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QUANTUM BRUHAT GRAPH AND SCHUBERT POLYNOMIALS

ALEXANDER POSTNIKOV

(Communicated by John R. Stembridge)

Abstract. The quantum Bruhat graph, which is an extension of the graph
formed by covering relations in the Bruhat order, is naturally related to the
quantum cohomology ring of G/B. We enhance a result of Fulton and Wood-
ward by showing that the minimal monomial in the quantum parameters that
occurs in the quantum product of two Schubert classes has a simple interpre-
tation in terms of directed paths in this graph.

We define path Schubert polynomials, which are quantum cohomology
analogs of skew Schubert polynomials recently introduced by Lenart and Sot-
tile. They are given by sums over paths in the quantum Bruhat graph of type
A. The 3-point Gromov-Witten invariants for the flag manifold are expressed
in terms of these polynomials. This construction gives a combinatorial de-
scription for the set of all monomials in the quantum parameters that occur
in the quantum product of two Schubert classes.

1. Introduction

The famous Littlewood-Richardson coefficients are the structure constants of
the cohomology ring of the Grassmannian in the basis of Schubert classes. It is an
open question to give a combinatorial interpretation of the generalized Littlewood-
Richardson coefficients for the flag manifold and, more generally, for the homo-
geneous space G/P . This article discusses the 3-point Gromov-Witten invariants,
which are the structure constants of the small quantum cohomology ring. They ex-
tend the Littlewood-Richardson coefficients in an orthogonal “quantum” direction.

Fulton and Woodward [F-W] described the set of minimal monomials qd in the
quantum parameters that occur in the quantum product σu ∗ σv of two Schubert
classes in QH∗(G/P ). We demonstrate that the problem of multiplying the Schu-
bert classes in the quantum cohomology ring is naturally related to the study of
paths in the quantum Bruhat graph from [BFP]. This is the directed graph obtained
by adding some “quantum” edges to the graph formed by covering relations in the
Bruhat order. The quantum Bruhat graph encodes the terms that appear in the
quantum Chevalley-Monk formula. We show, for G/B, that there is a unique min-
imal monomial qd that occurs in the quantum product σu ∗ σv. This fact does not
immediately follow from [F-W]. The minimal monomial qd is equal to the weight
of any shortest directed path from u to wov in the quantum Bruhat graph.
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Lenart and Sottile [L-S] recently defined skew Schubert polynomials. The expan-
sion coefficients of these polynomials in the basis of usual Schubert polynomials are
equal to the generalized Littlewood-Richardson coefficients for the flag manifold.
On the other hand, in [Po3], we introduced toric Schur polynomials, whose expan-
sion coefficients in the basis of usual Schur polynomials are the Gromov-Witten
invariants for the Grassmannian.

In this article, we put these two approaches together. We define the path Schubert
polynomials, whose expansion coefficients in the basis of usual Schubert polynomials
give the Gromov-Witten invariants for the flag manifold. The path Schubert poly-
nomials can be defined as sums over directed paths in the quantum Bruhat graph
on the symmetric group. The proof of the result on their Schubert expansion read-
ily follows from a combination of the Cauchy identity, the elementary quantization
rule from [FGP], and the quantum Pieri formula.

This construction implies a combinatorial description for the set of all monomials
qd in the quantum parameters that occur, with nonzero coefficients, in the quantum
product σu ∗ σv of two Schubert classes in the quantum cohomology of the flag
manifold. A monomial qd occurs in σu ∗ σv if and only if there is a directed path
of weight qd from u to wov in the quantum Bruhat graph that satisfies a certain
additional condition. This solves a problem posed by Fulton and Woodward [F-W]
for the flag manifold.

The article consists of two parts: one related to the generalized flag manifold
G/B, and the other concerned with the classical flag manifold Fln = SL(n, C)/B.
In Section 2, we discuss quantum cohomology of G/B in a uniform Lie-theoretic
setup. We enhance a result of Fulton and Woodward using the quantum Bruhat
graph. In Section 3, we review some notions and results peculiar to the classical flag
manifold. In Section 4, we use these combinatorial techniques to obtain stronger
results for the quantum cohomology of Fln.

