lost time: 4 formulas for S_χ,

$$S_{\chi} = S_{\chi} = S_{\chi} = S_{\chi}$$

Weyl chcr. formula

How to prove?

- Divided differences operators:
 $$\partial_i : f \mapsto \frac{(1 - S_i)(f)}{x_i - x_{i+1}}$$

- Demazure operators
 $$D_i : f \mapsto \frac{(1 - \frac{x_{i+1}}{x_i} S_i)(f)}{1 - \frac{x_{i+1}}{x_i}}$$

$$\partial_i(\chi_i f)$$
\(D_i \left(x_i^a x_{i+1}^b \right) = x_i^a x_{i+1}^b + x_i^{a-1} x_{i+1}^{b+1} + \ldots \)

\(a > b \)

\(\ldots + x_i^b x_{i+1}^a \)

\(D_i \) commutes with \(x_j \), \(j \neq i, i+1 \)

\(D_i \left(x_j^a \right) = x_j^a D_i \left(x_j^a \right) \).

Example \(n = 3 \), \(\lambda = (4,2,0) = \begin{pmatrix} 4 & 2 & 0 \end{pmatrix} \)

Let's calculate \(S_{(4,2,0)}(x_1 x_2 x_3) \)

using Demazure operators:

\(S_{\lambda}(x_1 x_2 x_3) = D_1 D_2 D_1 (x^4) \)

We'll represent a monomial \(x_1^a x_2^b x_3^c \) by a point \((a, b, c)\)

in the affine plane \(\mathbb{A}(x, y, z) \mid x + y + z = 6 \) \(\subset \mathbb{R}^3 \)

All monomials will have same degree = 6, so we are "living" in an affine plane \(x + y + z = 6 \).
For example, Kostka number $K_{(1, 2, 0), (2, 2, 2)} = 3$.

Let's check by counting SSYT's:

```
1 2 2
3 3
2 3
1 2 3
1 1 3 3
```
Observation: All non-zero monomials "live" inside a certain polytope (hexagon in this example)

Def. The permutohedron

\[\Pi(\lambda) := \text{conv}(\{(\lambda w_1), \ldots, \lambda w_n) \mid w \in S_n\} \]

is a convex polytope in \(\mathbb{R}^n \).

Fix \(\lambda = (\lambda_1, \ldots, \lambda_n) \).

\[s_\lambda = \sum_{g \in \mathbb{Z}^n} K_{\lambda g} x^g = \sum_{\mu \text{ partition}} K_{\lambda \mu} m_\mu. \]

Kostka numbers

Theorem.

We have \(K_{\lambda \rho} \neq 0 \) if and only if

\[\rho \in \Pi(\lambda) \cap \mathbb{Z}^n \]

is an integer lattice point of \(\Pi(\lambda) \).

We already mentioned a related result:

Theorem. \(K_{\lambda \mu} \neq 0 \) if and only if \(\lambda \geq \mu \) in the dominance order:

\[
\begin{align*}
\lambda_1 &\geq \mu_1, \\
\lambda_1 + \lambda_2 &\geq \mu_1 + \mu_2, \\
\lambda_1 + \lambda_2 + \lambda_3 &\geq \mu_1 + \mu_2 + \mu_3, \\
&\quad \ldots \\
\text{and} \quad |\lambda| &\geq |\mu|.
\end{align*}
\]
The equivalence of these two results follows from:

Theorem (Rado) Permutohedron

\[\Pi(\lambda) = \text{conv} \{ w(\lambda) \mid w \in S_n \} \subset \mathbb{R}^n \]

is given by the following inequalities:

\[\Pi(\lambda) = \left\{ (y_1, \ldots, y_n) \in \mathbb{R}^n \mid \begin{array}{c}
\cdot \quad y_{i_1} + \ldots + y_{i_k} \leq \lambda_{i_1} + \ldots + \lambda_{i_k} \\
\text{for any distinct } i_1, \ldots, i_k \\
\cdot \quad y_1 + \ldots + y_n = \lambda_1 + \ldots + \lambda_n \end{array} \right\} \]

In above example, \(\Pi(4,2,0) = \{ (x,y,z) \mid x,y,z \leq 4; \quad x+y, x+z, y+z \leq 6, \quad x+y+z=6 \} \)

Indeed, for \((y_1, \ldots, y_n) \in \mathbb{Z}^n\), Rado’s inequalities \(\leq\)

the weakly decreasing rearrangement \(\mu = (\mu_1, \ldots, \mu_n)\) of \((y_1, \ldots, y_n)\) satisfies \(\mu \leq \lambda\) in the dominance order.
BTW, there is another lesser known linear basis of \(\Lambda \).

\[
b_\lambda = \sum_{\mu \leq \lambda} m_{\mu} \mu = \sum_{\mu \leq \lambda} x^\mu
\]

for a partition \((\lambda_1, \ldots, \lambda_n)\).

i.e. \(b_\lambda \) is obtained from \(s_\lambda \) by replacing all non-zero coeffts. with 1.

