## PROBLEM SET 5 (DUE ON OCT 19)

(All Exercises are references to Introduction to Commutative Algebra by M. Atiyah and I. Macdonald.)
Problem 1. Chapter 7, Exercise 1 (a ring is Noetherian if and only if every prime ideal is finitely generated)
Problem 2. Chapter 7, Exercise 2 (description of nilpotent power series over a Noetherian ring)
Problem 3. Let $A$ be a Noetherian ring. Prove that $A$ has only finitely many minimal prime ideals (i.e. prime ideals that do not contain other prime ideals). (Hint: Let $S$ be the set of all ideals $I \subseteq A$ such that $A / I$ has infinitely many minimal prime ideals. If $S$ is nonempty, you can take a maximal element $I$ of $S$ and use the fact that $I$ cannot be prime to construct a larger element of $S$, giving a contradiction.)

