The theory of manifolds Lecture 2

Let X be a subset of \mathbb{R}^N, Y a subset of \mathbb{R}^n and $f : X \to Y$ a continuous map. We recall

Definition 1. f is a C^∞ map if for every $p \in X$, there exists a neighborhood, U_p, of p in \mathbb{R}^N and a C^∞ map, $g_p : U_p \to \mathbb{R}^n$, which coincides with f on $U_p \cap X$.

We also recall:

Theorem 1 (Munkres, §16, #3). If $f : X \to Y$ is a C^1 map, there exists a neighborhood, U, of X in \mathbb{R}^N and a C^∞ map, $g : U \to \mathbb{R}^n$ such that g coincides with f on X.

We will say that f is a diffeomorphism if it is one-one and onto and f and f^{-1} are both diffeomorphisms. In particular if Y is an open subset of \mathbb{R}^n, X is a simple example of what we will call a manifold. More generally,

Definition 2. A subset, X, of \mathbb{R}^N is an n-dimensional manifold if, for every $p \in X$, there exists a neighborhood, V, of p in \mathbb{R}^m, an open subset, U, in \mathbb{R}^n, and a diffeomorphism $\varphi : U \to X \cap V$.

Thus X is an n-dimensional manifold if, locally near every point p, X “looks like” an open subset of \mathbb{R}^n.

We’ll now describe how manifolds come up in concrete applications. Let U be an open subset of \mathbb{R}^N and $f : U \to \mathbb{R}^k$ a C^∞ map.

Definition 3. A point, $a \in \mathbb{R}^k$, is a regular value of f if for every point, $p \in f^{-1}(a)$, f is a submersion at p.

Note that for f to be a submersion at p, $Df(p) : \mathbb{R}^N \to \mathbb{R}^k$ has to be onto, and hence k has to be less than or equal to N. Therefore this notion of “regular value” is interesting only if $N \geq k$.

Theorem 2. Let $N - k = n$. If a is a regular value of f, the set, $X = f^{-1}(a)$, is an n-dimensional manifold.

Proof. Replacing f by $\tau_a \circ f$ we can assume without loss of generality that $a = 0$. Let $p \in f^{-1}(0)$. Since f is a submersion at p, the canonical submersion theorem tells us that there exists a neighborhood, O, of 0 in \mathbb{R}^N, a neighborhood, U_0, of p in U and a diffeomorphism, $g : O \to U_0$ such that

$$f \circ g = \pi$$ \hspace{1cm} (1)
where π is the projection map

$$\mathbb{R}^N = \mathbb{R}^k \times \mathbb{R}^n \rightarrow \mathbb{R}^k, \quad (x, y) \rightarrow x.$$

Hence $\pi^{-1}(0) = \{0\} \times \mathbb{R}^n = \mathbb{R}^n$ and by (1), g maps $\mathcal{O} \cap \pi^{-1}(0)$ diffeomorphically onto $U_0 \cap f^{-1}(0)$. However, $\mathcal{O} \cap \pi^{-1}(0)$ is a neighborhood, V, of 0 in \mathbb{R}^n and $U_0 \cap f^{-1}(0)$ is a neighborhood of p in X, and, as remarked, these two neighborhoods are diffeomorphic.

Some examples:

1. *The n-sphere.* Let

$$f : \mathbb{R}^{n+1} \rightarrow \mathbb{R}$$

be the map,

$$(x_1, \ldots, x_{n+1}) \rightarrow x_1^2 + \cdots + x_{n+1}^2 - 1.$$

Then

$$Df(x) = 2(x_1, \ldots, x_{n+1})$$

so, if $x \neq 0$ f is a submersion at x. In particular f is a submersion at all points, x, on the n-sphere

$$S^n = f^{-1}(0)$$

so the n-sphere is an n-dimensional submanifold of \mathbb{R}^{n+1}.

2. *Graphs.* Let $g : \mathbb{R}^n \rightarrow \mathbb{R}^k$ be a C^1 map and let

$$X = \text{graph } g = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^k, \quad y = g(x)\}.$$

We claim that X is an n-dimensional submanifold of $\mathbb{R}^{n+k} = \mathbb{R}^n \times \mathbb{R}^k$.

