PROBLEM SET 9 (DUE ON NOV 17)

(All Exercises are references to the December 29, 2015 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Let $n \geq 2$ be an integer. Compute the (maximal) domain of definition of the generalized Cremona transformation

$$
C: \mathbb{P}_{\mathbb{C}}^{n} \rightarrow \mathbb{P}_{\mathbb{C}}^{n},
$$

a rational map given by $\left[x_{0}: \cdots: x_{n}\right] \mapsto\left[x_{0}^{-1}: \cdots: x_{n}^{-1}\right]$ (on closed points with $x_{0} \cdots x_{n} \neq 0$).
Problem 2. Let X, Y be Z-schemes and let $\pi: X \rightarrow Y$ be a morphism of Z-schemes. Suppose that π is surjective and X is universally closed (in other words, the structure morphism to Z is universally closed). Show that Y is universally closed.
Problem 3. Exercise 11.1.C (a zero-dimensional Noetherian scheme has a finite number of points)
Problem 4. Exercise 11.2.D (a surface cut out by three equations in \mathbb{A}^{4})

