18.315 PROBLEM SET 2 (due Friday, December 5, 2014)

- 1. In class we showed how to transform a SSYT into a pipe dream (aka RC-graph). Prove that this is a bijection between SSYTs corresponding to terms of the Schur polynomial $s_{\lambda}(x_1,\ldots,x_k)$ and pipe dreams corresponding to terms of the Schubert polynomial \mathfrak{S}_w for the Grassmannian permutation $w=w_{\lambda}$. Deduce that $\mathfrak{S}_{w_{\lambda}}=s_{\lambda}(x_1,\ldots,x_k)$.
- 2. Construct an insertion procedure for pipe dreams such that
 - (a) It gives a combinatorial proof of Monk's Rule

$$(x_1 + \dots + x_k) \mathfrak{S}_w = \sum_{i \le k < j, \, \ell(w \, t_{ij}) = \ell(w) + 1} \mathfrak{S}_{w \, t_{ij}},$$

for a permutation $w \in S_n$ such that w(n) = n.

- (b) For Grassmannian permutations $w = w_{\lambda}$ this insertion procedure is equivalent to the RSK insertion for SSYTs.
- **3.** Give a bijective proof of the Cauchy formula for Schubert polynomials.

It is possible to obtain the Cauchy and/or the dual Cauchy formula for Schur polynomials as a special case of the Cauchy formula for Schubert polynomials?

- **4.** A permutation $w \in S_n$ is called *fully commutative* if any two reduced decompositions for w can be obtained from each other by the commutation relations $s_i s_j = s_j s_i$ for $|i j| \ge 2$.
- (a) Show that w is fully commutative if an only if it is 321-avoiding, that is, there is no i < j < k such that w(i) > w(j) > w(k).
 - (b) Find the number of fully commutative permutations in S_n .
- **5.** Let T_{ij} be the operator on $\mathbb{C}[x_1, x_2, \dots]$ such that, for $w \in S_{\infty}$,

$$T_{ij}: \mathfrak{S}_w \mapsto \left\{ \begin{array}{ll} \mathfrak{S}_{wt_{ij}} & \text{if } \ell(wt_{ij}) = \ell(w) + 1, \\ 0 & \text{otherwise.} \end{array} \right.$$

Prove the Pieri Rule for Schubert polynomials:

$$e_r(x_1,\ldots,x_k)\mathfrak{S}_w=\sum T_{i_1\,j_1}\cdots T_{i_r\,j_r}(\mathfrak{S}_w),$$

where the sum is over positive integers $i_1, \ldots, i_r, j_1, \ldots, j_r$ such that

- 1) $i_1, \ldots, i_r \leq k < j_1, \ldots, j_r$
- 2) i_1, \ldots, i_r are all distinct,
- 3) $j_1 \leq j_2 \leq \cdots \leq j_r$.

- **6.** Let $e_i^{(k)} := e_i(x_1, \dots, x_k)$ be the elementary symmetric polynomial in k variables.
 - (a) Prove the Straightening Rule

$$e_i^{(k)}\,e_j^{(k)} = e_i^{(k+1)}\,e_j^{(k)} + \sum_{l \geq 1} (e_{i-l}^{(k+1)}\,e_{j+l}^{(k)} - e_{i-l}^{(k)}\,e_{j+l}^{(k+1)}),$$

where we assume that $e_r^{(k)} = 0$ for r < 0.

- (b) Deduce that the collection of polynomials $e_{i_1}^{(1)} e_{i_2}^{(m)} \cdots e_{i_m}^{(m)}$, where $m \geq 0$; $i_1, \ldots, i_{m-1} \geq 0$, $i_m > 0$, is a linear basis of the polynomial ring $\mathbb{C}[x_1, x_2, \ldots]$ in infinitely many variables.
- 7. Let $I_n = \langle e_1, \ldots, e_n \rangle$ be the ideal in the polynomial ring $\mathbb{C}[x_1, \ldots, x_n]$ generated by the elementary symmetric polynomials $e_i = e_i(x_1, \ldots, x_n)$. (Equivalently, I_n is generated by all symmetric polynomials in n variables without constant term.)

Fix the degree-lex ordering "<" of monomials in $\mathbb{C}[x_1,\ldots,x_n]$, that is, $x_1^{a_1}\cdots x_n^{a_n} < x_1^{b_1}\cdots x_n^{b_n}$ if

$$\sum a_i < \sum b_i$$
, or $\sum a_i = \sum b_i$; and $a_j = b_j$, for $j < r$, and $a_r < b_r$, for some $r \in [n]$.

Prove that the reduced Gröbner basis of the ideal I_n with respect to the degree-lex term order is given by the complete homogeneous polynomials

$$h_k(x_1, \dots, x_{n+1-k}), \quad k = 1, \dots, n.$$

As a first step, you can prove the formula

$$h_k(x_1,\ldots,x_l) = \det\left(e_{j-i+1}(x_1,\ldots,x_{k+l-i})\right)_{i,j=1}^k,$$

and use it to show that $h_k(x_1, \ldots, x_{n+1-k})$ belong to the ideal I_n .

