
18.211 Problem Set 6 (due Wednesday, November 27, 2019)

Problem 1. For positive integers k < n, consider the graph G on the
vertex set V = [n] such that vertices i and j are connected by an edge
wheneven |i− j| ≤ k. Calculate the chromatic polynomial χG(q) of the
graph G, and the chromatic number of G (i.e., the smallest number of
colors needed to properly color the graph).

Problem 2. For n ≥ 2, find an explicit expression for the chromatic
polynomial χn(q) := χCn(q) of the graph Cn that consists of a single
cycle of length n. (For example, C3 = K3, so χ3(q) = χK3(q) =
q(q − 1)(q − 2).)

Problem 3. For n ≥ 1, calculate the number of acyclic orientations of
the 2× n grid graph. (The 2× n grid graph is the product of K2 and
the graph that consists of a single path with n vertices. See Problem 4
in the Problem Set 5 for the definition of product of graphs.)

Problem 4. Let P be a 3-dimensional polytope with V vertices, E
edges, and F faces such that every face of P is a quadrilateral. Prove
that the vector (V − 2, E, F ) is a multiple of the vector (1, 2, 1). (For
example, for the cube, we have (V − 2, E, F ) = 6(1, 2, 1).)

Problem 5. Let G = (V,E) be a connected graph. Let us fix an
orientation of all edges in G. For a positive integer k, a nowhere-zero
k-flow on G is a map f : E → {1, 2, . . . , k−1} such that, for any vertex
v ∈ V , we have∑

e∈E : e enters v

f(e)−
∑

e′∈E : e′ exits from v

f(e′) ≡ 0 (mod k).

(In other words, the total in-flow to vertex v minus the total out-flow
from v should be divisible by k.) Let CG(k) be the number of nowhere-
zero k-flows on G.

Notice that CG(k) does not depend on a choice of orientation of edges
in G, because one can always reverse the orientation of any edge e and
simultaneousely replace f(e) by −f(e). So the number CG(k) is an
invariant of an undirected graph G.

Prove that CG(k) satisfies the deletion-contraction recurrence:

CG(k) = CG/e(k)− CG\e(k),

for any edge e ∈ E that is not a loop nor a bridge. Deduce that CG(k)
is given by a polynomial function in k.

(This polynomial CG(k) is called the flow polynomial of graph G.)
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Bonus Problems

Problem 6. Let G = (V,E) be an undirected graph on the vertex set
V = [n]. A score vector for G is a vector (d1, . . . , dn) ∈ Zn such that
there exists an orientation O of all edges of G such that, for all i ∈ V ,
di equals the outdegree of the vertex i in the orientation O.

Prove that the number of different score vectors for graph G equals
the number of forests F = (V,E ′), E ′ ⊂ E, in the graph G.

For example, for graph G = K3 there are 7 different score vectors
(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0), (1, 1, 1). On the
other hand, there are 7 forests in K3.

Problem 7. Let us fix two positive integers m and n. Prove that
the number of acylic orientations of the complete bipartite graph Km,n

equals the number of permutations w ∈ Sm+n such that such that
−m ≤ w(i)− i ≤ n, for i = 1, . . . ,m+ n.

One can identify such permutations w with placements of m + n
pairwise non-attacking rooks of the chessboard Bm,n with boxes (i, j)
such that −m ≤ i − j ≤ n and i, j ∈ [m + n]. (We label boxes
of a chessboard by pairs (i, j) in the same way as one would label
entries of a matrix.) In other words, the board Bm,n is obtained from
the (m + n) × (m + n) square chessboard by removing two triangular
subsets of boxes of shapes (n−1, n−2, . . . , 1) and (m−1,m−2, . . . , 1)
located in the North-East and South-West corners of the square.

For example, for m = n = 1, the graph K1,1 has 2 acyclic orienta-
tions. On the other hand, B1,1 is the 2 × 2 square. There are 2 rook
placements on B1,1. For m = n = 2, the graph K2,2 is the 4-cycle that
has 24 − 2 = 14 acyclic orientations. On the other hand, B2,2 is the
3 × 3 square with two boxes in the opposite corners removed. There
are 14 rook placements on B2,2.

Problem 8. Prove that a graph is G is chordal if and only if it has a
perfect elimination ordering of vertices.

Problem 9. A graph G is called outerplanar if it can be drawn on
the plane without crossing edges so that all vertices of G belong to the
outer face (i.e., all vertices appear on the perimeter of the drawing).
Prove that G is outerplanar if an only if G has no sugraph that is
edge-equivalent to K4 or K2,3.

Problem 10. Fix a positive integer n. Let T be a binary tree with n
vertices that have exactly 2 children (and n+1 leaves). Let us label all
n non-leaf vertices of T by 1, . . . , n. We say that such labelled binary
tree is increasing if the label of a child is always greater than the label
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of its parent vertex. We also say that such labelled binary tree is left-
increasing if the label of a left child is always greater than the label
of its parent vertex (but the label of a right child may or may not be
greater than the label of its parent).

(a) Find an expression of the number of inreasing labelled binary
trees with n non-leaf vertices. Give a bijective proof for this expression.

(b) Find an expression of the number of left-inreasing labelled binary
trees with n non-leaf vertices. Give a bijective proof for this expression.


