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PROBLEM SET 3 (due on Thursday 05/16/2013)

Solve as many problems as you like. Hand in at least 3 problems.

Problem 1. Show that the numbers of alternating permutations A(n) := #{w ∈
Sn | w1 < w2 > w3 < w4 > · · · } are given by the Euler-Bernoulli triangle, as
described in class.

Problem 2. Consider a pair (P1, P2) of lattice paths on the plane such that
(1) Both P1 and P2 start at the origin, have n steps (1, 0) (right) or (0, 1) (up),

and end at the same point.
(2) The path P2 is located to the South-East of P1, and it touches P1 only at

the end-points.
Find the number of pairs (P1, P2).

Problem 3. Prove that all cofactors of a square matrix with zero row and column
sums are equal to each other. (The ij-th cofactor is (−1)i+j times the determinant
of the matrix with removed i-th row and j-th column.)

Problem 4. Prove the following reciprocity formula for spanning trees.
Let G be a graph on the vertices 1, . . . , n (without loops and multiple edges);

and let Ḡ be its complementary graph on the same vertices 1, . . . , n. This means
that two vertices i and j, i 6= j, are connected by an edge in Ḡ if and only if they
are not connected by an edge in G, and vise versa.

Let G+ be the graph obtained from G by adding a new vertex 0 and connecting
it with all vertices of G. Define the polynomial

TG(x0, x1, . . . , xn) :=
∑
T

n∏
i=0

x
degT (i)−1
i ,

where the sum is over all spanning trees T of the extended graph G+, and degT (i)
denotes the degree of vertex i in T . Similarly, define the polynomial TḠ(x0, x1, . . . , xn)
for the complementary graph Ḡ.

Prove the formula

TḠ(x0, x1, x2, . . . , xn) = (−1)n−1TG(−x0 − x1 − · · · − xn, x1, x2, . . . , xn).

Problem 5. Use the reciprocity formula from the previous problem to give
(a) a short proof of Cayley’s formula for the number of spanning trees in the

complete graph Kn,
(b) a formula for the number of spanning trees in the complete bipartite graph

Km,n,
(c) a formula for the number of spanning trees in the complete tripartite graph

Km,n,k. (The complete tripartite graph Km,n,k is the graph whose vertices are
subdivided into 3 parts of sizes m, n, k, and two vertices are connected by an edge
if and only if they are in different parts.)

Problem 6. Give bijective proofs of the formulas for the number of spanning trees
in (a) Km,n, and (b) Km,n,k.
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Problem 7. Consider the electrical network given by the edges of the n-hypercube
with all edge resistances equal to 1. Find the effective resistance between a pair of
the opposite vertices of the hypercube.

Problem 8. Let G be a graph with some vertices marked by A1, . . . , An. (Some
vertices of G can be unmarked.)

For a set-partition π = π1|π2| · · · |πk of the set [n] with k blocks, let f(π) be
the number of subforests F in the graph G with exactly k connected components
such that each vertex of G belongs to one of the components of F , and two marked
vertices Ai and Aj are in the same component of F if and only if i and j are in the
same block of π.

The numbers f(π) are important for electrical networks. For example, we proved
in class, that for n = 2, the effective resistance between A1 and A2 is f(1|2)

f(12) .
Prove the following relation for these numbers, for n = 3,

f(123)f(1|2|3) = f(12|3)f(23|1) + f(13|2)f(12|3) + f(23|1)f(13|2).

For example, if G = K3 with 3 marked vertices, then f(123) = 3, f(1|2|3) = 1,
f(12|3) = f(13|2) = f(23|1) = 1.

Also, if G is the Y -shaped graph with 3 marked end-points (and unmarked
central vertex), then f(123) = 1, f(1|2|3) = 3, f(12|3) = f(13|2) = f(23|1) = 1. In
both examples, the relation holds.

Problem 9. Let In(x) =
∑

T xinv(T ), where the sum is over trees T on n+1 nodes
labelled 0, 1, . . . , n and inv(T ) denotes the number of inversions in T , that is, pairs
(i, j), 1 ≤ i < j ≤ n, such that j belongs to the shortest path from i to 0.

Also let Pn(x) =
∑

f x(n+1
2 )−P

f(i), where the sum is over parking functions
f : [n] → [n] of size n.

