In this lecture we’ll reformulate the theorems about ODEs that we’ve been discussing in the last few lectures in the language of vector fields.

First a few definitions. Given $p \in \mathbb{R}^n$ we define the tangent space to \mathbb{R}^n at p to be the set of pairs

$$T_p \mathbb{R}^n = \{(p, v) \mid v \in \mathbb{R}^n\}.$$ \hfill (1)

The identification

$$T_p \mathbb{R}^n \to \mathbb{R}^n, \quad (p, v) \to v$$ \hfill (2)

makes $T_p \mathbb{R}^n$ into a vector space. More explicitly, for v, v_1 and $v_2 \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ we define the addition and scalar multiplication operations on $T_p \mathbb{R}^n$ by the recipes

$$(p, v_1) + (p, v_2) = (p, v_1 + v_2)$$

and

$$\lambda(p, v) = (p, \lambda v).$$

Let U be an open subset of \mathbb{R}^n and $f : U \to \mathbb{R}^m$ a C^1 map. We recall that the derivative

$$Df(p) : \mathbb{R}^n \to \mathbb{R}^m$$

of f at p is the linear map associated with the $m \times n$ matrix

$$\left[\frac{\partial f_i}{\partial x_j}(p) \right].$$

It will be useful to have a “base-pointed” version of this definition as well. Namely, if $q = f(p)$ we will define

$$df_p : T_p \mathbb{R}^n \to T_q \mathbb{R}^m$$

to be the map

$$df_p(p, v) = (q, Df(p)v).$$ \hfill (3)

It’s clear from the way we’ve defined vector space structures on $T_p \mathbb{R}^n$ and $T_q \mathbb{R}^m$ that this map is linear.

Suppose that the image of f is contained in an open set, V, and suppose $g : V \to \mathbb{R}^k$ is a C^1 map. Then the “base-pointed” version of the chain rule asserts that

$$dg_q \circ df_p = d(f \circ g)_p.$$ \hfill (4)

(This is just an alternative way of writing $Dg(q)Df(p) = D(g \circ f)(p)$.)

The basic objects of 3-dimensional vector calculus are vector fields, a vector field being a function which attaches to each point, p, of \mathbb{R}^3 a base-pointed arrow, (p, \vec{v}). The n-dimensional generalization of this definition is straight-forward.
Definition 1. Let \(U \) be an open subset of \(\mathbb{R}^n \). A vector field on \(U \) is a function, \(v \), which assigns to each point, \(p \), of \(U \) a vector \(v(p) \) in \(T_p \mathbb{R}^n \).

Thus a vector field is a vector-valued function, but its value at \(p \) is an element of a vector space, \(T_p \mathbb{R}^n \) that itself depends on \(p \).

Some examples.

1. Given a fixed vector, \(v \in \mathbb{R}^n \), the function

\[
 p \in \mathbb{R}^n \rightarrow (p, v) \tag{5}
\]

is a vector field. Vector fields of this type are constant vector fields.

2. In particular let \(e_i, i = 1, \ldots, n \), be the standard basis vectors of \(\mathbb{R}^n \). If \(v = e_i \) we will denote the vector field (5) by \(\partial/\partial x_i \). (The reason for this “derivation notation” will be explained below.)

3. Given a vector field on \(U \) and a function, \(f : U \rightarrow \mathbb{R} \) we’ll denote by \(fv \) the vector field

\[
 p \in U \rightarrow f(p)v(p) \cdot \tag{6}
\]

4. Given vector fields \(v_1 \) and \(v_2 \) on \(U \), we’ll denote by \(v_1 + v_2 \) the vector field

\[
 p \in U \rightarrow v_1(p) + v_2(p) \cdot \tag{7}
\]

5. The vectors, \((p, e_i), i = 1, \ldots, n \), are a basis of \(T_p \mathbb{R}^n \), so if \(v \) is a vector field on \(U \), \(v(p) \) can be written uniquely as a linear combination of these vectors with real numbers, \(g_i(p), i = 1, \ldots, n \), as coefficients. In other words, using the notation in example 2 above, \(v \) can be written uniquely as a sum

\[
 v = \sum_{i=1}^{n} g_i \frac{\partial}{\partial x_i} \tag{8}
\]

where \(g_i : U \rightarrow \mathbb{R} \) is the function, \(p \rightarrow g_i(p) \).

We’ll say that \(v \) is a \(C^k \) vector field if the \(g_i \)'s are in \(C^k(U) \).