2. Quantum cohomology of G/B

In this section we discuss the quantum cohomology ring of the generalized
flag manifold G/B. First, we briefly recall some general Lie-theoretic notation;
see [Hum] for more details. Then we recall a few facts related to Schubert classes
and quantum cohomology, and formulate the quantum Chevalley-Monk formula;
see [F-W]. This formula leads to the quantum Bruhat graph that was introduced
in [BFP]. We show that the minimal monomial qd that occurs in the quantum
product of two Schubert classes has a simple interpretation in terms of directed
paths in the quantum Bruhat graph.

Let G be a simply connected complex semi-simple Lie group together with a
Borel subgroup B. The homogeneous space G/B is a compact complex manifold.

Let h be the Cartan subalgebra in the Lie algebra g of G, and let Φ ⊂ h∗ be
the root system associated with G. For a root α ∈ Φ, let hα ∈ h denote the
corresponding coroot in the dual root system Φ∨. The Weyl group W is generated
by the reflections sα ∈ End(h∗), α ∈ Φ, given by sα : λ �→ λ − λ(hα)α. If 〈α | β〉
is a W -invariant inner product on h∗, then h can be identified with h∗ via this
inner product and hα = 2α/〈α | α〉. The choice of Borel subgroup B determines
the set of positive roots Φ+ ⊂ Φ, the basis of simple roots α1, . . . , αr in the root
system Φ, and the basis of simple coroots hα1 , . . . , hαr in the dual root system Φ∨.
The fundamental weights λ1, . . . , λr ∈ h∗ are defined as elements of the basis dual



QUANTUM BRUHAT GRAPH AND SCHUBERT POLYNOMIALS 701

to {hα1 , . . . , hαr}, i.e., λi(hαj ) = δij . The Weyl group W is generated by the set of
Coxeter generators si = sαi . The length �(w) of an element w ∈ W is the minimal
number of generators si in a decomposition for w.

The cohomology ring H∗(G/B) is a free Z-module linearly generated by the
Schubert classes σw labeled by the elements w ∈ W of the Weyl group. The
Poincaré duality preserves the basis of Schubert classes:∫

σu · σv = δu,wov (Kronecker’s delta).

Here and everywhere below wo is the unique Weyl group element of maximal pos-
sible length, called the longest element.

The Schubert classes σsi generate the cohomology ring of G/B. According to
Borel’s theorem, the maps σsi �→ λi extend to the canonical isomorphism:

(1) H∗(G/B, Q) � Sym(h∗Q)/IW ,

where Sym(h∗Q) is the symmetric algebra of the Q-span h∗Q ⊂ h∗ of the fundamental
weights λi and IW is the ideal in this algebra generated by W -invariant elements
without constant term.

Let Z[q] = Z[q1, . . . , qr]. The small quantum cohomology ring QH∗(G/B) of G/B
equals, as a Z[q]-module, the tensor product H∗(G/B) ⊗Z Z[q]. Thus the Schubert
classes σw, w ∈ W , form a Z[q]-linear basis of QH∗(G/B). The multiplicative
structure of the quantum cohomology is a deformation of the usual product in
H∗(G/B). We will use the symbol “∗” to denote the quantum product, i.e., the
product in the quantum cohomology ring. The structure constants of the quantum
cohomology are 3-point Gromov-Witten invariants:

σu ∗ σv =
∑
w, d

〈σu, σv, σwow〉d qd σw

where the sum is over w ∈ W and d = (d1, . . . , dr) ∈ Zr
≥0, and qd = qd1

1 · · · qdr
r . The

Gromov-Witten invariants 〈σu, σv, σwow〉d are nonnegative integers that count the
numbers of certain rational curves in G/B. Their geometric definition implies that
the quantum product is a commutative and associative operation.

For a root α ∈ Φ+ such that hα = d1 hα1 + · · · + dr hαr , let qhα = qd1
1 · · · qdr

r .
Let us assume that the variables qi are of degree 2. Thus deg(qhα) = 2 |hα|, where
|hα| = (λ1 + · · · + λr)(hα) is the height of the coroot hα.

Let us define, for a positive root α ∈ Φ+, the operator Tα acting Z[q]-linearly on
the quantum cohomology ring QH∗(G/B) as

(2) Tα : σw �−→




σwsα if �(wsα) = �(w) + 1,

qhα σwsα if �(wsα) = �(w) + 1 − 2 |hα|,

0 otherwise.

The space QH∗(G/B) has the Z-linear degree function deg(qd σw) = 2 |d| + �(w).
Then the Tα are homogeneous operators on QH∗(G/B) of degree 1.

