Exam 2

November 04, 2005

You have 1 hour 20 min to solve the following problems. The problems worth 10 points each. You can use your notes, books, calculators, etc. Show your reasoning.

1. Solve the recurrence relation $a_{n+2}=4 a_{n+1}-3 a_{n}, n \geq 0$, with the initial conditions $a_{0}=0$ and $a_{1}=2$.
2. Solve the recurrence relation $a_{n}=n^{2} a_{n-1}+\left(n^{2}-1\right), n \geq 1$, with the initial condition $a_{0}=0$.
3. Calculate the number of $n \times n$ matrices filled with 0 's and 1's such that the first row, the last row, the first column, and the last column contain some nonzero entries.
4. Let a_{n} be the number of compositions of n into parts of size 1 or 2 with parts of size 2 colored in 2 colors. For example, $a_{3}=5$, corresponding to the colored compositions $(1,1,1),(1,2),(1,2),(2,1),(\mathbf{2}, 1)$.
(a) Find a recurrence relation for the numbers a_{n}.
(b) Find the generating function $\sum_{n \geq 0} a_{n} x^{n}$. (Assume that $a_{0}=1$.)
(c) Find an explicit formula for a_{n}
5. Let $f(n)$ be the number of ways subdivide n people into groups with at least 2 members and then select a group leader in each group. For example, $f(4)=16$, corresponding to the following set partitions with group leaders marked in bold: 1234, 2134, 3124, 4123, 12|34, 12|43, $21|34,21| 43,13|24,13| 42,31|24,31| 42,14|23,14| 32,41|23,41| 32$. Assume that $f(0)=1$.
(a) Find the exponential generating function $\sum_{n \geq 0} f(n) x^{n} / n$!.
(b) Calculate $f(5), f(6)$, and $f(7)$. (Hint: See next page.)
