We'll continue with Vershik-Okounkov construction.

Last time: G any finite group

- G has finitely many (up to isomorphism) irreducible representations V_{λ}, $\lambda \in \mathcal{G}$,
 $|\mathcal{G}| = \# \text{conjugacy classes in } G$

- Group algebra of G
 $$C[\mathcal{G}] = \sum_{\lambda \in \mathcal{G}} f_{\lambda} g_{\lambda}, \quad f_{\lambda} \in \mathbb{C}$$
 - algebra of block diagonal matrices (with square blocks)
 - block sizes d_{1}, \ldots, d_{n} are $\dim(V_{\lambda})$
 - (here we assume $\mathcal{G} = \{1, \ldots, N\}$
 - $N = |\mathcal{G}|$)

Explicitly: Pick linear bases in all V_{λ}'s. Then the representation V_{λ} is given by homomorphism:

$$R_{\lambda}: G \to \text{GL}_{d_{\lambda}}$$

$g \mapsto R(g) = \begin{bmatrix} R_{1}(g) & & \\ & \ddots & \\ & & R_{n}(g) \end{bmatrix}$

This linearly extends to the map $C[\mathcal{G}] \to \sum$ block diagonal matrices

$$\sum_{\lambda \in \mathcal{G}} f_{\lambda} g_{\lambda} \mapsto \sum_{\lambda \in \mathcal{G}} f_{\lambda} R(g)$$
The center of the group algebra

\[Z_{C[G]} := \left\{ f \in C[G] \mid f g = g f \quad \forall g \in G \right\} \]

\[= C_{\text{const}}(G) := \left\{ \sum_{g \in G} f_g g \mid f_g \text{ is a class function on } G \right\} \]

\[\alpha_1, \ldots, \alpha_n \in C \]

\[G_0 \subset G_1 \subset G_2 \subset \ldots \]

any sequence of included groups.

- Brattelli diagram: directed graph on vertex set \(\bigcup_{i \geq 0} G_i \)

edges correspond to "branching rule" \(\text{Res}_{G_n}^{G_{n-1}} V_\lambda = \bigoplus V_\mu \)

\[m \overset{\mu}{\longrightarrow} \lambda \quad \text{if } V_\mu \text{ has appearance } \]

\[G_n - G_{n-1} \text{ in } \text{Res}_{G_n}^{G_{n-1}} V_\lambda \]

with multiplicity \(m \).
- \(\dim V_\lambda = \# \text{ directed paths} \)

\[
T = (\emptyset \to \ldots \to \lambda)
\]

in the Bratteli diagram.

(Here \(G_0^\wedge = \{ \emptyset \} \))

- Gelfand-Tsetlin basis of \(V_\lambda \)

\[
\left\{ \mathcal{S}_T \right\} \mid T = (\emptyset \to \ldots \to \lambda)^3
\]

\[
V_\lambda \xrightarrow{\text{Res}} \bigoplus_{\mu \in G_n^\wedge} V_\mu \xrightarrow{\text{Res}} \bigoplus_{\nu \in G_{n-1}^\wedge} \bigoplus_{\nu \in G_{n-2}^\wedge} \bigoplus \bigoplus V_0
\]

\(\sim \ldots \sim \)

\[
V_\lambda = \bigoplus \left\{ \text{one-dimensional spaces} \right\}
\]

Then pick a generator \(\mathcal{S}_T \) in each 1-dim space.

- If Bratteli diagram does not have multiple edges, then a Gelfand-Tsetlin basis is unique up to rescaling the vectors \(\mathcal{S}_T \).
$G_0 \subset G_1 \subset G_2 \subset \ldots$

$[G_0] \subset [G_1] \subset [G_2] \subset \ldots$

$Z_0 \quad U \quad U \quad \ldots$

$Z_n : = ZC[G_n] \quad \text{the center of group } G_n$

- **Gelfand-Tsetlin subalgebra**

$GT_n \subset [G_n]$

$GT_n = \text{algebra generated by } Z_0, Z_1, Z_2, \ldots$

Proposition If we pick a GT-basis in each V_λ. Then

$GT_n \cong \{ \text{all diagonal matrices} \} \cong \begin{bmatrix}
\begin{array}{ccc}
1 & & \\
& 2 & \\
& & 3
\end{array}
\end{bmatrix}
$

Z_n

In particular, GT_n is a maximal commutative subalgebra of CLG_n.
The centralizer of GL_n in GL_{n+1} is $Z_{n+1} := \{ g \in GL_{n+1} \mid \forall h \in GL_n \text{ all elements of } Z_{n+1} \text{ that commute with } g \} = GL_n \backslash GL_{n+1}$.

