PROBLEM SET 10 (DUE ON DEC 1)

(All Exercises are references to the December 29, 2015 version of Foundations of Algebraic Geometry by R. Vakil.)
Problem 1. Exercise 11.2.J (most surfaces of degree $d>3$ have no lines - Vakil gives a detailed outline of how to do this, and the argument is similar to the one used in the proof of Bertini's theorem, but here is an additional note: if you are unfamiliar with the Grassmannian $\mathbb{G}(1,3)$, you can replace it in this proof with a single affine chart \mathbb{A}^{4}, where the closed point $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{A}^{4}$ corresponds to the line between $\left[1: 0: x_{1}: x_{2}\right]$ and $\left[0: 1: x_{3}: x_{4}\right]$ in \mathbb{P}^{3}. You will conclude that "most" degree d surfaces have no lines of this form, and then you can finish by noting that the set of lines in \mathbb{P}^{3} can be covered by finitely many charts of this type.)
Problem 2. Exercise 11.4.C (useful criterion for irreducibility - you will want to use properness to conclude that X is a variety and that some irreducible component of X surjects onto Y, and then use Prop 11.4.1 to show that this is the only irreducible component)
Problem 3. Do Exercise 12.3.N (assuming Exercise 12.3.M). Then show that the tangent cone of $\operatorname{Spec} \mathbb{Z}[5 i]$ at the point $[(5,5 i)]$ is isomorphic to the tangent cone of Spec $\mathbb{F}_{5}[x, y] /(x y)$ at the origin (the point $\left.[(x, y)]\right)$. (Recall that the tangent cone at p is $\operatorname{Spec} \bigoplus_{i \geq 0} \mathfrak{m}_{p}^{i} / \mathfrak{m}_{p}^{i+1}$.)
Problem 4. Let $X=\operatorname{Proj} \mathbb{C}[x, y, z] /\left(y^{2} z-x^{3}\right)$, a cubic curve in $\mathbb{P}_{\mathbb{C}}^{2}$. Let X^{\vee} be the dual curve (i.e. the closure of the locus of lines in $\mathbb{P}_{\mathbb{C}}^{2}$ tangent to X at some nonsingular point of X). Show that X and X^{\vee} are isomorphic.

