Exam 2

November 04, 2005

You have 1 hour 20 min to solve the following problems. The problems worth 10 points each. You can use your notes, books, calculators, etc. Show your reasoning.

- 1. Solve the recurrence relation $a_{n+2} = 4a_{n+1} 3a_n$, $n \ge 0$, with the initial conditions $a_0 = 0$ and $a_1 = 2$.
- 2. Solve the recurrence relation $a_n = n^2 a_{n-1} + (n^2 1), n \ge 1$, with the initial condition $a_0 = 0$.
- 3. Calculate the number of $n \times n$ matrices filled with 0's and 1's such that the first row, the last row, the first column, and the last column contain some nonzero entries.
- 4. Let a_n be the number of compositions of n into parts of size 1 or 2 with parts of size 2 colored in 2 colors. For example, $a_3 = 5$, corresponding to the colored compositions (1, 1, 1), (1, 2), (1, 2), (2, 1), (2, 1).
 - (a) Find a recurrence relation for the numbers a_n .
 - (b) Find the generating function $\sum_{n\geq 0} a_n x^n$. (Assume that $a_0 = 1$.)
 - (c) Find an explicit formula for a_n
- 5. Let f(n) be the number of ways subdivide n people into groups with at least 2 members and then select a group leader in each group. For example, f(4) = 16, corresponding to the following set partitions with group leaders marked in bold: 1234, 2134, 3124, 4123, 12|34, 12|43, 21|34, 21|43, 13|24, 13|42, 31|24, 31|42, 14|23, 14|32, 41|23, 41|32. Assume that f(0) = 1.

(a) Find the exponential generating function $\sum_{n\geq 0} f(n) x^n/n!$.

(b) Calculate f(5), f(6), and f(7). (Hint: See next page.)