reaches a plateau. In the simulation time window
of 20 s depicted in Fig. 2, both solutions are indiscernible, and it
was at later times that the solution of the Jeffery model continues

to approach full alignment characterised by aJef
11 � 1 whereas the

one related to the DNS incorporating fibre-fibre interactions
reaches the plateau aDNS

11 � 0:95.
From these numerical experiments, we conclude that the diffu-

sion term in the F&T model mimics reasonably well the physics of
fibre-fibre interactions in the concentrated shear flow regimeob-
tained from the simplified DNS described in the previous section.
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4. On the dependencies of the F&T diffusion coefficient

In this section, we analyse the evolution of the F&T diffusion
coefficient Dr with the shear rate and the fibre concentration. In
fact, the F&T model assumes a linear dependence of Dr on _c, which
we wish to check via DNS. For that purpose, 9 simulations have
been performed, whose conditions are reported in Table 2. The
fibre population is once again monodisperse with L ¼ 20 and
D ¼ 1.
Table 2
Simulation scenarios for different values of shear rate, fibre concentration and fitted
diffusion coefficient.

Case _c (s�1) / (in %) Nf Dr

1 1 7 512 0.00007
2 10 7 512 0.0007
3 20 7 512 0.0014
4 1 10 729 0.0001
5 10 10 729 0.001
6 20 10 729 0.002
7 1 18.2 1331 0.0002
8 10 18.2 1331 0.0018
9 20 18.2 1331 0.004

Fig. 4. Evolution of Dr with (top) _c at different fibre concentrations; and (bottom) with /
legend, the reader is referred to the web version of this article.)
From an almost isotropic fibre orientation at the initial time
t ¼ 0, the shear flow is applied and DNS simulations are carried
out. The orientation tensor is obtained at each time step as
explained in the previous section and the diffusion coefficient
involved in the F&T equation is obtained such as one approaches
as much as possible the long-time solution of the different compo-
nents of the orientation tensor(all components are considered with
the same weights in the inverse technique). Table 2 reports in its
last column the fitted diffusion coefficient. Fig. 4 depicts the evolu-
tion of the diffusion coefficient with shear rate for different fibre
concentrations, as well as its evolution with concentration for dif-
ferent shear rates. We observe an almost linear dependence on
both parameters, at least within the considered intervals of shear
rate and concentrations. A non-linear dependence of the diffusion
coefficient was observed experimentally [27] at much larger con-
centrations (higher than 33%) in experiments emulating compres-
sion moulding of SMC’s. Future works should address larger
intervals.

The resulting orientation evolutions are depicted in Fig. 5 for
the different cases. It was observed that DNS predicts the same
long-time orientation independently of the applied shear rate. In
order to remove the influence of the shear rate in the steady-
state solution of the Folgar & Tucker model (5), it suffices to
at different shear rates. (For interpretation of the references to color in this figure



Fig. 5. Time evolution of a11: (top-left) _c ¼ 1;/ ¼ 7% and Dr ¼ 0:00007; (top-centre) _c ¼ 10;/ ¼ 7% and Dr ¼ 0:0007; (top-right) _c ¼ 20;/ ¼ 7% and Dr ¼ 0:0014; (middle-
left) _c ¼ 1;/ ¼ 10% and Dr ¼ 0:0001; (middle-centre) _c ¼ 10;/ ¼ 10% and Dr ¼ 0:001; (middle-right) _c ¼ 20;/ ¼ 10% and Dr ¼ 0:002; (bottom-left) _c ¼ 1;/ ¼ 18% and
Dr ¼ 0:0002; (bottom-centre) _c ¼ 10;/ ¼ 18% and Dr ¼ 0:0018 and (bottom-right) _c ¼ 20;/ ¼ 18%; and Dr ¼ 0:004. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

R. Mezher et al. / Composites: Part A 91 (2016) 388–397 393
consider a diffusion coefficient evolving linearly with the shear
rate. Thus, the long-time orientation resulting from the integration
of the Folgar & Tucker model does not depend on the applied shear
rate. A deeper question is whether such a linear dependence is a
necessary consequence. Of course, in absence of interactions,
everything scales linearly with the shear rate, however as soon
as non-linear interaction effects are present, a linear scaling is
not at all obvious.

5. Confinement effects

From the previous results, it cannot be concluded that the
experimentally-reported delay in the orientation process is due
to the fibre-fibre interactions occurring in the concentrated regime.
In this section, we evaluate the potential impact of confinement
effects, which we studied in [36] in the dilute regime, where the
effects of the almost planar orientation distribution were
emphasised.

