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BRUHAT ORDER, SMOOTH SCHUBERT VARIETIES,

AND HYPERPLANE ARRANGEMENTS

SUHO OH, ALEXANDER POSTNIKOV, HWANCHUL YOO

Abstract. The aim of this article is to link Schubert varieties
in the flag manifold with hyperplane arrangements. For a permu-
tation, we construct a certain graphical hyperplane arrangement.
We show that the generating function for regions of this arrange-
ment coincides with the Poincaré polynomial of the corresponding
Schubert variety if and only if the Schubert variety is smooth. We
give an explicit combinatorial formula for the Poincaré polynomial.
Our main technical tools are chordal graphs and perfect elimina-
tion orderings.

1. Introduction

For a permutation w ∈ Sn, let Pw(q) :=
∑

u≤w qℓ(u), where the sum
is over all permutations u ∈ Sn below w in the strong Bruhat order.
Geometrically, the polynomial Pw(q) is the Poincaré polynomial of the
Schubert variety Xw = BwB/B in the flag manifold SL(n, C)/B.

Define the inversion hyperplane arrangement Aw as the collection
of the hyperplanes xi − xj = 0 in Rn, for all inversions 1 ≤ i < j ≤
n, w(i) > w(j). Let Rw(q) :=

∑
r qd(r0,r) be the generating function

that counts regions r of the arrangement Aw according to the distance
d(r0, r) from the fixed initial region r0.

The main result of the paper is the claim that Pw(q) = Rw(q) if and
only if the Schubert variety Xw is smooth.

According to well-known Lakshmibai-Sandhya’s criterion [LS], the
Schubert variety Xw is smooth if and only if the permutation w avoids
two patterns 3412 and 4213. (Let us say that the permutation w is
smooth in this case.) Also Carrell-Peterson [C] proved that Xw is
smooth if and only if the Poincaré polynomial Pw(q) is palindromic,
that is Pw(q) = qℓ(w) Pw(q−1). If w is not smooth then the polyno-
mial Pw(q) is not palindromic, but the polynomial Rw(q) is always
palindromic. So Pw(q) 6= Rw(q) in this case. On the other hand,

Date: September 12, 2007.
S.O. was supported in part by Samsung Scholarship. A.P. was supported in part

by NSF CAREER Award DMS-0504629.
1

http://arxiv.org/abs/0709.3259v1


2 SUHO OH, ALEXANDER POSTNIKOV, HWANCHUL YOO

we show that, for smooth w, the polynomials Rw(q) and Pw(q) sat-
isfy the same recurrence relation. For the Poincaré polynomials Pw(q),
this recurrence relation was given by Gasharov [G]. This implies that
Pw(q) = Rw(q) in this case.

For smooth w, we present an explicit factorization of the polyno-
mials Pw(q) = Rw(q) as a product of q-numbers [e1 + 1]q · · · [en + 1]q,
where e1, . . . , en can be computed using the left-to-right maxima (aka
records) of the permutation w. In this case, the inversion graph Gw,
whose edges correspond to inversions in w, is a chordal graph. The
numbers e1, . . . , en are the roots of the chromatic polynomial χGw

(t) of
the inversion graph. The polynomial χGw

(t) is also the characteristic
polynomial of the inversion hyperplane arrangement Aw. We call the
numbers e1, . . . , en the exponents.

We thank Vic Reiner and Jonas Sjöstrand for helpful conversations.

2. Bruhat order and Poincaré polynomials

The (strong) Bruhat order “≤” on the symmetric group Sn is the
partial order generated by the relations w < w · tij if ℓ(w) < ℓ(w · tij).
Here tij ∈ Sn is the transposition of i and j; and ℓ(w) denotes the
length of a permutation w ∈ Sn, i.e., the number of inversions in w.

Intervals in the Bruhat order play a role in Schubert calculus and
in Kazhdan-Lusztig theory. In this paper we concentrate on Bruhat
intervals of the form [id, w] := {u ∈ Sn | u ≤ w} (where id ∈ Sn is
the identity permutation), that is, on lower order ideals of the Bruhat
order. They are related to Schubert varieties Xw = BwB/B in the flag
manifold SL(n, C)/B. Here B denotes the Borel subgroup of SL(n, C).
The Poincaré polynomial of the Schubert variety Xw is the rank gen-
erating function for the interval [id, w], e.g., see [BL]:

Pw(q) =
∑

u≤w

qℓ(u).