Proposition The Bratteli diagram does not have multiple edges if all centralizers Z_{n+1} are commutative.

In this case:
- GT-basis \mathcal{G}_{T_3} is unique (up to rescaling at T_3)
- A vector $S \in V_\chi$ belongs to GT-basis (up to rescaling) iff S is a common eigenvector of all elements of GT_n
- Basis elements in GT-basis are uniquely determined by eigenvalues of elements of GT_n

We will not prove above Proposition. Proofs can be found in the paper by Vershik - Okounkov. They are not very hard. This is basically linear algebra.
Let's now specialize the above general construction to the case of symmetric groups S_n included into each other in the standard way:

$$S_0 < S_1 < S_2 < S_3 < \ldots$$

Young - Jucys - Murphy elements: For $i=1,2,\ldots$

$$X_i := (1, i) + (2, i) + \ldots + (i-1, i)$$

1. $X_1 = 0$
2. $X_2 = (1, 2)$
3. $X_3 = (1, 3) + (2, 3)$
4. $X_4 = (1, 4) + (2, 4) + (3, 4)$

etc.

Recall, $Z_n := Z[C[S_n]]$

$$Z_{n-1, 1} = \text{centralizer of } Z[C[S_{n-1}]] \text{ in } Z[C[S_n]]$$

$GT_n = \text{subalg. of } C[S_n]$ generated by $Z_1, Z_2, \ldots Z_n$
$Z_n \subset Z_{n-1} \subset GT_n \subset C[S_n]$

Clearly, $X_n = \mathbb{Z}$ all transp in S_n
- \mathbb{Z} all transp in S_{n-1}
$\in \langle Z_n, Z_{n-1} \rangle \subset GT_n$.

Theorem. GT_n is the algebra generated by X_1, X_2, \ldots, X_n.

$$GT_n = \langle X_1, X_2, \ldots, X_n \rangle.$$

This follows from.

Theorem. Z_{n+1} is generated by Z_{n-1} and X_n.

$$Z_{n-1,1} = \langle Z_{n-1}, X_n \rangle.$$

In particular, $Z_{n-1,1}$ is commutative. Thus the Bratteli diagram does not have multiple edges.

(It is easy to see that X_n commutes with Z_{n-1}.)

This claim can be proved by induction.
For a partition \((C_1, \ldots, C_e)\)
\[n = C_1 + \ldots + C_e \]

Let
\[[C_1, \ldots, C_e] := \sum_{w \in \mathbb{C}[S_n]} w \]
with cycle type \((C_1, \ldots, C_e)\)
\[w = (\ldots) (\ldots) \ldots (\ldots) \]
\[C_1 \quad C_2 \quad \ldots \quad C_e \]

A **marked partition** is
a partition with one marked part
\[n = C_1 + \ldots + C_e \]
\((C_1)\) non necessarily the largest part

\[[\overline{C_1}, \ldots, \overline{C_e}] := \sum_{w \in \mathbb{C}[S_n]} w \]
with cycle type \((C_1, \ldots, C_e)\)
such cycle of size \(C_i\)
contains \(n\).

Example
\[[\overline{2}, 1, \ldots, 1] = \]
\[= \text{the sum of all transpositions} \]
in \(S_n\).

\[[\overline{2}, 1, \ldots, 1] = \text{the sum of all transp. } (i, n) \text{ in } S_n \]
\[= i \times n. \]
Easy lemma:

1. \mathbb{Z}_n has linear basis $[c_1, \ldots, c_d]$ (given by all partitions of n)
2. \mathbb{Z}_{n+1} has linear basis $[c_1, \ldots, c_d]$ (given by all marked partitions of n)

(This directly follows from definitions of \mathbb{Z}_n, \mathbb{Z}_{n+1})

All above claims about JM-ets follow from

Lemma. All $[c_1, \ldots, c_d]$ ($c_1 + \ldots + c_d = n$), can be expressed in terms of $[\mathbb{Z}^*, c_1, c_2, \ldots, c_d]$ ($c_1 + \ldots + c_d = n-1$) and X_n.

Proof. $X_n \cdot [\mathbb{Z}^*, c_1, c_2, \ldots, c_d] = ?$

2 cases: $i \in \text{marked cycles}$, $i \in \text{some other cycles}$ c_j

$X_n [\mathbb{Z}^*, c_1, \ldots, c_d] = \sum_{c_1 + \cdots + c_d = n} (\text{non-zero coeff}) [\mathbb{Z}^*, c_1, c_2, \ldots, c_d]$

$= \sum_{i \in \mathbb{Z}^*, c_3} (\text{non-zero coeff}) [\mathbb{Z}^*, c_1 + c_3, c_2, \ldots, c_d]$

One can use this identity to prove the lemma by induction.