The main conclusions reached in [36] are that the orientation
process is not delayed by confinement effects and that the
second-order orientation tensor associated to a standard hybrid
closure is no longer an adequate miscrostructural descriptor under
highly confined conditions. We wish to find out whether or not
those conclusions, valid for the dilute regime, extend to the con-
centrated regime wherein intense fibre-fibre interactions occur,
as well as to analyse the effect of using the IBOF closure considered
above in the analysis of unconfined flows.

We considered as in the previous section a population com-
posed of 512 fibres confined in a narrow gap of 12 mm, smaller
that the fibre length (20 mm) to ensure confinement effects. It is
important to note that the gap-thickness to fibre-length ratio,
H=L ¼ 0:6, is larger than the values (of about 0:2) associated to
the strong confinement considered in [36]. Thus, the first conclu-
sions of the present section only apply for moderately-confined
flow regimes, while more intense confinement will be addressed
at the end.

In the present case, the RVE remains periodic along the x and y
directions, however along the z direction the top and bottom walls
enforce a null normal velocity at the particle/wall contact point. A

simple shear flow (v ¼ ð _cz;0;0ÞT) with _c ¼ 1 s�1 was specified for
the direct numerical simulation. When a fibre enters in contact
with the upper or bottom wall, an additional contact force acts in
order to ensure the wall impenetrability. The discrete orientation
is calculated again at each time step, and the diffusion coefficient
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in the F&T model (5) is fitted in order to reach the same long-time
solution (Dr ¼ 0:006 when using the IBOF closure). It is important
to note that, when comparing results for the confined and uncon-
fined flow regimes (the latter was considered in the previous sec-
tion), a higher diffusion coefficient was needed in the confined case
since the long-time solution (orientation plateau) is less aligned
along the flow direction than in the unconfined case.

Fig. 6 depicts the almost steady-state fibre orientation distribu-
tion related to the initial orientation state depicted in Fig. 7. Here,
the fibre concentration is set to / ¼ 11:5%. It can be noticed that
the orientation evolves towards an orientation state with fibres
almost oriented in the flow direction. Fig. 8 compares the evolution
of the number of fibre-fibre and fibre-wall interactions. Fibre-fibre
interactions are found to be much more numerous than fibre-wall
interactions.

We compare in Fig. 9 the time evolution of the diagonal compo-
nents of the second-order orientation tensor computed with DNS
with that predicted by the F&T model (5) when using the IBOF clo-
sure relation with Dr ¼ 0:006 (the non-diagonal components are
almost zero). Fig. 10 compares the F&T solution a11 for three differ-
ent closure relations: the quadratic, the hybrid and the IBOF. The
F&T diffusion coefficient associated to each closure was again fitted
to reach the same long-time solution (as indicated above,
Dr ¼ 0:006 for the IBOF and Dr ¼ 0:025 for the quadratic and
hybrid closures), and we specified as initial orientation tensor the
one related to the initial orientation distribution shown in Fig. 7.
We observe from both figures, 9 and 10, that the orientation pro-
Fig. 6. Almost steady-state orientation distribution related to the initial fibre distribution
the reader is referred to the web version of this article.)

Fig. 7. Initial orientation distribution. (For interpretation of the references to color
cess predicted by the F&T model (5) when considering the quadra-
tic and hybrid closure relations is significantly faster than the DNS
predictions. We thus reach the same conclusion as in our former
work [36] for the dilute regime: under confined conditions and
considering the standard hybrid closure within the F&T model,
the only use of the second-order tensor cannot adequately predict
the orientation development(when including the fourth and sixth-
order orientation tensors, the solutions are not much improved).
However, the combination of the Folgar & Tucker model (5) with
the IBOF closure relation allows for an excellent prediction of the
moderately-confined results obtained by using DNS. This fact sug-
gests that the time evolution of the orientation distribution func-
tion in the moderately-confinement addressed here remains
close enough to those that served to fit the IBOF closure relation,
thusevidencing once again its superiority with respect to the sim-
pler, non-fitted closures.

It is useful to compare the above results for the concentrated
regime to those obtained when fibre-fibre interactions are ignored
altogether. Fig. 10 also shows the predictions for the same fibre
population wherein each individual fibre now obeys the confined
Jeffery kinematics detailed in [36] for the dilute case. Thus, only
fibre-wall interactions are taken into account and the orientation
tensor is computed directly from a ensemble average of the form
(6). Comparing with the DNS results for the concentrated regime,
we see that the effect of intense fibre-fibre interactions remains
quite moderate and only induces a very slight delay with respect
to the dilute-regime predictions of the discrete confined Jeffery
depicted in Fig. 7. (For interpretation of the references to color in this figure legend,

in this figure legend, the reader is referred to the web version of this article.)



