PROBLEM SET 2 (DUE ON SEP 29)

(All Exercises are references to the December 29, 2015 version of *Foundations of Algebraic Geometry* by R. Vakil.)

- **Problem 1.** Exercise 3.2.Q (picturing $\mathbb{A}^n_{\mathbb{Z}}$)
- **Problem 2.** Describe the map of spectra induced by the ring homomorphism $\mathbb{Q}[x] \to \mathbb{C}[x]$ sending x to x. What is the preimage of the generic point?
- **Problem 3.** Describe Spec $\mathbb{C}[x, y, z]/(xy, yz, zx)$ (as a topological space).
- **Problem 4.** Let A be a ring and let S be a multiplicative subset of A. Consider the localization map $\phi : A \to S^{-1}A$ and the induced map on spectra Spec $\phi :$ Spec $S^{-1}A \to$ Spec A. Show that Spec ϕ is injective and that the Zariski topology on Spec $S^{-1}A$ agrees with the subspace topology induced by this injection.
- **Problem 5.** Exercise 3.5.B (covering Spec A with distinguished open sets)
- **Problem 6.** Exercise 3.5.E (equivalent conditions to $D(f) \subset D(g)$)
- **Problem 7.** Exercise 3.6.J (when are the closed points dense?)
- **Problem 8.** Exercise 3.6.K (sometimes functions are determined by their values on closed points)