a) \[F = \overline{P} \theta, \quad \phi = \tan^{-1} \frac{\omega}{r-1} \]

\[\text{side view:} \quad R = \overline{P}, \quad \text{top view} \]

\(\phi \) is the angle \(P' \overline{P} \)
\((P' \) is the projection of \(P \) to the \(xy \)-plane). Intuitively, \(\tan^{-1}(\infty) = \frac{\pi}{2}, \quad \tan^{-1}(-\infty) = -\frac{\pi}{2} \)
\(\phi \) and \(\overline{P} \) are defined except on the unit circle in the \(xy \)-plane (center at \(0 \))
- i.e., the locus where \(z = 0 \), \(r-1 = 0 \),
- and the \(z \)-axis \((r=0) \), since \(\nabla \phi \) has \(r \) in the denominator:
\[\frac{\partial \phi}{\partial x} = \frac{1}{r}, \quad \frac{\partial \phi}{\partial y} = \frac{i}{r} \]

b) \[C_1 = \text{unit circle in } xy \text{-plane positively oriented} \]
\[C = \text{circle } \]
\[\text{as } P \text{ moves around } C \text{ in direction shown, } \Delta \phi = 2\pi = \oint C \nabla \phi \cdot d\ell \]

If it goes around \(C_1 \) in this direction \(n \) times, \(\oint C \nabla \phi \cdot d\ell = 2n\pi \).
Sense is true for any closed, smooth \(C \).