A basic vector field operation is Lie differentiation. If \(f \in C^1(U) \) we define \(L_v f \) to be the function on \(U \) whose value at \(p \) is given by

\[
 Df(p)v = L_v f(p) \tag{9}
\]

where \(v(p) = (p, v), \quad v \in \mathbb{R}^n \). If \(v \) is the vector field (6) then

\[
 L_v f = \sum g_i \frac{\partial}{\partial x_i} f \tag{10}
\]
(motivating our “derivation notation” for v).

Exercise.

Check that if $f_i \in C^1(U), i = 1, 2$, then

$$L_v(f_1 f_2) = f_1 L_v f_2 + f_1 L_v f_2.$$

We now turn to the main object of this lecture: formulating the ODE results of Birkhoff–Rota, Chapter 6, in the language of vector fields.

Definition 2. A C^1 curve $\gamma : (a, b) \to U$ is an integral curve of v if for all $a < t < b$ and $p = \gamma(t)$

$$\left(p, \frac{d\gamma}{dt}(t) \right) = v(p)$$

i.e., if v is the vector field (6) and $g : U \to \mathbb{R}^n$ is the function (g_1, \ldots, g_n) the condition n for $\gamma(t)$ to be an integral curve of v is that it satisfy the system of ODEs

$$\frac{d\gamma}{dt}(t) = g(\gamma(t)).$$

Hence the ODE results of BR, Chapter 6, give us the following theorems about integral curves.

Theorem 1 (Existence). Given a point $p_0 \in U$ and $a \in \mathbb{R}$, there exists an interval $I = (a - T, a + T)$, a neighborhood, U_0, of p_0 in U and for every $p \in U_0$ an integral curve, $\gamma_p : I \to U$ with $\gamma_p(a) = p$.

Theorem 2 (Uniqueness). Let $\gamma_i : I_i \to U, i = 1, 2$, be integral curves. If $a \in I_1 \cap I_2$ and $\gamma_1(a) = \gamma_2(a)$ then $\gamma_1 \equiv \gamma_2$ on $I_1 \cap I_2$ and the curve $\gamma : I_1 \cup I_2 \to U$ defined by

$$\gamma(t) = \begin{cases}
\gamma_1(t), & t \in I_1 \\
\gamma_2(t), & t \in I_2
\end{cases}$$

is an integral curve.

Theorem 3 (Smooth dependence on initial data). Let v be a C^{k+1}-vector field, on an open subset, V, of U, $I \subseteq \mathbb{R}$ an open interval, $a \in I$ a point on this interval and $h : V \times I \to U$ a mapping with the properties:

(i) $h(p, a) = p$.

(ii) For all $p \in V$ the curve

$$\gamma_p : I \to U \quad \gamma_p(t) = h(p, t)$$

is an integral curve of v. Then the mapping, h, is C^k.

3
One important feature of the system (9) is that it is an autonomous system of
ODE’s: the function, \(g(x) \), is a function of \(x \) alone, it doesn’t depend on \(t \). One
consequence of this is the following:

Theorem 4. Let \(I = (a, b) \) and for \(c \in \mathbb{R} \) let \(I_c = (a - c, b - c) \). Then if \(\gamma : I \to U \)
is an integral curve, the reparameterized curve

\[
\gamma_c : I_c \to U, \quad \gamma_c(t) = \gamma(t + c)
\]

is an integral curve.

Finally we recall that a \(C^1 \)-function \(\varphi : U \to \mathbb{R} \) is an integral of the system (9) if for every integral curve \(\gamma(t) \), the function \(t \to \varphi(\gamma(t)) \) is constant. This is true if and only if for all \(t \) and \(p = \gamma(t) \)

\[
0 = \frac{d}{dt} \varphi(\gamma(t)) = (D\varphi)_p \left(\frac{d\gamma}{dt} \right) = (D\varphi)_p(v)
\]

where \((p, v) = v(p)\). But by (6) the term on the right is \(L_v\varphi(p) \).

Here we conclude

Theorem 5. \(\varphi \in C^1(U) \) is an integral of the system (9) if and only if \(L_v\varphi = 0 \).

We’ll conclude this section by discussing a class of objects which are in some sense
“dual objects” to vector fields. For each \(p \in \mathbb{R}^n \) let \(T^*_p\mathbb{R}^n \) be the dual vector space to
\(T_p\mathbb{R}^n \), i.e., the space of all linear mappings, \(\ell : T_p\mathbb{R}^n \to \mathbb{R} \).