Lemma \(E b_\lambda | \lambda \) any partition is a linear basis of \(\Lambda \).

Proof. Basically, the same argument as for \(s_\lambda \).

\(b_\lambda \) is related to \(E s_\lambda \) by an upper-triangular matrix with 1's on the diagonal. \(\square \)

We have

\[
S_\lambda = \sum_{\mu} A_{\lambda \mu} b_\mu
\]

Problem: A combinatorial formula for \(A_{\lambda \mu} \)? Is it true that \(A_{\lambda \mu} \geq 0 \)?

Example: \(\lambda = (4, 2, 0) \)

\[
S_{420} = b_{420} + 2b_{221} + b_{222}
\]

Here we are using Schur polynomials \(s(x_1, x_2, x_3) \), i.e. we only keep partitions \(\nu \) with at most 3 parts.

Theorem. \(b_{\mu}(x_1, \ldots, x_\mu) = \sum \ w(\frac{x^\mu}{w \in S_n}) \frac{(1-x-y) \cdots (1-x-y)}{(1-y) \cdots (1-y)} \)

Can be deduced from previous formula, which gives \(z \) over lattice points of a polytope.

Compare \(S_\lambda(y_1, \ldots, y_\lambda) \) with \(\sum \ w \frac{X^\lambda}{w \in S_n} \frac{(1-x-y) \cdots (1-x-y)}{(1-y) \cdots (1-y)} \)
Back to 4 formulas for S_{x}...

Fix n.

$$S_{x}^{\text{sub}} = \partial_{\omega_{x}}(x^{x}) = S_{x}^{\text{den.}} = D_{\omega_{x}}(x^{x})$$

Let $X_{i} : \mathcal{F} \rightarrow x_{i}$ (operator of mult. by x_{i}).

$$X^{\alpha} := x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$$

Then $D_{\xi} = \partial_{\xi} X_{i}$.

Theorem.

$$D_{\omega_{x}} = \partial_{\omega_{x}} X^{x}$$

Example. $n = 3$.

$$D_{\omega_{3}} = D_{1} D_{2} D_{1} = \partial_{1} X_{1} \partial_{2} X_{2} \partial_{1} X_{1}$$

$$= \partial_{2} \partial_{1} \omega_{1} X_{1}^{2} X_{2}$$

This is not completely trivial, because ∂_{1} does not commute with ∂_{2}.

$$D_{\omega_{x}} = D_{2} D_{1} D_{2} =$$

$$= \partial_{2} X_{2} \partial_{1} X_{1} \partial_{2} X_{2}$$

$$= \partial_{2} \partial_{2} X_{2} X_{1} X_{2}$$
But we can still "move" X_i's through σ_j's if we do it smartly: X_2 and σ_1 don't commute

$$\sigma_1 X_1 \sigma_2 X_2 \sigma_1 X_1 = \sigma_1 \sigma_2 X_1 X_2 \sigma_1 X_1$$

We can do this for any n, if we pick a reduced decomposition for w_0 smartly.

Lemma

$\psi(x_1, x_n) \text{ commutes with } \sigma_i$ if

$$\psi = S_i(\psi).$$

Lemma

$w_0 = (S_1 S_2 ... S_{n-1}) (S_1 S_2 ... S_{n-2}) ... (S_1 S_2) (S_1)$ is a reduced decomposition

For $n=4$:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
S_1 & S_2 & S_1 & S_3 S_2 S_1
\end{array}
\]

a wiring diagram for w_0

$(S_1) (S_2 S_1) (S_3 S_2 S_1)$
Proof of $\mathcal{D} w_0 = \partial w_0 x^8$

$\mathcal{D} w_0 = (\partial_1 x_1 \partial_2 x_2 \ldots \partial_{n-1} x_{n-1})$

$(\partial_1 x_1 \partial_2 x_2 \ldots \partial_{n-2} x_{n-2}) \ldots$

$(\partial_1 x_1 \partial_2 x_2) (\partial_1 x_1) = \partial_1 \partial_2 \ldots \partial_{n-1} (x_1 \ldots x_{n-1})$

$\partial_1 \partial_2 \ldots \partial_{n-2} (x_1 \ldots x_{n-2}) \ldots$

$\partial_1 \partial_2 (x_1 x_2) \partial_1 x_1$

$= (\partial_1 \ldots \partial_{n-1}) (\partial_1 \ldots \partial_{n-2}) \ldots (\partial_1 \partial_2) \partial_1$

