A polynomial $A(x)$ is a sequence of constant numbers a_i such that $A(1) = A$. (The classical list)

q-numbers:

\[[n]_q = \frac{q^n - 1}{q - 1} \]

q-factorials:

\[[n]!_q = [1]_q [2]_q \cdots [n]_q \]

Example:

\[[3]!_q = [1]_q [2]_q [3]_q = (1 + q)(1 + q + q^2) \]

Here we have already seen $[n]_q$ in the context of permutations:

\[\text{Theorem 21: } \sigma \in S_n \quad \Rightarrow \quad [\pi]_q = \sum_{\sigma \in S_n} \sigma \]

Also $\sum_{\sigma \in S_n} \sigma = [n]!_q$ if $q = 1$.

q-binomial coefficients take the Gaussian coefficients

\[\binom{n}{k}^q = \frac{[n]!_q}{[k]!_q [n-k]!_q} \]

Example:

\[\binom{3}{2}^q = \frac{[3]!_q}{[2]!_q [1]!_q} = \frac{(1 + q)(1 + q + q^2)}{(1 + q)(1 + q^2)} = 1 + q^2 + q^3 + q^4 \]

This means that $A(x)$ can be a polynomial with positive integer coefficients. But in general, $A(x)$ need not be. Thus, for instance, $A(x)$ divisible by x^{ab}. This is discussed by the Macmillans.
Theorem.
\[\sum_{k=0}^{n} \binom{n}{k} q^k = \prod_{\lambda \in \mathcal{P}(n-k)} \left(1 + q \right)^{\lambda} \]

The sum over Young diagrams \(\lambda \) that fit inside the \(\mathcal{P}(n-k) \) rectangle. The coefficients of this expression are exactly the rank numbers \(r \) of the Young's lattice \(L (K, n-k) \).

Example \[\sum_{k=0}^{2} \binom{2}{k} q^k = \]

\[1 + q + q^2 + q^2 + q^3 + q^4 \]

Proof #1. It is not hard to prove it by induction on \(n \). One can easily show that both L.H.S. & R.H.S. satisfy the \(q \)-Pascal's recurrence relation:
\[\binom{n}{k} = \binom{n-1}{k-1} + q \binom{n-1}{k} \]

Exercise. Check this.

Remark. This is an easy but not very conceptual proof. We'll give another more interesting proof.
q - Pascal's triangle

Voici le q-analogue de mon triangle

Blaise Pascal
1623 - 1662
The Sperner property of $L(m,n)$ can be reformulated like this:

Let P_1, P_2, \ldots, P_N be any collection of lattice paths from the lower left to the upper right corners in the $m \times n$ rectangle S.

Any two paths P_i & P_j intersect.

For example,

```
3
```

Then $N \leq \binom{m+n}{\frac{m+n}{2}}$:

\[
\begin{align*}
\text{Young diagram:} & \\
\text{such that} & \\
|x| & = \lfloor \frac{n}{2} \rfloor \\
\end{align*}
\]
A more conceptual proof that
\[\binom{n}{k}_q = \sum_{\lambda \in \text{Sym}(n-k)} q^{|\lambda|} \]

Proof #2. Both sides are rational expressions in \(q \). It is enough to check that they are equal to each other for infinitely many values of \(q \).

We'll prove this when \(q = p^r \) (a power of a prime number \(p \)).

There are infinitely many prime numbers!

Euclid 300 BC

Let \(\mathbb{F}_q \) be the finite field with \(q \) elements.

Finite fields are also known as Galois fields.

If not that estate duel I would have discovered a lot of other genius things

Evariste Galois
1811 - 1832

\(\text{GL}_n(\mathbb{F}_q) \) - all invertible \(n \times n \) matrices with elements in \(\mathbb{F}_q \).

What is \(\# \text{GL}_n(\mathbb{F}_q) \)?

Example \(q = 2, \ n = 2 \)

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

\(\# \text{GL}_2(\mathbb{F}_2) = 6. \)
Let's construct an invertible \(n \times n \) matrix by picking its rows one by one.

\[
\begin{array}{c}
\text{row 1} \\
\text{row 2} \\
\vdots \\
\text{row n}
\end{array}
\]

Row 1 can be any \(n \)-vector over \(\mathbb{F}_q \), except \((0, 0, \ldots, 0)\).

So we have \(q^n - 1 \) choices.

Row 2 can be any \(n \)-vector over \(\mathbb{F}_q \), except \(\text{Row 1} \) rescaled by an element of \(\mathbb{F}_q \).

We have \(q^n - q \) choices.

Row 3 can be any \(n \)-vector, except a linear combination of Row 1 & Row 2.

We have \(q^n - q \) choices.

etc.

Theorem: There are exactly

\[
(q^n-1)(q^n-q)(q^n-q^2)\ldots(q^n-q^{k-1})
\]

\(k \times n \) matrices over \(\mathbb{F}_q \)

that have maximal possible rank \(r \).

In particular,

\[
\# \text{GL}_n(\mathbb{F}_q) = (q^n-1)(q^n-q)(q^n-q^2)\ldots(q^n-q^{n-1}) = q^{\binom{n}{2}}(q^n-1)^n \cdot L_n(q).
\]
The Grassmannian $\text{Gr}(k, n; F)$ is the space of k-dim linear subspaces in F^n.

Example. $k=1, n=2$. The elements of $\text{Gr}(1, 2)$ (aka the projective line) are lines that pass through the origin.

$\text{Gr}(1, 2; \mathbb{R}) \sim \text{a circle where any two opposite points are identified} \sim \text{just a circle.}$

More concretely, $\text{Gr}(k, n; F_q)$ is the space of $k \times n$ matrices over F_q of rank k modulo row operations.