The quantum cohomology QH∗(G/B) is generated, as an algebra over Z[q], by
the Schubert classes σsi . Thus the quantum product is uniquely determined by the
following quantum Chevalley-Monk formula:

(3) σsi ∗ σw =
∑

α∈Φ+

λi(hα) Tα(σw) .
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For root systems of type A, this formula was established in [FGP]. For the case
of an arbitrary type it was found by Peterson [Pet] (unpublished). A more general
version of the quantum Chevalley-Monk formula, for QH∗(G/P ), was given and
rigorously proved by Fulton and Woodward [F-W].

id

s2s1

s2s1s1s2

wo

Figure 1. Quantum Bruhat graph ΓΦ of type A2

Motivated by the quantum Chevalley-Monk formula (3), let us define the quan-
tum Bruhat graph ΓΦ as the following directed graph on the Weyl group elements
w ∈ W with weighted edges. Two elements u, v ∈ W are connected by a directed
edge e : u → v if and only if v = usα and one of the following two conditions is
satisfied:

�(v) = �(u) + 1 or �(v) = �(u) + 1 − 2 |hα|.
If �(v) = �(u)+1, then the weight of edge e equals 1, and if �(v) = �(u)+1−2 |hα|,
then the weight of edge e equals qhα . The weight of a directed path in the graph
ΓΦ is the product of the weights of its edges.

The graph ΓΦ was investigated in [BFP] and, for type A, in [Po2]. The upward
edges in ΓΦ, i.e., the edges that increase the length by 1, are exactly the covering
relations in the Bruhat order on the Weyl group W . The downward edges corre-
spond to additional “quantum” terms that appear in the quantum Chevalley-Monk
formula (3). This is why we call ΓΦ the quantum Bruhat graph.

Let us say that a directed path in ΓΦ from u to v is shortest if it has the minimal
possible length among all directed paths from u to v.

Lemma 1. Let u, v ∈ W be any two Weyl group elements. (1) There exists a
directed path from u to v in the graph ΓΦ. (2) All shortest paths from u to v have
the same weight qdmin. (3) The weight of any path from u to v is divisible by qdmin.

This lemma says that, for any u, v ∈ W , there is a well-defined minimal degree
dmin = dmin(u, v) ∈ Zr

≥0 such that qdmin is the minimal possible weight of a directed
path from u to v. The lemma easily follows from results of [BFP].

Proof. Suppose that a covers b in the weak Bruhat order, i.e., a, b ∈ W , a = b si,
and �(a) = �(b) + 1. Then both directed edges a → b and b → a are present in the
quantum Bruhat graph ΓΦ. Thus any two Weyl group elements u and v can be
connected by a directed path in ΓΦ.
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According to [BFP, Lemma 6.7], for a path a → b → c of length 2 in the graph
ΓΦ with a 
= c, there exists a unique path a → b′ → c such that b′ 
= b. The
proof of Theorem 6.4 in [BFP] implies that any two shortest paths from u to v can
be obtained from each other by applying several switches of this type to pairs of
consecutive edges in a path. Moreover, any path from u to v can be reduced to a
shortest path by applying a sequence of such switches and cancellations of pairs of
opposite edges a → b → a; see [BFP, Section 6].

These switches of pairs of consecutive edges in a path preserve its weight. Indeed,
it is enough to verify the statement only for 3 types A2, B2, and G2 of rank 2 root
systems (cf. proof of [BFP, Lemma 6.7]), which can be easily done by a direct
observation. Thus all shortest paths from u to v have the same weight qdmin, and
the weight of any path from u to v is divisible by qdmin. �

Let �(u, v) be the length of a shortest path from u to v in the graph ΓΦ.

Theorem 2. Fix two Weyl group elements u, v ∈ W . For any w ∈ W , the coeffi-
cient of σv in σu ∗ σw is divisible by qdmin(u,v). There exists w ∈ W such that the
coefficient of σv in σu ∗ σw equals qdmin(u,v) times a nonzero integer. Moreover, for
any such w, we have �(w) = �(u, v).

