Directions. Same as for previous assignment. This is an extension of Pset 10A. The whole P-set when posted will be due Dec. 1.

Read Mon.: 24.1-.2
omit proof of the B-W Thm 24.2C—see Problem 4 below
Read 24.3-.5 Norms, seq's and fcn's on \(\mathbb{R}^2 \); convergence and continuity th'ns in \(\mathbb{R}^2 \).

1. (2: 1,1) a) Work 24.1/3 (Equiv'ce of uniform norm \(|| || \) and Euclidean norm \(| | \))
 b) Work 24.2/3, as a typical illustration of the significance of two norms being equivalent.

2. (2) An RAR (“right angle robot”) moves in an \(x \)-\(y \) coordinate system, but always parallel to one of the two axes, so it can only change its direction by a right angle to the left or right, or by reversing direction.
 a) Write down a suitable definition in \(x \)-\(y \) coordinates for the RAR-norm \(|||| \), measuring the minimal length of any of the paths it can use to get from \(0 \) to \(x \).
 Using it, prove that \(|||| \) satisfies the triangle inequality.
 b) Draw a picture of the region \(C(0, r) = \{ x \in \mathbb{R}^2 : |||x||| < r \} \), analogous to the open disc for the Euclidean norm and the open box for the uniform norm.
 Show work; what are the equations of the boundary curves for \(C(0, r) \)?

3. (2) Work 24.2/2, as an exercise in convergence of sequences in the plane. Use coordinate-wise convergence.
 On each main section of the region \(D \), indicate with an arrow (or some other notation if necessary) what the limit of the points in that section is, as \(n \to \infty \).
 Be sure to include the boundary of the region: it has several sections, having different limits (or no limit: indicate that too).

4. (2: .5, 1.5) Proving the Bolzano-Weierstrass Theorem in \(\mathbb{R}^2 \) using coordinate-wise convergence. (The proof is in the book, so treat this as a Question, pecking (quickly) at the proof only for a hint if stuck.)
 a) Critique the following (false) proof often given by students:
 \[\text{Proof:} \
 \text{Let } x_n = (x_n, y_n) \text{ be a bounded sequence in } \mathbb{R}^2. \text{ Then by the usual B-W Theorem in } \mathbb{R}, \text{ the bounded sequence } x_n \text{ has a convergent subsequence } x_{n_i} \to a \text{ and similarly, the bounded sequence } y_n \text{ has a convergent subsequence } y_{n_i} \to b.
 \]
 Then by coordinate-wise convergence, the subsequence \((x_{n_i}, y_{n_i}) = x_{n_i} \to a = (a, b) \).
 b) Fix up the proof in part (a) so it becomes a real proof by coordinate-wise convergence.

5. (1.5: .5, 1) Work 24.5/1 as follows:
 a) First show \(f(x, y) \) is continuous on every vertical line \(x = a \) and every horizontal line \(y = b \), including the two such lines which go through the origin \(0 \). (Use standard facts about the continuity of rational functions.)
 b) Then work 24.5/1 as written.

Reading Wed.: 24.6-7 Theorems about continuous functions on a compact set in \(\mathbb{R}^2 \),

6. (2) a) Work 24.7/1 (assume \(S \) is non-empty, and Euclidean norm for distance)
 b) Work Q24.7/2 (use book sol’n only if stuck, and only for hints, not copying)
More reading Wed: 25.1: pp.364,365 only) Cluster points and closed sets in \mathbb{R}^2

Problems 7 and 8 below are about closed sets; both are important theory problems and ask for proofs. The proofs give a good application of the definitions of cluster points and closed sets, and of theorems in Chapter 24 about continuous functions on \mathbb{R}^2.

Hint: For problems involving cluster points of a set S, in Def'n 25.1A try first to use the limit definition (1c in the book): it often it is the best choice.

(Its use is so frequent that many books call such a point a "limit point of $S" instead of "cluster point of $S", since these are the points which are limits of sequences in $S").

Note:
1. A cluster point a need not be in S.
2. In the sequence $x_n \to a$, we require $x_n \neq a$ for all n.
 (Otherwise, if a were any point in S, $\lim_{n \to \infty} a, a, a, \ldots = a$; thus every point of S would be a cluster point, and when everyone is somebody, then no one’s anybody.

7. (1.5: .5,1) Thm. 25.1B: If $f(x)$ is continuous on \mathbb{R}^2, then
 \[\overline{S}_{\overline{f}} = \{ x : f(x) = 0 \}, \quad \overline{S}_{\overline{f}^+} = \{ x : f(x) \geq 0 \}, \quad \overline{S}_{\overline{f}^-} = \{ x : f(x) \leq 0 \}. \]
 are closed sets.