$\partial_1 x_1 \ldots x_{n-1} (x_1 \ldots x_{n-2}) \ldots (x_1 x_2) x_1$

$= \partial w_0 x^8$. □

So we proved $S^\text{Schub}_x = S^\text{Dem}_x$.
Theorem. $S_x^\text{class.} = S_x^\text{comb.}

By the fundamental theorem of symmetric functions, elem. functions e_k generate Λ.
So in order to prove that two linear bases of Λ, or of $\Lambda_n = \mathbb{Z}[x_1, \ldots, x_n]^S_n$, coincide it is enough to show that they satisfy the same product rule with e_k.

Def: A skew Young diagram λ/μ is a **vertical k-strip** if any row of λ/μ contains at most k boxes, and $|\lambda/\mu| = k$.

Example:

A vertical 7-strip.
Pieri Rule (e version)

\[\delta_k \cdot S_\lambda = \sum \Delta \mu \]

\(\Delta \mu \) any partition s.t.

\(\mu / \lambda \) is a vertical \(k \)-strip

For symmetric polynomials in \(n \) variables, we have

\[\delta_k(x_1, \ldots, x_n) \cdot S_\lambda(x_1, \ldots, x_n) = \]

\[= \sum \Delta \mu (x_1, \ldots, x_n) \]

\(\mu \) w/ at most \(n \) parts

\(\mu / \lambda \) is a \(\nu \) end. \(k \)-strip

Both versions are equivalent to each other:

\(\Lambda \Rightarrow \Delta_n \) : specialize \(x_{n+1} = x_{n+2} = \ldots = 0 \)

\(\Delta_n \Rightarrow \Lambda \) : take \(n \) sufficiently large
\[e_1 \cdot S_x = S_x^{class} + S_x^{comb} + S_x \]
\[e_2 \cdot S_x = S_x^{class} + S_x^{comb} + S_x^{comb} + S_x \]

In order to show that
\[S_x^{class} = S_x^{comb} \] is it enough to prove that both
\[S_x^{class} \] & \[S_x^{comb} \] satisfy Pieri rule.

For \[S_x^{comb} \], Pieri rule will follow from RSK (Robinson-Schensted-Knuth correspondence), which we'll discuss later.

Let's prove Pieri rule for \[S_x^{class} (x_1, \ldots, x_n) \]
Proof. \(S_x := \frac{\alpha x + s}{\alpha s} \)

\(a_\alpha := \sum_{w \in S_n} (-1)^{e(w)} \ w(x^\alpha) \).

Since \(e_K = e_K(x_1, \ldots, x_n) \) is a symmetric polynomial, we have

\[
e_K \cdot a_\alpha = \sum_{w} (-1)^{e(w)} e_K \ w(x^\alpha)
\]

\[
= \sum_{w} (-1)^{e(w)} \ w(e_K \cdot x^\alpha)
\]

\[
= \sum_{w} (-1)^{e(w)} \ w\left(\sum_{i_1 < \ldots < i_K} x_{i_1} \cdots x_{i_K} \right)
\]

\[
= \sum_{i_1 < \ldots < i_K} a_{x + \mathbf{e}_{i_1} + \ldots + \mathbf{e}_{i_K}}
\]

These are the coord. vectors in \(\mathbb{R}^n \)

only the terms where this is a strictly decreasing vector are non-zero.
Thus
\[e_k S\lambda(x_1, x_n) = \sum_{\mu = \lambda + \delta_{i_1} + \ldots + \delta_{i_k}} S\mu(x_1, \ldots, x_n) \]

where the sum is over \(i_1 < \ldots < i_k \) such that \(\mu \) is a weakly decreasing vector, i.e., \(\mu \) is a valid partition.

This exactly means that the sum is over all \(\mu \)'s obtained from \(\lambda \) by adding a vertical \(k \)-strip.

Ex. 1

```
   1
  / \  \
2   3
  |  |
  4
```

\(i_1 = 1 \), \(i_2 = 2 \), \(i_3 = 3 \), \(i_4 = 5 \).

So we've got Pieri Rule □
We also have a similar Pieri rule for h_k

\[h_k s_\lambda = \sum \limits_{\mu : \mu / \lambda \text{ is a horizontal } k\text{-strip}} s_\mu \]

The 2 versions of Pieri rule are related by the involution \(\omega : \Lambda \to \Lambda \)

\[\omega : e_k \leftrightarrow h_k \]

Theorem: We have \(\omega(s_\lambda) = s_{\lambda'} \)

\(\lambda' \) is the conjugate partition to \(\lambda \).