Proof. Let S = σs1 + ...+σsr . The expression S∗l = S ∗ · · ·∗S expands as a positive
integer combination of the terms qd σw. For any w ∈ W of length �(w) = l, the
expansion of S∗l contains the class σw with a strictly positive integer coefficient
(without any quantum parameters qi). According to the quantum Chevalley-Monk
formula (3), the coefficient of σv in S∗l ∗σu is given by the sum over directed paths
from u to v, and each path comes with its weight times some positive integer. By
Lemma 1, all these terms, including the contribution of σw ∗σu, should be divisible
by qdmin(u,v). This proves the first claim of the theorem.

On the other hand, suppose that l = �(u, v). Then there exists at least one
path from u to v of length l. By Lemma 1 and the quantum Chevalley-Monk
formula (3), the coefficient of σv in S∗l ∗ σu is equal to qdmin(u,v) times a strictly
positive integer. The expansion of S∗l in the basis of Schubert classes may also
contain terms qd σw′ with nonzero d. For all such terms, we have �(w′) = l′ < l
because l = deg(S∗l) = deg(qd σw′) = 2 |d| + l′. Thus σw′ appears with a strictly
positive coefficient in the expansion of S∗l′ . But, the coefficient of σv in S∗l′ ∗σu is
0 because there are no paths from u to v of length l′ < l. Thus the terms qd σw′ in
S∗l cannot make any contribution to the (nonzero) coefficient of σv in S∗l ∗ σu.

This means that there exists at least one term Const · σw in the expansion of
S∗l with �(w) = �(u, v) that does make a contribution to the coefficient of σv in
S∗l ∗ σu. In other words, the coefficient of σv in σw ∗ σu equals qdmin(u,v) times a
nonzero integer, which proves the second claim of the theorem. �

The next claim strengthens a result due to Fulton and Woodward [F-W, Theo-
rem 9.1]. Let us say that a monomial qd occurs in the quantum product σu ∗ σv of
two Schubert classes if there exists w ∈ W such that the Gromov-Witten invariant
〈σu, σv, σw〉d is nonzero. Let us say that qd is a minimal monomial that occurs in
σu ∗ σv if (1) qd occurs in σu ∗ σv, and (2) any monomial strictly dividing qd does
not occur in σu ∗ σv. Theorem 2 can be equivalently reformulated, as follows.

Corollary 3. For any pair u, v ∈ W , the monomial qdmin(u,wov) is the unique
minimal monomial that occurs in the quantum product σu ∗ σv.
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Note that Fulton and Woodward [F-W] described the set of minimal monomials
that occur in σu ∗ σv, but their construction does not immediately imply that this
set consists of a single element.

It would be interesting to describe all monomials qd that occur in a quantum
product σu ∗ σv. Theorem 2 suggests that such monomials qd should be weights of
paths from u to wov in the graph ΓΦ that satisfy certain additional conditions. In
the following sections we describe such a class of paths for type A root systems.

3. Flag manifold and Schubert polynomials

There are some notions and results related to (quantum) cohomology, which are
peculiar for type A. In this section we discuss this type A theory, which includes the
Cauchy identity for Schubert polynomials (see [Mac]), the elementary quantization
rule, and the quantum Pieri operators (see [FGP, Po1] for more details).

For type An−1, the homogeneous space G/B is the complex flag manifold Fln =
SL(n, C)/B. The corresponding Weyl group is the symmetric group W = Sn of
order n permutations. Thus the Schubert classes σw, which form a Z-basis of the
cohomology H∗(Fln), are labeled by permutations w ∈ Sn.

In this case, Borel’s theorem (1) implies that the cohomology ring is isomorphic
to the following quotient of the polynomial ring:

(4) H∗(Fln) � Z[x1, . . . , xn]/〈e1, . . . , en〉,
where ei = ei(x1, . . . , xn) are the elementary symmetric polynomials.

Lascoux and Schützenberger [LSc], using constructions of Bernstein-Gelfand-
Gelfand and Demazure, defined the Schubert polynomials Sw(x) = Sw(x1, . . . , xn)
in the polynomial ring Z[x1, . . . , xn], which are particularly nice polynomial repre-
sentatives of the Schubert classes σw. These polynomials have nonnegative integer
coefficients and are stable under the standard embedding Sn ↪→ Sn+1. Another
important property of the Schubert polynomials is the following Cauchy identity
(see [Mac]):

(5)
∏

i+j≤n

(xi + yj) =
∑

w∈Sn

Sw(x1, . . . , xn) · Swwo(y1, . . . , yn).

