PROBLEM SET 11 (DUE ON DEC 13)

(All Exercises are references to the December 29, 2015 version of *Foundations of Algebraic Geometry* by R. Vakil.)

- **Problem 1.** Exercise 13.7.F (local freeness can be checked at stalks)
- **Problem 2.** Exercise 13.7.K (finite type quasicoherent sheaves of constant rank are vector bundles)
- **Problem 3.** Exercise 14.1.D (classifying invertible sheaves on \mathbb{P}^1_k)
- **Problem 4.** Classify all morphisms (of quasicoherent sheaves on \mathbb{P}^1_k)

$$\mathcal{O}_{\mathbb{P}^1_k}(m) \to \mathcal{O}_{\mathbb{P}^1_k}(n)$$

for $m, n \in \mathbb{Z}$.

Problem 5. Let $S_{\bullet} = \mathbb{C}[x, y, z, w]/(xw - yz)$ be a graded ring, where we take deg $x = \deg y = 0$ and deg $z = \deg w = 1$. Let M_{\bullet} be the graded S_{\bullet} -module given by the ideal (xw) of S_{\bullet} . Let \widetilde{M}_{\bullet} be the corresponding quasicoherent sheaf on Proj S_{\bullet} (as defined in Section 15.1). Show that \widetilde{M}_{\bullet} is a line bundle and compute its base locus. (Hint: Use the affine charts Proj $S_{\bullet} = D(z) \cup D(w)$.) (Addendum: If you prefer, you can view M_{\bullet} as the degree shift $S(-1)_{\bullet}$, so \widetilde{M}_{\bullet} also goes by the name $\mathcal{O}_{\operatorname{Proj} S_{\bullet}}(-1)$.)