Definition 3. Let \(U \) be an open subset of \(\mathbb{R}^n \). A one-form on \(U \) is a function, \(\omega \),
which assigns to each point, \(p \), of \(U \) a vector, \(\omega_p \), in \((T^*_p\mathbb{R}^n)\).

Some examples:

1. Let \(f : U \to \mathbb{R} \) be a \(C^1 \) function. Then for \(p \in U \) and \(c = f(p) \) one has a
linear map

\[
(df)_p : T_p\mathbb{R}^n \to T_c\mathbb{R}
\]

and by making the identification,

\[
T_c\mathbb{R} = \{c, \mathbb{R}\} = \mathbb{R}
\]

\((df)_p \) can be regarded as a linear map from \(T_p\mathbb{R}^n \) to \(\mathbb{R} \), i.e., as an element of
\((T^*_p\mathbb{R}^n)\). Hence the assignment

\[
p \in U \to (df)_p \in (T^*_p\mathbb{R}^n)
\]

defines a one-form on \(U \) which we’ll denote by \(df \).
2. Given a one-form ω and a function, $\varphi : U \to \mathbb{R}$ we define $\varphi \omega$ to be the one-form, $p \in U \to \varphi(p)\omega_p$.

3. Give two one-forms ω_1 and ω_2 we define $\omega_1 + \omega_2$ to be the one-form, $p \in U \to \omega_1(p) + \omega_2(p)$.

4. The one-forms dx_1, \ldots, dx_n play a particularly important role. By (11)

$$(dx_i)\left(\frac{\partial}{\partial x_j}\right)_p = \delta_{ij}$$

i.e., equals 1 if $i = j$ and zero if $i \neq j$. Thus $(dx_1)_p, \ldots, (dx_n)_p$ are the basis of $(T^*_p\mathbb{R}^n)^*$ dual to the basis $(\partial/\partial x_i)_p$. Therefore, if ω is any one-form on U, ω_p can be written uniquely as a sum

$$\omega_p = \sum f_i(p)(dx_i)_p, \quad f_i(p) \in \mathbb{R}$$

and ω can be written uniquely as a sum

$$\omega = \sum f_i dx_i$$

where $f_i U \to \mathbb{R}$ is the function, $p \to f_i(p)$.

Exercise.

Check that if $f : U \to \mathbb{R}$ is a C^1 function

$$df = \sum \frac{\partial f}{\partial x_i} dx_i.$$

Problem set.

1. Let U be an open subset of \mathbb{R}^n and let $\gamma : [a, b] \to U$, $t \to (\gamma_1(t), \ldots, \gamma_n(t))$ be a C^1 curve. Given $\omega = \sum f_i dx_i$, define the line integral of ω over γ to be the integral

$$\int_\gamma \omega = \sum_{i=1}^n \int_a^b f_i(\gamma(t)) \frac{d\gamma_i}{dt} dt.$$

Show that if $\omega = df$ for some $f \in C^\infty(U)$

$$\int_\gamma \omega = f(\gamma(b)) - f(\gamma(a)).$$

In particular conclude that if γ is a closed curve, i.e., $\gamma(a) = \gamma(b)$, this integral is zero.
2. Let
\[\omega = \frac{x_1 \, dx_2 - x_2 \, dx_1}{x_1^2 + x_2^2} \]
and let \(\gamma : [0,2\pi] \to \mathbb{R}^2 - \{0\} \) be the closed curve, \(t \to (\cos t, \sin t) \). Compute the line integral, \(\int_{\gamma} \omega \), and show that it’s not zero. Conclude that \(\omega \) can’t be “d” of a function, \(f \in C^\infty(\mathbb{R}^2 - \{0\}) \).

3. Let \(f \) be the function
\[f(x_1, x_2) = \begin{cases} \arctan \frac{x_2}{x_1}, & x_1 > 0 \\ \frac{\pi}{2}, & x_1 = 0, \ x_2 > 0 \\ \arctan \frac{x_2}{x_1} + \pi, & x_1 < 0 \end{cases} \]
where, we recall: \(-\frac{\pi}{2} < \arctan t < \frac{\pi}{2} \). Show that this function is \(C^\infty \) and that \(df \) is the 1-form, \(\omega \), in the previous exercise. Why doesn’t this contradict what you proved in exercise 9?