Proof. Let

$$f : \mathbb{R}^n \times \mathbb{R}^k \rightarrow \mathbb{R}^k$$

be the map, $f(x, y) = y - g(x)$. Then

$$Df(x, y) = [-Dg(x), I_k]$$

where I_k is the identity map of \mathbb{R}^k onto itself. This map is always of rank k. Hence graph $g = f^{-1}(0)$ is an n-dimensional submanifold of R^{n+k}.

3. Munkres, §24, #6. Let \mathcal{M}_n be the set of all $n \times n$ matrices and let \mathcal{S}_n be the set of all symmetric $n \times n$ matrices, i.e., the set

$$\mathcal{S}_n = \{A \in \mathcal{M}_n, \ A = A^t\}.$$
The map
\[
[a_{i,j}] \to (a_{11}, a_{12}, \ldots, a_{1n}, a_{21}, \ldots, a_{2n}, \ldots)
\]
gives us an identification
\[
\mathcal{M}_n \cong \mathbb{R}^{n^2}
\]
and the map
\[
[a_{i,j}] \to (a_{11}, \ldots a_{1n}, a_{22}, \ldots a_{2n}, a_{33}, \ldots a_{3n}, \ldots)
\]
gives us an identification
\[
\mathcal{S}_n \cong \mathbb{R}^{\frac{n(n+1)}{2}}.
\]
(Note that if \(A\) is a symmetric matrix,
\[
a_{12} = a_{21}, a_{13} = a_{31}, a_{32} = a_{23}, \text{ etc.}
\]
so this map avoids redundancies.) Let
\[
O(n) = \{A \in \mathcal{M}_n, A^tA = I\}.
\]
This is the set of orthogonal \(n \times n\) matrices, and the exercise in Munkres requires you to show that it’s an \(n(n-1)/2\)-dimensional manifold.

Hint: Let \(f : \mathcal{M}_n \to \mathcal{S}_n \) be the map \(f(A) = A^tA - I \). Then
\[
O(n) = f^{-1}(0).
\]

These examples show that lots of interesting manifolds arise as zero sets of submersions, \(f : U \to \mathbb{R}^k \). We’ll conclude this lecture by showing that locally every manifold arises this way. More explicitly let \(X \subseteq \mathbb{R}^N \) be an \(n\)-dimensional manifold, \(p \) a point of \(X \), \(U \) a neighborhood of 0 in \(\mathbb{R}^n \), \(V \) a neighborhood of \(p \) in \(\mathbb{R}^N \) and \(\varphi : (U, 0) \to (V \cap X, p) \) a diffeomorphism. We will for the moment think of \(\varphi \) as a \(C^\infty\) map \(\varphi : U \to \mathbb{R}^N \) whose image happens to lie in \(X \).

Lemma 3. The linear map
\[
D\varphi(0) : \mathbb{R}^n \to \mathbb{R}^N
\]
is injective.

Proof. \(\varphi^{-1} : V \cap X \to U \) is a diffeomorphism, so, shrinking \(V \) if necessary, we can assume that there exists a \(C^\infty\) map \(\psi : V \to U \) which coincides with \(\varphi^{-1} \) on \(V \cap X \). Since \(\varphi \) maps \(U \) onto \(V \cap X \), \(\psi \circ \varphi = \varphi^{-1} \circ \varphi \) is the identity map on \(U \). Therefore,
\[
D(\psi \circ \varphi)(0) = (D\psi)(p)D\varphi(0) = I
\]
by the change rule, and hence if \(D\varphi(0)v = 0 \), it follows from this identity that \(v = 0 \). \(\square \)
Lemma 6 says that \(\varphi \) is an immersion at 0, so by the canonical immersion theorem there exists a neighborhood, \(U_0 \), of 0 in \(U \) a neighborhood, \(V_p \), of \(p \) in \(V \), a neighborhood, \(\mathcal{O} \), of 0 in \(\mathbb{R}^N \) and a diffeomorphism

\[
g : (V_p, p) \rightarrow (\mathcal{O}, 0)
\]
such that

\[
i^{-1}(\mathcal{O}) = U_0 \tag{2}
\]
and

\[
g \circ \varphi = i, \tag{3}
\]
i being, as in lecture 1, the canonical immersion

\[
i(x_1, \ldots, x_k) = (x_1, \ldots, x_k, 0, \ldots, 0). \tag{4}
\]