For type An−1, the longest permutation in Sn is given by wo = n . . . 2 1.
The left-hand side of (5) is the double Schubert polynomial Swo(x,−y). It can

be expanded in terms of elementary symmetric polynomials as

(6)
∏

i+j≤n

(xi + yj) =
n−1∏
k=1

k∑
i=0

yk−i
n−k ei(x1, . . . , xk).

As a linear space, the quantum cohomology ring QH∗(Fln) of the flag manifold
equals H∗(Fln) ⊗ Z[q], where Z[q] = Z[q1, . . . , qn−1].

For type An−1, the definition (2) of the operators Tα can be written as follows.
For 1 ≤ i < j ≤ n, let Tij be the operator that acts Z[q]-linearly on the quantum
cohomology QH∗(Fln) by the formula

(7) Tij : σw �−→




σwsij if �(wsij) = �(w) + 1,

qij σwsij if �(wsij) = �(w) + 1 − 2(j − i),

0 otherwise,
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where �(w) denote the length of the permutation w, sij ∈ Sn is the transposition
of i and j, and qij = qiqi+1 · · · qj−1. The Coxeter generators of Sn are the adja-
cent transpositions sk = sk k+1, k = 1, . . . , n − 1. The quantum Chevalley-Monk
formula (3) specializes to the following formula proved in [FGP]:

(8) σsk
∗ σw =

∑
i≤k<j

Tij(σw),

for any w ∈ Sn and k = 1, . . . , n − 1.
Let us define an involution ω on the quantum cohomology ring QH∗(Fln) by

setting ω : f(q1, . . . , qn−1) �→ f(qn−1, . . . , q1) and

ω : qdσw �→ ω(qd)σwowwo ,

and extending it by linearity. An easy observation shows that the quantum
Chevalley-Monk formula (8) is invariant under ω. Thus ω is an automorphism
of QH∗(Fln).

Let e
(k)
i = σ(k−i+1,...,k,k+1) and h

(k)
i = σ(k+i,...,k+1,k) be the Schubert classes

represented in (4) by the elementary and complete homogeneous symmetric func-
tions in the first k variables: ei(x1, . . . , xk) = S(k−i+1,...,k+1) and hi(x1, . . . , xk) =
S(k+i,...,k). Here we use cycle notation for permutations: (k − i + 1, . . . , k + 1) =
sk−i+1 · · · sk−1sk and (k + i, . . . , k) = sk+i−1 · · · sk+1sk. The involution ω on
H∗(Fln) switches these two families of Schubert classes e

(k)
i

ω←→ h
(n−k)
i .

Theorem 1.1 from [FGP] is equivalent to saying that the quantum product of
the Schubert classes e

(1)
i1

, e
(2)
i2

, . . . , e
(n−1)
in−1

in the ring QH∗(Fln) is exactly the same
as the classical product of these Schubert classes in H∗(Fln):

(9) e
(1)
i1

∗ e
(2)
i2

∗ · · · ∗ e
(n−1)
in−1

= e
(1)
i1

· e(2)
i2

· · · · · e(n−1)
in−1

.

We call this identity the elementary quantization rule. Applying the involution ω

to both sides, we get a similar statement for the h
(k)
i :

h
(1)
i1

∗ h
(2)
i2

∗ · · · ∗ h
(n−1)
in−1

= h
(1)
i1

· h(2)
i2

· · · · · h(n−1)
in−1

.

Let us define the quantum Pieri operators E(k)
i and H(k)

i , acting on the quantum
cohomology QH∗(Fln), as

(10)
E(k)

i =
∑

Ta1 b1 · · ·Tai bi ,

H(k)
i =

∑
Tc1 d1 · · ·Tci di ,

where the first sum is over a1, . . . , ai, b1, . . . , bi such that

a1, . . . , ai ≤ k < b1 ≤ · · · ≤ bi and a1, . . . , ai are distinct;

and the second sum is over c1, . . . , ci, d1, . . . , di such that

c1 ≤ · · · ≤ ci ≤ k < d1, . . . , di and d1, . . . , di are distinct.

In [Po1] we showed how to deduce from the quantum Chevalley-Monk formula (8)
the following quantum Pieri formulas for the quantum product of e

(k)
i and h

(k)
i with

any Schubert class:

(11)
e
(k)
i ∗ σw = E(k)

i (σw),

h
(k)
i ∗ σw = H(k)

i (σw).
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In a different form, the quantum Pieri formulas were earlier given by Ciocan-
Fontanine in [C-F]. In the proof of these formulas given in [Po1] we only used
the quadratic relations for the operators Tij found by Fomin and Kirillov [F-K].

