PROBLEM SET 9 (DUE ON NOV 16)

(All Exercises are references to Introduction to Commutative Algebra by M. Atiyah and I. Macdonald.)
Problem 1. Let $A=\mathbb{C}\left[t^{2}, t^{3}\right]$. Although A is not a Dedekind domain, we still let $\operatorname{Pic}(A)$ denote the group of invertible fractional ideals modulo principal fractional ideals, or equivalently the group of isomorphism classes of invertible A-modules. Prove that $\operatorname{Pic}(A)$ contains a subgroup isomorphic to \mathbb{C} and hence is infinite. (Hint: consider the subgroup of $\operatorname{Pic}(A)$ generated by the maximal ideals $\left(t^{2}-a^{2}, t^{3}-a^{3}\right)$ for $a \in \mathbb{C}^{*}$ (you will have to check that these are invertible fractional ideals). With a little more work you can show that this subgroup is actually the full Picard group, so $\operatorname{Pic}(A) \cong \mathbb{C}$, but you aren't required to do this.)
Problem 2. Let A be a ring, complete with respect to an ideal $I \subseteq A$. (Recall that this means that the map $A \rightarrow \lim A / I^{i}$ is an isomorphism.) Let M be an A module satisfying $\cap_{i \geq 0} I^{i} M=0$. Suppose that $x_{1}, \ldots, x_{n} \in M$ are elements whose images generate the module $M / I M$. Prove that x_{1}, \ldots, x_{n} generate M.
Problem 3. Let A be a ring, complete with respect to a maximal ideal $\mathfrak{m} \subset A$. Prove that A is a local ring.
Problem 4. Chapter 10, Exercise 9 (Hensel's lemma, version 1. The hint given in AtiyahMacdonald has a couple mistakes, so I'll modify it a bit here: Hint: The plan is to construct monic polynomials (for each k) $g_{k}, h_{k} \in A[x]$ of degrees $r, n-r$ such that $g_{k} h_{k}-f \in \mathfrak{m}^{k} A[x]$, and then use the sequences $\left(g_{k}\right),\left(h_{k}\right)$ to construct g, h (using the fact that A is complete). For the inductive step, for each $0 \leq p<n$ we want to pick $a_{p}, b_{p} \in A[x]$ of degrees $<n-r, r$ respectively such that $a_{p} g_{k}+b_{p} h_{k}-x^{p} \in \mathfrak{m} A[x]$, and then construct g_{k+1}, h_{k+1} by using those a_{p}, b_{p} to modify g_{k}, h_{k} appropriately.)
Problem 5. Chapter 10, Exercise 10, part (i) (Hensel's lemma, version 2. This is the more commonly seen version. Here "simple root" means that $f(a)=0$ but $f^{\prime}(a) \neq 0$, where f^{\prime} is the derivative of the polynomial f.)