The well-known smoothness criterion for Schubert varieties, due to
Lakshmibai and Sandhya, is based on pattern avoidance. A permuta-
tion w ∈ Sn contains a pattern σ ∈ Sk if there is a subword with k
letters in w with the same relative order of the letters as in the permu-
tation σ. A permutation w avoids the pattern σ if w does not contain
this pattern.

Theorem 1. (Lakshmibai-Sandhya [LS]) For a permutation w ∈ Sn,
the Schubert variety Xw is smooth if and only if w avoids the two
patterns 3412 and 4231.
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We will say that w ∈ Sn is a smooth permutation if it avoids these
two patterns 3412 and 4231.

Another smoothness criterion, due to Carrell and Peterson, is given
in terms of the Poincaré polynomial Pw(q). Let us say that a polyno-
mial f(q) = a0 + a1 q + · · · + ad qd is palindromic if f(q) = qdf(q−1),
i.e., ai = ad−i for i = 0, . . . , d.

Theorem 2. (Carrell-Peterson [C], see also [BL, Sect. 6.2]) For a per-
mutation w ∈ Sn, the Schubert variety Xw is smooth if and only if the
Poincaré polynomial Pw(q) is palindromic.

3. Inversion hyperplane arrangements

For a graph G on the vertex set {1, . . . , n}, the graphical arrangement
AG is the hyperplane arrangement in Rn with hyperplanes xi − xj = 0
for all edges (i, j) in G. The characteristic polynomial χG(t) of the
graphical arrangement AG is also the chromatic polynomial of the graph
G. The value of χG(t) at a positive integer t equals the number of ways
to color the vertices of the graph G in t colors so that all neighboring
pairs of vertices have different colors. The value (−1)nχG(−1) is the
number of regions of AG. The regions of AG are in bijection with
acyclic orientations of the graph G. Recall that an acyclic orientation
is a way to direct edges of G so that no directed cycles are formed. The
region of AG associated with an acyclic orientation O is described by
the inequalities xi < xj for all directed edges i → j in O.

We will study a special class of graphical arrangements. For a permu-
tation w ∈ Sn, the inversion arrangement Aw is the arrangement with
hyperplanes xi − xj = 0 for each inversion 1 ≤ i < j ≤ n, w(i) > w(j).
Define the inversion graph Gw as the graph on the vertex set {1, . . . , n}
with the set of edges {(i, j) | i < j, w(i) > w(j)}. The arrangement
Aw is the graphical arrangement AG for the inversion graph G = Gw.
Let Rw be the number of regions in the inversion arrangement Aw.

Let Bw := #[id, w] = Pw(1) be the number of elements in the Bruhat
interval [id, w]. Interestingly, the numbers Rw and Bw are related to
each other.

Theorem 3. (Hultman-Linusson-Shareshian-Sjöstrand [HLSS])
(1) For any permutation w ∈ Sn, we have Rw ≤ Bw.
(2) The equality Rw = Bw holds if and only if w avoids the following

four patterns 4231, 35142, 42513, 351624.

This result was conjectured in [P] and verified on a computer for all
permutations of sizes n ≤ 8. This conjecture was announced as an open
problem in a workshop in Oberwolfach in January 2007. A. Hultman,



4 SUHO OH, ALEXANDER POSTNIKOV, HWANCHUL YOO

S. Linusson, J. Shareshian, and J. Sjöstrand reported that they proved
the conjecture. Their proof will appear on arXiv.

Remark 4. It was proved in [P] that Rw = Bw for all Grassmannian
permutations w, which agrees with the above result. In this case, Bw

counts the number of totally nonnegative cells in the corresponding
Schubert variety in the Grassmannian, see [P].

Remark 5. The four patterns from Theorem 3 came up earlier in the
literature in at least two places. Firstly, Gasharov and Reiner [GR]
showed that the Schubert variety Xw can be described by simple inclu-
sion conditions exactly when w avoids these four patterns. Secondly,
Sjöstrand [S] showed that the Bruhat interval [id, w] can be described as
the set of permutations associated with rook placements that fit inside
a skew Ferrers board if and only if w avoids the same four patterns.

