
18.100A Fall 2018: Problem Set 5 due Fri. Oct.12

Directions: As previously. Put your name on top right; list any collaborators on top left;
write up independently. Consulting P-sets from previous semesters is illegal.

Reading Fri: 13.1-.3 Compactness; Boundedness and Extremal-Value Theorems:
If f(x) is a function continuous on a compact interval I = [a, b], then it is bounded and

has extremal points (i.e., maximum and minimum points) on I.

Note: A maximum point x̄ is one satisfying f(x) ≤ f(x̄) for all x ǫ I; for a minimum point
x, use ≥ instead. As examples, for f(x) = sinx, all x̄ = π

2
± 2nπ are maximum points;

all x= 3π

2
± 2nπ are minimum points. For a constant function f(x) = k, every x is both a

maximum and a minimum point.
Distinguish carefully between: a maximum point x̄ (which lies in I on the x-axis), the

corresponding maximum value m̄ = f(x̄), and a ”local maximum” point x0 (or ”relative
maximum” point), which is a maximum point for f(x) in some δ-neighborhood of x0.

Problem 1. (2: 1.5, .5) Work 13.1/1a,b.
Dirichlet’s “drawer principle” says that if you distribute n+1 balls among n drawers (or

“pigeon-holes” or “cubby-holes”), at least one drawer must contain two balls.
It has analogous formulations for N > n balls, or for an infinite number of balls.
Use one of these variants to give a simple direct proof of 1a: – start with an arbitrary

sequence {xn} of points in S, and show that it has a subsequence converging to a point in
one of the finite closed intervals that make up S.

Problem 2. (2: .5,.5, 1) (i), (ii): Work 13.2/1a,b and (iii): 13.3/3a
These give a geometric interpretation and application of the two theorems.

Problem 3. (3: 2,1)
Let I = [0,∞). Assume f(x) is continuous and > 0 on I, and lim

x→∞

f(x) = 0.

Prove that f(x) has a maximum point on I.

The point of this problem is that I is not sequentially compact, so the Extremal Value
(Maximum) Theorem is not immediately applicable. You have to get around that somehow.

a) Use f(0) to divide I into two pieces: a compact interval [0, a], and an infinite “tail”
interval [a,∞) on which the maximum point x̄ cannot lie, then finish the proof.

b) How would you modify the argument if f(0) = 0, but the other hypotheses were
unchanged? Give a brief reason why your modification will work; you don’t have to repeat
the whole argument.

Problem 4. (3) You can deduce the Maximum Theorem from the Boundedness Theorem
by a different argument than the one given in the textbook as the proof of Theorem 13.3.
This alternative argument is indirect, but gives a shorter proof.

Assume f(x) is continuous on the compact interval I but has no maximum point x̄.
Derive a contradiction by proving that if this were so, the following function would then be

a counterexample to the Boundedness Theore m:
1

m− f(x)
, where m = sup

I

f(x) .



Reading Wed.: 12.1, 12.2 (omit Example 12.2B) Bolzano’s Theorem, Intermediate Value
Theorem, Intersection Principle

Problem 5. (2: .5, 1.5)

a) Prove that if f(x) is continuous and strictly monotone (i.e., increasing or decreasing) on
[a, b], the equation f(x) = k has exactly one solution for k in [f(a), f(b] (or [f(b), f(a)]).

b) Let f(x) =
lnx

x
; find with proof the number of solutions to f(x) = k for every k ≥ 0.

Assume lim
x→∞

f(x) = 0; use calculus and part (a).

Problem 6. (3: 2,1)

a) Prove that the function f(x) = x− tanx has a strictly increasing sequence of positive
zeros x1, x2, . . . , xn, . . . .

(Use the Intersection Principle; in verifying that its hypotheses are satisfied you can treat
∞ informally like a real number. Include a reasonably careful sketch of the relevant graphs.)

b) If N is large, approximately how many positive zeros ≤ N does f(x) have? Indicate
your reasoning briefly.

Problem 7. (3) For what positive value of the parameter A will f(x) = x − A sinx have
exactly 4 positive zeros?

Express this value of A in terms of the xn of Problem 6.
(No formal proof is required, but show your reasoning and calculations.)

Problem 8. (2) Work P12-3 (Problem 12-3), proving the existence of a (horizontal) chord
for the graph of a function satisfying certain conditions specified in the problem.

(Try making some sketches on scratch paper. If stuck, see the suggestion below.

A chord is a horizonal line segment that must satisfy several conditions.
A good way of proceeding when trying to prove that such a mathematical object exists

is to weaken the hypotheses by dropping in turn just one of the conditions it must satisfy
and seeing whether the resulting object exists and what it looks like.

Doing this for each condition in turn can reveal if there is something that can satisfy all
of the conditions simultaneously.


