Vector fields Lecture 2

Let U be an open subset of \mathbb{R}^n and v a vector field on U. We’ll say that v is complete if, for every $p \in U$, there exists an integral curve, $\gamma : \mathbb{R} \to U$ with $\gamma(0) = p$, i.e., for every p there exists an integral curve that starts at p and exists for all time. To see what “completeness” involves, we recall that an integral curve

$$\gamma : [0, b) \to U,$$

with $\gamma(0) = p$, is called maximal if it can’t be extended to an interval $[0, b')$, $b' > b$. For such curves we showed that either

i. $b = +\infty$
 or

ii. $|\gamma(t)| \to +\infty$ as $t \to b$
 or

iii. the limit set of

$$\{\gamma(t), \ 0 \leq t, b\}$$

contains points on ∂U.

Hence if we can exclude ii. and iii. we’ll have shown that an integral curve with $\gamma(0) = p$ exists for all positive time. A simple criterion for excluding ii. and iii. is the following.

Lemma 1. The scenarios ii. and iii. can’t happen if there exists a proper C^1-function, $\varphi : U \to \mathbb{R}$ with $L_v \varphi = 0$.

Proof. $L_v \varphi = 0$ implies that φ is constant on $\gamma(t)$, but if $\varphi(p) = c$ this implies that the curve, $\gamma(t)$, lies on the compact subset, $\varphi^{-1}(c)$, of U; hence it can’t “run off to infinity” as in scenario ii. or “run off the boundary” as in scenario iii. \qed

Applying a similar argument to the interval $(-b, 0]$ we conclude:

Theorem 2. Suppose there exists a proper C^1-function, $\varphi : U \to \mathbb{R}$ with the property $L_v \varphi = 0$. Then v is complete.

Example.

Let $U = \mathbb{R}^2$ and let v be the vector field

$$v = x^3 \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}.$$
Then \(\varphi(x, y) = 2y^2 + x^4 \) is a proper function with the property above.

If \(v \) is complete then for every \(p \), one has an integral curve, \(\gamma_p : \mathbb{R} \to U \) with \(\gamma_p(0) = p \), so one can define a map

\[
f_t : U \to U
\]

by setting \(f_t(p) = \gamma_p(t) \). If \(v \) is \(C^{k+1} \), this mapping is \(C^k \) by the smooth dependence on initial data theorem, and by definition \(f_0(p) = \gamma_p(0) = p \).

We claim that the \(f_t \)'s also have the property

\[
f_t \circ f_a = f_{t+a}.
\]

Indeed if \(f_a(p) = q \), then by the reparameterization theorem, \(\gamma_q(t) \) and \(\gamma_p(t + a) \) are both integral curves of \(v \), and since \(q = \gamma_q(0) = \gamma_p(a) = f_a(p) \), they have the same initial point, so

\[
\gamma_q(t) = f_t(q) = (f_t \circ f_a)(p) = \gamma_p(t + a) = f_{t+a}(p)
\]

for all \(t \). Since \(f_0 \) is the identity it follows from (1) that \(f_t \circ f_{-t} \) is the identity, i.e.,

\[
f_{-t} = f_t^{-1},
\]

so \(f_t \) is a \(C^k \) diffeomorphism. Hence if \(v \) is complete it generates a “one-parameter group”, \(f_t, -\infty < t < \infty \), of \(C^k \)-diffeomorphisms.

For \(v \) not complete there is an analogous result, but it’s trickier to formulate precisely. Roughly speaking \(v \) generates a one-parameter group of diffeomorphisms, \(f_t \), but these diffeomorphisms are not defined on all of \(U \) nor for all values of \(t \). Moreover, the identity (1) only holds on the open subset of \(U \) where both sides are well-defined.