Remark 6. Note that each of the four patterns from Theorem 3 contains
one of the two patterns from Lakshmibai-Sandhya’s smoothness crite-
rion. Thus the theorem implies the equality Rw = Bw for all smooth
permutations w.

4. Main results

Let us define the q-analog of the number of regions of the graphical
arrangement AG, where G is a graph on the vertex set {1, . . . , n}. For
two regions r and r′ of the arrangement AG, let d(r, r′) be the number
of hyperplanes in AG that separate r and r′. In other words, d(r, r′) is
the minimal number of hyperplanes we need to cross to go from r to r′.
Let r0 be the region of AG that contains the point (1, . . . , n). Define

RG(q) :=
∑

r

qd(r,r0),

where the sum is over all regions r of the arrangement AG. Equiva-
lently, the polynomial RG(q) can be described in terms of acyclic ori-
entations of the graph G. For an acyclic orientation O, let des(O) be
the number of edges of G oriented as i → j in O where i > j (descent
edges). Then

RG(q) =
∑

O

qdes(O),

where the sum is over all acyclic orientations O of G. Indeed, for the
acyclic orientation O associated with a region r we have des(O) =
d(r, r0).

For w ∈ Sn, let Rw(q) := RGw
(q) be the polynomial that counts the

regions of the inversion arrangement Aw = AGw
.
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We are now ready to formulate the first main result of this paper.
Recall that Pw(q) :=

∑
u≤w qℓ(u) is the Poincaré polynomial of the

Schubert variety.

Theorem 7. For a permutation w ∈ Sn, we have Pw(q) = Rw(q) if
and only if w is a smooth permutation, i.e., if and only if w avoids the
patterns 3412 and 4231.

This result was initially conjectured during a conversation of the
second author (A.P.) with Vic Reiner.

The “only if” part of Theorem 7 is straightforward. Indeed, if w
is not smooth then by Carrell-Peterson’s smoothness criterion (The-
orem 2) the Poincaré polynomial Pw(q) is not palindromic. On the
other hand, the polynomial Rw(q) is always palindromic, which follows
from the involution on the regions induced by the map x 7→ −x. Thus
Pw(q) 6= Rw(q) in this case. We will prove the “if” part of Theorem 7
in Section 6.

Our second result is an explicit non-recursive formula for the poly-
nomials Pw(q) = Rw(q), when w is smooth.

Let us say that an index r ∈ {1, . . . , n} is a record position of a per-
mutation w ∈ Sn if w(r) > max(w(1), . . . , w(r − 1)). The values w(r)
are called the records or left-to-right maxima of w. For i = 1, . . . , n,
let r and r′ be the record positions of w such that r ≤ i < r′ and there
are no other record positions between r and r′. (Set r′ = +∞ if there
are no record positions greater than i.) Let

ei := #{j | r ≤ j < i, w(j) > w(i)}+#{k | r′ ≤ k ≤ n, w(k) < w(i)}.

Theorem 8. Let w be a smooth permutation in Sn, and let e1, . . . , en

be the numbers constructed from w as above. Then

Pw(q) = Rw(q) = [e1 + 1]q [e2 + 1]q · · · [en + 1]q .

Here [a]q := (1− qa)/(1− q) = 1 + q + q2 + · · ·+ qa−1. We will prove
Theorem 8 in Section 7.

Example 9. Let w = 5 1 6 4 7 3 2. The record positions of w are 1, 3, 5.
We have

(e1, . . . , e7) = (0 + 3, 1 + 0, 0 + 2, 1 + 2, 0 + 0, 1 + 0, 2 + 0).

Theorem 8 says that Pw(q) = Rw(q) = [4]q [2]q [3]q [4]q [1]q [2]q [3]q.

Remark 10. It was known before that the Poincaré polynomial Pw(q)
for smooth w factors as a product of q-numbers [a]q. Gasharov [G] (see
Proposition 20 below) gave a recursive construction for such factoriza-
tion. On the other hand, Carrell gave a closed non-recursive expression
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for Pw(q) as a ratio of two polynomials, see [C] and [BL, Thm. 11.1.1].
However, it is not immediately clear from that expression that its de-
nominator divides the numerator. One benefit of the formula in The-
orem 8 is that it is non-recursive and it involves no division. Another
combinatorial formula for Pw(q) that has these features was given by
Billey, see [B] and [BL, Thm. 11.1.8].