Exercise. Do this.
Lemma \(\Rightarrow \) Each \([c_1, \ldots, c_n] \) \((c_1 + \cdots + c_n = n) \) can be expressed in terms of \(x_1, x_2, \ldots, x_n \).

\[\Rightarrow \] each element in \(\mathbb{Z}_n \)

\[\Rightarrow \] can be expressed in \(x_1, \ldots, x_n \).

\[\Rightarrow \] \(G \mathbb{T}_n = \langle x_1, \ldots, x_n \rangle \).

Examples

\(\left[\begin{array}{c}2 \\ n-2\end{array}\right] = x_1 + \cdots + x_n \)

\(\left[\begin{array}{c}3 \\ n-3\end{array}\right] = x_1^2 + \cdots + x_n^2 - \binom{n}{2} \).

etc.

Now we have:

Corollary Each irreducible representation \(V_\chi \) of \(S_n \) has a unique (up to rescaling) basis \(\{ G \mathbb{T}_n \} \) (GT-basis)

such that the vectors \(u_\lambda \) are the common eigenvectors of JM-elements \(x_1, \ldots, x_n \).

Each basis vector \(u_\lambda \) is uniquely determined by the collection \((\lambda_1, \ldots, \lambda_n) \) of eigenvalues

\[x_i u_\lambda = \lambda_i u_\lambda. \]
Elements \mathbf{T} of GT-basis can be labelled by
- paths T in the Bravetti diagram,
- vectors $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$
 of eigenvalues of X_1, \ldots, X_n.

$T \leftrightarrow (\alpha_1, \ldots, \alpha_n)$

Let $\text{Spec}(n) :=$ the set of all possible vectors $(\alpha_1, \ldots, \alpha_n)$ for all irreps of S_n.

Equiv. relation

$(\alpha_1, \ldots, \alpha_n) \equiv (\alpha'_1, \ldots, \alpha'_n)$ if

$(\alpha_1, \ldots, \alpha_n)$ and $(\alpha'_1, \ldots, \alpha'_n)$ correspond to vectors \mathbf{U}_T, \mathbf{U}'_T in the GT-basis of the same irreducible representation V_x.

Our goal is to describe $\text{Spec}(n)/\equiv$ combinatorially.
Our main tool is

Theorem The elements s_1, \ldots, s_{n-1} and x_1, \ldots, x_n in $\mathcal{U}[S]$ satisfy the relations:

- Coxeterrels. for s_1, \ldots, s_{n-1}
- $x_i x_j = x_j x_i, \forall i, j$
- $s_i x_j = x_j s_i$, if $j \neq i+1$
- $s_i x_i = x_{i+1} s_i - 1$
- $s_i x_{i+1} = x_i s_{i+1}$.

Proof Easy verification.

Def. The algebra with above relations is called

Degenerate Affine Hecke Algebra (DAHA).
Local Analysis of Spec(\(I_n\)).

\((\alpha_1, \ldots, \alpha_n) \in \text{Spec}(I_n)\)

corresponds to basis vector \(s = \alpha_1 \mathbf{v}_1\) in \(\mathbf{V}_\lambda\)

- \(\alpha_1 = 0\) (because \(\lambda_1 = 0\))

Suppose \(\alpha_i = a \neq 0\), \(\alpha_{i+1} = b \neq 0\)

\[X_i s = a \mathbf{v},\]

\[X_{i+1} s = b \mathbf{v}\]

Let \(s' = s_{i+1}(s) \in \mathbf{V}_\lambda\)

Consider 2 cases:

I. \(s \propto s'\) are linearly dependent

\[s_{i+1}^2 = 1 \implies s' = \pm s.

Data: \(s_i X i + 1 = s_i X_{i+1}\)

apply this to eigenvector \(s\).

\[\pm a s + s = \pm b s\]

\[b = a + 1\]
If S, S' are linearly independent \Rightarrow they span a 2-dim subspace in V_x.

The operators X_i, X_{i+1}, S_i act on the subspace $\langle S, S' \rangle$ by matrices:

$$X_i = \begin{pmatrix} a & -1 \\ b & \ 1 \end{pmatrix}, \quad X_{i+1} = \begin{pmatrix} 0 & a \\ b & 1 \end{pmatrix}, \quad S_i = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$X_i S = a_i S$$

$$X_i S' = X_i S_i(S) = (S_i X_{i+1} - 1) S$$

$$= -S + bS'$$

etc.