So $\# \text{Gr}(k, n; F_q) =$

$$\frac{(q^n-1)(q^n-q)(q^n-q^2) \cdots (q^n-q^{k-1})}{(q^k-1)(q^{k-1})(q^{k-2}) \cdots (q^{k-k})}$$

Theorem $\# \text{Gr}(k, n; F_q) =$

$$= \prod_{i=1}^k (q-1).$$
Let's see a different way:

Gaussian Elimination

Is there a way to avoid using the method of Gaussian elimination by row operations into reduced row echelon form?

Example. $R_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$

- Any element of E_i - it is enough to match
- x_i - variable
- x_i - variable
- E_i - matrix

So there should be answers:

- $x_1 = x_2 = x_3 = x_4 = 0$

The reduced form looks better if we replace the pivot columns.

- $E_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Note that the reduced form of E_1 is

(a) The set of pivot columns
(b) A basis vector $\lambda = (x_1, x_2, x_3, x_4)$

We obtain:

$E_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Comparing this with the previous expression:

$E_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

we get the result.
We’ve got

\[\sum_{\omega \in S_n} i_{\omega}(x) q^{\omega} = \sum_{\mathbf{n} \in \mathbb{N}^n} \frac{\mathbf{n}!}{n_1! n_2! \cdots n_r!} \]

How about the multinomial coefficients?

Let \(n_1 + \cdots + n_r = n \) (a composition of \(n \))

The multinomial coefficients are defined as

\[\binom{n}{n_1, n_2, \ldots, n_r} := \frac{n!}{n_1! n_2! \cdots n_r!} \]

Proposition:

\[\binom{n}{n_1, n_2, \ldots, n_r} = \#	ext{ permutations of the multi set } \{1^{n_1}, 2^{n_2}, \ldots, r^{n_r}\} \]

i.e. words with exactly \(n_1 \) 1’s, \(n_2 \) 2’s, etc.
For a permutation of multiset (or word) \(w = w_1, \ldots, w_n \)
define the number of inversions

\[\text{inv}(w) := \# \{ 1 \leq i < j \leq n \mid w_i > w_j \} \]

Clearly, if \(w \in S_n \) is a usual permutation of \(1, 2, \ldots, n \), then \(\text{inv}(w) \) is the inversion number of \(w \) that we discussed before.

Example. \(r = 2 \)

Let us identify a Young diagram \(\lambda \) that fits inside the \(n_1 \times n_2 \) rectangle via the following permutation \(w \) of the multiset \(\{1, 2, \ldots, n_1 + n_2 - 3\} \):

\[n_1 = 5, \quad n_2 = 7 \]

\[\lambda = (6, 4, 4, 3, 1) \]

\[w = 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2 \]

Then

\[\text{inv}(w) = |\lambda| \]

Walk along the border of Shape \(\lambda \) from the upper right corner to the lower left corner — inversions of \(w \) are in bijection with boxes of \(\lambda \).
\[q - \text{multinomial coefficients} \]

\[
\left[\begin{array}{c}
 n \\
 n_1, n_2, \ldots, n_r \end{array} \right]_q = \frac{[n]_q!}{[n_1]_q! \cdots [n_r]_q!}
\]

Theorem. \[
\left[\begin{array}{c}
 n \\
 n_1, n_2, \ldots, n_r \end{array} \right]_q
\]

is a polynomial in \(q \) with non-negative integer coefficients.

\[
\left[\begin{array}{c}
 n \\
 n_1, \ldots, n_r \end{array} \right]_q = \sum_{w \text{ is a perm of the multiset}} q^{\text{inv}(w)}
\]

The 2 proofs that for the \(q \)-binomial coefficients (based on recurrence relation and on finite field) can be easily extended to all \(q \)-multinomial coeffts...

It is also easy to deduce the polynomiality of the \(q \)-multinomial coeffts. From the polynomiality of \(q \)-binomial coeffts.

Indeed,

\[
\left[\begin{array}{c}
 n \\
 n_1, n_2, \ldots, n_r \end{array} \right]_q =
\]

\[
= \left[\begin{array}{c}
 n \\
 n_1 \end{array} \right]_q \left[\begin{array}{c}
 n-1 \\
 n_1-1, n_2, \ldots, n_r \end{array} \right]_q \cdots \left[\begin{array}{c}
 n_r-1 \\
 n_r-1, \ldots, n_1 \end{array} \right]_q
\]

\[
\square
\]
Example \(u, v, w = 1, 1, 2 \)

Terms of the matrix \(\sum_{i,j} 1, 2, 3, 3 \)

\[
\begin{array}{cccc}
1 & 2 & 3 & 0 \\
1 & 3 & 2 & 3 \\
1 & 3 & 3 & 3 \\
2 & 1 & 3 & 3 \\
3 & 3 & 2 & 3 \\
3 & 2 & 1 & 3 \\
3 & 2 & 3 & 3 \\
3 & 3 & 3 & 3 \\
\end{array}
\]

\[
\text{inv}(w) = 0, 1, 2, 3, 4, 5, 6, 7
\]

\[
\sum_{i,j} 1, 2, 3 \quad q = 1 + eq + 3q^2 + 9q^3 + 2q^4 + 5q^5
\]

\[
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
\end{array}
\]

Notice that the coefficients 1, 2, 3, 3, 2, 1 are symmetric & unimodal.

The symmetry is easy, the unimodality is hard.

Next week we'll discuss how to prove the unimodality.

Question. Is there a generalization of the major index \(\text{maj}(w) \) to permutations of multisets, which is equidistributed with the inversion number \(\text{inv}(w) \)?

Percy Alexander MacMahon
1854 - 1929
Don't forget to upload your Problem Set!