5. Chordal graphs and perfect elimination orderings

A graph is called chordal if each of its cycles with four or more
vertices has a chord, which is an edge joining two vertices that are not
adjacent in the cycle. A perfect elimination ordering in a graph G is
an ordering of the vertices of G such that, for each vertex v of G, all
the neighbors of v that precede v in the ordering form a clique (i.e., a
complete subgraph).

Theorem 11. (Fulkerson-Gross [FG]) A graph is chordal if and only
if it has a perfect elimination ordering.

It is easy to calculate the chromatic polynomial χG(t) of a chordal
graph G. Let us pick a perfect elimination ordering v1, . . . , vn of the
vertices of G. For i = 1, . . . , n, let ei be the number of the neighbors of
the vertex vi among the preceding vertices v1, . . . , vi−1. The numbers
e1, . . . , en are called the exponents of G. The following formula is well-
known.

Proposition 12. The chromatic polynomial of the chordal graph G
equals χG(t) = (t− e1)(t− e2) · · · (t− en). Thus the graphical arrange-
ment AG has (−1)nχG(−1) = (e1 + 1)(e2 + 1) · · · (en + 1) regions.

For completeness sake, we include the proof, which also well-known.

Proof. It is enough to prove the formula for a positive integer t. Let us
count the number of coloring of vertices of G in t colors. The vertex
v1 can be colored in t = t − e1 colors. Then the vertex v2 can be
colored in t − e2 colors, and so on. The vertex vi can be colored in
t − ei colors, because the ai preceding neighbors of vi already used ai

different colors. �

Remark 13. A chordal graph can have many different perfect elimina-
tion orderings that lead to different sequences of exponents. However,
the multiset (unordered sequence) {e1, . . . , en} of the exponents does
not depend on a choice of a perfect elimination order. Indeed, by Propo-
sition 12, the exponents ei are the roots of the chromatic polynomial
χG(t).



BRUHAT ORDER AND HYPERPLANE ARRANGEMENTS 7

Lemma 14. (cf. Björner-Edelman-Ziegler [BEZ]) Suppose that a graph
G on the vertex set {1, . . . , n} has a vertex v adjacent to m vertices that
satisfy the two conditions:

(1) The set of all neighbors of v is a clique in G.
(2) (a) All neighbors of v are less than v, or

(b) all neighbors of v are greater than v.

Then RG(q) = [m + 1]q RG\v(q), where G \ v is the graph G with the
vertex v removed.

This claim follows from general results of [BEZ] on supersolvable
hyperplanes arrangements. For completeness, we give a simple proof.

Proof. The polynomials RG(q) and RG\v(q) are des-generating func-
tions for acyclic orientations of the graphs G and G \ v.

Let us fix an acyclic orientation O of the graph G \ v, and count
all ways to extend O to an acyclic orientation of G. The vertex v is
connected to a subset S of m vertices of the graph G \ v, which forms
the clique G|S ≃ Km. Clearly, there are m + 1 ways to extend an
acyclic orientation of the complete graph Km to an acyclic orientation
of Km+1. Moreover, for each j = 0, . . . , m, there is a unique extension
of O to an acyclic orientation O′ of G such that there are exactly j
edges oriented towards the vertex v in O′ (and m − j edges oriented
away from v).

All vertices in S are less than v or all of them are greater than v.
In both cases we have

∑
O′ qdes(O′) = [m + 1]q qdes(O), where the sum is

over extensions O′ of O. Thus RG(q) = [m + 1]q RG\v(q). �

Definition 15. For a chordal graph G on the vertex set {1, . . . , n},
we say that a perfect elimination ordering v1, . . . , vn of the vertices
of G is nice if it satisfies the following additional property. For i =
1, . . . , n, all neighbors of the vertex vi among the vertices v1, . . . , vi−1

are greater than vi (in the usual order on Z), or all neighbors of vi

among v1, . . . , vi−1 are less than vi.