Prove that In(x) = Pn(x).

Problem 10. Fix positive integers n, r, l. We say that a function f : [n] → [nr +
l − 1] is a generalized parking function of type (n, r, l) if it satisfies the condition
#i | f(i) ≥ (n− k)r + l ≤ k for k = 0, 1, . . . , n.

Find a closed formula for the number of such generalized parking functions.

Problem 11. Fix n, r. Consider the action of the cyclic group Zr := Z/rZ on the
set [nr] such that the generator of Zr sends i to i + n (mod nr); and extend this
action to the set [nr] ∪ {0}, where 0 is a fixed point of the action. We say that a
tree T on nr + 1 nodes labelled 0, 1, 2, . . . , nr is a Zr-invariant tree if it is invariant
under the above action of the cyclic group on its nodes.

(a) Find a formula for the number of Zr-invariant trees on nr + 1 nodes.
(b) Construct a bijection between Zr-invariant trees on nr + 1 nodes and gener-

alized parking functions of type (n, r, l) (as in the previous problem) with l = 1.

Problem 12. Calculate the number of regions of the following hyperplane arrange-
ments in Rn. (Here x1, . . . , xn are the coordinates in Rn.)

(a) xi − xj = 0, for 1 ≤ i < j ≤ n
(
n
2

)
hyperplanes

(b) xi − xj = 0, 1, for 1 ≤ i < j ≤ n 2
(
n
2

)
hyperplanes

(c) xi − xj = −1, 0, 1, for 1 ≤ i < j ≤ n 3
(
n
2

)
hyperplanes

Problem 13. Recall that the Minkowski sum of two subsets A and B in Rn is
A + B := {a + b | a ∈ A, b ∈ B}.
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Let us also define the Minkowski difference A − B := {c ∈ Rn | c + B ⊆ A}.
Here c + B denotes the parallel translation of B by the vector c. (If there is no
parallel translation of B that fits inside A, then the Minkowski difference A−B is
the empty set.)

(a) Is it true that, for any convex polytopes A and B, we have (A+B)−B = A?
(Give a proof or a counterexample)

(b) Is it true that, for any convex polytopes A and B, we have (A−B)+B = A?
(Give a proof or a counterexample)

(c) We defined zonotopes as Minkowski sums of line intervals. Will we get a
bigger class of polytopes, if we consider Minkowski sums and differences of line
intervals?

(d) Is it true that a zonotope has a unique expression as a Minkowski sum of
line intervals (up to a permutation of the summands)?

(e) Same question as (d) but now with Minkowski sums and differences?

Problem 14. Let e1, . . . , en be the standard coordinate vectors in Rn. For a subset
I ⊆ [n], let ∆I denote the simplex with the vertices ei for i ∈ I. (Simplices are
multidimensional generalizations of triangles.) For example, ∆{i} is just a single
point, ∆{i,j} is a line interval between the end-points of two coordinate vectors,
∆{i,j,k} is a triangle whose vertices are the end-points of the coordinate vectors,
etc.

(a) Find the number of vertices of the Minkowski sum of the simplices ∆{i,j} for
all 2-element subsets I = {i, j} ⊂ [n].

(b) Find the the number of vertices of the Minkowski sum of the simplices ∆I

for all consecutive intervals I = {i, i + 1, . . . , j} ⊆ [n].
(c) Find the number of vertices of the Minkowski sum of the simplices ∆I for all

subsets I ⊆ [n].

Problem 15. Let Ha,b,c be the hexagon with all angles 120◦ and side lengths
a, b, c, a, b, c (in the clockwise order). Let Na,b,c be the number of tilings of Ha,b,c

into rhombuses with side lengths 1 (and angles 120◦ and 60◦).
(a) Find a closed formula for Na,b,1.
(b) Find a closed formula for Fn :=

∑
a+b=n Na,b,2.

Problem 16. Find a closed formula for the number Na,b,c from the previous prob-
lem, for any a, b, c.

Problem 17. Let Tn,n+1 be the polytope of n × (n + 1) matrices with real non-
negative entries, all row sums equal to n + 1, and all column sums equal to n.

(a) Describe the vertices of the polytope Tn,n+1.
(b) Find a closed formula for the number of vertices in Tn,n+1.