Fig. 8. Number of interactions: (left) fibre-fibre and (right) fibre-wall. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Time evolution of the orientation tensor component a11 in a confined shear flow related to the F&T solutions for three different closure relations: quadratic, hybrid
and IBOF, as well as for the confined Jeffery solution that ignores fibre-fibre interactions. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 9. Time evolution of the diagonal components of the orientation tensor in a confined shear flow: DNS versus F&T solution making use of the IBOF closure relation. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Number of fibre-wall interactions predicted by the confined Jeffery model
(fibre-fibre interactions are ignored). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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model(that ignores fibre-fibre interactions). While the confined
Jeffery and DNS results almost match at the beginning of the orien-
tation process, the former tend towards full alignement in the flow
direction while the latter reach an orientation plateau in view of
fibre-fibre interactions. Finally, Fig. 11 shows the evolution of the
number of fibre-wall interactions predicted by the discrete con-
fined Jeffery simulation. It is quite similar to that predicted by
DNS for the concentrated regime (Fig. 8).

We carried out a final numerical experiment by solving the F&T
model with null diffusion (dilute regime) and using the IBOF clo-
sure relation, and compared the results with the reference solution
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Fig. 12. Comparing the discrete confined, the discrete unconfined and the solution rela
legend, the reader is referred to the web version of this article.)
given in Fig. 11 of [36] where confinement is stronger H=L ¼ 0:2.
For the sake of completeness, this result is depicted in Fig. 12
where the discrete confined, the discrete unconfined and the solu-
tion related to the IBOF closure are compared and significant devi-
ations are noticed. In this comparison, significant differences were
noticed, which proves that the IBOF closure seems to be quite
robust and accurate but is far from being a universal solution.In
fact, we can only ensure that IBOF performs well within the condi-
tions that served to fit it.

In summary, confinement effects limit the validity of the use of
the second-order orientation tensor as microstructure descriptor.
In the confined regime,the quadratic and hybrid closures fail when
used within the F&T model. In the case of moderately-confined
flows, the IBOF closure within the F&T framework agrees quite well
with DNS. However, by increasing the confinement intensity
H=L � 0:2, and even in absence of interactions (confined Jeffery’s
discrete solution versus F&T solution – with Dr ¼ 0 – making use
of the IBOF closure, that agree perfectly in the unconfined regime),
both solutions differ significantly.

In those strongly-confined situations, and as concluded in our
former work [36], two routes can be followed: (i) use of a set of
microstructure descriptors richer than the single second-order ori-
entation tensor, or (ii) look for better closure relations involving
the second-order moment only that could be fitted in confined
flow conditions, following the same rationale that was considered
for deriving the IBOF closure in [17].

6. Conclusions

In this paper, the orientation kinematics of concentrated fibre
suspensions have been revisited by comparing, in the case of
unconfined and confined shear flows, direct numerical simulation
results with predictions of the Folgar and Tucker macroscopic
model (5) wherein fibre-fibre interactions are accounted for via a
phenomenological randomizing diffusion term.
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In the case of unconfined shear flow, we find that the F&T model
combined with the IBOF closure captures the orientation evolution
very well despite the occurrence of numerous fibre-fibre interac-
tions in the concentrated regime. Our DNS results also show that
in that case the F&T diffusion coefficient in simple shear flows
scales linearly with the effective rate of strain as well as with the
fibre concentration, at least within the explored intervals.

Under moderately-confined flow conditions and whenusing the
quadratic or hybrid closures, the F&T model shows noticeable devi-
ations from the direct numerical simulation results. This is in
agreement with our former work [36] for the dilute regime (no
fibre-fibre interactions), where the inability of the second-order
orientation tensor combined withthe quadratic or hybrid closures
to describe confined orientation states was pointed out. However,
the F&T model combined with the IBOF closure captures the orien-
tation evolution in the concentrated and moderately-confined flow
regime.When comparing results for the confined and unconfined
flow regimes, a higher diffusion coefficient was needed in the con-
fined case. In the case of strongly-confined flows, no available clo-
sure relation seems appropriate for describing the orientation
evolution with the F&T model.

The results of the present paper combined with those for the
dilute regime [36] show that fibre-fibre interactions and confine-
ment only have a very slight effect on the orientation process.

Obviously the main conclusion of this work only concerns
unconfined and confined simple shear flows. The analysis of more
complex flows is a work in progress whose main difficulty lies in
the correct definition of the appropriate flow kinematics at the
RVE level.

Finally, as highlighted in the abstract and elsewhere in the
paper, these conclusions rest on the validity of the considered
state-of-the-art DNS, an issue that remains at present an open
question and that future works should address.
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