- **1.** Let B_{n+1} be the number of sequences $\lambda^{(0)}, \ldots, \lambda^{(2n)}$ of Young diagrams such that:
 - (1) $\lambda^{(0)} = \lambda^{(2n)} = \emptyset$.
 - (2) For i = 1, ..., n, $\lambda^{(2i-1)}$ either equals $\lambda^{(2i-2)}$ or is obtained from $\lambda^{(2i-2)}$ by adding a corner box.
 - (3) For i = 1, ..., n, $\lambda^{(2i)}$ either equals $\lambda^{(2i-1)}$ or is obtained from $\lambda^{(2i-1)}$ by removing a corner box.

Show that B_{n+1} is the *Bell number*, that is, the number of set-partitions of [n+1]. Can you construct a bijection between sequences $\lambda^{(0)}, \ldots, \lambda^{(2n)}$ and set-partitions?

- **2.** Let P_n be the number of lattice paths P in \mathbb{Z}^2 from (0,0) to (2n,0) such that:
 - (1) P consists of the steps (1,1), (1,-1), and (-1,1).
 - (2) P always stays in the first quadrant $\mathbb{Z}^2_{>0}$;
 - (3) P never visits the same point twice.

Prove that $P_n = (2n-1)!!$.

- 3. In class we constructed two bijective piecewise linear continuous maps ϕ_{RSK} and ϕ_{HG} from the set of all nonnegative integer $n \times n$ matrices to the set reverse plane partitions of shape $n \times n$ (that is, nonnegative integer matrices weakly increasing in rows and columns). The first map ϕ_{RSK} is the RSK correspondence (written in terms of Gelfand-Tsetlin patterns) and the second map ϕ_{HG} is the inverse Hillman-Grassl correspondence.
- (A) Write down explicit formulas (in terms of min and max) for these maps for n=3.
 - (B) Write down explicit formulas for these maps for n = 4.
 - (C) Investigate the relation between ϕ_{RSK} and ϕ_{HG} .
- 4. Prove the following identity

$$\sum_{\lambda} s_{\lambda}(x_1, x_2, \dots) s_{\lambda'}(y_1, y_2, \dots) = \prod_{i, j \ge 1} (1 + x_i y_j).$$

5. For two fixed partitions λ and μ , show that

$$\sum_{\nu \supseteq \lambda \cup \mu} s_{\nu/\lambda}(x) \, s_{\nu/\mu}(y) = \left(\sum_{\gamma \subseteq \lambda \cap \mu} s_{\lambda/\gamma}(x) \, s_{\mu/\gamma}(y)\right) \prod_{i,j} (1 - x_i y_j)^{-1}.$$

6. Let $\alpha = (\alpha_1, \dots, \alpha_n) \in (\mathbb{Z} \setminus \{0\})^n$ be an integer sequence with zero sum. Let $(\beta_1, \dots, \beta_p)$ be the positive entries of α , and $(\gamma_1, \dots, \gamma_q)$ be the minus negative entries of α . (Here n = p + q.) Let μ be the Young diagram with p columns and q rows such that the path P from the bottom left corner of μ to the top right corner of μ is given by the rule: if $\alpha_i > 0$ (resp., $\alpha_i < 0$) then the ith step in P is (1,0) (resp., (0,1)).

Construct a bijection $\phi: A \to B$ between the following two sets. The set A is the set of sequences $\lambda^{(0)}, \ldots, \lambda^{(n)}$ of Young diagrams such that:

- (1) $\lambda^{(0)} = \lambda^{(n)} = \emptyset$.
- (2) If $\alpha_i > 0$, then $\lambda^{(i)}/\lambda^{(i-1)}$ is a horizontal α_i -strip.
- (3) If $\alpha_i < 0$, then $\lambda^{(i-1)}/\lambda^{(i)}$ is a vertical $(-\alpha_i)$ -strip.

The set B is the set of fillings of the shape μ with 0's and 1's such that the column sums are β_1, \ldots, β_p (from left to right), and the row sums are $\gamma_1, \ldots, \gamma_p$ (from bottom to top).

- 7. Prove that $(\sum_{\mu}' s_{\mu})(e_0 + e_1 + e_2 + \dots) = \sum_{\lambda} s_{\lambda}$, where \sum_{μ}' is the sum over partitions μ with all even parts, and the sum in the right-hand side is over all partitions λ .
- **8.** Show that Fomin's growth diagrams are related to RSK, as explained in class.
- **9.** Prove that Viennot's shadow construction is related to RSK, as explained in class.
- 10. The elements of the Fibonacci lattice can be labelled by compositions c with all parts equal to 1 or 2.
- (A) Describe the covering relation of the Fibonacci lattice nonrecursively in terms 1-2-compositions c.
- (B) For a 1-2-composition c, let f^c be the number of increasing paths in the Fibonacci lattice from $\hat{0}$ to c. Investigate the numbers f^c . Is there a hook-length formula for f^c ?
- 11. Construct an analogue of Fomin's growth diagrams for the Fibonacci lattice.
- **12.** Let $\lambda = (\alpha_1, \dots, \alpha_k \mid \beta_1, \dots, \beta_k)$ (in Frobenius notation). Prove Giambelli's formula $s_{\lambda} = \det(s_{(\alpha_i \mid \beta_j)})_{i,j=1}^k$. Can you give a proof based on Lindström's lemma?