 Prove the first two sets are closed.

 (Since the proof is in the book, treat this problem like a Question. Use sequential continuity in \mathbb{R}^2 and the usual limit location theorem for sequences in R if needed.

8. (2) We can think of a function $w = f(x)$ defined for all $x \in \mathbb{R}^2$ as giving a map $f : \mathbb{R}^2 \to \mathbb{R}^1$. If $S \subset \mathbb{R}^1$, we define the inverse image of S under f to be
 \[f^{-1}(S) = \{ x \in \mathbb{R}^2 : f(x) \in S \}. \]
 Assume $f(x)$ is continuous; prove that if S is closed in \mathbb{R}^1, then $f^{-1}(S)$ is closed in \mathbb{R}^2.

 (Focus on what you have to prove about $f^{-1}(S)$; observe the Note and Hint given above.)

Comment: The above is true for any map $f(x) : \mathbb{R}^n \to \mathbb{R}$ defined by a continuous function on \mathbb{R}^n. Conversely, if $f^{-1}(S)$ is closed for all closed subsets S of R, then the function $f(x)$ is continuous on \mathbb{R}^n. This gives an alternative definition of a continuous function on \mathbb{R}^n.

Read Mon.: 25.2-.3 Compactness Theorem; Open Sets. (You can skip the proof of the Complementation Theorem 25.3C – a more intuitive approach will be given in Notes for the next class.)

9. (2) Work Q25.1/bcede for easy practice in using Theorems 25.1A and B.

10. (3: 1.5; .5,1) Both of these problems are about using theorems about compact sets to prove things about sets which are not compact. Use the theorems in 25.1 and 25.2.

 a) Work 25.2/2, an extension of Problem 6a above to a set S which is not assumed to be compact. Assume only that S is closed and not empty. Use the ordinary notion of distance (i.e. the Euclidean norm) to interpret the word “nearest”.

 b) (i) Let S be the graph in \mathbb{R}^2 of the parabola $y = 2x^2 - 1$. Using 25.1 and 25.2, tell (with proof) whether it is closed, compact, or neither.

 (ii) Consider the sequence $x_n = (\cos n, \cos 2n), \quad n = 0, 1, 2, \ldots$ in \mathbb{R}^2.

 Using the theorems in Chapter 25, prove the sequence has a subsequence which converges to a point a on the parabola in part (i).
11. (2: 1,1) a) Work 25.1/4a b) Work 25.1/4b
These use 25.1A and B, and 25.3A and B. Give reasoning and make a sketch of both sets.

12. (3: 1,2) Work 25.2/5 — prove the following theorem, one of the important facts about compact sets:
Let \(f(x) : \mathbb{R}^2 \rightarrow \mathbb{R}^1 \) be a continuous function mapping \(\mathbb{R}^2 \) to \(\mathbb{R}^1 \). Then if \(S \) is a compact set in \(\mathbb{R}^2 \), its image \(f(S) \) is a compact set in \(\mathbb{R}^1 \).

a) Compact sets in \(\mathbb{R}^n \) are characterized two ways: as the closed and bounded sets, or – using sequences \(\{x_n\} \) – as the sets satisfying the sequential compactness condition.
One could try proving the above theorem by “divide and conquer”: proving separately that
\[
S \text{ bounded } \Rightarrow f(S) \text{ bounded } \quad \text{and} \quad S \text{ closed } \Rightarrow f(S) \text{ closed }.
\]
Prove by counterexamples that both statements are false. (Problem 11 helps.)

b) Instead, prove the theorem by using sequences: show \(f(S) \) satisfies the sequential compactness definition, if \(S \) does.
Focus on the theorem’s conclusion: what are you trying to show about \(f(S) \)? How can the hypotheses about \(f \) and \(S \) help you do this?

13. (1) Is the domain \(D \) of the function \(\tan(1/x) \) an open subset of \(\mathbb{R} \), a closed subset, or neither? Indicate reason.

Read Wed: Notes on Open and Closed Sets (one page, sent by e-mail attachment).

14. (3; .5 for each part) Using the Notes, work 25.3/1a,d,g,h,i,j, in conjunction with Problem 25-1.
For each of these six sets, draw a sketch of the set, describe its boundary points, tell whether it is open, closed, compact, or none of these, and give a brief reason that shows you are not guessing.

15. (1) Let \(a \) be a cluster point of \(S \). Prove: if \(a \) is not in \(S \), then \(a \) is in \(\partial(S) \).
(Use the first definition of cluster point: 25.1(1a).)