8. The strong Bruhat order on S_n can be defined by its covering relations $u \leq w$ if $w = u t_{ij}$ and $\ell(w) = \ell(u) + 1$. Prove that $u \leq w$ in the strong Bruhat order if and only if

$$r_{pq}(u) \ge r_{pq}(w)$$
, for all $p, q \in [n]$,

where $r_{pq}(w) = \#\{i \le p \mid w(i) \le q\}.$

9. Prove that

$$\sum_{w_0 = s_{i_1} \cdots s_{i_l}} i_1 \cdot i_2 \cdots i_l = \binom{n}{2}!$$

where the sum is over all reduced decompositions $w_0 = s_{i_1} \cdots s_{i_l}$ of the longest element w_0 in the symmetric group S_n .

10. Prove bijectively that $A_n = B_n = \binom{n}{2}!$, where

 A_n = the weighted sum over longest chains in the Hasse diagram of the *strong* Bruhat order on S_n , where the weight of an edge $w \to w t_{ij}$, i < j, is j - i.

 B_n = the weighted sum over longest chains in the Hasse diagram of the weak Bruhat order on S_n , where the weight of an edge $w \to w s_i$ is i.

11. Let $B = (b_{ij,k})$ be the $\binom{n}{2} \times n$ -matrix with rows labelled by pairs $1 \leq i < j \leq n$ and columns labelled by $k = 1, \ldots, n$ such that $b_{ij,k} = \delta_{i,k} - \delta_{j,k}$. Prove that the permanent of the matrix $B \cdot B^T$ equals

$$per(B \cdot B^T) = 1! \, 2! \, \cdots \, n!.$$

For example, for n = 4, we have

$$\operatorname{per}\left(\begin{pmatrix}1 & -1 & 0 & 0\\ 1 & 0 & -1 & 0\\ 1 & 0 & 0 & -1\\ 0 & 1 & -1 & 0\\ 0 & 1 & 0 & -1\\ 0 & 0 & 1 & -1\end{pmatrix} \cdot \begin{pmatrix}1 & 1 & 1 & 0 & 0 & 0\\ -1 & 0 & 0 & 1 & 1 & 0\\ 0 & -1 & 0 & -1 & 0 & 1\\ 0 & 0 & -1 & 0 & -1 & -1\end{pmatrix}\right) = 1! \, 2! \, 3! \, 4!.$$

Remark. The matrix $B^T \cdot B$ is the Laplacian matrix for the complete graph K_n . According to the Matrix-Tree Theorem, the determinant of the matrix obtained from $B^T \cdot B$ by removing any row and any column equals n^{n-2} . (This observation, is not really related to the problem above.)

- 12. (a) Prove that the following three conditions are equivalent:
- (1) w is a 132-avoiding permutation, that is, there is no i < j < k such that w(i) < w(k) < w(j).
- (2) w is a dominant permutation, that is, its Lehmer code (c_1, \ldots, c_n) , $c_i = \#\{j > i \mid w(j) < w(i)\}$, is weakly decreasing $c_1 \geq c_2 \geq \cdots \geq c_n$.
 - (3) The Schubert polynomial \mathfrak{S}_w is equal to a single monomial.
- (b) For a dominant permutation w, describe the Schubert polynomial \mathfrak{S}_w in terms of w.
- (c) Find the number of dominant permutations in S_n .
- **13.** A permutation $w \in S_n$ is strictly dominant if its code (c_1, c_2, \ldots, c_n) is a strict partition, that is $c_1 > c_2 > \cdots > c_k = \cdots = c_n = 0$.
- (a) Show that the following conditions are equivalent:

- (1) w is strictly dominant.
- (2) $w w_0$ is strictly dominant.
- (3) both w and $w w_0$ are dominant.
- (4) w is of the form $w_1 > w_2 > \cdots > w_k < w_{k+1} < \cdots < w_n$.
- (5) w is both 132-avoiding and 231-avoiding.
- (b) Find the number of strictly dominant permutations in S_n .
- **14.** The Schubert-Kostka matrix is the $n! \times n!$ matrix $K = (K_{w,a})$ defined by $\mathfrak{S}_w(x) = \sum_a K_{w,a} x^a$, for $w \in S_n$. In other words, $K_{w,a}$ counts the number of pipe dreams for w of weight equal to x^a . Let $K^{-1} = (K_{a,w}^{-1})$ be the inverse matrix, that is $\sum_a K_{u,a} K_{a,w}^{-1} = \delta_{u,w}$ and $\sum_w K_{a,w}^{-1} K_{w,b} = \delta_{a,b}$.
- (a) Let w be a strictly dominant permutation in S_n with code $(c_1 > c_2 > \cdots > c_k = \cdots = 0)$. Assume that $a = (a_1, \ldots, a_k, 0, \ldots, 0)$. Prove that

$$K_{a,w}^{-1} = \begin{cases} (-1)^{\ell(\sigma)} & \text{if } (a_1, \dots, a_k) = (c_{\sigma_1}, \dots, c_{\sigma_k}) \text{ for some } \sigma \in S_k, \\ 0 & \text{otherwise.} \end{cases}$$