For a nice perfect elimination ordering v1, . . . , vn of G, the last vertex
v = vn satisfies the conditions of Lemma 14. Moreover, v1, . . . , vn−1 is
a nice perfect elimination ordering of the graph G \ vn. In this case,
we can inductively use Lemma 14 to completely factor the polynomial
RG(q) as RG(q) = [m + 1]q [m′ + 1]q · · · . The numbers m, m′, . . . are
exactly the exponents en, en−1, . . . (written backwards) coming from
this perfect elimination ordering.
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Corollary 16. Suppose that G has a nice perfect elimination ordering
of vertices. Let e1, . . . , en be the exponents of G. Then we have

RG(q) = [e1 + 1]q [e2 + 1]q · · · [en + 1]q .

6. Recurrence for polynomials Rw(q)

It is convenient to represent a permutation w ∈ Sn as the rook dia-
gram Dw, which the placement of n non-attacking rooks into the boxes
(w(1), 1), (w(2), 2), . . . , (w(n), n) of the n × n board. See an example
on Figure 1. We assume that boxes of the board are labelled by pairs
(i, j) in the same way as matrix elements. The rooks are marked by
×’s.

×
×

×
×

×
×

×
×

Figure 1. The rook diagram Dw of the permutation
w = 3 1 4 8 7 6 2 5.

The inversion graph Gw contains an edge (i, j), with i < j, whenever
the rook in the i-th column of Dw is located to the South-West of the
rook in the j-th column. In this case, we say that this pair of rooks
forms an inversion.

Here are the rook diagrams of the two forbidden patterns 3412 and
4231 for smooth permutations:

×
×

×
×

×
×

×
×

A permutation w is smooth if and only if its diagram Dw does not
contain four rooks located in the same relative order as in one of these
diagrams D3412 or D4231.

Let a be the rook located in the last column of Dw, and let b be
the rook located in the last row of Dw. The row containing a and the
column containing b subdivide the diagram Dw into the four sectors
A, B, C, D, as shown on Figure 2. In the case when w(n) = n, we
assume that a = b and the sectors B, C, D are empty.
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B

DC

A

b

a

Figure 2.

Lemma 17. Let w be a smooth permutations. Then its rook diagram
Dw has the following two properties. (1) Each pair of rooks located in
the sector D forms an inversion. (2) At least one of the sectors B or
C contains no rooks.

For example, for the rook diagram D31487625 shown on Figure 1, the
sector B contains one rook, the sector C contains no rooks, and the
sector D contains two rooks that form an inversion.

Proof. (1) If the sector D contains a pair of rooks that do not form an
inversion, then these two rooks together with the rooks a and b form a
forbidden pattern as in the diagram D4231. (2) If the sector B contains
at least one rook and the sector C contains at least one rook, then these
two rooks together with the rooks a and b form a forbidden pattern as
in the diagram D3412. �

Let va = n and vb be the vertices of the inversion graph Gw corre-
sponding to the rooks a and b. Also let v1, . . . , vk be the vertices of Gw

corresponding to the rooks inside the sector D.
If the sector B of the rook diagram Dw is empty, then the vertex vb

is connected only with the vertices v1, . . . , vk, va, that form a clique in
the graph Gw, and all these vertices are greater than vb. On the other
hand, if the sector C of the rook diagram Dw is empty, then the vertex
va is connected only with the vertices vb, v1, . . . , vk, that form a clique,
and all these vertices are less than va.

In both cases, the inversion graph Gw satisfies the conditions of
Lemma 14, where v = vb if B is empty, and v = va if C is empty.
(If both B and C are empty then we can pick v = va or v = vb.)

For w ∈ Sn and k ∈ {1, . . . , n}, let w′ = flat(w, k) ∈ Sn−1 be the
flattening of the sequence w(1), . . . , w(k − 1), w(k + 1), . . . , w(n), that
is, the permutation w′ has the same relative order of elements as in
this sequence. Equivalently, the rook diagram Dw′ is obtained from
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the rook diagram Dw by removing its k-th column and the w(k)-th
row.

Lemma 14, together with the above discussion, implies the following
recurrence relations for the polynomials Rw(q).