By (3) \(g \) maps \(\varphi(U_0) \) diffeomorphically onto \(\varphi(U_0) \). However, by (2) and (3) \(i(U_0) \) is the subset of \(\mathcal{O} \) defined by the equations, \(x_i = 0, i = n + 1, \ldots, N \). Hence if \(g = (g_1, \ldots, g_N) \) the set, \(\varphi(U_0) = V_p \cap X \) is defined by the equations

\[
g_i = 0, \quad i = n + 1, \ldots, N. \tag{5}
\]

Let \(\ell = N - n \), let

\[
\pi : \mathbb{R}^N = \mathbb{R}^n \times \mathbb{R}^\ell \rightarrow \mathbb{R}^\ell
\]
be the canonical submersion,

\[
\pi(x_1, \ldots, x_N) = (x_{n+1}, \ldots, x_N)
\]
and let \(f = \pi \circ g \). Since \(g \) is a diffeomorphism, \(f \) is a submersion and (5) can be interpreted as saying that

\[
V_p \cap X = f^{-1}(0). \tag{6}
\]

A nice way of thinking about Theorem 2 is in terms of the coordinates of the mapping, \(f \). More specifically if \(f = (f_1, \ldots, f_k) \) we can think of \(f^{-1}(a) \) as being the set of solutions of the system of equations

\[
f_i(x) = a_i, \quad i = 1, \ldots, k \tag{7}
\]
and the condition that \(a \) be a regular value of \(f \) can be interpreted as saying that for every solution, \(p \), of this system of equations the vectors

\[
(df_i)_p = \sum \frac{\partial f_i}{\partial x_j}(0) dx_j \tag{8}
\]
in \(T_p^*\mathbb{R}^n \) are linearly independent, i.e., the system (7) is an “independent system of defining equations” for \(X \).

Problem set

1. Show that the set of solutions of the system of equations
 \[x_1^2 + \cdots + x_n^2 = 1 \]
 and
 \[x_1 + \cdots + x_n = 0 \]
 is an \(n - 2 \)-dimensional submanifold of \(\mathbb{R}^n \).

2. Let \(S^{n-1} \) be the \(n \)-sphere in \(\mathbb{R}^n \) and let
 \[X_a = \{ x \in S^{n-1}, \ x_1 + \cdots + x_n = 0 \}. \]
 For what values of \(a \) is \(X_a \) an \((n - 2) \)-dimensional submanifold of \(S^{n-1} \)?

3. Show that if \(X_i, \ i = 1, 2, \) is an \(n_i \)-dimensional submanifold of \(\mathbb{R}^{N_i} \) then
 \[X_1 \times X_2 \subseteq \mathbb{R}^{N_1} \times \mathbb{R}^{N_2} \]
 is an \((n_1 + n_2) \)-dimensional submanifold of \(\mathbb{R}^{N_1} \times \mathbb{R}^{N_2} \).

4. Show that the set
 \[X = \{(x, v) \in S^{n-1} \times \mathbb{R}^n, \ x \cdot v = 0\} \]
 is a \(2n - 2 \)-dimensional submanifold of \(\mathbb{R}^n \times \mathbb{R}^n \). (Here “\(x \cdot v \)” is the dot product, \(\sum x_i v_i \).)

5. Let \(g : \mathbb{R}^n \rightarrow \mathbb{R}^k \) be a \(C^\infty \) map and let \(X = \text{graph} \ g \). Prove directly that \(X \) is an \(n \)-dimensional manifold by proving that the map
 \[\gamma : \mathbb{R}^n \rightarrow X, \quad x \rightarrow (x, g(x)) \]
 is a diffeomorphism.