Observation $a \neq b$

(Otherwise X_i has a non-trivial Jordan block)

$$\begin{pmatrix} a & -1 \\ 0 & a \end{pmatrix}$$

but we know that X_i is diagonalizable.
Let's use the basis $\hat{5}, \tilde{5}$ instead of $\{\delta, \tilde{5}\}$ where $\tilde{5} = 5 + (b-a)\delta$.

$X_i: \tilde{5} \rightarrow b\tilde{5}$

$X_{i+1}: \tilde{5} \rightarrow a\tilde{5}$ the same eigenvalue

and $X_j \tilde{5} = \delta_j \tilde{5}$ for any $j \neq i, i+1$

$\Rightarrow \tilde{5}$ is a common eigenvector of X_i, X_{i+1}, X_j.

$\Rightarrow \tilde{5} \in$ G T basis

(of the same irrep V_i)

The vector of eigenvalues of $\tilde{5}$ is $\underline{\lambda} = (\lambda_1, \ldots, \lambda_{i+1}, \lambda_i, \ldots, \lambda_n)$

\uparrow transpose

λ_i and λ_{i+1} in vector $\underline{\lambda}$.

If $b = a \pm 1$ then $5, \tilde{5}$ are linearly dependent.

$\Rightarrow \tilde{5}$ is a linearly dependent on $5 \oplus s_i(\tilde{5})$.

But we assume that $5 \oplus s_i(\tilde{5})$ are independent.

So we cannot have $b = a \pm 1$ in this case.
We obtain

Theorem. Let \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \text{Spec}(\mathbb{F}) \) correspond to vector \(\mathbf{s}_i \) in GT-basis.

- \(\alpha_1 = 0 \)
- \(\alpha_i \neq \alpha_{i+1} \quad \forall \ i \)
- If \(\alpha_{i+1} = \alpha_i \pm 1 \)
 \(\text{then} \quad \mathbf{s}_i (\mathbf{s}_i) = \mp \mathbf{s}_i \)
- If \(\alpha_{i+1} \neq \alpha_i \pm 1 \)
 \(\text{then} \quad \alpha = (\alpha_1, \ldots, \alpha_{i+1}, \alpha_{i+2}, \ldots) \in \text{Spec}(\mathbb{F}) \)

\(\alpha \sim \alpha \)

\(\alpha \) corresponds to basis vector \(\mathbf{s}_i \)

\(s_i \) preserves the 2-dim subspace \(\langle \mathbf{s}_i, \mathbf{s}_i \rangle \)

We cannot have \(\alpha = (\alpha_1, \ldots, \alpha_n) = (\ldots, a, a\pm 1, a, \ldots) \)

Proof. We already proved everything except the last claim.

Last claim. Suppose

\(\alpha = (\ldots, a, a+1, a, \ldots) \)

\(s_i s_i s_i (\mathbf{s}_i) = - \mathbf{s}_i \)

\(s_i s_i s_i s_i (\mathbf{s}_i) = \mathbf{s}_i \)

Contradiction. \(\square \)
Claim: The above conditions uniquely describe the set $\text{Spec}(n)$ up to equiv. rel. \sim.

Let's be more specific.

Define an allowed transposition as $(\alpha_1, \ldots, \alpha_n) \leftrightarrow (\alpha_1, \ldots, \alpha_{i+1}, \alpha_i, \ldots, \alpha_n)$ if $\alpha_{i+1} \neq \alpha_i \pm 1$.

Define $\text{Cont}(n) \subset \mathbb{Z}^n$ the set of vectors $(\alpha_1, \ldots, \alpha_n)$ such that

- $\alpha_1 = 0$
- If $\alpha \leftrightarrow \alpha'$ is an allowed transposition then $\alpha' \in \text{Cont}(n)$
- If $\alpha_i = \alpha_j = a, i \neq j$, then $a-1, a+1 \in \{\alpha_{i+1}, \alpha_{i+2}, \ldots, \alpha_j\}$

Let \sim be an equiv. rel. on $\text{Cont}(n)$ generated by allowed transpositions.
We proved that
\[\text{Spec}(n) \subseteq \text{Cont}(n) \]
\[\alpha \sim \alpha' \implies \alpha \approx \alpha' \]

Theorem The set \(\text{Cont}(n) \)
is in bijection with \(\text{stand. Young tableaux of shape } \lambda \vdash n \)
\[\alpha \approx \alpha' \iff \text{corr esp. SYT}'s have the same shape} \]
So \# \text{\ - equiv. classes} \]
\[= p(n) \ (\# \text{ Young tableaux}) \]

On the other hand.
\[\# \text{\ - equiv. classes in Spec}(n) \]
\[= \# \text{ image of } S_n = p(n) \]

So we get
Theorem \(\text{Spec}(n)/\sim \]
\[= \text{Cont}(n)/\sim \]