Proposition 18. Let w ∈ Sn be a smooth permutation, and assume
that w(d) = n and w(n) = e. Then (at least) one of the following two
statements is true:

(1) w(d) > w(d + 1) > · · · > w(n), or
(2) w−1(e) > w−1(e + 1) > · · · > w−1(n).

In both cases, the polynomial Rw(q) factors as

Rw(q) = [m + 1]q Rw′(q),

where w′ = flat(w, d) and m = n−d in case (1), or w′ = flat(w, n) and
m = n − e in case (2).

In this proposition, case (1) means that the sector B of the rook
diagram Dw is empty, and case (2) mean that the sector C is empty.

Clearly, if w is smooth, then the flattening w′ = flat(w, k) is smooth
as well. The inversion graph Gw′ is isomorphic to the graph G\k. This
means that, for smooth w ∈ Sn, one can inductively use Proposition 18
to completely factor the polynomial Rw(q) as in Corollary 16.

Corollary 19. For a smooth permutation w ∈ Sn, the inversion graph
Gw is chordal and, moreover, it has a nice perfect elimination ordering.
We have Rw(q) = [e1 + 1]q [e2 + 1]q · · · [en + 1]q , where e1, . . . , en are
the exponents of the inversion graph Gw.

Interestingly, Gasharov [G] found exactly the same recurrence rela-
tions for the Poincaré polynomials Pw(q).

Proposition 20. (Gasharov [G], cf. Lascoux [L]) The Poincaré poly-
nomials Pw(q), for smooth permutations w, satisfy exactly the same
recurrence relation as in Proposition 18.

Note that Lascoux [L] gave a factorization of the Kazhdan-Lusztig
basis elements, that implies Proposition 20.

Propositions 18 and 20, together with the trivial claim Pid(q) =
Rid(q) = 1, imply that Pw(q) = Rw(q) for all smooth permutations w.
This finishes the proof of Theorem 7.

7. Simple perfect elimination ordering

Section 6 gives a recursive construction for a nice perfect elimination
ordering of the graph Gw, for smooth w. In this section we give a simple
non-recursive construction for another perfect elimination ordering of
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Gw. This simple ordering may not be nice (see Definition 15). However,
one still can use it for calculating the exponents of the graph Gw and
factorizing the polynomials Pw(q) = Rw(q) as in Corollary 19. Indeed,
the multiset of the exponents does not depend on a choice of a perfect
elimination ordering (see Remark 13).

Recall that a record position of a permutation w ∈ Sn is an index
r ∈ {1, . . . , n} such that w(r) > max(w(1), . . . , w(r − 1)). Let [a, b]
denote the interval {a, a + 1, . . . , b} with the usual Z-order of entries.

Lemma 21. For a smooth permutation w ∈ Sn with record positions
r1 = 1 < r2 < · · · < rs, the ordering

[rs, n], [rs−1, rs − 1], . . . , [r2, r3 − 1], [r1, r2 − 1]

of the set {1, . . . , n} is a perfect elimination ordering of the inversion
graph Gw.

Example 22. (cf. Example 9) The permutation w = 5 1 6 4 7 3 2 has
records 5, 6, 7 and record positions 1, 3, 5. Lemma 21 says that the
ordering 5, 6, 7, 3, 4, 1, 2 is a perfect elimination ordering of the in-
version graph Gw. Figure 3 displays this inversion graph Gw. For each
vertex i = 1, . . . , 7 of Gw, we wrote i inside a circle and w(i) below it.
The exponents of this graph (i.e., the numbers of edges going to the
left from the vertices) are 0, 1, 2, 2, 3, 3, 1.

5 6 7 3 4 1 2

7 3 62 4 5 1

Figure 3.

Proof of Lemma 21. Suppose that this ordering of vertices of Gw is
not a perfect elimination ordering. This means that there is a vertex i
connected in Gw with vertices j and k, preceding i in the order, such
that the vertices j and k are not connected by an edge in Gw. Let us
consider three cases.

I. The vertices i, j, k belong to the same interval Ip := [rp, rp+1 − 1],
for some p ∈ {1, . . . , s}. (Here we assume that rs+1 = n + 1.) We have
k < j < i and w(k) > w(i), w(j) > w(i), but w(k) < w(j), because
(k, i) and (j, k) are edges of Gw but (k, j) is not an edge. The value
w(rp) is the maximal value of w on the interval Ip. Since w(k) < w(j)
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is not the maximal value of w on Ip, we have rp 6= k and so rp < k.
Thus rp < k < j < i and the values w(rp), w(k), w(j), w(i) form a
forbidden 4231 pattern in w. So w is not smooth. Contradiction.