4. Path Schubert polynomials

In this section we define path Schubert polynomials and establish their relation
with the Gromov-Witten invariants for the flag manifold. These polynomials can
be expressed in terms of paths in the quantum Bruhat graph. As a corollary, we
obtain a combinatorial rule for all monomials qd that occur in the quantum product
σu ∗ σv in terms of paths.

Let us define the operator H(y), acting on the space QH∗(Fln) ⊗ Z[y1, . . . , yn],
as the following combination of quantum Pieri operators:

H(y) =
∑
β≤δ

yδ−β H(1)
β1

· · ·H(n−1)
βn−1

where the sum is over nonnegative sequences β = (β1, . . . , βn−1) such that β ≤ δ
termwise, δ = (n − 1, n − 2, . . . , 1), and yγ = yγ1

1 yγ2
2 · · · yγn−1

n−1 , for the termwise
difference γ = β − δ.

Let us define, for all pairs u, v ∈ Sn, the path Schubert polynomials Su,v =
Su,v(y, q) in the polynomial ring Z[y1, . . . , yn, q1, . . . , qn−1] as the matrix elements
of the operator H(y) in the basis of Schubert classes:

H(y) : σu �−→
∑

v∈Sn

Su,v · σv.

It follows from the definitions that the Su,v are polynomials with nonnegative
integer coefficients.

The specialization of the Su,v for q1 = · · · = qn−1 = 0 are exactly the skew
Schubert polynomials Sv/u ∈ Z[x1, . . . , xn] recently introduced by Lenart and Sot-
tile [L-S]. We remark that the quantum Schubert polynomials Sq

w from [FGP]
cannot be obtained by a specialization of the path Schubert polynomials Su,v.
Indeed, all coefficients of Su,v are nonnegative, whereas Sq

w may have negative co-
efficients. Nevertheless, as we will see, the polynomials Su,v are intimately related
to the quantum cohomology QH∗(Fln).

The definition of path Schubert polynomials Su,v can be reformulated in terms
of paths in the quantum Bruhat graph. Let Γn = ΓΦ be the quantum Bruhat graph
for a type An−1 root system Φ. The graph Γn is a certain directed graph on the set
of permutations in Sn. Each edge e in Γn is assigned a certain weight and a certain
label. Two permutations u and v are connected by the directed edge e : u

i j−→ v
labeled (i, j), 1 ≤ i < j ≤ n, if and only if v = usij and one of the following two
conditions is satisfied:

�(v) = �(u) + 1 or �(v) = �(u) + 1 − 2(j − i).

If �(v) = �(u)+1, then the weight of edge e equals 1, and if �(v) = �(u)+1−2(j−i),
then the weight of edge e equals qij = qiqi+1 · · · qj−1. The weight of a directed path
in the graph Γn is the product of the weights of its edges.

Let us say that a directed path u0
a1 b1−→ u1

a2 b2−→ · · · ai bi−→ ui in the graph Γn is
yi

k-admissible if a1 ≤ · · · ≤ ai ≤ k < b1, . . . , bi and b1, . . . , bi are distinct; cf. the
definition (10) of quantum Pieri operators H(k)

i . More generally, let us say that
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a path P in the graph Γn is yβ-admissible, for a monomial yβ = yβ1
1 . . . y

βn−1
n−1 , if

the path P is a concatenation of n − 1 paths P = P1 ◦ · · · ◦ Pn−1 such that Pk is
yβk

k -admissible, for k = 1, . . . , n − 1.
By definition, the path Schubert polynomial Su,v is equal to

Su,v =
∑

β

yδ−β
∑
P

weight(P )

where the second summation is over all yβ-admissible paths P in the graph Γn with
initial vertex u and terminal vertex v.

Every polynomial in the yi with degyi
≤ n − i can be expressed as a linear

combination of the usual Schubert polynomials Sw(y) = Sw(y1, . . . , yn). The
next theorem claims that the coefficients in such an expansion for path Schubert
polynomials are exactly the Gromov-Witten invariants.