- (b) Assume that w is any 312-avoiding permutation. Prove that in this case $K_{a,w}^{-1}$ also equals 0, 1, or -1. Find the exact value of $K_{a,w}^{-1}$ in this case.
- (c) Is it always true that $K_{a,w}^{-1} \in \{1, -1, 0\}$? Prove this or give a counterexample.
- **15.** (a) Prove that the Schubert polynomial \mathfrak{S}_w is equal to a single product of elementary polynomials $e_{i_1}^{(1)} e_{i_2}^{(2)} \cdots e_{i_{n-1}}^{(n-1)}$, for some i_1, \ldots, i_{n-1} , if and only if the permuation w avoids the patterns 312 and 1432.
- (b) Find the number of permutations w in S_n that avoid both patterns 312 and 1432.
- **16.** We constructed several linear bases of the *coinvariant algebra* $C_n = \mathbb{C}[x_1, \dots, x_n]/I_n$:

$$\begin{aligned}
&\{\mathfrak{S}_w \mid w \in S_n\}, \\
&\{x_1^{a_1} \dots x_n^{a_n} \mid 0 \le a_i \le n - i\}, \\
&\{e_{i_1}^{(1)} \cdots e_{i_{n-1}}^{(n-1)} \mid 0 \le i_j \le j\}, \\
&\{h_{i_1}^{(1)} \cdots h_{i_{n-1}}^{(n-1)} \mid 0 \le i_j \le n - j\}.
\end{aligned}$$

Describe the bases of the space $H_n \simeq (C_n)^*$ of S_n -harmonic polynomial which are D-dual to these bases of C_n . (We defined the dual Schubert polynomials \mathfrak{D}_w as elements of the basis dual to $\{\mathfrak{S}_w\}$. Describe the three other dual bases.)

- 17. (a) Prove that the space H_n of S_n -harmonic polynomials is spanned by partial derivatives $\prod (\partial/\partial y_i)^{a_i}$ of the Vandermonde determinant $\prod_{1\leq i< j\leq n} (y_i-y_j)$.
- (b) Give a rule for the expansion of $(\partial/\partial y_i)\mathfrak{D}_w$ in terms of dual Schubert polynomials \mathfrak{D}_u .
- (c) For a polynomial $f \in \mathbb{C}[y_1, \ldots, y_n]$, let d(f) be the dimension of the space spanned by partial derivatives $(\prod_{i=1}^n (\partial/\partial y_i)^{a_i})(f)$, for all $a_1, \ldots, a_n \geq 0$. Prove that $d(\mathfrak{D}_w)$ equals the size of the interval [id, w] in the strong Bruhat order.
- **18.** For two permutations $u \leq w$ in the strong Bruhat order on S_n , define the polynomial

$$\mathfrak{D}_{u,w}(y_1, \dots, y_n) := \frac{1}{(\ell(w) - \ell(u))!} \sum_{u < \dots < w} \prod_i weight(u^{(i-1)} < u^{(i)}),$$

where the sum is over saturated chains in the strong Bruhat order $u^{(0)} \leq u^{(1)} \leq \cdots \leq u^{(l)}$ from $u = u^{(0)}$ to $w = u^{(l)}$, and $weight(u \leq u t_{ij}) = y_i - y_j$, for i < j. In particular, $\mathfrak{D}_{id,w} = \mathfrak{D}_w$.

(a) Prove that

$$\mathfrak{D}_{u,w} = \sum_{v \in S_-} c_{u,v}^w \, \mathfrak{D}_v,$$

where $c_{u,v}^w$ are the generalized Littlewood-Richarson coefficients given by

$$\mathfrak{S}_u \, \mathfrak{S}_v = \sum_{w \in S_n} c_{u,v}^w \, \mathfrak{S}_w.$$

- (b) Find a combinatorial expression for $d(\mathfrak{D}_{u,v})$, where d(f) is defined in Problem 17(c).
- **19.** The quantum cohomology ring of the Grassmannian $QH^*(Gr(k,n))$ is isomorphic to the quotient ring $\mathbb{C}[q][x_1,\ldots,x_k]^{S_k}/J_{kn}^q$, where J_{kn}^q is the ideal

$$J_{kn}^q := \langle h_{n-k+1}, h_{n-k+2}, \dots, h_{n-1}, h_n + (-1)^k q \rangle.$$

Prove the Rim-Hook Algorithm by showing that

(a) For a partition $\nu = (\nu_1, \dots, \nu_k)$, and a partition $\tilde{\nu}$ obtained from ν by removing a rim hook of size n and height h, we have

$$s_{\nu}(x_1,\ldots,x_k) \equiv (-1)^{k-h} q \, s_{\tilde{\nu}}(x_1,\ldots,x_k) \pmod{J_{kn}^q}.$$

(b) If $\nu \not\subseteq k \times (n-k)$ and there is no valid way to remove a rim hook of size n from ν , then $s_{\nu}(x_1, \ldots, x_k) \equiv 0 \pmod{J_{kn}^q}$.