II. The vertices i, j are in the same interval Ip and the vertex k
belongs to a different interval Iq. Then q > p, because the vertex k
precedes i in the order. In this case we have j < i < k, w(j) > w(i),
w(i) > w(k). This implies that w(j) > w(k) that is (j, k) is an edge in
the inversion graph Gw. Contradiction.

III. The vertex i belongs to the interval Ip and the vertices j, k do
not belong to Ip. Assume that j < k and that j belongs to Iq. Then
q > p. In this case, i < j < k, w(i) > w(j), w(i) > w(k), and
w(j) < w(k). The record value w(rq) is greater than w(i). This implies
that w(rq) > w(i) > w(j). In particular, w(rq) 6= w(j) and, thus,
rq 6= j. We have i < rq < j < k and the values w(i), w(rq), w(j), w(k)
form a forbidden 3412 pattern. Contradiction. �

Proof of Theorem 8. Let us calculate the exponents of the inversion
graph Gw for a smooth permutation w ∈ Sn using the perfect elimina-
tion ordering from Lemma 21. Suppose that i ∈ Ip. Then the exponent
ei of the vertex i equals the number of neighbors of the vertex i in the
graph Gw among the preceding vertices, that is among the vertices
in the sets {rp, . . . , i − 1} and Ip+1 ∪ Ip+2 ∪ . . . . In other words, the
exponent ei equals

#{j | rp ≤ j < i, w(j) > w(i)} + #{k | k ≥ rp+1, w(k) < w(i)}.

This is exactly the expression for ei from Theorem 8. The result follows
from Corollary 19. �

8. Final remarks

Our proof of Theorem 7 is based on a recurrence relation. It would
be interesting to give more direct combinatorial proof of Theorem 7
based on a bijection between elements of the Bruhat interval [id, w]
and regions of the arrangement Aw.

It would be interesting to better understand the relationship between
Bruhat intervals [id, w] and the hyperplane arrangement Aw. One can
construct a directed graph Γw on the regions of Aw. Two regions r
and r′ are connected by a directed edge (r, r′) if these two regions are
adjacent (i.e., separated by a single hyperplane) and r is more close to
r0 than r′. For example, for the longest permutation w0, the graph Γw0

is the Hasse diagram of the weak Bruhat order. It is true that, for any
smooth permutation w ∈ Sn, the graph Γw is isomorphic to a subgraph
of the Hasse diagram of the Bruhat interval [id, w]?
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It would be interesting to explain Theorem 7 from a geometrical point
of view. Is it possible to link the arrangement Aw and the polynomial
Rw(q) with the cohomology ring of of the Schubert variety Xw? Is it
possible to define a related ring structure on the regions of Aw?

The statement of Theorem 7 can extended to any finite Weyl group
W , as follows. For a Weyl group element w ∈ W , let Pw(q) :=

∑
u qℓ(w),

where the sum is over all u ∈ W such that u ≤ w in the Bruhat order on
W . Define the arrangement Aw as the collection of hyperplanes α(x) =
0 for all roots α in the corresponding root system such that α > 0 and
w(α) < 0. Let r0 be the region of Aw that contains the fundamental
chamber of the corresponding Coxeter arrangement. Define Rw(q) :=∑

r qd(r0,r), where the sum is over all regions of the arrangement Aw

and d(r0, r) is the number of hyperplanes separating r0 and r. Let
Xw = BwB/B be the Schubert variety in the corresponding generalized
flag manifold G/B. Details about (rational) smoothness of Schubert
varieties Xw can be found in [BL].

Conjecture 23. The equality Pw(q) = Rw(q) holds if and only if the
Schubert variety Xw is rationally smooth.

Finally, let us mention that the inverse of Corollary 16 might be true.

Conjecture 24. For a graph G, the polynomial RG(q) can be factorized
as a product of q-numbers if and only if the graph G has a nice perfect
elimination order.
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