I’ll devote the second half of this lecture to discussing some properties of vector fields which we will need to extend the notion of “vector field” to manifolds. Let \(U \) and \(W \) be open subsets of \(\mathbb{R}^n \) and \(\mathbb{R}^m \), respectively, and let \(f : U \to W \) be a \(C^{k+1} \) map. If \(v \) is a \(C^k \)-vector field on \(U \) and \(w \) a \(C^k \)-vector field on \(W \) we will say that \(v \) and \(w \) are “\(f \)-related” if, for all \(p \in U \) and \(q = f(p) \)

\[
df_p(v_p) = w_q.
\]

Writing

\[
v = \sum_{i=1}^n v_i \frac{\partial}{\partial x_i}, \quad v_i \in C^k(U)
\]

and

\[
\text{2}
\]
\[w = \sum_{j=1}^{m} w_j \frac{\partial}{\partial y_j}, \quad w_j \in C^k(V) \]

this equation reduces, in coordinates, to the equation

\[w_i(q) = \sum \frac{\partial f_i}{\partial x_j}(p)v_j(p). \quad (3) \]

In particular, if \(m = n \) and \(f \) is a \(C^{k+1} \) diffeomorphism, the formula (3) defines a \(C^k \)-vector field on \(V \), i.e.,

\[w = \sum_{j=1}^{n} w_i \frac{\partial}{\partial y_j} \]

is the vector field defined by the equation

\[w_i(y) = \sum_{j=1}^{n} \left(\frac{\partial f_i}{\partial x_j}v_j \right) \circ f^{-1}. \quad (4) \]

Hence we’ve proved

Theorem 3. If \(f : U \to V \) is a \(C^{k+1} \) diffeomorphism and \(v \) a \(C^k \)-vector field on \(U \), there exists a unique \(C^k \) vector field, \(w \), on \(W \) having the property that \(v \) and \(w \) are \(f \)-related.

We’ll denote this vector field by \(f_*v \) and call it the *push-forward of \(v \) by \(f \).*

I’ll leave the following assertions as easy exercises.

Theorem 4. Let \(U_i, \ i = 1, 2, \) be open subsets of \(\mathbb{R}^n \), \(v_i \) a vector field on \(U_i \) and \(f : U_1 \to U_2 \) a \(C^1 \)-map. If \(v_1 \) and \(v_2 \) are \(f \)-related, every integral curve

\[\gamma : I \to U_1 \]

of \(v_1 \) gets mapped by \(f \) onto an integral curve, \(f \circ \gamma : I \to U_2, \) of \(v_2 \).

Corollary 5. Suppose \(v_1 \) and \(v_2 \) are complete. Let \((f_t)_i : U_i \to U_i, \ -\infty < t < \infty, \) be the one-parameter group of diffeomorphisms generated by \(v_i \). Then \(f \circ (f_1)_t = (f_2)_t \circ f. \)

Theorem 6. Let \(U_i, \ i = 1, 2, 3, \) be open subsets of \(\mathbb{R}^n \), \(v_i \) a vector field on \(U_i \) and \(f_i : U_i \to U_{i+1}, \ i = 1, 2 \) a \(C^1 \)-map. Suppose that, for \(i = 1, 2 \), \(v_i \) and \(v_{i+1} \) are \(f_i \)-related. Then \(v_1 \) and \(v_3 \) are \(f_2 \circ f_1 \)-related.

In particular, if \(f_1 \) and \(f_2 \) are diffeomorphisms and \(v = v_1 \)

\[(f_2)_*(f_1)_*v = (f_2 \circ f_1)_*v. \]
The results we described above have “dual” analogues for one-forms. Namely, let U and X be open subsets of \mathbb{R}^n and \mathbb{R}^m, respectively, and let $f : U \to V$ be a C^{k+1}-map. Given a one-form, μ, on V one can define a one-form, $f^*\mu$, on U by the following method. For $p \in U$ let $q = f(p)$. By definition $\mu(q)$ is a linear map

$$\mu(q) : T_q\mathbb{R}^m \to \mathbb{R}$$

and by composing this map with the linear map

$$df_p : T_p\mathbb{R}^n \to T_q\mathbb{R}^n$$

we get a linear map

$$\mu_q \circ df_p : T_p\mathbb{R}^n \to \mathbb{R},$$

i.e., an element $\mu_q \circ df_p$ of $T_p^*\mathbb{R}^n$.

Definition 1. The one-form $f^*\mu$ is the one-form defined by the map

$$p \in U \to (\mu_q \circ df_p) \in T_p^*\mathbb{R}^n$$

where $q = f(p)$.