Theorem 4. For any u, v ∈ Sn, we have

Su,wov(y, q) =
∑
w, d

〈σu, σv, σwow〉d qd Sw(y),

where the sum is over w ∈ Sn and d ∈ Zn−1
≥0 . In other words, the coefficient of Sw

in the Schubert expansion of Su,wov is equal to the coefficient of the Schubert class
σw in the quantum product σu ∗ σv.

This statement is a generalization to the quantum cohomology of a recent result
by Lenart and Sottile [L-S, Theorem 1]. On the other hand, it is a flag manifold
analog of [Po3, Theorem 6.3].

Theorem 4 implies, in particular, that

Sw,wo(y, q) = S1,wow(y, q) = Sw(y)

is the usual Schubert polynomial. Thus all yβ-admissible paths in Γn with the
initial vertex 1 or with the terminal vertex wo have weight 1, i.e., they are increasing
saturated chains in the Bruhat order.

Following [L-S, Remark 6], note that both sides of the identity in Theorem 4
can be interpreted in terms of paths in the quantum Bruhat graph. It would be
interesting to present a bijection between these two collections of paths. Such a
bijection would provide a generalization of jeu de taquin to paths in the quantum
Bruhat graph. Actually, such a bijection would imply a combinatorial interpreta-
tion for the Gromov-Witten invariants 〈σu, σv, σwow〉d similar to the jeu de taquin
version of the classical Littlewood-Richardson rule.

Theorem 4 easily follows from the Cauchy identity (5), the elementary quanti-
zation rule (9), and the quantum Pieri formula (11).

Proof of Theorem 4. Taking the image of the Cauchy identity (5), with the ex-
panded left-hand side (6), in the ring H∗(Fln) ⊗ Z[y1, . . . , yn], we get∑

β

yδ−β e
(n−1)
β1

· · · e(1)
βn−1

=
∑

w∈Sn

Sw(y) · σwwo .

According to the elementary quantization rule (9), we can write the following iden-
tity in the ring QH∗(Fln) ⊗ Z[y1, . . . , yn]:∑

β

yδ−β e
(n−1)
β1

∗ · · · ∗ e
(1)
βn−1

=
∑

w∈Sn

Sw(y) · σwwo .
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Applying the involution ω : QH∗(Fln) → QH∗(Fln), we get∑
β

yδ−β h
(1)
β1

∗ · · · ∗ h
(n−1)
βn−1

=
∑

w∈Sn

Sw(y) · σwow .

Since the operators of quantum multiplications by the h
(k)
i are given by the quantum

Pieri operators H(k)
i , the previous identity implies that

H(y) : σu �→
∑

w∈Sn

Sw(y) · (σwow ∗ σu).

The last formula is equivalent to the claim of the theorem. �

Observe that the Cauchy identity that appears in the proof of Theorem 4 was
an essential ingredient in the approach of Kirillov and Maeno [K-M] to quantum
Schubert calculus.

Theorem 4 implies a combinatorial description for the set of monomials qd in the
quantum parameters that occur in the quantum product of two Schubert classes.
Let us say that a directed path u0

a1 b1−→ u1
a2 b2−→ · · · al bl−→ ul in the graph Γn is

admissible if there exists a sequence k1 ≤ · · · ≤ kl such that ai ≤ ki < bi, for
i = 1, . . . , l, and all pairs (k1, b1), . . . , (kl, bl) are distinct.

Corollary 5. For any u, v ∈ Sn and d ∈ Zn−1
≥0 , the monomial qd occurs in σu ∗ σv

if and only if there exists an admissible path of weight qd from u to wov in the
graph Γn.

Proof. Let Su,v,d ∈ Z[y1, . . . , yn] be the coefficient of qd in the path Schubert
polynomial Su,v. By Theorem 4, a monomial qd occurs in σu ∗ σv if and only
if Su,wov,d is nonzero. On the other hand, by the definition of path Schubert
polynomials, Su,wov,d is nonzero if and only if there exists a path from u to wov
of weight qd, which is yβ-admissible, for some β. Every yβ-admissible path is
admissible and every admissible path reduces to a yβ-admissible path. �

I would like to thank Misha Kogan, Chris Woodward, and Cristian Lenart for
interesting discussions and helpful correspondence.

References

[BFP] Francesco Brenti, Sergey Fomin, Alexander Postnikov: Mixed Bruhat operators
and Yang-Baxter equations for Weyl groups, International Mathematics Research Notices
1999, no. 8, 419–441. MR2000e:20067
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