Note that if $\varphi : V \to \mathbb{R}$ is a C^1-function and $\mu = d\varphi$ then by (5)

$$\mu_q \circ df_p = d\varphi_q \circ df_p = d(\varphi \circ f)_p$$

i.e.,

$$f^*\mu = d\varphi \circ f.$$

Problem set

1. Let U be an open subset of \mathbb{R}^n, V an open subset of \mathbb{R}^n and $f : U \to V$ a C^k map. Given a function $\varphi : V \to \mathbb{R}$ we’ll denote the composite function $\varphi \circ f : U \to \mathbb{R}$ by $f^*\varphi$.

(a) With this notation show that (6) can be rewritten

$$f^* d\varphi = df^*\varphi.$$

(b) Let μ be the one-form

$$\mu = \sum_{i=1}^m \varphi_i \, dx_i \quad \varphi_i \in C^\infty(V)$$

on V. Show that if $f = (f_1, \ldots, f_m)$ then

$$f^*\mu = \sum_{i=1}^m f^*\varphi_i \, df_i.$$
(c) Show that if \(\mu \) is \(C^k \) and \(f \) is \(C^{k+1} \), \(f^*\mu \) is \(C^k \).

2. Let \(v \) be a complete vector field on \(U \) and \(f_t : U \to U \), the one parameter group of diffeomorphisms generated by \(v \). Show that if \(\phi \in C^1(U) \)

\[
L_v \phi = \left(\frac{d}{dt} f_t^* \phi \right)_{t=0}.
\]

3. (a) Let \(U = \mathbb{R}^2 \) and let \(v \) be the vector field, \(x_1 \partial/\partial x_2 - x_2 \partial/\partial x_1 \). Show that the curve

\[
t \in \mathbb{R} \to (r \cos(t + \theta), r \sin(t + \theta))
\]

is the unique integral curve of \(v \) passing through the point, \((r \cos \theta, r \sin \theta) \), at \(t = 0 \).

(b) Let \(U = \mathbb{R}^n \) and let \(v \) be the constant vector field: \(\sum c_i \partial/\partial x_i \). Show that the curve

\[
t \in \mathbb{R} \to a + t(c_1, \ldots, c_n)
\]

is the unique integral curve of \(v \) passing through \(a \in \mathbb{R}^n \) at \(t = 0 \).

(c) Let \(U = \mathbb{R}^n \) and let \(v \) be the vector field, \(\sum x_i \partial/\partial x_i \). Show that the curve

\[
t \in \mathbb{R} \to e^t(a_1, \ldots, a_n)
\]

is the unique integral curve of \(v \) passing through \(a \) at \(t = 0 \).

4. Let \(U \) be an open subset of \(\mathbb{R}^n \) and \(F : U \times \mathbb{R} \to U \) a \(C^\infty \) mapping. The family of mappings

\[
f_t : U \to U, \quad f_t(x) = F(x, t)
\]

is said to be a one-parameter group of diffeomorphisms of \(U \) if \(f_0 \) is the identity map and \(f_s \circ f_t = f_{s+t} \) for all \(s \) and \(t \). (Note that \(f_{-t} = f_{t}^{-1} \), so each of the \(f_t \)'s is a diffeomorphism.) Show that the following are one-parameter groups of diffeomorphisms:

(a) \(f_t : \mathbb{R} \to \mathbb{R}, \quad f_t(x) = x + t \)

(b) \(f_t : \mathbb{R} \to \mathbb{R}, \quad f_t(x) = e^t x \)

(c) \(f_t : \mathbb{R}^2 \to \mathbb{R}^2, \quad f_t(x, y) = (\cos tx - \sin ty, \sin tx + \cos ty) \)

5. Let \(A : \mathbb{R}^n \to \mathbb{R}^n \) be a linear mapping. Show that the series

\[
\exp tA = I + tA + \frac{t^2}{2!} A^2 + \frac{t^3}{3!} A^3 + \cdots
\]

converges and defines a one-parameter group of diffeomorphisms of \(\mathbb{R}^n \).
6. (a) What are the infinitesimal generators of the one-parameter groups in exercise 13?

(b) Show that the infinitesimal generator of the one-parameter group in exercise 14 is the vector field

$$\sum a_{i,j} x_j \frac{\partial}{\partial x_i}$$

where $[a_{i,j}]$ is the defining matrix of A.